IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケアストリーム デンタル エルエルシーの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023155486
(43)【公開日】2023-10-20
(54)【発明の名称】圧縮センシングによる口腔内OCT
(51)【国際特許分類】
   A61B 1/00 20060101AFI20231013BHJP
   A61B 1/24 20060101ALI20231013BHJP
【FI】
A61B1/00 526
A61B1/24
【審査請求】有
【請求項の数】20
【出願形態】OL
(21)【出願番号】P 2023142642
(22)【出願日】2023-09-04
(62)【分割の表示】P 2022072928の分割
【原出願日】2016-05-16
(31)【優先権主張番号】62/318,788
(32)【優先日】2016-04-06
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】521154774
【氏名又は名称】ケアストリーム デンタル エルエルシー
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】ファン チュアンマオ
(72)【発明者】
【氏名】ワン ビクター シー
(57)【要約】
【課題】効率を向上させることができ、OCTの有用性を高めるのに役立ち得る、OCTイメージングのための改良型の走査装置および方法が求められている
【解決手段】画像データの獲得方法は、口腔内特徴に対して、3次元における光干渉断層法(OCT)データを取得するステップであって、少なくとも1つの次元が疑似ランダムまたはランダムにサンプリングされる、ステップと、圧縮センシングを使用して口腔内特徴の画像ボリュームを再構築するステップであって、再構築された画像ボリュームのデータ密度は、その少なくとも1つの次元における、または対応する変換による、取得されたOCTデータのデータ密度よりも大きい、ステップとを行う。この方法は、表示のための再構築された画像ボリュームをレンダリングする。
【選択図】図13
【特許請求の範囲】
【請求項1】
口腔内ボリューム画像データを獲得する方法であって、
サンプルの表面を横切る、いくつかの行の各々の行に沿って、複数の測定された光学干渉断層法(OCT)スキャンを取得するステップであって、前記光学干渉断層法(OCT)スキャンは、前記サンプルの深さ方向に沿ったA-スキャンと、行に沿ったB-スキャンを含み、
前記B-スキャンにおいてそれぞれの前記A-スキャンの間に間隔があり、それぞれの測定された前記A-スキャンが、前記A-スキャン内の対応する深さにおける入射光へのサンプル応答を示す複数の値を与える、ステップと、
測定された前記A-スキャンの間の領域に対する追加の演算された値で前記測定された前記A-スキャンのデータを補うように補間を適用するステップと、
測定された前記A-スキャンと、補間からの追加の演算された値との両方に従って、口腔内ボリューム画像を生成するステップと、
を含むことを特徴とする方法。
【請求項2】
請求項1に記載の方法であって、前記補間がバイリニア補間であることを特徴とする方法。
【請求項3】
請求項1に記載の方法であって、前記補間がトリリニア補間であることを特徴とする方法。
【請求項4】
請求項1に記載の方法であって、前記サンプルが歯であることを特徴とする方法。
【請求項5】
請求項1に記載の方法であって、
前記B-スキャンにおいて、行に沿った前記A-スキャンのサンプリング点を疑似乱数系列から生成することで、各サンプリング点の間隔距離を不均等にすることを特徴とする方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般的に、光干渉断層法(optical coherence tomography (OCT))イメージングのための方法および装置に関し、より詳細には、圧縮センシングを使用するOCTのための方法および装置に関する。
【背景技術】
【0002】
光干渉断層法(OCT)は、サンプルの深さ構造を特徴づける高解像度の断面断層画像を取得するのに干渉法原理を用いる非侵襲性のイメージング技法である。特に人の組織の生体内(in vivo)イメージングに適しているOCTは、生物医学的研究や、眼科、皮膚科、腫瘍学、その他の分野におけるような医用イメージング応用、それに加えて耳鼻咽喉(ENT)イメージングおよび歯科イメージングにおいて有用であることが示されている。
【0003】
OCTは、断面データを取得するために、生きた組織内部からの反射エネルギーをイメージングする、ある種の「光学的な超音波」として説明されてきた。OCTイメージングシステムにおいては、スーパールミネセントダイオード(SLD)またはその他の光源などの広帯域幅源からの光が、2つの異なる光経路:既知の長さの参照アームと、組織または調査中のその他の被験体を照明するサンプルアームに沿って導かれる。参照アームおよびサンプルアームから反射され、後方散乱された光が、次いで、OCT装置において再結合され、サンプルの表面および近表面の基本構造の特徴を特定するのに干渉効果が用いられる。干渉データは、サンプルを横断してサンプル照明を迅速に走査することによって獲得することができる。数千個の点の各々において、OCT装置は、干渉プロフィールを取得し、この干渉プロフィールは、光源コヒーレンスの係数である材料への軸方向深さを有するA-スキャンを再構築するのに使用することができる。ほとんどの組織イメージング応用用途に対して、OCTは、広帯域照明源を使用し、数ミリメートル(mm)の深さの画像コンテンツを提供することができる。
【0004】
初期のOCT装置は、深さ走査が、例えば、圧電アクチュエータのような、何らかのタイプの機械式機構を使用する、参照アームの長さを迅速に変化させることによって達成される、時間ドメイン(TD-OCT)アーキテクチャを用いた。TD-OCT方法は、ポイントバイポイント走査を使用し、イメージングセッション中に、照明プローブを、1つの点から次の点まで移動または走査させることが必要となる。より最近のOCT装置は、それらが生成する信号の光周波数に応じて異なる深さからの反射を区別する、フーリエドメインアーキテクチャ(FD-OCT)を使用することができる。FD-OCT方法は、多数の深さから同時に情報を集めることによって軸方向の走査の必要性を簡略化するか、または不要にして、獲得速度と信号対ノイズ比(SNR)の向上をもたらす。
【0005】
より低コストでより高い性能を達成するそれらの潜在能力故に、掃引周波数レーザー源に基づくFD-OCTシステムは、高度に散乱性の組織における表面下イメージング(subsurface imaging)を必要とする、医用用途に対して大きな注目を集めている。フーリエドメインOCTの2つの実現形態:スペクトルドメインOCT(SD-OCT)および掃引源OCT(SS-OCT)がある。
【0006】
SD-OCTイメージングは、サンプルを広帯域照明源で照明して、反射され散乱された光を分光計を用いて、例えばCCD(電荷結合素子)検出器のような、配列検出器上に分散させることによって達成することができる。SS-OCTイメージングは、高速波長同調レーザーでサンプルを照明して、単一の光検出器またはバランス型光検出器のみを使用する波長掃引中に反射された光を集める。SD-OCTとSS-OCTの両方を用いて、異なる深さから反射された散乱光のプロフィールが、信号解析技術における当業者には周知の、高速フーリエ変換(FFT)などのフーリエ変換を使用して、記録された参照信号に対して操作することによって取得される。
【0007】
SS-OCTに対する1つの課題は、必要とされる波長の系列を高速に連続して生成することのできる、好適な光源を準備することである。この必要性を満足するために、掃引源OCTシステムは、従来から、空洞内モノクロメータを備える高速波長掃引レーザーを利用するか、またはレーザー出力を同調するための、何らかのタイプの外部空洞狭帯域波長走査フィルタを使用している。この目的で使用されてきた外部デバイスの例としては、その空洞長が長手方向モードの線形の変化を与えるために調節される、同調型のファブリーペローフィルタ(Fabry-Perot filter)、および分散波長光を選択的に反射するポリゴンスキャナフィルタが挙げられる。フーリエドメインモードロックは、一般的に広帯域近赤外(BNIR)波長を使用するOCTイメージングに最も有用である、掃引周波数を生成するのに使用されてきた、最近報告されている技法である。
【0008】
可変調(tunable)レーザーを提供する参考文献としては以下のものが挙げられる:
S.R.チン(S. R. Chinn)、他(E. A. Swanson, J. G. Fujimoto)、"Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997);
B.ゴルボビク(B. Golubovic)、他(B. E. Bouma, G. J. Tearney, and J. G. Fujimoto)、"Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett.22, 1704-1706 (1997);
S.H.ユン(S. H. Yun)、他(C. Boudoux, G. J. Tearney, and B. E. Bouma)、"High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett.28, 1981-1983 (2003);
ウージン シン(Woojin Shin)、他(Boan-Ahn Yu, Yeung Lak Lee, Tae Jun Yu, Tae Joong Eom, Young-Chul Noh, Jongmin Lee, and Do-Kyeong Ko)、"Tunable Q-switched erbium-doped fiber laser based on digital micromirror array," Opt. Express 14, 5356-5364 (2006);
シャオ チェン(Xiao Chen)、他(Bin-bin Yan, Fei-jun Song, Yi-quan Wang, Feng Xiao, and Kamal Alameh)、"Diffraction of digital micro-mirror device gratings and its effect on properties of tunable fiber lasers," Appl. Opt. 51, 7214-7220 (2012).
【0009】
以下のものについても参照した:
フアン(Huang, D)、他(Swanson, EA; Lin, CP; Schuman, JS; Stinson, WG; Chang, W; Hee, MR; Flotte, T ら) (1991)、"Optical coherence tomography". Science 254 (5035): 1178-81. Bibcode:1991Sci...254.1178H. doi:10.1126/science.1957169.PMID 1957169;
「Optical coherence tomography imaging」という名称のカドリング(Quadling)らによる米国特許第7355721B2号;
「Optical coherence tomography imaging」という名称のカドリング(Quadling)らによる米国特許第8345261B2号;
「Swept source optical coherence tomography (OCT) method and system」という名称の、両方ともボンネマ(Bonnema)らによる米国特許第8928888B2号および同第8345257B2号;
「Dental optical measuring device and dental optical measuring/diagnosing tool」という名称のカジ(Kaji)らによる米国特許出願第US20130330686A1号;
ハンK.‐W.(Hung, K.-W.);シウW.‐C.(Siu, W.-C.)、"Fast image interpolation using the bilateral filter," in Image Processing, IET, vol.6, no.7, pp.877-890, October 2012. doi: 10.1049/iet-ipr.2011.0050;
ドノホ(D. L. Donoho)、D. L. Donoho, “Compressed Sensing,” IEEE Trans. Inf. Theory 52(4), 1289-1306 (2006);
キャンデス(E. Candes)、他(J. Romberg, and T. Tao)、“Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52(2), 489-509 (2006);
フォウカート(Foucart)、他(Simon, and Holger Rauhut)、A mathematical introduction to compressive sensing. Vol. 1. No. 3. Basel: Birkhauser, 2013;
エブジェニ レベド(Evgeniy Lebed)、他(Paul J. Mackenzie, Marinko V. Sarunic, and Faisal M. Beg)、"Rapid Volumetric OCT Image Acquisition Using Compressive Sampling," Opt. Express 18, 21003-21012 (2010);
スアン ル(Xuan Liu)およびジン U カン(Jin U. Kang)、"Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography," Opt. Express 18, 22010-22019 (2010).
【0010】
医学用および歯科用のイメージング応用に対して、その実際的な使用性と有効性に制約を加える、OCTイメージングの一観点は、データ獲得の速度に関係する。OCT走査は、表面に沿って間隔を空けられた多数のポイントにおける表面サンプリングを必要とするので、スキャナは、サンプリング期間中に静止して保持しなくてはならない。データを取得する間の、スキャナプローブの移動は、サンプリング工程を混乱させて、表面再構築のための十分で正確なデータの獲得を防止または遅延させる可能性がある。
【0011】
したがって、効率を向上させることができ、OCTの有用性を高めるのに役立ち得る、OCTイメージングのための改良型の走査装置および方法が求められていることがわかる。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】米国特許第7355721号明細書
【特許文献2】米国特許第8345261号明細書
【特許文献3】米国特許第8928888号明細書
【特許文献4】米国特許第8345257号明細書
【特許文献5】米国特許出願公開第2013/0330686号明細書
【特許文献6】米国特許出願公開第2013/0156283号明細書
【特許文献7】米国特許出願公開第2014/0340634号明細書
【特許文献8】米国特許出願公開第2015/0245770号明細書
【非特許文献】
【0013】
【非特許文献1】S.R.チン(S. R. Chinn)他、「周波数可変光源を用いた光学的コヒーレンストモグラフィ("Optical coherence tomography using a frequency-tunable optical source,")」、オプティクス レターズ(Opt. Lett.)、平成12年、第22巻、第5号、p.340-342
【非特許文献2】B.ゴルボビク(B. Golubovic)他、「Cr4+フォルステライトレーザーの高速周波数変調を用いた光学的周波数ドメイン反射率測定("Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser”」、オプティクス レターズ(Opt. Lett.)、平成12年、第22巻、第22号、p.704-1706
【非特許文献3】S.H.ユン(S. H. Yun)他、「ポリゴンスキャナベースの周波数フィルタを用いた高速周波数掃引半導体レーザ("High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter")」、オプティクス レターズ(Opt. Lett.)平成15年、第28巻、第20号、p.1981-1983
【非特許文献4】ウージン シン(Woojin Shin)他、「デジタルマイクロミラーアレイに基づいた可変Q-スイッチ型エルビウム添加ファイバレーザー("Tunable Q-switched erbium-doped fiber laser based on digital micro-mirror array")」、オプティクス エクスプレス(Opt. Express)、第14巻、第12号、p.5356-5364
【非特許文献5】シャオ チェン(Xiao Chen)他、「デジタルマイクロミラーデバイス格子の回折とその可変ファイバレーザー特性における効果("Diffraction of digital micro-mirror device gratings and its effect on properties of tunable fiber lasers")」、応用光学(Appl. Opt.)、平成24年、第51巻、第30号、p.7214-7220
【非特許文献6】D フアン(Huang, D)他、「光干渉断層撮影("Optical coherence tomography")」、サイエンス(Science)、平成3年11月、第254巻、第5035号、p.1178-1181
【非特許文献7】ハン K.‐W.(Hung, K.-W.)他、「画像プロセシングにおけるバイラテラルフィルタを用いた高速イメージ補間("Fast image interpolation using the bilateral filter")」、IETイメージプロセシング、平成24年10月、第6巻、第7号、p.877-890
【非特許文献8】ドノホ(D. L. Donoho)他、「(圧縮センシング“Compressed Sensing”)」、米国電気電子学会 情報理論会議(IEEE Trans. Inf. Theory)、平成18年、第52巻、第4号、p.1289-1306
【非特許文献9】キャンデス(E. Candes)他、「ロバスト不安定性原理:高度に不完全な周波数情報からの正確な信号の再構築(“Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,”)」、平成18年、米国電気電子学会 情報理論会議(IEEE Trans. Inf. Theory)第52巻、第2号、p.489-509
【非特許文献10】フォウカート(Foucart)他、「圧縮センシングの数学的導入(“A mathematical introduction to compressive sensing”)、ビルクホイザー(Birkhauser)、平成25年、第1巻、第3号
【非特許文献11】エブジェニ レベド(Evgeniy Lebed)他、「圧縮サンプリングを用いた容積測定OCTイメージの高速収集("Rapid Volumetric OCT Image Acquisition Using Compressive Sampling")」、オプティクス エクスプレス(Opt. Express)、平成22年、第18巻、第20号、p. 21003-21012
【非特許文献12】スアン ル(Xuan Liu)他、「圧縮SD-OCT:スペクトルドメイン光干渉断層撮影における圧縮センシングの応用("Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography"」」、オプティクス エクスプレス、平成22年、第18巻、第21号、p.22010-22019
【非特許文献13】シーリン フ(Zhilin Hu)他、「リニア波数分光計を伴うフーリエドメイン光干渉断層撮影("Fourier domain Optical coherence tomography with a linear-in-wavenumber spectrometer")」、平成19年12月15日、オプティクス レターズ(OPTICS LETTERS)、第32巻、第24号、p.3525-3527
【非特許文献14】バラツェフスキ(Bajraszewski)他、「光学的周波数櫛を用いて改良されたスペクトル光干渉断層撮影("Improved spectral optical coherence tomography using optical frequency comb")」、オプティクス エクスプレス、平成20年3月、第16巻、第6号、p.4163-4176
【非特許文献15】メイ ヤング(Mei Young)他、「圧縮サンプリング光干渉断層撮影を用いたリアルタイム高速容積イメージング(“Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography”)」、バイオメディカル オプティクス、エクスプレス、2011年8月24日、第2巻、第9号、p.2690-1457
【発明の概要】
【発明が解決しようとする課題】
【0014】
本願の観点は、歯科イメージングシステムの技術を進展させることである。
【0015】
本願の別の観点は、関連する技術における、少なくとも前述の、およびその他の欠点に、全体的または部分的に対処することである。
【0016】
本願の別の観点は、少なくとも本明細書において記載した利点を、全体的または部分的に提供することである。
【0017】
本開示の目的は、診断イメージングの技術を進展させること、およびOCT走査に必要な獲得時間を低減する必要性に対処することである。本発明の実施形態は、空間ドメインおよびスペクトルドメインの両方において、OCTサンプリングを改善し、圧縮センシングを活用するのを助けることのできる装置および方法を提供する。
【0018】
これらの目的は、例証的な例としてのみ挙げたものであり、そのような目的は、本発明の1つまたは複数の実施形態の例示である。その他の望ましい目的、および開示された方法によって固有に達成される利点は、当業者であれば、思い付くか、または明白になることがある。本発明は、添付の特許請求の範囲によって定義される。
【課題を解決するための手段】
【0019】
本開示の一観点によれば、画像データを獲得する方法であって、
口腔内特徴に対して、3次元における光干渉断層法(OCT)データを取得するステップであって、少なくとも1つの次元が疑似ランダムまたはランダムにサンプリングされるステップと、
圧縮センシングを使用して口腔内特徴の画像ボリュームを再構築するステップであって、再構築された画像ボリュームのデータ密度が、少なくとも1つの次元における、または対応する変換による、取得されたOCTデータのデータ密度よりも大きい、ステップと、
表示のために再構築された画像ボリュームをレンダリングするステップと
を含む、画像データを獲得する方法が提供される。
【0020】
本発明の前述およびその他の目的、特徴、および利点は、添付の図面に図解されているように、本発明の実施形態についての以下に示すより具体的な説明から明白になるであろう。
【0021】
図面の要素は、互いに対して、必ずしも正しく縮尺されているとは限らない。基本的な構造関係または動作の原理を強調するために、いくぶんかの誇張が必要となることがある。電力を提供するため、パッケージングのため、およびシステムの光学系を装着して保護するために使用される支持構成要素のような、記載された実施形態の実現に必要となる、いくつかの従来型の構成要素は、説明を簡略化するために図面に示されていない。
【図面の簡単な説明】
【0022】
図1】本開示の実施形態によるプログラマブルフィルタを示す模式図である。
図2A】プログラマブルフィルタが選択された波長帯の光を与える方法を示す、簡略化された模式図である。
図2B】プログラマブルフィルタのマイクロミラー配列の部分の拡大図である。
図3】配列内のマイクロミラーの配設を示す平面図である。
図4】本開示の代替的実施形態による、その分散光学要素としてのプリズムを使用するプログラマブルフィルタを示す模式図である。
図5】本開示の代替的実施形態による、波長‐波数変換を実施するプログラマブルフィルタを示す模式図である。
図6A】マッハツェンダー(Mach-Zehnder)干渉計を使用する、本開示の実施形態によるプログラマブルフィルタを使用する掃引源OCT(SS‐OCT:swept-source OCT)装置を示す模式図である。
図6B】マイケルソン(Michelson)干渉計を使用する本開示の実施形態による、プログラマブルフィルタを使用する掃引源OCTを示す模式図である。
図7】本開示の実施形態による、プログラマブルフィルタを使用する同調可能レーザーを示す模式図である。
図8】広帯域光源からの波長帯を選択するためのプログラマブルフィルタの使用を示す模式図である。
図9】OCTイメージングシステムプローブの一部としての2次元スキャンを行うのに使用されるガルボミラー(galvo mirror)を示す図である。
図10A】B-スキャンを取得するための走査動作の概略的表現を示す図である。
図10B】C-スキャン獲得のためのOCT走査パターンを示す図である。
図11】口腔内OCTイメージングシステムの構成要素を示す、模式図である。
図12A】サンプル間が等間隔であるOCTサンプリングパターンを示す模式図である。
図12B】サンプル間が増大させた間隔であるOCTサンプリングパターンを示す模式図である。
図12C図12Bの走査配設に使用することのできる、バイリニア補間のための式を示す図である。
図13】いくぶんランダム化された配設を使用するOCTサンプリングパターンを示す、模式図である。
図14図13を参照して記述されたサンプリング配設を使用するような、空間的にランダム化されたデータに対してサンプリングされたボリュームの再構築のためのシーケンスを示す、論理フロー図である。
図15A】OCT獲得に対するまばらな(sparse)スペクトルコンテンツの使用を示す模式図である。
図15B】OCT獲得に対するまばらな(sparse)スペクトルコンテンツの使用を示す模式図である。
図15C】スペクトル次元においてのみまばらにサンプリングされる、データに対するサンプリングされたボリュームの再構築のためのシーケンスを示す論理フロー図である。
図16】ランダムにサンプリングされたスペクトルスキャンコンテンツを使用する、第3の追加次元を含む、空間的にランダムにサンプリングされたデータのためのサンプリングされたボリュームの再構築のためのシーケンスを示す論理フロー図である。
図17】分光計を使用する圧縮サンプリング用の装置を示す模式図である。
【発明を実施するための形態】
【0023】
以下は、例示的な実施形態の詳細な説明であり、図面を参照して、これらの図面では、同じ参照番号は、いくつかの図のそれぞれにおいて同じ構造要素を識別する。
【0024】
本開示の文脈で使用される場合には、それらは「第1の」、「第2の」などは、いかなる順位、順序、または優先順位関係を必ずしも示すものではなく、特に指定されない限り、単に、1つのステップ、要素、または一連の要素を、互いに明確に区別するために使用される。
【0025】
本明細書において使用されるときには、「通電可能(energizable)」という用語は、電力を受けるとき、および、任意選択でイネーブル信号を受けるときに、指示された関数を実施する、デバイスまたは一連の構成要素に関する。
【0026】
本開示の文脈において、「光学系(optics)」という用語は、一般的には、光ビームを成形して配向させるのに使用される、レンズおよびその他の屈折性、回折性、および反射性の構成要素または装置を指している。このタイプの個々の構成要素を、光学要素(optic)と名づける。
【0027】
本開示の文脈において、「観察者(viewer)」、「操作者(operator)」、および「使用者(user)」という用語は、観察中の医師、技師、またはカメラまたはスキャナを操作するとともに、表示モニタ上の歯科画像などの画像を観察して取り扱うこともある、その他の人と等価であると考えられ、それらを指している。「操作者命令(operator instruction)」または「観察者命令(viewer instruction)」は、カメラまたはスキャナ上のボタンをクリックすることによる、またはコンピュータマウスを使用することによる、またはタッチスクリーンもしくはキーボード入力などによるなど、観察者によって入力された明示的なコマンドから取得される。
【0028】
本開示の文脈においては、「信号通信している(in signal communication)」という語句は、2つ以上の装置および/または構成要素が、何らかのタイプの信号経路を移動する信号を介して、互いに通信することができることを示す。信号通信は有線または無線でもよい。信号は、通信、電力、データまたはエネルギーの信号でもよい。信号経路には、第1のデバイスおよび/または構成要素と第2のデバイスおよび/または構成要素の間の、物理、電気、磁気、電磁気、光学、有線、および/または無線の通信を含めてもよい。また信号経路には、第1のデバイスおよび/または構成要素と第2のデバイスおよび/または構成要素の間に、追加のデバイスおよび/または構成要素を含めてもよい。
【0029】
本開示の文脈においては、「カメラ」という用語は、歯や支持構造物の表面から反射される構造化された光など、反射された可視光またはNIR光(近赤外線光)からの反射、2次元デジタル画像を獲得することのできるデバイスに関する。
【0030】
一般用語「スキャナ」は、サンプルアームを通して歯表面に導かれ、表面のOCTイメージングに使用される参照アームからの光との干渉を検出するために、サンプルアーム内に戻った散乱光として獲得される、広帯域近赤外(BNIR)照明の走査された光ビームを投射する光学センサに関する。「ラスタースキャナ」という用語は、続いてさらに詳細に記述するように、サンプルに向かう光を走査するハードウェア構成要素の組合せに関する。
【0031】
「被験体(subject)」という用語は、イメージングされている、患者の歯またはその他の部分を指しており、光学的用語では、対応するイメージングシステムの「対象物(object)」と等価であると考えることができる。
【0032】
本開示の文脈において、「広帯域発光器(broadband light emitter)」という語句は、所与のいずれかの時点において、ある波長範囲にわたって連続的なスペクトル出力を出射する、照明または光源を指している。短コヒーレンスまたは低コヒーレンス広帯域照明源としては、例えば、スーパールミネセントダイオード、ショートパルスレーザー、多くのタイプの白色光源、およびスーパーコンティニューム(supercontinuum)光源が挙げられる。ほとんどのこれらのタイプの低コヒーレンス光源は、数十ミクロン以下程度のコヒーレンス長を有する。
【0033】
OCTイメージング技術における当業者には周知のように、軸方向解像度は、光源のコヒーレンス長に関係する。すなわち、コヒーレンス長が短いほど、軸方向解像度は高くなる。
【0034】
本開示の実施形態は、時間ドメインOCTまたはスペクトルもしくは周波数ドメインOCTを含む、様々なタイプのOCT走査方法の任意のものを使用することができる。速度有利性に特に関心があるので、以下の説明は、主として、掃引源OCT、すなわち、より高速の、全体走査スループットに対して一般的に有利である、あるタイプの周波数ドメインOCT、を用いる実施形態を対象としている。しかしながら、本開示の後続のセクションにおいて記述される、圧縮サンプリング方法を、時間ドメインOCTおよびその他のタイプのOCTの応答を改善するため、加えてSS-OCTと共に使用することができる。本開示の方法は、OCTシステムにおいて分光計がセンシング用に使用される場合にも使用することができる。
【0035】
本開示の実施形態によれば、本明細書に記述されるような、改良型OCT走査方法に対して有利性のある可変波長照明を提供することのできる、プログラマブル光源が提供される。プログラマブル光源は、走査SS-OCT、および制御可能に変化可能なスペクトルパターンから便益を得るその他の応用のための、掃引源として使用可能である。
【0036】
図1を参照すると、低コヒーレンス、広帯域光源から波長の所望のパターンと系列(λ0...λn)を生成するのに使用される、プログラマブルフィルタ10が示されている。ファイバレーザーまたはその他の源からの広帯域光が、サーキュレータ14を通り、光ファイバまたはその他の導波路12を通り、コリメータレンズL1に導かれ、コリメータレンズL1は、平行化された光を回折格子のような光分散光学要素20へ導く。光分散光学要素20は、集束レンズL2に向かって導かれる、スペクトル的に分散された出力ビーム24を形成する。レンズL2は、分散された光を、マイクロミラー配列30のような、空間光変調器80上に集束させる。マイクロミラー配列は、反射性デバイスの線形配列とするか、またはテキサス州ダラスのTexas Instruments社製のデジタルライトプロセッサ(DLP)の線形部分とすることができる。配列30内の1つまたは複数の個々の反射器が、対応する波長の光を反射して、光経路を通って戻るように起動される。この反射された光は、プログラマブルフィルタ10の出力であり、続いて記述するように、光干渉断層法(OCT)などの応用に使用することができる。配列30内のそれぞれの連続する反射器の迅速な起動によって、図1に与えられたもののような、スペクトル的に分散された出力ビームの多数の小さなスペクトル部分のサンプリングが可能になる。例えば、空間光変調器80が、一行に2048のマイクロミラー要素を有する、マイクロミラー配列30であり、配列30の片側から反対側へのスペクトル範囲が35nmである場合には、それぞれの個別のマイクロミラーが、約0.017nm幅である波長帯域を反射することができる。1つの典型的な掃引源系列は、スペクトル的に分散した出力ビームによって形成された直線に沿って、一度に1つの空間光変調器80ピクセル(反射性要素)を起動することによって、低波長から高波長まで進展する。続いて記述するように、その他の掃引源系列も可能である。
【0037】
本明細書において記述されて、図1~3および以下に示されたマイクロミラー配列30は、プログラマブル光源の一部として使用することのできる、一種の可能な空間光変調器80である。用いられる空間光変調器80は、デバイスの「ピクセル」を効果的に提供する別個にアドレス指定可能な要素を備える、ある種の反射性デバイスである。
【0038】
プログラマブルフィルタ10は、その構成要素の全体配列とその光分布において、分光計の態様と類似している。入射広帯域BNIR光は、光のスペクトル成分を空間的に分離させるために、光分散光学要素20によって分散される。マイクロミラー配列30、または続いてさらに詳細に記述されるような、その他のタイプの空間光変調器80は、この光の選択された1つまたは複数の波長帯を反射して、プログラマブルフィルタ10を通って戻るように配置されており、それによって、選択された波長帯は、干渉測定デバイスでの使用またはレーザーの同調用などの、光学システムの他の場所で使用することが可能である。
【0039】
図2Aの簡略化された模式図および図2Bの拡大図は、プログラマブルフィルタ10が、選択された波長帯W1の光を提供するのにどのように動作するかを示す。マイクロミラー配列30の大幅に拡大された領域Eを模式的に示す図2Bは、入射光線24に対する、3つのミラー32a、32b、および32cの挙動を示す。マイクロミラー配列30のそれぞれのミラー32要素は、2つの状態:ミラー32aおよび32bにおいて示されるように、起動停止されて、1つの角度で傾斜している;またはミラー32cにおいて示されるように、起動されて、代わりの角度で傾斜している、のいずれかを有することができる。DLPデバイスに対して、マイクロミラーの起動停止/起動状態に対する傾斜角度は、基板表面から+12度から-12度である。レンズL2を通り、プログラマブルフィルタ10のその他の構成要素を通り、光学軸OAに沿って戻るように光を導くために、マイクロミラー配列30は、図2Bで示されるように、光学軸OAに対して、それ自体で+12度で傾斜している。
【0040】
図1のプログラマブルフィルタ10において、光分散光学要素20は、例えば、ホログラフィック回折格子を含む、ある種の回折格子とすることができる。格子分散式は:
mλ=d(sinα+sinβ) (式1)
但し、
λは、光波長、
dは、格子ピッチ、
αは、光学要素20の入射表面の垂線に対する、入射角度(図1、2Aを参照)、
βは、光学要素20の出射表面の垂線に対する、回折光の角度、
mは、本開示の実施形態に関係する、回折次数、一般的にはm=1である。
【0041】
全幅半値(FWHM:full-width half-maximum)帯域幅は、格子のスペクトル解像度 δλと、DLPデバイスのピクセルまたはマイクロミラー32上の波長範囲 δλDLPとによって決まり、これらは次式で与えられる:
δλ=λdcosα/D (式2)
および
δλDLP=dpcosβ/f (式3)
但し、
Dは、レンズL1によって平行化された入射ガウシアンビームの1/e幅であり、
λは、中心波長、
dは、格子ピッチ、
pは、それぞれのマイクロミラーに対する、DLPピクセルピッチ、
fは、集束レンズL2の焦点長である。
【0042】
最終FWHM帯域幅δλは、(δλ,δλDLP)の最大値である。帯域幅δλは、最も精細な同調可能な波長域を定義する。OCTイメージングに対する好適な構成に対して、以下の関係が成り立つ:
δλ≦δλDLP
【0043】
DLPを使用して、導波路12(ファイバ)に光を反射して戻すために、スペクトル的に分散されたスペクトルを、各マイクロミラー32のヒンジ軸と整列された、DLP表面上に集束させる。特定のマイクロミラー32が「オン」状態にあるとき、光が光導波路12へと直接反射して戻るように、DLP参照平面も、12度傾斜している。マイクロミラーが「オン」状態にあるとき、そのマイクロミラー上に入射する光のスペクトル分布に対応する帯域幅を有する、対応するスペクトルの集束部分は、反射されて、入射光と同じ経路に沿って、しかし反対方向に進んで、導波路12ファイバへと戻る。ファイバ経路内のサーキュレータ14は、選択されたスペクトルの光を、出力として第3のファイバへ導く。その他のタイプの空間光変調器80は、図2Bの例において示されたように、入射光線に対して斜めの角度で配向する必要がないことが容易に理解されるであろう。
【0044】
単一のDLPピクセルに集束された、1/eガウシアンビーム強度直径は、次のとおりである:
w=4λf/(πDcosβ/cosα) (式4)
好ましくは、次の関係が成り立つ:w≦p。これによって、ピクセルピッチp未満において、ビーム直径wが設定される。最大可変範囲は次式で決まり:
M×δλDLP
ここで、Mは、図3に表されるように、水平方向でのDLPマイクロミラーの数である。図3で示されるように、マイクロミラー配列30用のマイクロミラーの配列は、M列とN行である。DLPマイクロミラー配列の一行だけが、プログラマブルフィルタ10での使用のために必要であり、この単一行の上下のその他の行は、使用しても、しなくてもよい。
【0045】
DLPピクセル(マイクロミラー)についての波長は、以下の格子式によって記述することができる:
【0046】
【数1】
ここで、iは、0と(M-1)の間の範囲における、特定の波長に対応する、DLP列に対する指数である。
【0047】
上記(式5)から、行における各ミラーに対応する中心波長を求めることができる。
【0048】
図4は、光分散光学要素20としてプリズム16を備える、代替的実施形態におけるプログラマブルフィルタ10を示す。プリズム16は、図1に示される格子から反対順に、光波長(λ0...λn)を分散させる。より長い波長(赤)は、より高い角度で分散され、より短い波長(青)は、低い角度で分散される。
【0049】
従来型の光分散光学系は、その構成波長が線形分布を有するように、分散光を分布させる。すなわち、波長は、分散光のラインに沿って、等間隔に離されている。しかしながら、フーリエドメインOCT処理に対しては、波長データの周波数データへの変換が必要である。したがって、波長データ(λ、単位はnm)は、周波数に比例する、波数データ(k=λ-1)に変換しなくてはならない。従来慣行において、フーリエ変換計算の前に、この変換を達成するために、補間ステップが使用される。補間ステップには、処理資源と時間が必要となる。しかしながら、波数k値をプログラマブルフィルタから直接的に選択できることが最も有利である。図5の模式図は、中間プリズム34を使用する、波長(λ...λ)データの波数(k...k)データへの光学変換の一方法を示す。波長‐波数変換に対してプリズム角度と材質パラメータを指定する方法は、例えば、フとロリンス(Hu and Rollins)による論文、"Fourier domain Optical coherence tomography with a linear-in-wavenumber spectrometer" in OPTICS LETTERS, Dec. 15, 2007, vol. 32 no. 24, pp. 3525 - 3527に与えられている。
【0050】
プログラマブルフィルタ10は、同調レーザーを使用するOCTイメージングなどの機能のために、適切にタイミング設定された系列にある、広帯域光源から選択された光波長を提供することができる。プログラマブルフィルタ10は、プログラム可能な系列を提供するので、低波長から高波長までの前方スペクトル掃引に加えて、高波長から低波長までの反対方向での後方掃引を実施することができる。三角形掃引パターン、波長の「櫛(comb)」の生成、または任意波長パターンも提供することもできる。
【0051】
特にOCTイメージングに対して、様々なプログラム可能掃引方式が、イメージングにおいて移動物体を抽出して、深さによる感度の低下などを改善するのに有用であり得る。OCT信号感度は、深さがz軸方向に延びるとすると、サンプル中への深さの増加ともに減少する。例えば、不連続波長の「櫛」を用いると、OCT感度を増大させることができる。このことは、Bajraszewskiらの論文、Bajraszewski et al. "Improved spectral optical coherence tomography using optical frequency comb" in Optics Express, Vol. 16 No. 6, March 2008, pp. 4163-4176に記載されている。
【0052】
図6Aおよび6Bの簡略化された模式図は、本開示の実施形態によるプログラマブルフィルタ10を使用する、掃引源OCT(SS‐OCT)装置100をそれぞれ示している。それぞれの場合において、プログラマブルフィルタ10は、照明源を提供する同調レーザー50の一部として使用されている。例えば、口腔内OCTに対して、レーザー50を、約400から1600nmの間の波長に対応する周波数(波数k)の範囲にわたって同調可能とすることができる。本開示の実施形態によれば、口腔内OCTに対して、約830nm中心の35nmの同調範囲が使用される。
【0053】
図6A実施形態において、OCT走査用のマッハツェンダー干渉計システムが示されている。図6Bは、マイケルソン(Michelson)干渉計システム用の構成要素を示している。これらの実施形態に対して、プログラマブルフィルタ10は、整調(tuned)レーザー50出力を生成するための、レーザー空洞の一部を提供する。可変レーザー50が出力されると、カプラー38を通り、サンプルアーム40および参照アーム42へと進む。図6Aにおいて、サンプルアーム40信号は、サーキュレータ4を通り、サンプルSを測定するためのプローブ46へと進む。サンプリングされた信号は、サーキュレータ44(図6A)を通るとともに、カプラー58を通り検出器60へと戻るように導かれる。図6Bにおいて、信号は、サンプルアーム40と参照アーム42に直接進み、サンプリングされた信号は、カプラー38を通り検出器60へと戻るように導かれる。検出器60は、コモンモードノイズを打ち消すように構成された、一対のバランス型光検出器を使用してもよい。制御論理プロセッサ(制御処理ユニットCPU)70は、整調レーザー50およびそのプログラマブルフィルタ10、ならびに検出器60と信号通信状態にあり、検出器60からの出力を取得して処理する。CPU70もまた、コマンド入力およびOCT結果表示のためのディスプレイ72と信号通信状態にある。
【0054】
図7の模式図は、本開示の代替的実施形態による、整調レーザー50の構成要素を示す。整調レーザー50は、半導体光学増幅器(SOA)52のような広帯域ゲイン媒体を有するファイバリングレーザーとして構成されている。2つの光アイソレータOIは、後方反射光からのSOAの保護を提供する。ファイバ遅延線(FDL)は、レーザーの有効掃引速度を決定する。フィルタ10は、ファイバリングを接続するのに使用される、入力ファイバと出力ファイバを有する。
【0055】
図8の模式図は、スーパールミネセントダイオード(SLD)のような、広帯域光源54から波長帯を選択するための、プログラマブルフィルタ10の使用を示す。ここで、空間光変調器80は、サーキュレータ14を通り、広帯域光の成分を反射する。サーキュレータ14は、別個の光経路に沿って、プログラマブルフィルタ10へ、およびそこから光を導くのに使用される。
【0056】
図9の模式図に示されるように、ガルボミラー94および96は、協同して、OCTイメージングに必要なラスター走査を提供する。図示された配設において、ガルボミラー1(94)は、サンプルに沿って各点82に対して光の波長を走査して、続いてさらに詳細に記述される、B-スキャンを提供する、行に沿ったデータを生成する。ガルボミラー2(96)は、行位置を漸進的に移動させて、追加の行に対して2Dラスター走査を行う。各点82において、空間光変調器80(図1、4、5)のピクセル毎に、プログラマブルフィルタ10を使用して与えられた光の全スペクトルが、単一の掃引で迅速に生成されて、結果として得られる信号が、検出器60において測定される(図6A、6B)。
【0057】
OCTイメージングのための走査シーケンス
図10Aおよび10Bの模式図は、本開示のOCT装置を使用して、口腔内特徴の断層画像を形成するのに使用することのできる走査シーケンスを示す。図10Aに示されるシーケンスは、単一のB-スキャン画像が生成される方法を示す。ラスター走査90(図9)は、サンプルSの上の照明として、選択された光系列を、一点毎に走査する。図10Aに示されるような周期的な駆動信号92が、ラスタースキャナ90のガルボミラーを駆動して、図10Aおよび10Bにおいて水平方向に延びる不連続な点82として示される、サンプルの各行を横切って延びる、横方向スキャンまたはB-スキャンを制御するのに使用される。B-スキャンのラインまたは行に沿った複数の点82のそれぞれにおいて、z軸方向においてデータを獲得する、A-スキャンまたは深さスキャンが、選択された波長帯の連続部分を使用して、生成される。図10Aは、ラスタースキャナ90を使用して、対応するマイクロミラー起動、またはその他の空間光変調器ピクセル毎起動によって、波長帯を通過する、直進的に上昇する系列を生成するための駆動信号92を示している。駆動信号92の部分である、レトロスキャン信号93は、スキャンミラーを単に復元して、次のラインのための開始位置に戻し、レトロスキャン信号93の間はデータが取得されない。
【0058】
なお、B-スキャン駆動信号92は、図9に示されるように、ラスタースキャナ90用のガルボミラー94を駆動することに留意すべきである。各増分位置、すなわちB-スキャンの行に沿った点82において、A-スキャンが取得される。A-スキャンデータを獲得するために、同調レーザー50またはその他のプログラム可能な光源が、プログラマブルフィルタ10によって制御される、スペクトル系列を掃引する(図1、2A、4、5)。すなわち、プログラマブルフィルタ10が光源に波長の30nm範囲を掃引させる、実施形態において、照明を生成するためのこの系列は、B-スキャン経路に沿った各点82において実行される。図10Aが示すように、A-スキャン獲得のセットは、各点82において、すなわち、走査ガルボミラー94の各位置において実行する。例として、DLPマイクロミラーデバイスが、空間光変調器80として使用される場合に、各位置82においてA-スキャンを生成するための2048個の測定値が存在し得る。
【0059】
図10Aは、各A-スキャン中に獲得された情報を模式的に示す。DC信号コンテンツを除去されて示されている、干渉信号88は、各点82に対して時間間隔の間中で獲得され、この場合に、信号は掃引に必要な時間間隔の関数であり、獲得される信号は、参照からの光と、干渉計のフィードバックアームからの光を結合することによって(図6A、6B)、生成されたスペクトル干渉フリンジを示している。フーリエ変換は、各A-スキャンに対する変換Tを生成する。A-スキャンに対応する1つの変換信号が、例として図10Aに示されている。
【0060】
上記から、大量のデータが、単一のB-スキャン系列において獲得されることが理解できる。このデータを効率的に処理するために、高速フーリエ変換(FFT)が使用され、時間ベース信号データを対応する周波数ベースデータに変換し、この周波数ベースデータから、画像コンテンツをより容易に生成することができる。
【0061】
フーリエドメインOCTにおいて、A-スキャンは、深さ(z軸)解像OCT信号のラインを生成する、1ラインのスペクトル獲得に対応する。B-スキャンデータは、対応する走査されたラインに沿った、行Rとして2D-OCT画像を生成する。
【0062】
C-スキャン方向においてラスタースキャナ90獲得を増分させることによって、多数のB-スキャンデータを取得するために、ラスター走査が使用される。このことは、図10Bにおいて模式的に表されており、これは、いかにB-スキャン画像を表すことができるか、およびいかに3Dボリューム情報、すなわち再構築274が、A、B、C-スキャンデータを使用して生成されるかを示している。
【0063】
先述のように、各A-スキャン点82における照明のために使用される、波長または周波数の掃引系列は、通常使用される、上昇または下降する波長系列から修正することができる。任意の波長系列化を、代わりに使用することができる。OCTのいくつかの特定の実現形態に対して有用となることがある、任意の波長選択の場合には、利用可能な波長の一部分だけが、各掃引の結果として与えられる。任意の波長系列化においては、各波長は、任意の順番で、ランダムに選択して、単一掃引の間にOCTシステムにおいて使用することができる。
【0064】
図11の模式図は、口腔内OCTイメージングシステム62を形成するプローブ46および支持構成要素を示す。イメージングエンジン56は、図6A~7を参照して記述した、光源、ファイバカプラー、参照アーム、およびOCT検出器構成要素を含む。一実施形態において、プローブ4はラスタースキャナ90またはサンプルアームを含むが、任意選択で、イメージングエンジン56によっては提供されない、その他の要素を包含してもよい。CPU70は、制御論理およびディスプレイ72を含む。
【0065】
先述の説明は、DLPマイクロミラー配列30を、プログラマブルフィルタ10から波長帯を選択するのに使用することのできる、1つの有用なタイプの空間光変調器として使用する、OCTイメージングシステム62の詳細な説明を行う。しかしながら、その他のタイプの空間光変調器80も、選択された波長帯の光を反射するのに使用することもできることに留意すべきである。反射性液晶デバイスを、例えば、DLPマイクロミラー配列30の代わりに、代替的に使用することもできる。DLPデバイスではない、その他のタイプのMEMS(微小電気機械システムデバイス)マイクロミラー配列を代替的に使用することもできる。
【0066】
OCTイメージングの文脈においては、「en-face」画像は、所与の深さにおいてサンプルの単一層表現を含む、OCTスキャンからの再構築画像である。例えば、図10Bについて、面272は、再構築OCTボリューム274内部の深さレベルを含む。面272に沿ってあるサンプ密度のデータを表すことによって取得される画像は、en-face画像と考えられる。しかしながら、en-face画像は平面である必要はない。en-face画像において使用される各ピクセルは、表面から等価距離であるので、en-face画像は、サンプルの表面輪郭に追従する。各走査点の表面上のピクセルだけを使用して形成された画像は、正当なen-face画像である。
【0067】
ある種の例示的方法および/または装置実施形態は、圧縮サンプリングを使用する歯科用OCTスキャン獲得を提供することができる。本開示の実施形態によれば、取得される表面情報の精度を犠牲にすることなく、従来のOCTスキャンパターンに対して速度を改善する、圧縮サンプリング方法を使用する、OCTスキャン獲得の装置および方法が提供される。信号獲得および分析の技術における当業者には知られているように、圧縮サンプリング技法は、(i)測定データのランダム化されたサンプリングによって特徴づけられるとともに、(ii)サンプリングされたデータがいくつかのドメインにおいてまばらな表現を有するときに、用いることができる。
【0068】
図12Aの模式図は、A-スキャン間、およびA-スキャンの行間に標準的な等間隔を用いる、OCTサンプリングパターンを示す。イメージングされた表面に沿った点82におけるA-スキャン場所は、行R間では間隔d1で示されるように、行内部では、間隔d2で示されるように、均等に間隔が空けられており、間隔d2は、点82間隔d1と等しくても、等しくなくてもよい。この高密度のサンプリングは、近表面特徴の緊密な近似を可能にするが、かなりの数のA-スキャンを実行する必要があり、この高密度なデータを記憶して処理するという付随する要件を伴う。
【0069】
しかしながら、周波数ドメインOCT走査を使用して利用可能となる、改善された速度にもかかわらず、走査工程は時間を要し、秒当たり数ボリュームのOCTデータフレーム(fps)を提供するだけのこともある。より低速においては、意図しない患者またはプローブの動きが、OCTスキャンを複雑化し、遅延させる可能性があり、走査結果の品質に悪影響を与える可能性がある。
【0070】
表面のOCT走査に必要な時間を低減すること、および秒あたりのフレーム(fps)率を効率的に増大させることへの1つのアプローチは、例えば、バイリニア(bilinear)補間またはトリリニア(trilinear)補間などの補間方法を使用することである。図12Bにおける測定サンプルの小領域に対して模式的に示されたバイリニア補間の使用によって、情報の最小の損失で、スキャン密度における対応する低減が可能になる。本開示の実施形態によれば、サンプルボリュームは、行間と列間(行Rにおける点82間)の間隔d1’およびd2’をそれぞれ増大させて、低密度スキャン測定値を使用して再構築される。次いで、足りないOCTデータは、サンプルの各en-faace表示が生成されるときに、(図10Bに示されるようにz方向に)層毎に回復させることができる。すなわち、所与の層zに対して、スキャン値間のx‐値およびy‐値は、式270によって提供されるもののような計算を使用する、バイリニア補間などの補間方法を使用して、演算することができる。図12B拡大E2に対して、値Q11、Q12、Q21、Q22は、それぞれ座標(x1,y1)、(x2,y1)、(x1,y2)、および(x2,y2)における実際の測定値である。拡大部分E2に示された例に対して、層zにおけるPにおいて足りない値は、図12Cの計算において示されるように、f(x,y,z)である。
【0071】
圧縮センシングは、そうでなければ不完全な情報だけを提供することができると思われる、ランダムにサンプリングされたデータからの信号を回復する、例えば電子信号解析に使用される、新しいサンプリングアプローチである。圧縮センシングは、磁気共鳴イメージング(MRI)、レーダー、単一ピクセルイメージング、光音響イメージング、およびOCTを含む、信号処理応用の範囲において使用されてきた。圧縮センシングに対して基礎となる理論は、信号が、例えば、フーリエ変換空間、ウェーブレット変換空間、または余弦変換空間のような、正規直交空間/系において、まばらな表現を有する場合には、信号は、ある拘束を条件として、lノルムを最小化することによって、ランダムにまばらにサンプリングされた信号から回復することができる:
Min||z||、但し||Az-y||≦εを条件とし、
ここで、||.||は、lノルムであり、zは構築しようとする信号、yはまばらなサンプリング、Aは、ガウス行列(Gaussian matrix)またはベルヌーイ行列(Bernoulli matrix)などのランダムサンプリング行列である。この標準フォーマットに変換することのできるサンプリング問題は、まばら(低密度)なサンプリングと、対応するアルゴリズムとを使用して、制御された誤差で信号zを回復することができる。このサンプリング理論は、ナイキストサンプリング理論(Nyquist sampling theory)の基本原理に従う、従来の、信号獲得と再構築の直感的ルールに反していると思われる。圧縮サンプリングの可能性は、真の信号が、好適な正規直交基底のまばらな展開式(sparse expansion)によって、うまく表現できるということに依拠している。圧縮センシングおよび圧縮表現は、アンダーサンプリングされた(under-sampled)信号の画像処理に用いることが可能であり;同様な洞察が、よく知られているJPEG(Joint Photographic Experts Group)、JPEG2000、および関係する画像データフォーマットなどの、画像圧縮の多数の形式の背後にある。
【0072】
OCTボリューム(x,y,k)は、ここでxおよびyは空間プロービング位置であり、kは波数であって、空間次元x、yに対するウェーブレット空間、およびkに対するフーリエ変換空間において、まばらな表現を有する。すなわち、圧縮サンプリングは、OCTイメージングに応用可能である。OCTセンシングに応用される場合には、圧縮サンプリング/プロービングは、ランダム化された方法でなくてはならず、1次元、2次元または3次元において応用可能である。二次的に(quadratically)拘束された、lノルム最小化問題を解くことによって、高度に忠実な画像を、効率的に再構築することができる。これによって、データ獲得時間を実質的に低減することが可能であり、これは口腔内OCT走査に対して望ましい。
【0073】
しかしながら、真にランダムなサンプリング位置は、少なくとも、部分的に、ハードウェア上の配慮から、OCT走査において実際的ではない。代わりに、疑似乱数系列(pseudo random sequence)が使用される。まばら(散発的)なサンプリング、より適切な呼び名である圧縮サンプリングの可能性は、真の信号は、それがあるベクトルドメインについてまばらであると考えられる限り、好適な基底のまばらな展開式によってうまく表現できるということに依拠している。このことは、より従来的な画像表現方式に対して必要とされる記憶の数分の1で、相当な大きさの画像データの表現と記憶を可能にする。本明細書において使用されるOCT走査に対して、圧縮センシングを使用して、近似されたOCTスキャン信号を回復することができる。
【0074】
図13の模式図は、ここでもx‐y面から見て、本発明の一実施形態による圧縮センシング再構築で使用することのできる、スキャンサンプリング配設を示す。ここで、行間隔d1’と、各行Rに沿った点82に対応するA-スキャンのサンプル間間隔d2’のいずれか、または両方をランダムに分布させて、間隔d1’およびd2’を図12Aに示される密な分布におけるよりもさらに遠ざけることを可能にするだけでなく、行間および行内において、それぞれ、d1’およびd2’のいずれか、または両方に対して間隔距離を変化させることを可能にする。すなわち、例えば、行Rに沿った点82は、不均等の間隔またはランダム化された間隔を有し、それによっていくつかの点82を、他の点よりも、隣接する点82により近接させることができる。同様に、いくつかの行Rを、他の行よりも、隣接する行からより高密度な間隔にすることができる。
【0075】
図13は、2つの空間次元xおよびyにおけるランダム化されたサンプリングOCTを表す。ここで、不均等なサンプル間隔を有する配設において、xスキャン位置は、第1の疑似乱数系列から生成される。次いで、yスキャン位置が、第2の疑似乱数系列から求められる。2Dサンプリング格子は、xおよびy系列をインターリーブすることによって求めることができる。サンプリングタプル(x,y)は、xランダムサンプリング列{x,x,…x}のx成分、およびyランダムサンプリング列{y,y,…y}のy成分から作成される。これによって、OCT再構築を生成するために取得する必要のある、サンプル数を低減するのを助けることのできる、ランダム化された、または疑似ランダムな、間隔配設が形成される。
【0076】
図14の論理フロー図は、図13を参照して記述されたサンプリング配設を使用するなど、空間的にランダムサンプリングされたデータに対する、サンプリングされたボリュームの再構築のシーケンスを示す。獲得ステップ310は、各行におけるA-スキャンに対して高密度な深さ値N、各行Bに対してランダム化されてサブサンプリングされた行幅W、およびランダム化されサブサンプリングされたD行を有する、OCTスキャンに対するスペクトルデータ結果を取得して、先の図に表されたA、B、C次元データを提供する。次いで、再構築ステップ312は、各A-スキャンから深さ解像された断層像信号を生成するために、各A-スキャンデータを使用して、従来式のOCT再構築を実施する。次いで、圧縮センシングベースの復元318は、データを充填して、S行の断層像データ点を有するM行幅を与えて、BおよびC次元について最高解像度を与え、この場合にM>W、およびS>Dである。圧縮センシングベースの復元ステップ318は、反復ソフト閾設定法(iterative soft thresholding method)などの、当業者には周知の方法を使用して非線形最適化を実行することによって達成できる。任意選択のボリューム処理ステップ320は、フィルタリング、セグメント化、およびクロッピング(cropping)を行うことができる。次いで、ボリュームレンダリングステップ330は、生成された再構築物の表示を可能にする。再構築されたボリュームデータは、ボリューム処理および/またはレンダリングを行って、または行うことなく記憶して伝送することができる。
【0077】
図13および14に関して記述した実施形態は、2つの空間次元における、圧縮センシングと再構築を提供する。イメージング構成および要件に応じて、1つの空間次元においてランダム化されたサンプリングを実施し、他方の空間次元において高密度なサンプリングを実施するのが好ましい。そのような場合には、圧縮センシングおよび再構築は、上述したのと同じ方法で、1つの空間次元において正しく行うことができる。
【0078】
先に注記したように、圧縮センシング(CS)技法は、(i)ある種のランダム化されたサンプリング、および(ii)信号表現についてのまばら性(sparsity)を必要とする。信号が、いくつかの非ゼロ係数だけを使用して何らかのドメインにおいて表現できる限り、信号は、「まばらである」と考えられる。スペクトルドメインOCTに対して、深さ解像度のためのスペクトルデータは、そのフーリエドメインにおいてまばらに表すことができるのに対して、空間データは、ウェーブレットドメインなどのその他のドメインにおいて、より便宜的にまばらな状態で表すことができる。ランダム化されたサンプリングとまばらな表現に対する要件を満たすように構成することができるので、A-スキャンのOCT再構築は、圧縮センシング技法の使用も可能にする。
【0079】
本開示の実施形態は、3次元:2つの空間(サンプル間隔x、y)次元および、それぞれの走査点82におけるA-スキャンデータを獲得する、スペクトル周波数(波長)の系列を取得するための、1つのスペクトル(波長)次元、におけるデータに対して圧縮センシングを使用することができる。A-スキャンデータのための深さ方向における圧縮センシングは、フーリエドメインにおけるまばらなデータ表現を用いることができる。空間サンプリングに対する圧縮センシングは、例えば、ウェーブレットドメインにおける、まばらなデータ表現を用いることができる。
【0080】
空間光変調器80およびプログラマブルフィルタ10(図1~5)を参照して先述したように、OCT走査用に使用される光源は、任意の波長パターンを与える命令でプログラムすることができる。すなわち、OCTセンシングに対して、連続的に増大または減少する波数(波長)を有する、全掃引源系列は必要ではない。代わりに、不連続の、ランダム化された周波数の系列を、OCTスキャンに使用して、圧縮センシング技法を使用して次いで好適に処理することのできる、まばらに表現された測定データを取得することができる。
【0081】
図15Aおよび15Bは、OCT獲得のためのランダム化されたまばらなスペクトルコンテンツの使用を示す、模式図である。全スペクトル範囲を使用する、単一のA-スキャンにおいて、Nピクセルを、取得することができる。全範囲を使用する代わりに、不連続の、ランダム化された一連の周波数(波長)がA-スキャンに使用され、獲得されるピクセルの数を低減する。波長λを信号強度のための任意の電力単位にマッピングする、図15Aのグラフは、掃引源OCTシステムにおいて単一のA-スキャンにおいて使用される、不連続で、疑似ランダム化された周波数(波長)のより小さな組を表す。同じ組の周波数が、各A-スキャンにおいて使用される。スペクトルドメインOCTシステムにおいて、ランダム化されたスペクトルサンプリングは、図15Bに示されるように、検出器配列上の疑似ランダムに選択されたピクセルからの信号を取得することによって達成される。
【0082】
図15Cの論理フロー図は、図15Aおよび15Bを参照して記述されたサンプリング配設を使用するなど、スペクトル次元についてのみランダムにサンプリングされて、まばらに表現された、サンプリングされたデータのボリュームの再構築のためのシーケンスを示す。獲得ステップ408は、各行におけるA-スキャンに対するランダム化され、サブサンプリングされた深さ値L、各行Bに対する高密度の行幅M、およびSの高密度行で、OCTスキャンに対するスペクトルデータ結果を取得し、先述の図に表されたA、B、C次元データを提供する。圧縮センシングベース再構築414は、反復共役勾配法(iterative conjugate gradients method)などの当業者には周知の方法を使用して、深さ次元におけるデータを充填して、AラインにつきN深さ値を与える。このステップは、各A-スキャンから深さ解像断層像信号を生成して、走査された口腔内特徴またはその他の被験体の最高解像度(N×M×S)OCT画像データボリュームを与え、この場合にN>Lである。任意選択のボリューム処理ステップ320は、フィルタリング、セグメント化、およびクロッピングを提供することができる。次いで、ボリュームレンダリングステップ330が、歯またはその他の口腔内特徴に対する再構築されたボリュームの2次元画像をレンダリングするなど、生成された再構築物の記憶、伝送、および表示を可能にする。
【0083】
図16の論理フロー図は、x、y(行、列)空間次元の両方において、またランダムにサンプリングされたスペクトルスキャンコンテンツを使用した第3の追加の次元を含む、ランダム化または疑似ランダム化された空間的にサンプリングされたデータに対して、サンプリングされたボリュームの再構築のシーケンスを示す。獲得ステップ308は、A-スキャン深さに対するスペクトルデータ点のランダム化されサブサンプリングされた数L、A-スキャン行単位に対するランダム化されサブサンプリングされた数W、およびランダム化されサブサンプリングされた数D行として、OCTスキャンに対するスペクトルデータ結果を取得して、先述の図に表されたA、B、C次元データを提供する。圧縮センシングベースの再構築ステップ314は、各深さプロフィールにおけるデータを充填し、図15Cを参照して記述したように、A次元におけるN最高解像度深さ値を提供する。これによって、深さ解像断層像信号のN×W×Dボリュームが生成される。次いで、別の圧縮センシングベースの復元ステップ318が実行されて、BおよびC次元におけるデータを充填し、最高解像度(N×M×S)OCT画像ボリュームを提供する。これによって、任意選択のボリューム処理ステップ320においてさらに調整することのできる、OCTデータの組が拡張される。次いで、ボリュームレンダリングステップ330は、生成された再構築物の記憶、伝送、および表示を可能にする。再構築された画像ボリュームのデータ密度は、獲得されたOCTデータのデータ密度よりも大きい、この場合に、N>L、M>W、およびS>Dである。
【0084】
代替的に、BおよびCの空間次元における圧縮センシングベースの復元ステップ318は、データ獲得ステップ308の後に実施して、最初にL×M×Sボリュームを獲得して、次いで、A次元における圧縮センシングベースの再構築ステップ314が続き、最高解像度(N×M×S)OCT画像ボリュームを取得することができる。
【0085】
図16は、1つのスペクトル次元と2つの空間次元において、ランダムにサンプリングされたデータに対して、サンプリングされたボリュームの再構築に関して記述される。OCT画像ボリューム再構築は、スペクトル次元と1つの空間次元とにおいて、まばらにサンプリングされたデータに対して、同様に行うことができる。
【0086】
図17は、スペクトルドメイン(SD)OCT装置140における分光計130を使用する圧縮サンプリング用のOCT装置を示す模式図である。広帯域源124は、光を、カプラー38を通り、口腔内特徴またはその他の被験体のサンプリングされたスキャンを得るためのプローブ46に導く。プローブ46の部分である走査構成要素が、光を、広帯域照明源124から口腔内特徴に沿った複数の点に向かって導き、B-スキャンとC-スキャンとを実行する。広帯域源124からの低コヒーレンス光が、カプラー38を通り、サンプルアーム40上のプローブ46と、参照アーム42へと導かれる。生成される干渉パターンが、分光計130において、一連のランダムに分布する周波数に対して測定される。光は、光の分散をもたらす格子のような、光分散光学要素20を通過して進む。レンズL2光学系は、次いで、この光を検出配列132へ導く。検出配列132は、選択された波長または波数を検知する、分光計におけるCCD(charge-coupled device)配列またはその他のセンサとすることができる。プロセッサ136は、広帯域源124、分光計130およびスキャナと信号通信しており、次いで、ランダムまたは疑似ランダムサンプリング、圧縮センシング演算、画像再構築、および表示のための、論理および制御回路を提供する。掃引源(SS)OCTシステムが使用される場合には、光源は、図6Aおよび6Bに記述されるように、分光計の代わりに使用される光検出器60を備える、周波数掃引同調レーザー50とすることができる。
【0087】
まばらにサンプリングされたデータを処理するためのアルゴリズムおよび有用物は、信号処理技術における当業者には周知である。
【0088】
本発明の実施形態と整合して、コンピュータプログラムは、記憶された命令を使用し、これらの命令は、電子メモリからアクセスされる画像データに対して作用する。画像処理技術における当業者には理解できるように、本開示の実施形態におけるイメージングシステムを動作させるためのコンピュータプログラムは、パーソナルコンピュータまたはワークステーションなどの、本明細書に記載されるようなCPU70として動作する、好適な、汎用コンピュータシステムによって利用することができる。しかしながら、例えば、ネットワーク化されたプロセッサの配設を含む、その他多くのタイプのコンピュータシステムを、本発明のコンピュータプログラムを実行するのに使用することができる。本発明の方法を実施するためのコンピュータプログラムは、コンピュータ可読記憶媒体に記憶してもよい。この媒体は、例えば、ハードドライブまたはリムーバブルデバイスまたは磁気テープのような磁気ディスクなどの磁気記憶媒体;光学ディスク、光学テープ、またはマシン可読光学エンコーディングなどの光学記憶媒体;ランダムアクセスメモリ(RAM)、または読取り専用メモリ(ROM)などのソリッドステート電子記憶デバイス;またはコンピュータプログラムを記憶するために用いられる任意のその他の物理デバイスまたは媒体を含めてもよい。本開示の方法を実施するためのコンピュータプログラムはまた、インターネットまたはその他のネットワークまたは通信媒体を介して画像プロセッサに接続されている、コンピュータ可読記憶媒体に記憶してもよい。当業者は、そのようなコンピュータプログラムプロダクトの均等物は、ハードウェアで構築してもよいことを、さらに容易に認識するであろう。
【0089】
なお、本発明の文脈においては「コンピュータアクセス可能メモリ」と等価である、「メモリ」という用語は、画像データを記憶してそれに対して動作させるのに使用されて、例えば、データベースを含む、コンピュータシステムにアクセス可能である、一時的、またはより耐久性のあるデータ記憶ワークスペースを意味することができることに留意すべきである。メモリは、例えば、磁気記憶または光学記憶などの長期記憶媒体を使用して、不揮発性とすることもできる。代替的に、メモリは、マイクロプロセッサまたはその他の制御ロジックプロセッサデバイスによる、一時的なバッファまたはワークスペースとして使用される、ランダムアクセスメモリ(RAM)などの、電子回路を使用して、より揮発性とすることも可能である。例えば、表示データは、通常、表示デバイスに直接関係するとともに、表示データを提供する必要に応じて、周期的に更新される、一時的記憶バッファに記憶される。この一時的記憶バッファはまた、その用語が本開示において使用されるとき、一種のメモリとも考えられる。メモリはまた、計算およびその他の処理の中間および最終の結果を実行して、記憶するための、データワークスペースとしても使用される。コンピュータアクセス可能メモリは、揮発性、不揮発性、または揮発タイプと不揮発タイプのハイブリッド組合せとすることができる。
【0090】
本開示のコンピュータプログラムプロダクトは、周知である、様々な画像操作アルゴリズムおよびプロセスを使用してもよいことを理解されたい。本開示のコンピュータプログラムプロダクト実施形態は、実現に対して有用である、本明細書に具体的に示されていないか、または記述されていない、アルゴリズムおよびプロセスを具現化してもよいことをさらに理解すべきである。そのようなアルゴリズムおよびプロセスには、画像処理技術の専門スキルの範囲である、従来型の有用物を含めてもよい。そのようなアルゴリズムおよびシステムの追加の観点、ならびに画像を生成し、その他の方法で処理するため、または本開示のコンピュータプログラムプロダクトと協働するためのハードウェアおよび/またはソフトウェアについて、本明細書には具体的な図示または記述はなく、当該技術において知られているそのようなアルゴリズム、システム、ハードウェア、構成要素および要素から選択してもよい。
【0091】
本願による、ある種の例示的な方法および/または装置実施形態は、歯科用仮想モデルの基部の仮想定義を提供することができる。本願による例示的な実施形態には、本明細書で記載される様々な特徴を(個別に、または組合せで)含めることができる。
【0092】
本発明を、1つまたは複数の実現形態について説明してきたが、説明した例に対して、添付の特許請求の範囲の趣旨と範囲から逸脱することなく、変形および/または修正を行うことができる。さらに、本発明の特定の特徴を、いくつかの実現形態/実施形態の1つだけについて開示することができたが、そのような特徴は、任意所与の、または特定の機能に対して望ましく、有利であり得るように、他の実現形態/実施形態の1つまたは複数のその他の特徴と組み合わせることができる。「少なくとも1つの」という用語は、列挙された項目の1つまたは複数を選択することができることを意味して使用される。「約」という用語は、変更が、例示された実施形態に対するプロセスまたは構造の不適合を生じない限り、列挙された値を、いくぶん変更することができることを示す。最後に、「例示的」とは、その記述が理想であることを意味するのではなく、それを例として使用することを示すものである。本発明のその他の実施形態は、仕様の考察および本明細書に開示された発明の実施から、当業者には明白になるであろう。仕様および例は、例示としてのみ考慮され、本発明の真の範囲と趣旨は、少なくとも以下の特許請求の範囲によって示されることを意図している。
図1
図2A
図2B
図3
図4
図5
図6A
図6B
図7
図8
図9
図10A
図10B
図11
図12A
図12B
図12C
図13
図14
図15A
図15B
図15C
図16
図17
【手続補正書】
【提出日】2023-09-04
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
口腔内特徴に対して、正規直交して走査する3つの次元において光干渉断層法(OCT)データを取得するステップであって、少なくとも2つの次元が疑似ランダムまたはランダムにサンプリングされ、疑似ランダムまたはランダムにサンプリングされる1つの次元は、スキャンラインに沿ったスキャン中に、疑似ランダムまたはランダムにサンプリングされるステップと、
圧縮センシングを使用して前記口腔内特徴の画像ボリュームを再構築するステップであって、前記再構築された画像ボリュームのデータ密度が、前記少なくとも2つの次元における、または対応する変換による、前記取得されたOCTデータのデータ密度よりも大きい、ステップと、
表示のために前記再構築された画像ボリュームをレンダリングするステップと、を含み、
正規直交して走査する3つの次元において前記OCTデータを取得するステップが、前記スキャンラインに沿った、いくつかのスキャン位置のそれぞれにおいて、複数の光周波数または光波長の組から成るOCTスキャンを取得することであって、前記光周波数または光波長がランダムまたは疑似ランダムに間隔が空けられる、取得することを含む、ことを特徴とする画像データを獲得する方法。
【請求項2】
口腔内ボリューム画像データを獲得する方法であって、
サンプルの表面を横切る、いくつかのスキャン行の各々のスキャン行に沿って、複数の光学干渉断層法(OCT)スキャンを取得するステップであって、前記OCTスキャン間の距離が前記スキャン行に沿ってランダムに、または疑似ランダムに変化する、ステップと、
圧縮センシングを使用して前記口腔内ボリュームを再構築するステップであって、前記再構築された画像ボリュームのデータ密度が、前記スキャン行に沿った前記取得されたOCTスキャンのデータ密度よりも大きい、ステップと、
表示のために前記再構築された画像ボリュームをレンダリングするステップと、を含み、
前記サンプルは歯であり、
前記スキャン行に沿って、前記複数のOCTスキャンのそれぞれにおいて取得するステップが、複数の光周波数または光波長の組からなるOCTスキャンを含み、前記複数の光周波数または光波長がランダムまたは疑似ランダムに間隔を空けられる、ことを特徴とする方法。
【請求項3】
サンプルの表面の各々の行を、
前記行に沿った、いくつかのスキャン位置のそれぞれにおいて、複数の光周波数または光波長の組からなるOCTスキャンを取得することであって、前記光周波数または光波長がランダムまたは疑似ランダムに間隔を空けられる、取得することと、
圧縮センシングを使用して、それぞれの取得されたOCTスキャンを処理することであって、前記処理されたOCTスキャンのデータ密度が、前記取得されたOCTスキャンのデータ密度よりも大きい、処理することと、
前記処理されたOCTスキャンを組み合わせて、口腔内ボリュームを生成することと、
表示のために前記生成された口腔内ボリュームをレンダリングすることと
によって走査するステップ
を含むことを特徴とする口腔内ボリューム画像データを獲得する方法。
【請求項4】
請求項に記載の方法であって、前記ランダム化または疑似ランダム化された周波数または波長の組が、分光計を使用して選択されることを特徴とする方法。
【請求項5】
請求項に記載の方法であって、前記ランダム化または疑似ランダム化された周波数または波長の組が周波数掃引光源から生成されることを特徴とする方法。
【請求項6】
請求項3に記載の方法であって、圧縮センシングを使用することが、取得された各OCTスキャンにおいて最小化演算を実施することを含むことを特徴とする方法。
【請求項7】
請求項3に記載の方法であって、前記取得されたOCTスキャン間の距離も前記行に沿ってランダムまたは疑似ランダムに変化し、前記方法が、
圧縮センシングを使用して前記生成された口腔内ボリュームを処理して、前記口腔内ボリュームを再構築することをさらに含み、前記再構築された口腔内ボリュームのデータ密度が、前記行に沿った前記取得されたOCTスキャンのデータ密度よりも大きいことを特徴とする方法。
【請求項8】
請求項7に記載の方法であって、行間の間隔も前記サンプル表面に沿ってランダムまたは疑似ランダムに変化し、前記再構築された口腔内ボリュームの行数も、前記取得されたOCTスキャンの行数よりも大きいことを特徴とする方法。
【請求項9】
歯からボリューム画像データを獲得する装置であって、
a)コヒーレンス長の短い光を生成する広帯域照明源と、
b)前記広帯域照明源から、前記歯に沿ったいくつかの点のそれぞれに向かって光を導くスキャナと、
c)前記スキャナから戻った光と前記照明源からの参照光とを結合する干渉計と、
d)前記干渉計からの前記結合光を検知するように作動可能なセンサと、
e)前記歯に沿ったいくつかの点のそれぞれにおいて、複数の光周波数または光波長の組からなり、前記組の中で前記光周波数または光波長がランダムまたは疑似ランダムにサンプリングされているOCTスキャンを獲得するように、前記スキャナ、前記照明源、および前記センサを制御し、前記歯の前記ボリューム画像を再構築するための圧縮センシングシーケンスを実行するプロセッサであって、前記再構築されたボリューム画像のデータ密度が、前記獲得されたデータのデータ密度より大きい、プロセッサと、
f)前記再構築されたボリューム画像の表示のために前記プロセッサと信号通信しているディスプレイと、
を備えることを特徴とする装置。
【請求項10】
請求項9に記載の装置であって、前記広帯域照明源がスーパールミネセントダイオードであることを特徴とする装置。
【請求項11】
請求項9に記載の装置であって、前記広帯域照明源が、空間光変調器を備えることを特徴とする装置。
【請求項12】
請求項9に記載の装置であって、前記センサが分光計を備えることを特徴とする装置。
【請求項13】
請求項9に記載の装置であって、前記取得されたOCTスキャン間の距離も、各スキャン行に沿ってランダムに、または疑似ランダムに変化する装置。
【請求項14】
請求項9に記載の装置であって、前記ランダムまたは疑似ランダムにサンプリングされたデータが、前記歯に沿ったいくつかの点のそれぞれにおける空間ドメインにおいて獲得されることを特徴とする装置。
【請求項15】
請求項9に記載の装置であって、前記再構築されたボリューム画像が、セグメント化の後に表示されることを特徴とする装置。
【請求項16】
請求項9に記載の装置であって、前記再構築されたボリューム画像が、レンダリングの後に表示されることを特徴とする装置。
【請求項17】
口腔内ボリューム画像データを獲得する方法であって、
口腔内特徴に関して、正規直交して走査する3つの次元において光学干渉断層法(OCT)スキャンを取得するステップであって、前記正規直交して走査する3つの次元が、ランダムまたは疑似ランダムにサンプリングされる、ステップと、
OCTスキャン間の領域に対する追加の演算された値で前記OCTスキャンのデータを補うように補間を適用するステップと、
測定された前記OCTスキャンと、補間からの追加の演算された値との両方に従って、前記口腔内ボリューム画像を生成するステップと
を含むことを特徴とする方法。
【請求項18】
請求項17に記載の方法であって、前記補間がバイリニア補間であることを特徴とする方法。
【請求項19】
請求項17に記載の方法であって、前記補間がトリリニア補間であることを特徴とする方法。
【請求項20】
請求項17に記載の方法であって、前記口腔内特徴が歯であることを特徴とする方法。