IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ニチコン株式会社の特許一覧

特開2023-157416パワーコンディショナ装置および電源システム
<>
  • 特開-パワーコンディショナ装置および電源システム 図1
  • 特開-パワーコンディショナ装置および電源システム 図2
  • 特開-パワーコンディショナ装置および電源システム 図3
  • 特開-パワーコンディショナ装置および電源システム 図4
  • 特開-パワーコンディショナ装置および電源システム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023157416
(43)【公開日】2023-10-26
(54)【発明の名称】パワーコンディショナ装置および電源システム
(51)【国際特許分類】
   H02M 7/48 20070101AFI20231019BHJP
   H02M 3/155 20060101ALI20231019BHJP
【FI】
H02M7/48 M
H02M3/155 C
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022067323
(22)【出願日】2022-04-15
(71)【出願人】
【識別番号】000004606
【氏名又は名称】ニチコン株式会社
(74)【代理人】
【識別番号】110000475
【氏名又は名称】弁理士法人みのり特許事務所
(72)【発明者】
【氏名】岡本 直久
【テーマコード(参考)】
5H730
5H770
【Fターム(参考)】
5H730AA14
5H730AS08
5H730AS17
5H730BB03
5H730BB13
5H730BB14
5H730DD03
5H730DD04
5H730FG05
5H770BA11
5H770CA01
5H770CA05
5H770CA06
5H770CA10
5H770DA02
5H770DA10
5H770DA21
5H770DA30
5H770DA41
5H770JA17Y
5H770KA01Y
(57)【要約】
【課題】ARCP回路の回生用ダイオードを過電圧から保護することが可能なパワーコンディショナ装置を提供する。
【解決手段】単相3線式の自立出力端T2(U),T2(O),T2(W)を有するパワーコンディショナ装置10であって、インバータ回路13と、双方向DC/DCコンバータ回路14と、制御部15とを備え、双方向DC/DCコンバータ回路14は、メイン回路とARCP回路とを備え、制御部15は、自立出力端T2(U),T2(O),T2(W)に所定の閾値を超える過電圧が印加された場合、ARCP回路の動作を停止させる停止処理を行い、ARCP回路の回生用ダイオードに印加される電圧の電圧値が所定の許容電圧値を超えないようにすることを特徴とする。
【選択図】図2
【特許請求の範囲】
【請求項1】
単相3線式の自立出力端を有するパワーコンディショナ装置であって、
前記自立出力端に接続されたインバータ回路と、
前記インバータ回路に接続されたDC/DCコンバータ回路と、
前記インバータ回路および前記DC/DCコンバータ回路を制御する制御部と、
を備え、
前記DC/DCコンバータ回路は、
メインスイッチを含むメイン回路と、
共振用スイッチ、回生用トランスおよび回生用ダイオードを含むARCP回路と、を備え、
前記制御部は、
前記自立出力端に所定の閾値を超える過電圧が印加された場合、前記ARCP回路の動作を停止させる停止処理を行い、前記回生用トランスを介して前記回生用ダイオードに印加される電圧の電圧値が所定の許容電圧値を超えないようにする
ことを特徴とするパワーコンディショナ装置。
【請求項2】
前記DC/DCコンバータ回路は、
コンデンサを介して前記インバータ回路に接続されており、
前記インバータ回路は、
前記自立出力端に過電圧が印加された場合、当該過電圧を吸収するために前記コンデンサに電圧を供給する動作を行い、
前記制御部は、
前記コンデンサの両端電圧に基づいて、前記停止処理を行うか否かの判定を行う
ことを特徴とする請求項1に記載のパワーコンディショナ装置。
【請求項3】
前記制御部は、
前記停止処理を行う場合、前記共振用スイッチを連続オフ状態にする一方、前記メインスイッチをPWM制御によりオン/オフさせる
ことを特徴とする請求項1に記載のパワーコンディショナ装置。
【請求項4】
蓄電池と、
請求項1~3のいずれかに記載のパワーコンディショナ装置の特徴を備えた、単相3線式の自立出力端を有する第1パワーコンディショナ装置と、
前記自立出力端に接続された第2パワーコンディショナ装置と、
を含み、
前記第1パワーコンディショナ装置は、前記蓄電池に対する充電動作および放電動作を行う
ことを特徴とする電源システム。
【請求項5】
前記第2パワーコンディショナ装置は、
前記自立出力端から出力される交流電力に対して連系動作を行い、
前記第1パワーコンディショナ装置は、
前記自立出力端に所定の閾値を超える過電圧が印加された場合、前記第2パワーコンディショナ装置の前記連系動作を停止させるための連系動作停止処理を行う
ことを特徴とする請求項4に記載の電源システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パワーコンディショナ装置および当該パワーコンディショナ装置を含む電源システムに関する。
【背景技術】
【0002】
一般に、電源システムとして、蓄電池に対する充電動作および放電動作を行う第1パワーコンディショナ装置と、太陽光パネルで発電した発電電力の制御を行う第2パワーコンディショナ装置と、を含むものが知られている。
【0003】
第1パワーコンディショナ装置としては、単相3線式の自立出力端を有し、さらにインバータ回路と、ARCP(Auxiliary Resonant Commutated Pole:補助共振転流ポール)回路付きの双方向DC/DCコンバータ回路を備えるものが知られている。ARCP回路の回路構成は、例えば、特許文献1に記載のとおりである。
【0004】
第1パワーコンディショナ装置の自立出力端が単相2線式の場合、第2パワーコンディショナ装置は第1パワーコンディショナ装置の上流にしか接続できないが、上記のように自立出力端が単相3線式の場合、第2パワーコンディショナ装置は第1パワーコンディショナ装置の自立出力端に接続できる。
【0005】
第2パワーコンディショナ装置を第1パワーコンディショナ装置の自立出力端に接続した電源システムにおいて、第2パワーコンディショナ装置は、電力系統が通電状態の時は電力系統の系統電力に対して連系動作を行う一方、電力系統が停電状態の時は第1パワーコンディショナ装置の自立出力電力に対して連系動作(疑似連系動作)を行う。これにより、停電状態の時であっても、太陽光パネルの発電電力を利用して蓄電池の充電を行ったり、当該発電電力を蓄電池の放電電力とともに、自立出力端に接続された負荷(例えば、家電製品)に供給したりすることができる。
【0006】
しかしながら、第2パワーコンディショナ装置から出力される発電電力が、上記負荷の消費電力や蓄電池に充電可能な充電電力よりも大きい場合、余剰電力の行き場がないにもかかわらず、第2パワーコンディショナ装置は発電電力の供給を継続しようとするため、第2パワーコンディショナ装置の出力電圧は上昇し続ける。その結果、第1パワーコンディショナ装置の自立出力端には過電圧が印加される。
【0007】
第1パワーコンディショナ装置は、第2パワーコンディショナ装置からの電力供給を停止させるため、自立出力端における印加電圧の周波数などを変化させて、第2パワーコンディショナ装置に異常が発生したことを検知させる。しかしながら、第2パワーコンディショナ装置が異常を検知してから電力供給を停止させるまでには時間がかかり、第1パワーコンディショナ装置の自立出力端には一定時間過電圧が印加され続ける。
【0008】
第1パワーコンディショナ装置の双方向DC/DCコンバータ回路のARCP回路は、共振用スイッチ、共振用リアクトル、共振用コンデンサ、回生用トランスおよび回生用ダイオードを備える。回生用トランスは、通常、回生巻き線の巻き数が主巻き線の巻き数よりも大きくなっており、例えば、回生巻き線の巻き数:主巻き線の巻き数=2:1となっている。この場合、回生巻き線に発生する電圧は、主巻き線への印加電圧の2倍になる。
【0009】
よって、回生巻き線を介して回生用ダイオードに印加される電圧は、主巻き線への印加電圧の2倍の電圧+共振用スイッチのスイッチング時のオーバーシュート電圧になり、非常に高い電圧となる。このような状態で自立出力端に過電圧が印加されると、回生用ダイオードに印加される電圧はさらに高い電圧となるため、回生用ダイオードとして比較的安価な汎用品のダイオード(例えば、1200V耐圧のダイオード)を用いることができないという問題が発生する。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2021-19396号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は上記事情に鑑みてなされたものであって、その課題とするところは、ARCP回路の回生用ダイオードを過電圧から保護することが可能なパワーコンディショナ装置および電源システムを提供することにある。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明に係るパワーコンディショナ装置は、
単相3線式の自立出力端を有するパワーコンディショナ装置であって、
前記自立出力端に接続されたインバータ回路と、
前記インバータ回路に接続されたDC/DCコンバータ回路と、
前記インバータ回路および前記DC/DCコンバータ回路を制御する制御部と、
を備え、
前記DC/DCコンバータ回路は、
メインスイッチを含むメイン回路と、
共振用スイッチ、回生用トランスおよび回生用ダイオードを含むARCP回路と、を備え、
前記制御部は、
前記自立出力端に所定の閾値を超える過電圧が印加された場合、前記ARCP回路の動作を停止させる停止処理を行い、前記回生用トランスを介して前記回生用ダイオードに印加される電圧の電圧値が所定の許容電圧値を超えないようにすることを特徴とする。
【0013】
この構成によれば、自立出力端に所定の閾値を超える過電圧が印加された場合、ARCP回路の動作を停止させる停止処理を行い、回生用ダイオードに印加される電圧の電圧値が所定の許容電圧値を超えないようにするので、回生用ダイオードを過電圧から保護することができる。
【0014】
前記パワーコンディショナ装置において、
前記DC/DCコンバータ回路は、
コンデンサを介して前記インバータ回路に接続されており、
前記インバータ回路は、
前記自立出力端に過電圧が印加された場合、当該過電圧を吸収するために前記コンデンサに電圧を供給する動作を行い、
前記制御部は、
前記コンデンサの両端電圧に基づいて、前記停止処理を行うか否かの判定を行うよう構成できる。
【0015】
前記パワーコンディショナ装置において、
前記制御部は、
前記停止処理を行う場合、前記共振用スイッチを連続オフ状態にする一方、前記メインスイッチをPWM制御によりオン/オフさせるよう構成できる。
【0016】
上記課題を解決するために、本発明に係る電源システムは、
蓄電池と、
前記パワーコンディショナ装置の特徴を備えた単相3線式の自立出力端を有する第1パワーコンディショナ装置と、
前記自立出力端に接続された第2パワーコンディショナ装置と、
を含み、
前記第1パワーコンディショナ装置は、前記蓄電池に対する充電動作および放電動作を行うことを特徴とする。
【0017】
前記電源システムにおいて、
前記第2パワーコンディショナ装置は、
前記自立出力端から出力される交流電力に対して連系動作を行い、
前記第1パワーコンディショナ装置は、
前記自立出力端に所定の閾値を超える過電圧が印加された場合、前記第2パワーコンディショナ装置の前記連系動作を停止させるための連系動作停止処理を行うよう構成できる。
【発明の効果】
【0018】
本発明によれば、ARCP回路の回生用ダイオードを過電圧から保護することが可能なパワーコンディショナ装置および電源システムを提供することができる。
【図面の簡単な説明】
【0019】
図1】本発明に係る電源システムのブロック図である。
図2】本発明に係るパワーコンディショナ装置のブロック図である。
図3】本発明に係るパワーコンディショナ装置のインバータ回路の回路図である。
図4】本発明に係るパワーコンディショナ装置の双方向DC/DCコンバータ回路の回路図である。
図5】本発明に係るARCP回路の動作時の各種波形図であって、(A)はスイッチング素子Q8,Q10のゲート電圧、(B)はリアクトル電流および共振電流、(C)はスイッチング素子Q8のドレイン電流およびドレイン・ソース間電圧の波形図である。
【発明を実施するための形態】
【0020】
以下、添付図面を参照して、本発明に係るパワーコンディショナ装置および電源システムの実施形態について説明する。
【0021】
図1に、本発明の一実施形態に係る電源システム1を示す。電源システム1は、第1パワーコンディショナ装置10(本発明の「パワーコンディショナ装置」に相当)と、第2パワーコンディショナ装置20と、切り替えスイッチSWと、蓄電池BTと、太陽光パネルPVとを含む。
【0022】
第1パワーコンディショナ装置10は、単相3線式の第1端子T1と、単相3線式の第2端子(自立出力端)T2と、蓄電池BTに接続される第3端子T3とを備える。第1端子T1は、電力系統2に接続されるとともに、切り替えスイッチSWを介して負荷3(例えば、家電製品)に接続される。第2端子(自立出力端)T2は、切り替えスイッチSWを介して負荷3に接続される。
【0023】
切り替えスイッチSWは、例えば、リレーで構成されており、電力系統2が通電状態の時(以下、通電時)には、第1端子T1を負荷3に接続し、電力系統2が停電状態の時(以下、停電時)には、第2端子(自立出力端)T2を負荷3に接続する。すなわち、第1パワーコンディショナ装置10は、停電時にも、AC200[V]の電圧を負荷3に供給することができる。
【0024】
第2パワーコンディショナ装置20は、負荷3に接続される第4端子T4と、太陽光パネルPVに接続される第5端子T5とを備える。第4端子T4は、通電時には電力系統2に接続され、停電時には第1パワーコンディショナ装置10の第2端子(自立出力端)T2に接続される。第2パワーコンディショナ装置20は、通電時には電力系統2の系統電力に対して連系動作を行う一方、停電時には第1パワーコンディショナ装置10の自立出力電力に対して連系動作(疑似連系動作)を行う。
【0025】
図2に、第1パワーコンディショナ装置10のブロック図を示す。第1パワーコンディショナ装置10は、リレー回路11と、ノイズフィルタ12と、インバータ回路13と、双方向DC/DCコンバータ回路14(本発明の「DC/DCコンバータ回路」に相当)と、制御部15と、各種検出回路(図示せず)とを備える。
【0026】
リレー回路11は、制御部15の制御下でオン/オフするリレーS1~S9を含む。リレーS1~S3は、それぞれU相、O相、W相の第1端子T1(U),T1(O),T1(W)とノイズフィルタ12とを接続する各配線に介装されている。リレーS4~S6は、それぞれ第1端子T1(U),T1(O),T1(W)とU相、O相、W相の自立出力端T2(U),T2(O),T2(W)とを接続する各配線に介装されている。リレーS7~S9は、それぞれ自立出力端T2(U),T2(O),T2(W)とノイズフィルタ12とを接続する各配線に介装されている。
【0027】
ノイズフィルタ12は、リレー回路11とインバータ回路13との間に設けられている。ノイズフィルタ12は、例えば、コンデンサおよびコイルで構成されており、リレー回路11とインバータ回路13とを接続する配線を伝搬するノイズをカットする。
【0028】
インバータ回路13は、ノイズフィルタ12およびリレー回路11を介して、第1端子T1(U),T1(O),T1(W)および自立出力端T2(U),T2(O),T2(W)に接続される。図3に示すように、インバータ回路13は、コンデンサC1~C3およびコイルL1~L3で構成されたフィルタ部と、スイッチング素子Q1~Q6およびダイオードD1~D6で構成された3つのアーム部とを備える。スイッチング素子Q1~Q6は、制御部15の制御下でオン/オフする。
【0029】
スイッチング素子Q1~Q6には、例えば、MOSFET(金属酸化膜半導体電界効果トランジスタ)を用いる。ダイオードD1~D6は、スイッチング素子Q1~Q6の電流路(ドレイン・ソース間)に逆方向に並列接続される。ダイオードD1~D6は、スイッチング素子Q1~Q6の寄生ダイオードでもよいし、スイッチング素子Q1~Q6とは独立した外付けダイオードでもよいし、その両方でもよい。
【0030】
双方向DC/DCコンバータ回路14は、インバータ回路13に接続される。図4に示すように、双方向DC/DCコンバータ回路14は、メイン回路14Aと、ARCP回路14Bと、入出力端Ta~Tdとを備える。入出力端Ta,Tbは、インバータ回路13に接続され、入出力端Tc,Tdは、第3端子T3(+),T3(-)すなわち蓄電池BTに接続される。
【0031】
メイン回路14Aは、メインスイッチを構成するスイッチング素子Q7,Q8およびダイオードD7,D8と、直流リアクトルL4と、コンデンサC4,C5とを備える。ARCP回路14Bは、共振用スイッチを構成するスイッチング素子Q9,Q10およびダイオードD9,D10と、共振用リアクトルL5と、共振用コンデンサC6,C7と、主巻き線N1および回生巻き線N2を含む回生用トランスTR1と、回生用ダイオードD11,D12とを備える。
【0032】
スイッチング素子Q7~Q10には、例えば、MOSFETを用いる。ダイオードD7~D10は、スイッチング素子Q7~Q10の電流路(ドレイン・ソース間)に逆方向に並列接続される。ダイオードD7~D10は、スイッチング素子Q7~Q10の寄生ダイオードでもよいし、スイッチング素子Q7~Q10とは独立した外付けダイオードでもよいし、その両方でもよい。
【0033】
スイッチング素子Q7,Q8は、互いに直列接続され、直列接続された電流路の一端が入出力端Taに接続され、他端が入出力端Tb,Tdに接続される。スイッチング素子Q7とスイッチング素子Q8との接続点X1は、直流リアクトルL4を介して入出力端Tcに接続される。コンデンサC4は、スイッチング素子Q7,Q8よりも入出力端Ta,Tb側において、入出力端Ta,Tb間に接続される。コンデンサC5は、直流リアクトルL4よりも入出力端Tc,Td側において、入出力端Tc,Td間に接続される。
【0034】
スイッチング素子Q9,Q10は、スイッチング素子Q7,Q8とコンデンサC4との間に設けられ、互いに直列接続され、かつスイッチング素子Q7,Q8に対して並列接続される。スイッチング素子Q9とスイッチング素子Q10との接続点X2は、回生用トランスTR1の主巻き線N1および共振用リアクトルL5を介して、接続点X1に接続される。共振用コンデンサC6は、スイッチング素子Q7のドレイン・ソース間に並列接続され、共振用コンデンサC7は、スイッチング素子Q8のドレイン・ソース間に並列接続される。
【0035】
回生用トランスTR1の回生巻き線N2の一端および他端は、それぞれ回生用ダイオードD11,D12を介して入出力端Taに接続される。また、回生巻き線N2はセンタータップを有し、当該センタータップは入出力端Tbに接続される。主巻き線N1と回生巻き線N2との巻き数比は、本実施形態ではN1:N2=1:2である。また本実施形態では、回生用ダイオードD11,D12として、比較的安価な汎用品のダイオード(例えば、1200V耐圧のダイオード)を用いることができる。
【0036】
制御部15は、リレー回路11を制御するためのリレー制御回路と、スイッチング素子Q1~Q10をオン/オフさせるためのスイッチング素子Q1~Q10の各駆動回路と、各駆動回路に制御信号を送るための制御回路とを含む。制御部15は、アナログ回路で構成されていてもよいし、マイクロコントローラ等を使用したデジタル回路で構成されていてもよいし、アナログ回路とデジタル回路とを組み合わせた回路で構成されていてもよい。
【0037】
インバータ回路13の制御について、制御部15は、インバータ回路13に、ノイズフィルタ12を介して入力された交流電圧を直流電圧に変換して双方向DC/DCコンバータ回路14側に出力するAC/DC変換動作と、双方向DC/DCコンバータ回路14から入力された直流電圧を交流電圧に変換してノイズフィルタ12側に出力するDC/AC変換動作とを行わせる。
【0038】
双方向DC/DCコンバータ回路14の制御について、制御部15は、双方向DC/DCコンバータ回路14に、入出力端Tc,Td側(蓄電池BT)から入出力端Ta,Tb側(インバータ回路13側)への電力変換動作(昇圧動作)と、入出力端Ta,Tb側(インバータ回路13側)から入出力端Tc,Td側(蓄電池BT)への電力変換動作(降圧動作)とを行わせる。制御部15は、メインスイッチのスイッチング素子Q7,Q8に対してPWM制御を行う。
【0039】
図5(A)~(C)に、昇圧動作時かつARCP回路14Bの動作時における各種波形図を示す。図5(A)はスイッチング素子Q8,Q10のゲート電圧Vgs、図5(B)は直流リアクトルL4を流れるリアクトル電流IL4および共振用リアクトルL5を流れる共振電流IL5図5(C)はスイッチング素子Q8のドレイン電流Idおよびドレイン・ソース間電圧Vdsの波形図である。
【0040】
時刻tにおいて、制御部15がスイッチング素子Q10をターンオンさせると、ダイオードD7を流れていた電流が共振用リアクトルL5に転流し、さらに共振用リアクトルL5が共振用コンデンサC7から電荷を引き抜くように作用するため、共振用リアクトルL5、回生用トランスTR1のリーケージインダクタンスおよび共振用コンデンサC7が共振する。これにより、共振用リアクトルL5に共振電流IL5が流れ、スイッチング素子Q8のドレイン・ソース間電圧Vdsは減少する。
【0041】
時刻tにおいて、共振電流IL5の立下り時の電流波形とリアクトル電流IL4の電流波形とが交差するタイミングで、制御部15がスイッチング素子Q8をターンオンさせると、スイッチング素子Q10がオン状態なのでスイッチング素子Q8のドレイン・ソース間電圧Vdsはほぼ0[V]になり、スイッチング素子Q10のドレイン電流Idは0[A]から立ち上がる。その結果、ゼロ電圧スイッチングおよびゼロ電流スイッチングが実現され、スイッチング素子Q8のターンオン時のスイッチングロスが低減される。
【0042】
共振用コンデンサC7から引き抜かれた電荷が共振電流IL5として回生用トランスTR1の主巻き線N1に流れると、回生用トランスTR1の回生巻き線N2に電圧が誘起される。回生巻き線N2に誘起された電圧は、回生用ダイオードD11,D12を介してコンデンサC4に回生される。
【0043】
時刻tにおいて共振電流IL5が0[A]になった後、制御部15は、時刻tにおいてスイッチング素子Q10をターンオフさせ、その後、PWM制御のデューティに応じてスイッチング素子Q8をターンオフさせる(時刻t)。
【0044】
時刻tにおいて、制御部15がスイッチング素子Q8をターンオフさせると、スイッチング素子Q8を流れていた電流は共振用コンデンサC7に転流し、共振用コンデンサC7が充電される。スイッチング素子Q8のドレイン電流Idが比較的早く減少する一方、スイッチング素子Q8のドレイン・ソース間電圧Vdsは緩やかに増加するため、ドレイン電流Idの立下りとドレイン・ソース間電圧Vdsの立上りとの重なる領域が減少する。その結果、ゼロ電圧スイッチングが実現され、スイッチング素子Q8のターンオフ時のスイッチングロスが低減される。
【0045】
なお、双方向DC/DCコンバータ回路14では、昇圧動作と降圧動作とが同じ動作原理であるため、降圧動作時の制御部15は、上記と同様にしてメインスイッチのスイッチング素子Q7および共振用スイッチのスイッチング素子Q9を制御する。
【0046】
次に、制御部15がARCP回路14Bの動作を停止させる停止処理について説明する。
【0047】
本実施形態に係る電源システム1では、電力系統2の停電時に第2パワーコンディショナ装置20の第4端子T4から出力される発電電力が、負荷3の消費電力や蓄電池BTに充電可能な充電電力よりも大きい場合、余剰電力の行き場がないにもかかわらず、第2パワーコンディショナ装置20は発電電力の供給を継続しようとするため、第2パワーコンディショナ装置20の出力電圧は上昇する。その結果、第1パワーコンディショナ装置10の自立出力端T2には過電圧が印加される。
【0048】
第1パワーコンディショナ装置10の自立出力端T2に過電圧が印加されると、第1パワーコンディショナ装置10のインバータ回路13は、過電圧を吸収するために双方向DC/DCコンバータ回路14のコンデンサC4に電圧を供給する動作を行う。その結果、コンデンサC4の両端電圧が上昇する。
【0049】
双方向DC/DCコンバータ回路14には、コンデンサC4の両端電圧を検出するための図示しない電圧検出センサが設けられており、当該電圧検出センサが検出した電圧値は、制御部15に送られる。
【0050】
制御部15は、コンデンサC4の両端電圧(上記電圧検出センサが検出した電圧値)に基づいて停止処理を行うか否かの判定を行い、回生用ダイオードD11,D12に印加される電圧の電圧値が所定の許容電圧値(例えば、1200[V])を超えないように、停止処理を実行する。
【0051】
例えば、通常動作時(自立出力端T2に過電圧が印加されていない場合)のコンデンサC4の両端電圧が360~380[V]の場合、制御部15は、コンデンサC4の両端電圧が400[V]に達したら、自立出力端T2に所定の閾値を超える過電圧が印加されたと判定して、停止処理を実行する。
【0052】
停止処理時の制御部15は、共振用スイッチのスイッチング素子Q9,Q10を連続オフ状態にして、メインスイッチのスイッチング素子Q7,Q8をPWM制御によりオン/オフさせる。これにより、双方向DC/DCコンバータ回路14は、ARCP回路14Bの動作が停止して、単なるPWM制御の双方向チョッパ動作へと切り換わる。
【0053】
ARCP回路14Bの動作が停止すると、回生用ダイオードD11,D12には電圧が印加されなくなるので、回生用ダイオードD11,D12を過電圧から保護することができる。すなわち、本実施形態に係る第1パワーコンディショナ装置10および電源システム1では、回生用ダイオードD11,D12として、比較的安価な汎用品のダイオード(例えば、1200V耐圧のダイオード)を用いることができる。
【0054】
制御部15は、ARCP回路14Bの動作を停止させるとともに、第2パワーコンディショナ装置20の連系動作(疑似連系動作)を停止させるための連系動作停止処理を行ってもよい。連系動作停止処理時の制御部15は、自立出力端T2における印加電圧の周波数などを変化させて、第2パワーコンディショナ装置20に異常が発生したことを検知させる。また、コンデンサC4の両端電圧が通常動作時の電圧に復帰した場合、制御部15は、ARCP回路14Bの動作を再開させてもよい。
【0055】
なお、制御部15は、ARCP回路14Bにおいて共振電流が流れている期間をPWM制御不可期間(例えば、図5の時刻t~t)とし、共振電流が流れていないPWM制御可能期間(例えば、図5の時刻t~t)内でスイッチング素子Q7,Q8のデューティを可変させてPWM制御を行う。
【0056】
しかしながら、PWM制御不可期間が確保できないほど、スイッチング素子Q7,Q8のオン時間が短くなる場合(入出力電圧差が小さく軽負荷の状態の場合)やスイッチング素子Q7,Q8のオフ時間が短くなる場合(入出力電圧差が大きく重負荷の状態の場合)は、ARCP回路14Bを動作させてもかえってスイッチングロスが増加してしまう。したがって、制御部15は、上記のような軽負荷または重負荷の場合、ARCP回路14Bの動作を停止させて、双方向DC/DCコンバータ回路14の動作をPWM制御の双方向チョッパ動作へと切り替える。
【0057】
以上、本発明に係るパワーコンディショナ装置および電源システムの実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
【0058】
本発明に係るパワーコンディショナ装置は、単相3線式の自立出力端を有するパワーコンディショナ装置であって、自立出力端に接続されたインバータ回路と、インバータ回路に接続されたDC/DCコンバータ回路と、インバータ回路およびDC/DCコンバータ回路を制御する制御部と、を備え、DC/DCコンバータ回路は、メインスイッチを含むメイン回路と、共振用スイッチ、回生用トランスおよび回生用ダイオードを含むARCP回路と、を備え、制御部は、自立出力端に所定の閾値を超える過電圧が印加された場合、ARCP回路の動作を停止させる停止処理を行い、回生用トランスを介して回生用ダイオードに印加される電圧の電圧値が所定の許容電圧値を超えないようにするのであれば、適宜構成を変更できる。
【0059】
例えば、上記実施形態の制御部15は、コンデンサC4の両端電圧に基づいて、自立出力端T2に所定の閾値を超える過電圧が印加されたか否かを判定しているが、自立出力端T2の印加電圧を直接検出して、過電圧か否かを判定してもよい。
【0060】
メインスイッチおよび/または共振用スイッチのスイッチング素子として、MOSFET以外のスイッチング素子(例えば、IGBT)を用いることができる。
【0061】
本発明に係る電源システムは、蓄電池と、単相3線式の自立出力端を有する上記本発明に係るパワーコンディショナ装置(第1パワーコンディショナ装置)と、自立出力端に接続された第2パワーコンディショナ装置と、を含み、パワーコンディショナ装置が蓄電池に対する充電動作および放電動作を行うのであれば、適宜構成を変更できる。
【符号の説明】
【0062】
1 電源システム
2 電力系統
3 負荷
10 第1パワーコンディショナ装置
11 リレー回路
12 ノイズフィルタ
13 インバータ回路
14 双方向DC/DCコンバータ回路
14A メイン回路
14B ARCP回路
15 制御部
20 第2パワーコンディショナ装置
図1
図2
図3
図4
図5