(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023015793
(43)【公開日】2023-02-01
(54)【発明の名称】光学検査装置、被検物の光学検査方法、及び、被検物の形状の光学検査方法
(51)【国際特許分類】
G01N 21/47 20060101AFI20230125BHJP
【FI】
G01N21/47 Z
G01N21/47 D
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2021119786
(22)【出願日】2021-07-20
(71)【出願人】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(71)【出願人】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100103034
【弁理士】
【氏名又は名称】野河 信久
(74)【代理人】
【識別番号】100075672
【弁理士】
【氏名又は名称】峰 隆司
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100162570
【弁理士】
【氏名又は名称】金子 早苗
(72)【発明者】
【氏名】垂井 洋静
(72)【発明者】
【氏名】佐々木 遥
(72)【発明者】
【氏名】加納 宏弥
(72)【発明者】
【氏名】大野 博司
(72)【発明者】
【氏名】吉田 剛
(72)【発明者】
【氏名】近藤 淳一
【テーマコード(参考)】
2G059
【Fターム(参考)】
2G059BB04
2G059DD13
2G059EE02
2G059EE12
2G059EE13
2G059HH02
2G059JJ03
2G059JJ11
2G059JJ22
2G059KK04
2G059LL01
2G059MM01
(57)【要約】
【課題】 容器本体内に被検物が封入された状態であっても、被検物の傾きなどの状態変化を検査可能な光学検査装置を提供すること。
【解決手段】 実施形態によれば、光学検査装置は、容器と、結像光学系と、カラーフィルタと、撮像部とを有する。容器は、被検物が収容される容器本体と、被検物からの光を通す1対の平行面を有する観察窓とを有する。カラーフィルタは、結像光学系の光軸に対して回転対称に配置されるとともに、結像光学系の焦点面に設けられる。カラーフィルタは、被検物からの第1の波長の光線を通過させる第1の波長選択フィルタ、及び、第1の波長選択フィルタの外周に形成され、被検物からの第2の波長の光線を通過させる第2の波長選択フィルタを有する。撮像部は、結像光学系の結像面に設けられ、第1の波長選択フィルタを通過した第1の波長、及び、第2の波長選択フィルタを通過した第2の波長を撮像する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
被検物が収容される容器本体と、前記容器本体の内側と外側とを隔離し、前記被検物からの光を通す1対の平行面を有する観察窓とを有する容器と、
前記観察窓を通された前記被検物からの光線を結像する結像光学系と、
前記結像光学系の光軸に対して回転対称に配置されるとともに、前記結像光学系の焦点面に設けられ、
前記結像光学系の前記光軸上に設けられ、前記結像光学系を通過し、前記被検物からの第1の波長の光線を通過させる、円盤状又は円環状の第1の波長選択フィルタ、及び、
前記第1の波長選択フィルタの外周に円環状に形成され、前記結像光学系を通過し、前記被検物からの前記第1の波長とは異なる第2の波長の光線を通過させる第2の波長選択フィルタ
を有するカラーフィルタと、
前記結像光学系の結像面に設けられ、前記第1の波長選択フィルタを通過した前記第1の波長の光線、及び、前記第2の波長選択フィルタを通過した前記第2の波長の光線を撮像する撮像部と
を備える、光学検査装置。
【請求項2】
前記容器は、前記被検物を加熱する加熱部を有し、
前記容器本体及び前記観察窓は、前記加熱部の熱による変形を抑制する耐熱性を有する、
請求項1に記載の光学検査装置。
【請求項3】
前記カラーフィルタの前記第1の波長選択フィルタ及び前記第2の波長選択フィルタは、前記加熱部が加熱されたときに前記加熱部から発光する光のピーク波長を遮蔽するように形成されている、請求項2に記載の光学検査装置。
【請求項4】
前記被検物としての基材と前記基材上の前記被検物としての液体との境界での前記基材に対する前記液体の接触角を、前記撮像部で撮像した像に基づいて出力する第1のプロセッサを有する、請求項1乃至請求項3のいずれか1項に記載の光学検査装置。
【請求項5】
前記第1の波長の光線に対する前記第2の波長の光線の散乱角度は、前記第1の波長選択フィルタ及び前記第2の波長選択フィルタの径方向の領域の大きさにより設定され、
前記散乱角度は、前記接触角に対応する、
請求項4に記載の光学検査装置。
【請求項6】
前記撮像部で撮像される画像データに基づいて、前記第1の波長選択フィルタを通る前記第1の波長の光線による第1の像、及び、前記第2の波長選択フィルタを通る前記第2の波長の光線による第2の像を生成する第2のプロセッサを有し、
前記第2のプロセッサは、前記第1の像及び前記第2の像のそれぞれにおける前記被検物上の点の撮像位置を特定し、複数の前記撮像位置に基づいて前記被検物に係る情報として前記被検物上の点の3次元位置を算出する、請求項1乃至請求項5のいずれか1項に記載の光学検査装置。
【請求項7】
前記結像光学系と前記カラーフィルタとの間、又は、前記結像光学系と前記観察窓との間に前記光軸に対して回転対称に配置され、
前記結像光学系の光軸上に設けられ、前記被検物からの前記第2の波長の光線を通過させる、円盤状又は円環状の第3の波長選択フィルタ、及び、
前記第3の波長選択フィルタの外周に円環状に形成され、前記被検物からの前記第2の波長の光線を通過させる第4の波長選択フィルタ
を有する第2のカラーフィルタを
を備える、請求項6に記載の光学検査装置。
【請求項8】
前記容器本体には、真空装置が接続されている、請求項1乃至請求項7のいずれか1項に記載の光学検査装置。
【請求項9】
前記容器本体には、任意のガス種を導入することが可能なガス導入バルブが接続されている、請求項1乃至請求項8のいずれか1項に記載の光学検査装置。
【請求項10】
請求項4又は請求項5に記載の光学検査装置を用いて、前記被検物の前記基材と前記液体との境界を検査する光学検査方法であって、
前記撮像部において、前記第1の波長選択フィルタを通過した前記第1の波長の光線、及び、前記第2の波長選択フィルタを通過した前記第2の波長の光線を撮像し、
前記撮像部で撮像した像に基づいて、前記基材と前記液体との境界における前記接触角を出力する、
前記被検物の光学検査方法。
【請求項11】
請求項6又は請求項7に記載の光学検査装置を用いて、前記被検物の形状を検査する光学検査方法であって、
前記撮像部において撮像する前記画像データに基づいて、前記第1の波長選択フィルタを通過した前記第1の波長の光線による前記第1の像、及び、前記第2の波長選択フィルタを通過した前記第2の波長の光線による前記第2の像を生成し、
前記第1の像及び前記第2の像のそれぞれにおける前記被検物上の点の前記撮像位置を特定し、
複数の前記撮像位置に基づいて前記被検物に係る情報として前記被検物上の点の3次元位置を算出する、
前記被検物の形状の光学検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、光学検査装置、被検物の光学検査方法、及び、被検物の形状の光学検査方法に関する。
【背景技術】
【0002】
例えば、3次元的な形状は、例えば白色干渉法やレーザー共焦点法などにより測定される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2002-107118号公報
【特許文献2】米国特許第3013467号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明が解決しようとする課題は、容器本体内に被検物が封入された状態であっても、被検物の傾きなどの状態変化を検査可能な光学検査装置、被検物の光学検査方法、及び、被検物の形状の光学検査方法を提供することである。
【課題を解決するための手段】
【0005】
実施形態によれば、光学検査装置は、容器と、結像光学系と、カラーフィルタと、撮像部とを有する。容器は、被検物が収容される容器本体と、容器本体の内側と外側とを隔離し、被検物からの光を通す1対の平行面を有する観察窓とを有する。結像光学系は、観察窓を通された被検物からの光線を結像する。カラーフィルタは、結像光学系の光軸に対して回転対称に配置されるとともに、結像光学系の焦点面に設けられる。カラーフィルタは、結像光学系の光軸上に設けられ、結像光学系を通過し、被検物からの第1の波長の光線を通過させる、円盤状又は円環状の第1の波長選択フィルタ、及び、第1の波長選択フィルタの外周に円環状に形成され、結像光学系を通過し、被検物からの第1の波長とは異なる第2の波長の光線を通過させる第2の波長選択フィルタを有する。撮像部は、結像光学系の結像面に設けられ、第1の波長選択フィルタを通過した第1の波長の光線、及び、第2の波長選択フィルタを通過した第2の波長の光線を撮像する。
【図面の簡単な説明】
【0006】
【
図1】第1及び第2実施形態に係る光学検査システムを示す概略的なブロック図。
【
図2】第1実施形態に係る光学検査システムのカメラ、光源、及び、容器の配置を示す概略図。
【
図3】
図2に示す光学検査システムのカメラと容器本体内の被検物との関係を示す概略図。
【
図4】
図2及び
図3に示すカメラのカラーフィルタを示す概略図。
【
図5】
図2に示す容器の観察窓と光の入射方向及び出射方向との関係を説明する概略図。
【
図6】第1実施形態に係る光学検査システムのカメラの撮像部で被検物を撮像したときの、RGB画像、R像、B像及びG像を示す概略図。
【
図7】
図6にRGB像として示す被検物を被検物の実物として考えたときの、
図6中のVII-VII線に沿う位置の概略的な断面図。
【
図8】第1実施形態に係る光学検査システムを用いて、撮像部で撮像された光線の色に基づいて、被検物の物点における散乱角を出力する処理の一例を示すフローチャート。
【
図9】第1実施形態に係る光学検査システムの容器の加熱部で用いられるヒータからの光の発光状態を示す概略図。
【
図10】第1実施形態に係る光学検査システムのカメラの撮像部で、加熱した被検物を撮像したときの、RGB画像、R像、B像及びG像を示す概略図。
【
図11】
図10にRGB像として示す被検物を被検物の実物として考えたときの、
図10中のXI-XI線に沿う位置の概略的な断面図。
【
図12】第1実施形態に係る光学検査システムのカメラの撮像部で、加熱した被検物を撮像したときの、RGB画像、R像、B像及びG像を示す概略図。
【
図13】
図12にRGB像として示す被検物を被検物の実物として考えたときの、
図12中のXIII-XIII線に沿う位置の概略的な断面図。
【
図14】第1実施形態の変形例に係る光学検査システムを示す概略的なブロック図。
【
図15】第1実施形態の変形例に係る光学検査システムのカメラと容器本体内の被検物との関係を示す概略図。
【
図16】
図15に示すカメラの結像光学系の焦点面に配置される第1のカラーフィルタを示す概略図。
【
図17】
図15に示すカメラの結像光学系に隣接した配置される第2のカラーフィルタを示す概略図。
【
図18】第1実施形態の変形例に係る光学検査システムを用いて、被検物の物点の3次元位置を検出する処理の一例を示すフローチャート。
【
図19】第2実施形態に係る光学検査システムのカメラ、光源、及び、容器の配置を示す概略図。
【
図20】光軸に対して側方から、被検物を加熱した状態でのCu基板に対する、はんだ材、及び、表面実装部品を見た概略図。
【
図21】被検物が
図20に示す状態で、第2実施形態に係る光学検査システムのカメラの撮像部で、被検物を撮像したときの、RGB画像、R像、B像及びG像を示す概略図。
【
図22】光軸に対して側方から、被検物を加熱した状態でのCu基板に対する、はんだ材、及び、表面実装部品を見た概略図。
【
図23】被検物が
図22に示す状態で、第2実施形態に係る光学検査システムのカメラの撮像部で、被検物を撮像したときの、RGB画像、R像、B像及びG像を示す概略図。
【
図24】光軸に対して側方から、被検物を加熱した状態でのCu基板に対する、はんだ材、及び、表面実装部品を見た概略図。
【
図25】被検物が
図24に示す状態で、第2実施形態に係る光学検査システムのカメラの撮像部で、被検物を撮像したときの、RGB画像、R像、B像及びG像を示す概略図。
【発明を実施するための形態】
【0007】
以下に、各実施の形態について図面を参照しつつ説明する。図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0008】
(第1実施形態)
本実施形態に係る光学検査システム2について、
図1から
図13を参照して説明する。
【0009】
図1は、本実施形態に係る光学検査システム2の構成の一例を示すブロック図である。
図1に示すように、光学検査システム2は、光学検査装置4と、ディスプレイ6とを備える。
【0010】
光学検査装置4は、光学装置12と、撮像部14と、容器16と、光源18と、処理回路20と、メモリ22とを備える。光学装置12と撮像部14とは、いわゆるカメラ13を構成する。
【0011】
図2に示すように、光学装置12は、結像光学系(結像レンズ)32、及び、カラーフィルタ(カラー開口)34を備える。
【0012】
結像光学系32は、1又は複数のレンズを組み合わせて形成される。結像光学系32は、被検物からの光線を結像する。結像光学系32の光軸Cは、カラーフィルタ34の光軸(中心軸)に一致する。カラーフィルタ34は、結像光学系32に対して距離fの焦点面に、結像光学系32の光軸に対して回転対称に配置される。撮像部14は、結像光学系32及びカラーフィルタ34を通す光の光路上に配置される。撮像部14は、結像光学系32に対して距離L(>f)の結像面に設けられる。
【0013】
図3は、
図2に示す光学装置12の一部及び撮像部14を拡大して示す図である。
図3に示すように、例えば、被検物Sのある物点Oで正反射した光線L11、及び、適宜の角度にそれぞれ散乱した光線L21,L31は、結像光学系32によって屈折され、光線L12,L22,L32が撮像部14の撮像面14aに結像する。
【0014】
図4に示すように、カラーフィルタ34は、第1の波長選択フィルタ(波長選択領域)42、第2の波長選択フィルタ(波長選択領域)44、及び、第3の波長選択フィルタ(波長選択領域)46を有する。第1の波長選択フィルタ42、第2の波長選択フィルタ44、及び、第3の波長選択フィルタ46は、同心状に形成される。カラーフィルタ34は、波長選択フィルタ42,44,46ごとにおいて、特定の波長(波長スペクトル)の光線を透過させ、特定の波長から外れる波長の光線を遮蔽する性質を有する。
【0015】
第1の波長選択フィルタ42は、円盤状に形成される。第1の波長選択フィルタ42は、結像光学系32の光軸C上に設けられる。第1の波長選択フィルタ42は、結像光学系32を通過した、被検物からの第1の波長の光線を通過させる。なお、第1の波長選択フィルタ42は、第1の波長(特定の波長)と異なる波長の光線を透過させず、遮蔽する性質を有する。
【0016】
第2の波長選択フィルタ44は、第1の波長選択フィルタ42の外周に円環状に形成される。第2の波長選択フィルタ44は、結像光学系32を通過した、被検物からの第1の波長とは異なる第2の波長の光線を通過させる。第2の波長選択フィルタ44の径方向の幅は、適宜に設定可能である。なお、第2の波長選択フィルタ44は、第2の波長(特定の波長)と異なる波長の光線を透過させず、遮蔽する性質を有する。
【0017】
第3の波長選択フィルタ46は、第2の波長選択フィルタ44の外周に円環状に形成される。第3の波長選択フィルタ46は、結像光学系32を通過した、被検物からの第1の波長及び第2の波長とは異なる第3の波長の光線を通過させる。第3の波長選択フィルタ46の径方向の幅は、適宜に設定可能である。なお、第3の波長選択フィルタ46は、第3の波長(特定の波長)と異なる波長の光線を透過させず、遮蔽する性質を有する。
【0018】
カラーフィルタ34は、第3の波長選択フィルタ46の外周に光線遮蔽部48を有する。光線遮蔽部48は、例えば黒色の板で形成され、第3の波長選択フィルタ46を保持する。なお、第3の波長選択フィルタ46は、第2の波長選択フィルタ44を保持する。第2の波長選択フィルタ44は、第1の波長選択フィルタ42を保持する。カラーフィルタ34は、例えば内側から外側に向かって、透過する波長の光が連続的に変化するように構成されていてもよい。すなわち、カラーフィルタ34は、内側から外側に円環状に共通の中心軸に対して円環状に同一の波長の光を通すが、異なる波長の光を通さないように構成されている。
【0019】
カラーフィルタ34の第1の波長選択フィルタ42の外周の半径をr1とし、第2の波長選択フィルタ44の外周の半径をr2とし、第3の波長選択フィルタ46の外側の半径をr3とする。このとき、r3>r2>r1である。ここで、第1の波長選択フィルタ42の半径r1内の領域をA1とする。第1の波長選択フィルタ42の外周と第2の波長選択フィルタ44の外周との間の領域をA2とする。第2の波長選択フィルタ44の外周と第3の波長選択フィルタ46の外周との間の領域をA3とする。
【0020】
第1の波長選択フィルタ42の半径r1、第1の波長選択フィルタ42の外周と第2の波長選択フィルタ44の外周との間の距離であるr2-r1、及び、第2の波長選択フィルタ44の外周と第3の波長選択フィルタ46の外周との間の距離であるr3-r2は、適宜に設定可能である。より具体的には、カラーフィルタ34の第1の波長選択フィルタ42の半径r1、第2の波長選択フィルタ44の半径r2、第3の波長選択フィルタ46の半径r3は、検出対象により変更し得る。このため、領域A1,A2,A3の形状及び大きさは、検出対象により変化し得る。
【0021】
本実施形態に係る光学装置12では、被検物Sの任意の物点Oから射出された光線のうち、結像光学系32に入射したとき、主光線が光軸Cに平行である赤(R)光は、赤色の光線として分離されている。つまり、本実施形態に係る光学装置12は、赤色の光線について、テレセントリック性を有するテレセントリック光学系である。一方で、本実施形態に係る光学装置12は、青(B)光及び緑(G)光について、テレセントリック性を有していない非テレセントリック光学系である。
【0022】
本実施形態では、光学検査システム2は、後述するが、基材S1と、基材S1上の載置物(溶融物(液体)としてのろう材)S2との接触角α,βを検出し、ぬれ性を評価するために用いる。接触角α,βは、例えば素材の性質や素材の温度などに依存する。接触角α,βが小さいものである場合、接触角α,βは、例えば10°に満たない範囲と推定される。一例であるが、本実施形態では、カラーフィルタ34は、光軸Cに対する散乱光の角度(散乱角θ)が、例えば、0°から3°の範囲を取得可能に第1の波長選択フィルタ42のr1が規定される。カラーフィルタ34は、光軸Cに対する散乱光の角度(散乱角θ)が、例えば、3°から6°の範囲を取得可能に第2の波長選択フィルタ44の半径r2が規定される。カラーフィルタ34は、光軸Cに対する散乱光の角度(散乱角θ)が、例えば、6°から9°の範囲を取得可能に第3の波長選択フィルタ46の半径r3が規定される。
【0023】
光は電磁波の一種であり、光には、X線、紫外線、可視光、赤外線、マイクロ波なども含まれる。本実施形態において、光は可視光であるとし、例えば波長は例えば400nmから760nmの領域にあるとする。本実施形態では、カラーフィルタ34は、説明の簡略化のため、例えば、可視光のうち、波長選択フィルタ42,44,46ごとに、ある波長の光を透過させ、ある波長から外れた波長を遮蔽、すなわち、透過を防止するものとする。
【0024】
なお、本実施形態では、便宜的に、国際照明委員会(CIE:Commission Internationale de I’Eclairage)により決められた、赤光の波長を700nm、緑光の波長を546.1nm、青光の波長を435.8nmとする。
【0025】
本実施形態では、第1の波長選択フィルタ42の領域A1は、可視光のうち、例えば赤光(700nm)及びその近傍の第1の波長を有するR光を通し、それ以外の波長の光を遮断する。本実施形態では、第2の波長選択フィルタ44の領域A2は、可視光のうち、例えば青光(435.8nm)及びその近傍の第2の波長を有するB光を通し、それ以外の波長の光を遮断する。本実施形態では、第3の波長選択フィルタ46の領域A3は、可視光のうち、例えば緑光(546.1nm)及びその近傍の第3の波長を有するG光を通し、それ以外の波長の光を遮断する。なお、第1の波長選択フィルタ42の領域A1が通す第1の波長の範囲、第2の波長選択フィルタ44の領域A2が通す第2の波長の範囲、及び、第3の波長選択フィルタ46の領域A3が通す第3の波長の範囲は、本実施形態では重ならないものとすることが好適である。
【0026】
光学装置12は、ハーフミラー36を有する。ハーフミラー36は、結像光学系32と容器16との間に設けられる。ハーフミラー36は、光源18からの照明光(白色光)を容器16の被検物Sに向けて照明するとともに、被検物Sからの光を透過させて、結像光学系32に入射させる。
【0027】
撮像部14は、例えば、いわゆるRGBカメラを用いる。撮像部14は、例えばCMOSイメージセンサや、CCDイメージセンサを用いることができる。
【0028】
図3に示すように、撮像部14は、結像光学系32及び第1の波長選択フィルタ42の領域A1を通過した第1の波長の光線L12、結像光学系32及び第2の波長選択フィルタ44の領域A2を通過した第2の波長の光線L22、及び、結像光学系32及び第3の波長選択フィルタ46の領域A3を通過した第3の波長の光線L32を撮像する。
【0029】
図2に示すように、容器16は、被検物Sが収容される容器本体62と、観察窓64と、被検物Sを載せるステージ66とを備える。
【0030】
容器本体62は、例えば非透光素材で形成される。容器本体62は、内側が加熱される場合、外側に熱が伝わることを防止する断熱性を有することが好適である。また、容器本体62は、真空引きされ、容器本体62内の内圧を適宜に低下させたときに、形状を維持する剛性を有することが好適である。また、容器本体62は、ガスが入れられ、容器本体62内の内圧を適宜に上昇させたときに、形状を維持する剛性を有することが好適である。
【0031】
容器本体62は、被検物Sを容器本体62に対して出し入れする開口縁62aを有する。開口縁62aは、例えば容器本体62の上面に、例えば円環状に形成される。
【0032】
開口縁62aは、容器本体62の外側からステージ66上の被検物Sを観察可能である。開口縁62aの開口径は、例えば150mm程度である。なお、開口縁62aからステージ66までの距離は、例えば500mm程度である。
【0033】
観察窓64は、容器本体62の開口縁62aに着脱可能に固定される。観察窓64には、例えばガラス板が用いられる。観察窓64は、容器本体62内の内圧を適宜に上昇させたとき、又は、適宜に低下させたときに、変形が無視できるように形成されていることが好適である。
【0034】
なお、観察窓64が容器本体62の開口縁62aに取り付けられた状態において、容器本体62内は、密封されることが好適である。このため、観察窓64は、容器本体62に取り付けられた状態で、容器本体62の内側と外側とを隔離する。
【0035】
図5に示すように、観察窓64は、1対の平行面64a,64bを有する。容器本体62の外側から内側の被検物Sに光が入射する場合、容器本体62の外側を向く平行面64aへの入射光の入射角度θ11と、内側を向く平行面64bを通した出射角度θ12とが平行となる。また、容器本体62の被検物Sに反射し、容器本体62の内側から外側に光が出射する場合、内側の平行面64bへの出射光の入射角度θ21と、外側の平行面64aを通した出射角度θ22とが平行となる。このため、観察窓64の1対の平行面64a,64bの法線方向は光線の入射方向と一致している必要はない。
【0036】
図2に示すように、ステージ66は、容器本体62内に設けられる。本実施形態では、ステージ66は、容器本体62の上面の観察窓64の直下に配置される。そして、観察窓64の上方には、光学装置12が配置される。光学装置12の結像光学系32と観察窓64との間には、ハーフミラー36が配置されている。ハーフミラー36は、光源18からの光を反射し、観察窓64を通してステージ66上の被検物Sを照明するとともに、被検物Sを照明し、観察窓64を通す反射光を、ハーフミラー36を通して光学装置12の結像光学系32に入射する。
【0037】
このため、本実施形態では、容器16、光学装置12及び撮像部14は、離間して鉛直方向に沿って配置される。
【0038】
容器16は、被検物Sを加熱する加熱部72と、温度検知部74と、真空装置76と、圧力検知部78とを有する。
【0039】
加熱部72は、例えばステージ66の外周を覆うコイル72aを有する。ステージ66は例えばカーボンなどの導電性材料で形成される。このため、コイル72aに高周波電流を印加すると、ステージ66が加熱される。加熱部72は、コイル72aへの高周波電流の印加により、ステージ66、及び、ステージ66上に設置した被検物Sを熱伝導により加熱する。
【0040】
容器本体62、ステージ66、及び、観察窓64は、加熱部72の加熱による変形や溶融が抑制される耐熱性素材で形成される。
【0041】
温度検知部74は、加熱部72で加熱した容器本体62内の温度を検知する。温度検知部74として、容器本体62内の温度は、例えば熱電対等を用いて計測される。
【0042】
真空装置76は、ターボ分子ポンプ76a及びロータリーポンプ76bを有する。これらターボ分子ポンプ76a及びロータリーポンプ76bは、容器本体62内の気体を排出し、容器本体62内を真空にしようとする。本実施形態では、容器本体62内の圧力は、ターボ分子ポンプ76a及びロータリーポンプ76bにより、例えば10-3Pa程度まで減圧することが可能である。なお、減圧装置に関しては、油拡散ポンプ、クライオポンプ、メカニカルブースターポンプ、ダイヤフラムポンプなど任意の装置を選択することができる。
【0043】
圧力検知部78は、容器本体62内の圧力を検知する。
【0044】
本実施形態では、被検物Sとして、基材S1及び基材S1上に載置されるろう材S2が用いられる。基材S1は、円盤状又は矩形状など、適宜の形状に形成される。基材S1が円盤状であれば、基材S1の直径はろう材S2の大きさに対して例えば数倍程度大きく形成される。固体状態でのろう材S2の直径は、例えば10mm程度である。
【0045】
基材S1は、例えばCu板材が用いられる。本実施形態では、基材S1の水平な平面S11上には、溶融物となり得るろう材S2として、例えば銀ろうと称されるAg-Cu合金材が載置される。基材S1の融点は、溶融物としてのろう材S2の融点よりも高い。加熱部72は、溶融物としてのろう材S2の融点よりも高く、基材S1の融点よりも低い温度に被検物Sを加熱する。
【0046】
なお、ステージ66に載せられた基材S1上のろう材S2を加熱する加熱装置に関しては、電磁誘導加熱のほか、輻射加熱、抵抗加熱、レーザー加熱など任意の加熱装置を選択することができる。
【0047】
光源18は、一例として、適宜の輝度の白色光を発光させるものを用いる。このため、光源18の照明光は、赤(R)光、緑(G)光、青(B)光を含む。
【0048】
図1に示す処理回路20は、プロセッサを含む。処理回路20は、例えば、Central Processing Unit(CPU)、Application Specific Integrated Circuit(ASIC)等の集積回路である。処理回路20として、汎用のコンピュータが用いられてもよい。処理回路20は、専用回路として設けられている場合に限らず、コンピュータで実行されるプログラムとして設けられていてもよい。この場合、プログラムは、集積回路内の記憶領域、メモリ22等に記録されている。処理回路20は、撮像部14及びメモリ22に接続されている。処理回路20は、撮像部14の出力に基づいて、被検物Sに係る情報を算出する。
【0049】
図1に示すように、処理回路(第1のプロセッサ)20は、色抽出部81及び散乱角算出部82としての機能を有する。
【0050】
色抽出部81は、生成部の一例である。色抽出部81は、撮像部14の出力に基づいて、撮像面に到達した光線のR光、B光、及び、G光ごとの強度を撮像部14のピクセルごとに出力する。色抽出部81は、撮像部14が出力した画像データをR,G,Bにカラー分離して色ごとの画像データを生成する。色抽出部81は、生成部の一例である。なお、色抽出部81で色を抽出するとは、撮像部14で撮像したRGB画像をカラーチャンネルに分割すること、又は、撮像部14から直接、赤(R)光の像(R像)、緑(G)光の像(G像)、及び、青(B)光の像(B像)、すなわち、R,G,Bのカラーチャンネルをそれぞれ取得する場合ことを含む。
【0051】
散乱角算出部82は、R像(第1の像)、G像(第2の像)、及び、B像(第2の像)の画像データに基づいて被検物Sの物点Oに係る情報を算出する。具体的には、散乱角算出部82は、R像、G像、及び、B像の画像データに基づいて撮像された光線の色を特定する。散乱角算出部82は、撮像された光線の色、すなわち撮像面14aに到達した光線のR光、G光、及び、B光ごとの強度に基づいて、被検物Sの物点Oにおける環境光の散乱角を算出する。散乱角算出部82は、算出部の一例である。被検物Sの物点Oにおける散乱角は、被検物Sに係る情報の一例である。
【0052】
なお、処理回路20は、光学検査装置4の外部にあってもよい。この場合、撮像部14の出力は、光学検査装置4の外部へ出力されたり、メモリ22へ記録されたりすればよい。つまり、被検物Sに係る情報の算出は、光学検査装置4の内部で行われてもよいし、外部で行われてもよい。
【0053】
メモリ22は、例えばフラッシュメモリのような不揮発性メモリであるが、揮発性メモリをさらに有していてもよい。
【0054】
メモリ22は、撮像部14及び処理回路20の出力を記憶する。メモリ22には、結像光学系32の焦点距離f、結像光学系32と撮像部14の撮像面14aとの間の距離L、及び、カラーフィルタ34の複数の波長選択フィルタ42,44,46の配置等が記録されている。
【0055】
なお、メモリ22には、像が得られるチャンネルと散乱角θとの関係、及び、散乱角θと被検物Sの傾き(ここでは接触角)との関係が予め記録されている。本実施形態の例では、説明の簡略化のため、散乱角θと接触角とが1対1に対応する(散乱角θ=接触角)ものとして説明するが、散乱角θと接触角との関係は、実験前に測定することにより、適宜の係数(自然数に限らない)を散乱角θに例えば乗算することで接触角を求めることができる。一例としては、散乱角θは、接触角の2倍であってもよい。
【0056】
このため、散乱角θと接触角との関係により、カラーフィルタ34の光軸Cに対する半径r1,r2,r3の大きさが設定されている。
【0057】
ディスプレイ6は、処理回路20の出力を表示する。処理回路20の出力は、例えば、撮像部14の出力した画像データに基づく画像、操作用画面等を含む。ディスプレイ6は、例えば液晶ディスプレイ、有機ELディスプレイである。なお、ディスプレイ6は設けられていなくてもよい。この場合、処理回路20の出力は、メモリ22に記録されたり、光学検査システム2の外部に設けられたディスプレイに表示されたり、光学検査システム2の外部に設けられたメモリに記録されたりすればよい。
【0058】
本実施形態に係る光学検査装置4を用いて、容器16内を加熱し、ろう材S2を溶融し、液化させたときの基材S1の平面S11に対する接触角を測定する試験、及び、基材S1に対するろう材S2の形状を検出する試験を行った。
【0059】
ここで、被検物Sからの正反射光成分の撮像面14aへの入射位置及びカラーフィルタ34を通過し得る波長は、被検物Sとの遠近に依存しない。これは、光軸Cに対して平行光として結像光学系32を通過する像を本実施形態ではカラーフィルタ34によりR像としてとらえることによる。R像は、被検物Sとの遠近に依存しない。
【0060】
これに対し、被検物Sからの散乱光成分の撮像面14aへの入射位置及びカラーフィルタ34を通過し得る波長は、被検物Sとの遠近により変化する。例えば、散乱角θが小さくても、カメラ13との距離が遠ければ、その散乱角θの光は、結像光学系32を外れた位置に向かう。この場合、その散乱角の像を得ることができない。
【0061】
このため、被検物Sとカメラ13との位置関係(距離)を調整し、散乱角θと接触角との関係を調整する。なお、被検物Sとカメラ13との位置関係(距離)による、散乱角θと接触角との関係は、予め実験により取得することができる。
【0062】
上述したように、本実施形態の例では、説明の簡略化のため、散乱角θと接触角とが1対1に対応する(散乱角θ=接触角)ように被検物Sとカメラ13との位置関係を調整する。そして、処理回路20は、メモリ22に、散乱角θと接触角との関係を記憶させる。
【0063】
図2に示すように、容器16の観察窓64の直下のステージ66上に、基材S1と、0.2gのろう材S2を設置した。光源18から照明光をハーフミラー36、観察窓64を介して、被検物S(基材S1、及び、基材S1上のろう材S2)に照射し、被検物Sからの反射光を、観察窓64、ハーフミラー36を介してカメラ13で取得した。ここでは、基材S1、及び、基材S1上のろう材S2の像(RGB像)を、容器本体62で支持する観察窓64を介して、カメラ13を用いて取得し、
図6に示すRGB像、及び/又は、赤光像(R像)、青光像(B像)、及び、緑光像(G像)をディスプレイ6に表示させた。なお、
図6にRGB像として示す被検物Sを実物として考えたとき、
図6中のVII-VII線に沿う位置の被検物Sの断面は、概略、
図7に示すように形成されているものと仮定する。
【0064】
ここで、処理回路20の動作について
図8を参照して説明する。
図8は、本実施形態に係る算出処理の一例を示すフローチャートである。処理回路20は、算出処理において、撮像部14の出力に基づいて、被検物Sのある物点Oに係る情報を算出する。
【0065】
ステップST11において、色抽出部81としての処理回路20は、撮像部14の出力に基づいて、任意の物点Oから出射して撮像面14aへ入射した光線のRGBごとの強度を取得する。これにより、画像データはR像、B像、及び、G像にカラー分離される。
【0066】
ステップST12において、色抽出部81としての処理回路20は、任意の物点Oから出射して撮像面14aへ入射した光線の色(色相)を特定する。
【0067】
ステップST13において、散乱角算出部82としての処理回路20は、特定された光線の色に基づいて、物点Oにおける環境光の散乱角θを算出する。ここで、本実施形態に係る光学装置12において、カラーフィルタ34の複数の波長選択フィルタ42,44,46は、同心円状に配置されている。つまり、光学装置12において、カラーフィルタ34の複数の波長選択フィルタ42,44,46の各領域A1,A2,A3は、結像光学系32の光軸Cの軸回りに回転対称である。このため、任意の物点Oにおける散乱角θに応じて光線が色分離される。したがって、物体Sの物点(表面)Oにおける散乱角θに応じて、赤光像(R像)、青光像(B像)、及び、緑光像(G像)が分光分離される。
【0068】
散乱角算出部82としての処理回路20は、特定された光線の色が赤色(R光)であるとき、物点Oにおける散乱角θは、0≦θ<θrであると算出する。このとき、θは、一例として、0°以上、3°未満である。散乱角算出部82としての処理回路20は、特定された光線の色が青色(B光)であるとき、物点Oにおける散乱角θは、θr≦θ<θbであると算出する。このとき、θは、一例として、3°以上、6°未満である。散乱角算出部82としての処理回路20は、特定された光線の色が緑色(G光)であるとき、物点Oにおける散乱角θは、θb≦θ<θgであると算出する。このとき、θは、一例として、6°以上、9°未満である。
【0069】
このように、本実施形態に係る光学検査システム2の処理回路20は、撮像された光線の色に基づいて、物点Oにおける散乱角θを出力可能である。
【0070】
そして、本実施形態では、散乱角θと、接触角との対応関係が予めメモリ22に記憶されている。ここでは、散乱角θと接触角とが1対1に対応する。すなわち、散乱角θ=接触角とするように、被検物Sに対してカラーフィルタ34が配置されている。このため、処理回路20は、散乱角θを算出することによって、散乱角θに対応する接触角を得ることができる。
【0071】
図2に示す容器16は、光源18で発生させる光線を透過させて被検物Sに照射可能で、被検物Sからの反射光を透過可能な観察窓64を有する。この観察窓64の法線方向は、光線の入射方向と一致している必要はない。これは、
図5に示すように、観察窓64に入射した光線の方向が物体の透過前後で変化しないという特性によるものである。このため、光学装置12の光軸に対して、観察窓64の平行面64a,64bが傾いている加熱炉であっても本実施形態に係る観察窓64を通して被検物Sの像を得ることができる。
【0072】
図2に示す容器本体62及び観察窓64は、加熱部72の加熱による温度変化にかかわらず、光源18からの白色光が観察窓64に入射される入射角度と、観察窓64から基材S1及びろう材S2に向かう出射角度とが変化しない。または、入射角度及び出射角度の変化は無視できるほどに小さい。また、基材S1及びろう材S2からの反射光が観察窓64に入射される入射角度と、観察窓64から光学装置12に向かう出射角度とが変化しない。または、入射角度及び出射角度の変化は無視できるほどに小さい。したがって、加熱炉として用いられる容器16であっても、本実施形態に係る容器本体62及び観察窓64を有することにより、光学装置12を用いて、被検物Sの基材S1及びろう材S2の状態変化の像を得ることができる。
【0073】
本実施形態において、光源18からの照明光に基づく、ろう材S2を載置する基材S1の平面S11からの光がカラーフィルタ34の中心を通過するように光学装置12の光軸Cを調整する。すなわち、基材S1の平面S11は、光軸Cに直交する。このとき、カメラ13では、
図6に示すRGB像が得られる。また、処理回路20の色抽出部81により、赤光像(R像)、青光像(B像)、及び、緑光像(G像)が得られる。B像及びG像は、基材S1の平面S11の部分が黒色像として得られる。R像では、基材S1の平面S11の形状が明色として得られる。なお、ろう材S2の散乱光がカラーフィルタ34の第1の波長選択フィルタ42、第2の波長選択フィルタ44、及び、第3の波長選択フィルタ46のいずれかに入射されると、R像、B像、及び、G像を足し合わせたときに、RGB像となる。本実施形態の場合、ろう材S2の散乱光の一部は、カラーフィルタ34の光線遮蔽部48に入射される。このため、ろう材S2のうち、撮像部14で撮像できない箇所が生じ得る。
【0074】
ろう材S2のうち、正反射光成分(明部)は、基材S1の平面S11とともに、R像の一部として得られ得る。なお、R像において、ろう材S2のうち、正反射光成分でない散乱光成分は、黒色像(黒色領域)となる。散乱光は、散乱角度に応じて、B像及び/又はG像として得られる。B像において、ろう材S2のうち、正反射光成分は、黒色像となる。また、B像において、ろう材S2のうち、G像として得られる部位は、黒色像となる。G像において、ろう材S2のうち、正反射光成分は、黒色像となる。また、G像において、ろう材S2のうち、B像として得られる部位は、黒色像となる。
【0075】
作業者がR像において、基材Sの平面S11が明部として表示された状態を、ディスプレイ6を見て確認した後、真空装置76を用いて、容器本体62内を真空引きする。作業者は、圧力検知部78で容器本体62内の圧力を検知したときに、例えば真空度が10-3Pa以下になるまで待機する。
【0076】
圧力検知部78で検知した結果、容器本体62内の真空度が10-3Pa以下となった後、作業者は、加熱部72の誘導加熱用のコイル72aに高周波電流を印加し、ステージ66を加熱するとともに、カメラ13を用いて撮像した像に基づいて、光学検査装置4を用い、基材S1とろう材S2との接触角の角度情報の計測を開始する。
【0077】
容器本体62及び観察窓64は、容器本体62内の温度が、例えばろう材S2を溶融させる程度の温度以内であれば、真空の程度にかかわらず、光源18からの白色光が観察窓64に入射される入射角度と、観察窓64から基材S1及びろう材S2に向かう出射角度とが平行で変化しない。または、入射角度及び出射角度の変化は無視できるほどに小さく、入射角度及び出射角度は平行と同視できる。また、基材S1及びろう材S2からの反射光が観察窓64に入射される入射角度と、観察窓64から光学装置12に向かう出射角度とが平行で変化しない。または、入射角度及び出射角度の変化は無視できるほどに小さく、入射角度及び出射角度は平行と同視できる。したがって、加熱真空炉として用いられる容器16であっても、本実施形態に係る容器本体62及び観察窓64を有することにより、カメラ13を用いて、被検物Sの基材S1及びろう材S2の状態変化の像を得ることができる。
【0078】
例えば温度検知部(熱電対)74により、容器本体62内の温度が計測される。作業者は、基材S1の平面S11上のろう材S2が融点(ここでは780℃)程度になることを確認する。
【0079】
本実施形態に係る光源18において、被検物Sに照射される光の強度は、加熱部72のコイル72aの発熱による発光による光の強度よりも大きい。そして、コイル72aが例えば780℃に加熱されると、コイル72aは赤く発光する。
図9に示すように、このときのコイル72aの発光による光のピーク波長は、赤光(700nm)よりも長く、例えば3000nm程度で、赤外線の領域にある。ここで、上述したように、カラーフィルタ34の第1の波長選択フィルタ42はR光を通すが、それ以外の波長の光を遮断し、第2の波長選択フィルタ44はB光を通すが、それ以外の波長の光を遮断し、第3の波長選択フィルタ46はG光を通すが、それ以外の波長の光を遮断する。このため、カラーフィルタ34の各波長選択フィルタ42,44,46は、加熱部72が加熱されたときに加熱部72から発光する光のピーク波長(例えば3000nm)を遮蔽するように形成されている。このため、本実施形態において、加熱部72の発熱による光の波長は、殆どがカラーフィルタ34を通らない。したがって、撮像部14は、被検体Sを撮像するとき、加熱部72の発光の影響を受けることを防止する。
【0080】
基材S1の平面S11上のろう材S2は、溶融が進むにつれて、接触角が大きい状態から次第に小さくなる。基材S1の平面S11上のろう材S2が溶融し、基材S1の平面S11に対する液滴の拡大が収まった時点での接触角α又は接触角βを最終的な接触角とする。
【0081】
図10から
図13に示すように、基材S1の平面S11に対するろう材S2の接触角は、本実施形態では、鋭角となる。接触角の大小に応じて、ろう材S2からの反射光(散乱光)が結像光学系32に入射される位置が変化するとともに、カラーフィルタ34を通して、撮像部14で撮像される像が変化する。
【0082】
図10は、散乱角θ(接触角)が角度α(>β)であるときのRGB像、及び/又は、R像、B像、及び、G像の一例である。なお、
図10にRGB像として示す被検物Sを実物として考えたとき、
図10中のXI-XI線に沿う位置の被検物Sの断面は、概略、
図11に示すように形成されているものと仮定する。
図12は、散乱角θ(接触角)が角度β(<α)であるときのRGB像、及び/又は、R像、B像、及び、G像の一例である。なお、
図13にRGB像として示す被検物Sを実物として考えたとき、
図12中のXIII-XIII線に沿う位置の被検物Sの断面は、概略、
図13に示すように形成されているものと仮定する。
【0083】
図11に示すように、接触角αが
図13に示す接触角βに比べて大きい場合、
図10に示すように、撮像部14で撮像される像をR像、B像、G像に分けたとき、ろう材S2は、例えば中心の第1の波長選択フィルタ42を通して撮像されるR像、及び、第3の波長選択フィルタ46を通して撮像されるG像として得られる。なお、ろう材S2の部分としては、R像は得られず、B像として得られる場合もある。
【0084】
メモリ22には、散乱角θと、被検物Sの傾き(ここでは接触角α又は接触角β)との対応関係が予め記憶されている。このため、基材S1の平面S11とろう材S2との境界がG像の一部として得られることが認識された場合、処理回路20は、散乱角θがθb≦θ<θgの間にあると出力する。処理回路20は、その散乱角θに対応する、基材S1の平面S11とろう材S2との境界の接触角αを読み出し、その接触角αをディスプレイ6に出力する。
【0085】
ろう材S2の溶融が進んで液化し、
図13に示すように、接触角αがより小さくなり、例えば接触角βとなった場合、
図12に示すように、液化したろう材S2は、例えば第1の波長選択フィルタ42を通して撮像されるR像、及び、第2の波長選択フィルタ44を通して撮像されるB像として得られる。なお、ろう材S2の部分としては、R像は得られず、G像として得られる場合もある。
【0086】
このため、基材S1の平面S11とろう材S2との境界がB像の一部として得られることが認識された場合、処理回路20は、散乱角θがθr≦θ<θbの間にあると出力する。処理回路20は、その散乱角θに対応する、基材S1の平面S11とろう材S2との境界の接触角βを読み出し、その接触角βをディスプレイ6に出力する。
【0087】
基材S1の平面S11とろう材S2との境界がR像の一部として得られることが認識された場合、処理回路20は、散乱角θが0≦θ<θrの間にあると出力する。処理回路20は、その散乱角θに対応する、基材S1の平面S11とろう材S2との境界の接触角を読み出し、その接触角をディスプレイ6に出力する。この場合、接触角は、0<βとなる。
【0088】
このように、本実施形態に係る光学検査システム2を用いて、接触角を推定することができる。すなわち、本実施形態に係る例では、
図10に示すように基材S1の平面S11とろう材S2との境界がG像として得られる場合、処理回路20は、接触角が角度αであることを例えばディスプレイ6に出力し、
図12に示すように基材S1の平面S11とろう材S2との境界がB像として得られる場合、処理回路20は、接触角が角度αよりも小さい角度βであることをディスプレイ6に出力する。また、基材S1の平面S11とろう材S2との境界がR像として得られる場合、処理回路20は、接触角が角度βよりも小さい角度であることをディスプレイ6に出力する。
【0089】
したがって、本実施形態によれば、例えば、加熱炉又は真空加熱炉としての容器16を動作させた状態における、容器16内の被検物Sの状態変化を、容器16の観察窓64を通して、非接触で観察し続けることができる。そして、容器16内の被検物Sの基材S1に対するろう材S2の接触角の測定を、被検物Sを含む容器16の上方からの撮影によって、行うことができる。したがって、本実施形態に係る光学検査システム2を用いることにより、容器本体62から被検物Sを取り出すことなく、基材S1に対するろう材S2の濡れ性(接触角)をリアルタイムモニタリングによって、評価することができる。
【0090】
このように、本実施形態に係る光学検査装置4、及び、光学検査装置4を含む光学検査システム2を用いることにより、例えば製品に適用する前の各素材の要素試験を行うことができる。
【0091】
本実施形態では、被検物Sのろう材S2を基材S1上で溶融させ、液化するため、容器16の観察窓64及び被検物Sの直上にカメラ13を配置する例について説明した。被検物Sの一部を溶融させることが不要で、例えばステージ66に被検物Sを維持することができれば、容器16の観察窓64及び被検物Sの直上にカメラ13を配置する必要はない。このため、カメラ13の光軸Cは、必要とする試験によっては、鉛直方向に沿う方向でなく、あらゆる方向が許容され得る。
【0092】
本実施形態では、光源18からの白色光を、ハーフミラー36を介して観察窓64を通して被検物Sに照射する例について説明した。太陽光や、その他の光により、被検物Sに対し、撮像部14が像を得るために必要な光量の光が照射されていれば、光源18及びハーフミラー36は不要となる場合がある。また、太陽光その他の光に加えて、例えば、加熱部72による加熱により、被検物Sに対し、撮像部14が像を得るために必要な光量が得られるのであれば、光源18は不要となり得る。なお、
図7に示すように、一般に、加熱部72は、コイル72aの温度が高くなるにつれ、赤外線及び可視光域の光を出射し得る。加熱部72は、コイル72aの温度がさらに温度が高くなると、赤外光、可視光に加えて、紫外線域の光を出射し得る。
【0093】
本実施形態では、光源18からの光量を、加熱部72からの光量に比べて大きくした。例えば、光源18からの光量に比べて、相対的に加熱部72からの光量が大きいとき、例えば観察窓64とハーフミラー36との間、又は、ハーフミラー36と結像光学系32との間に、例えば加熱部72からの光の波長をカットする第2のカラーフィルタを配置してもよい。このとき、第2のカラーフィルタは、例えば、第1の波長選択フィルタ42、第2の波長選択フィルタ44、第3の波長選択フィルタ46と異なる波長をカットするものとして用いられる。第2のカラーフィルタは、R光、B光、及びG光の波長と異なる、例えば600nm及びその周辺の波長をカットするものが用いられる。
【0094】
本実施形態に係る光学検査装置4は、基材S1及び基材S1の平面S11上のろう材S2の像を、加熱する前の常温、加熱中、数百℃以上の所望温度への到達時にわたって、観察窓64を通して取得することができる。ろう材S2が溶融するときの様子を、容器16の観察窓64を通して逐一観察することができる。このため、数百℃以上の高温となる容器16内の被検物Sの様子を観察し続けることができる。したがって、加熱による温度に対応する被検物Sの形状変化を取得することができる。
【0095】
また、処理回路20は、ろう材S2が融点に達したとき、画像処理を行うことにより、基材S1の平面S11に対するろう材S2の接触角を測定することができる。したがって、光学検査装置4のユーザは、基材S1の平面S11に対するろう材S2のぬれ性を評価することができる。
【0096】
本実施形態では、容器16内を加熱する場合を例にして説明した。容器16内を例えば液体窒素により-196℃以下の環境下などに冷却した場合であっても、本実施形態に係る光学検査装置4を用いて、温度変化に応じた被検物Sの状態変化を取得することができる。
【0097】
本実施形態によれば、容器本体62内が、例えば数百℃など適宜の温度に加熱された状態であっても、-196℃以下など適宜の温度に冷却された場合であっても、加熱/冷却による温度の影響を受けることなく、容器16内の被検物Sの傾き(接触角)を算出可能な光学検査装置4、及び、被検物Sの傾きの算出方法を提供することができる。
【0098】
したがって、本実施形態によれば、例えば、容器本体62内に被検物が封入された状態であっても、被検物Sの傾き(接触角)などの状態変化を検査可能な光学検査装置4、及び、被検物Sの傾き(接触角)を算出するなどの光学検査方法を提供することができる。
【0099】
本実施形態に係るカラーフィルタ34の第1の波長選択フィルタ42の半径r1、第2の波長選択フィルタ42の半径r2、及び、第3の波長選択フィルタ46の半径r3は、それぞれ適宜に設定可能である。例えば、接触角θが比較的小さいことが想定される場合、散乱角も小さくなることが想定される。この場合、結像光学系32を適宜に設定したり、領域A1を規定する半径r1、領域A2を規定する半径r2、及び、領域A3を規定する半径r3をそれぞれ適宜に設定することにより、被検物Sのろう材S2からの散乱光が領域A2,A3に入射するようにする。例えば、接触角θが比較的大きいことが想定される場合、散乱角も大きくなることが想定される。この場合、領域A1を規定する半径r1を適宜に大きくし、光軸Cから領域A2、領域A3をそれぞれ比較的遠くに配置することにより、被検物Sのろう材S2からの散乱光が領域A2,A3に入射するようにする。このため、被検物Sに合わせて結像光学系32、及び/又は、カラーフィルタ34を適宜に設定することにより、処理回路20は、所望の接触角を出力することができる。
【0100】
また、カラーフィルタ34の半径r1,r2,r3を想定される接触角に合わせて変更するほか、被検物Sとカメラ13との位置関係(距離)を調整することによっても、角度情報を含むカラーフィルタ34を通した像を撮像部14で取得することができる。
【0101】
本実施形態では、撮像部14として、RGBカメラを用いる例について説明した。撮像部14として、マルチスペクトルカメラやハイパースペクトルカメラを用いることも好適である。カラーフィルタ34は、上述した3つの波長選択フィルタ42,44,46の領域A1,A2,A3だけでなく、通過させる波長ごとにより細かく同心状に領域を分割することができる。このため、カラーフィルタ34においてそれぞれ異なる波長を通す領域を4つ以上に増やし、得られる散乱角θごとの像を4つ以上に増やすことにより、処理回路20は、接触角をより詳細に出力することができる。
【0102】
また、本実施形態では、カラーフィルタ34は、第1の波長選択フィルタ(波長選択領域)42、第2の波長選択フィルタ(波長選択領域)44、及び、第3の波長選択フィルタ(波長選択領域)46を有する例について説明した。カラーフィルタ34は、例えば、第1の波長選択フィルタ(波長選択領域)42、及び、第2の波長選択フィルタ(波長選択領域)44の少なくとも2つの領域を備えていてもよい。この場合、処理回路20は、0≦θ<θr、θr≦θ<θbの2つの角度範囲の散乱角θを得るとともに、散乱角θに応じた接触角を得ることができる。
【0103】
本実施形態のカラーフィルタ34は、内側から外側に向かって、R光、B光、G光を通す領域として形成される例について説明した。例えば、内側から外側に向かって、B光、G光、R光を通す領域として形成されるなど、カラーフィルタ34は、適宜に形成される。
【0104】
(変形例)
第1実施形態に係る光学検査システム2において、被検物Sの物点Oの3次元位置を検出する方法は、種々存在する。ここでは、主に、被検物Sの物点Oの3次元位置を検出する方法の例を、第1実施形態の変形例として
図14から
図18を用いて説明する。
【0105】
本変形例に係る光学検査システム2について説明する。
【0106】
図14に示すように、本変形例に係る処理回路(第2のプロセッサ)20は、第1実施形態で説明した散乱角算出部82に加えて、色抽出部81、像面位置取得部83、及び、物点位置算出部84としての機能を有する。
【0107】
像面位置取得部83及び物点位置算出部84は、算出部の一例である。算出部は、色ごとの画像データに基づいて物点Oを含む被検物に係る情報を算出する。
【0108】
像面位置取得部83は、色抽出部81の出力に基づいて、撮像面14aにおけるRGBごとの光線の入射位置を取得する。像面位置取得部83は、色ごとの画像データのそれぞれにおける物点Oから射出された光線の撮像位置を特定する。
【0109】
物点位置算出部84は、撮像面14aにおける光線の撮像位置に基づいて、被検物Sの物点Oの3次元位置を算出する。つまり、物点位置算出部84は、複数の撮像位置に基づいて被検物Sに係る情報として物点Oの3次元位置を算出する。被検物Sの物点Oの3次元位置は、被検物Sに係る情報の一例である。物点Oの3次元位置は、被検物Sである物体上の点の3次元位置と表現されてもよい。
【0110】
図15は、本変形例に係る光学検査装置4のカメラ13の構成の一例を示す図である。
図15には、被検物Sの物点Oから射出された光線の主光線の光線経路の一例が模式的に示されている。
図15に示すように、本変形例に係る光学装置12は、結像光学系(結像レンズ)32、第1のカラーフィルタ341及び第2のカラーフィルタ342を備える。第1のカラーフィルタ341及び第2のカラーフィルタ342は、それぞれ、結像光学系32の光軸Cに対して回転対称に配置されている。
【0111】
結像光学系32は、被検物S上の物点Oから射出された光線を、撮像部14の撮像面14a上の像点に結像させる。
【0112】
第1のカラーフィルタ341は、結像光学系32の像側焦点距離fの位置(焦点面)に配置される。このため、第1のカラーフィルタ341は、第1の実施形態に係るカラーフィルタ34に対応する位置に配置されている。
【0113】
第2のカラーフィルタ342は、結像光学系32に隣接して配置されている。第2のカラーフィルタ342は、結像光学系32と第1のカラーフィルタ341との間に配置されている。なお、第2のカラーフィルタ342は、結像光学系32と容器16の観察窓64との間、すなわち、結像光学系32と被検物Sとの間に配置されていてもよい。
【0114】
図16は、本変形例に係る第1のカラーフィルタ341の一例を示す模式図である。
図16に示すように、第1のカラーフィルタ341の開口に設けられた波長選択フィルタは、第1の領域A1及び第2の領域A2の2つの同心円状の波長選択領域を有する。
【0115】
第1の領域A1は、半径raから半径rbの領域である。第1の領域A1には、青(B)光を透過させる青色透過フィルタが設けられている。つまり、第1のカラーフィルタ341の第1の領域A1は、B光を透過させる領域である。
【0116】
第2の領域A2は、半径ra以下の領域である。第2の領域A2には、赤(R)光を透過させる赤色透過フィルタが設けられている。つまり、第1のカラーフィルタ341の第2の領域A2は、R光を透過させる領域である。第2の領域A2は、結像光学系32の光軸C上に配置されている。
【0117】
図17は、本実施形態に係る第2のカラーフィルタ342の一例を示す模式図である。
図17に示すように、第2のカラーフィルタ342の開口に設けられた波長選択部材は、第1の領域A1及び第2の領域A2の2つの同心円状の波長選択領域を有する。
【0118】
第1の領域A1は、半径raから半径rbの領域である。第1の領域A1には、赤(R)光を透過させる赤色透過フィルタ(第4の波長選択フィルタ)が設けられている。つまり、第2のカラーフィルタ342の第1の領域A1は、R光を透過させる領域である。
【0119】
第2の領域A2は、半径r1以下の領域である。第2の領域A2には、青(B)光を透過させる青色透過フィルタ(第3の波長選択フィルタ)が設けられている。つまり、第2のカラーフィルタ342の第2の領域A2は、B光を透過させる領域である。第2の領域A2は、結像光学系32の光軸C上に配置されている。第2の領域A2は、円盤状又は円環状に形成される。このため、青色透過フィルタとしての第1の領域A1は、赤色透過フィルタとしての第2の領域A2の外周に円環状に形成され、被検物SからのB光を透過させる。
【0120】
次に、本変形例に係る光学検査システム2の動作について説明する。
【0121】
例えば光源18による照明により、被検物S上の任意の物点OからB光及びR光を含む光線が射出される。これらの光線は、観察窓64を通し、物点Oにおいて反射又は散乱される。被検物Sの任意の物点Oから反射され観察窓64を通過した光線のうち、結像光学系32を介して第2のカラーフィルタ342及び第1のカラーフィルタ341を通過した光線は、撮像部14の撮像面14aへ入射する。
【0122】
被検物Sの任意の物点Oから反射され観察窓64を通過した光線が結像光学系32へ入射したとき、結像光学系32の光軸Cに対して平行であった光線について考える。
図15に示すように、これらの光線のうち、結像光学系32を介して第2のカラーフィルタ342の第1の領域A1を透過したR光は、第1のカラーフィルタ341の第2の領域A2を透過できる。一方で、結像光学系32を介して第2のカラーフィルタ342の第2の領域A2を透過したB光は、R光の波長成分がないため、第1のカラーフィルタ341の第2の領域A2を透過できない。このように、結像光学系32の光軸Cに対して平行であった光線(R光及びB光)は、結像光学系32の像側焦点に配置されている第1のカラーフィルタ341に入射されるが、R光のみ、撮像部14の撮像面14aに到達する。
【0123】
次に、結像光学系32へ入射したとき、結像光学系32の光軸に対して平行ではなかった光線について考える。結像光学系32を介して第2のカラーフィルタ342の第1の領域A1を透過したR光は、青色の波長成分がないため、第1のカラーフィルタ341の第1の領域A1を透過できない。一方で、結像光学系32を介して第2のカラーフィルタ342の第2の領域A2を透過したB光は、第1のカラーフィルタ341の第1の領域A1を透過できる。このように、結像光学系32の光軸に対して平行ではなかった光線(R光及びB光)は、B光のみ、撮像部14の撮像面14aに到達する。
【0124】
このように、本変形例に係る光学装置12は、R光について、物体側にテレセントリック性を有するテレセントリック光学系である。一方で、本変形例に係る光学装置12は、B光について、物体側にテレセントリック性を有していない非テレセントリック光学系である。本変形例に係る光学装置12において、テレセントリック光学系の光軸と非テレセントリック光学系の光軸とは一致する。
【0125】
撮像部14は、任意の物点Oから射出された光線のうち、テレセントリック光学系としての光学装置12を通過したR光と、非テレセントリック光学系としての光学装置12を通過したB光とを同時に撮像する。撮像部14は、撮像して得られた撮像データを処理回路20へ出力する。非テレセントリック光学系は、通常レンズ光学系と表現されてもよい。
【0126】
ここで、処理回路20の動作について説明する。
【0127】
本変形例においても、処理回路20は、散乱角θに基づいて接触角を出力することができる。この場合、この処理回路20は、第1実施形態で説明したように動作し、散乱角θから接触角を算出することができる。すなわち、散乱角θと接触角との関係は、実験前に測定することにより、適宜の係数(自然数に限らない)を散乱角θに例えば乗算することで接触角を求めることができる。このため、処理回路20は、散乱角θに基づいて接触角を出力する動作については、ここでの説明を省略する。
【0128】
本変形例に係る処理回路20は、撮像部14の出力に基づいて、被検物Sの3次元形状を算出する。計測処理では、物点Oの3次元位置を算出する算出処理が実行される。算出処理は、以下の色抽出処理、像面位置取得処理及び物点位置算出処理を含む。そして、物点Oの集まりが、被検物Sの形状となる。
【0129】
図18は、本実施形態に係る算出処理の一例を示すフローチャートである。本変形例に係る処理回路20は、
図18に示すフローチャートにしたがって、動作する。
【0130】
ステップST21において、処理回路20は色抽出処理を実行する。色抽出部81としての処理回路20は、撮像データを色分離して、色ごとの画像データを抽出する。なお、画像データと記載しているが、画像として表示可能なデータに限らず、撮像部14の各色のピクセルごとの光線強度が抽出されていればよい。
【0131】
ステップST22において、処理回路20は像面位置取得処理を実行する。像面位置取得部83としての処理回路20は、各色の画像データに基づいて、色ごとに光線の撮像位置を特定する。なお、光線が撮像された撮像位置は、光線の撮像面14aへの入射位置とも表現できる。像面位置取得部83としての処理回路20は、例えば画像データにエッジ強調等の画像処理を施し、物点Oと対応する撮像位置を特定する。このとき、例えば検出されたエッジの形状に対して、ピクセルマッチング等の画像処理が行われ得る。
【0132】
ステップST23において、処理回路20は、物点位置算出処理を実行する。本実施形態に係る撮像部14で取得するR像、B像、及び、G像は、結像光学系32及びカラーフィルタ34の波長選択フィルタ42,44,46の配置(カラーフィルタ34との位置関係)に基づいて、それぞれ被検物Sの散乱角θに応じた角度(傾き)に関する情報を持つ。このため、処理回路20は、撮像部14の各画素において、各画素において、色ごとに、被検物Sの物点Oが存在する方向に関する情報を取得する。
【0133】
ステップST23における物点位置算出処理について、より具体的に説明する。
【0134】
3次元空間における被検物Sの物点Oの位置を示す座標を(x、y、z)とする。物点Oから射出されてテレセントリック光学系としての光学装置12を通過したR光の撮像面14aへの入射位置を示す座標を(p,q)とする。また、物点Oから射出されて非テレセントリック光学系としての光学装置12を通過したB光の撮像面14aへの入射位置を示す座標を(P,Q)とする。なお、撮像面14aへの入射位置は、光線の撮像位置である。
【0135】
ここで、第1のカラーフィルタ341の第2の領域A2は、R光が透過する領域である。第2のカラーフィルタ342の第2の領域A2は、B光が透過する領域である。
【0136】
このとき、幾何光学により、非テレセントリック光学系としての光学装置12を通過したB光の撮像位置は、
【0137】
【数1】
となる。ただし、式(1)の右辺の第2項は、第2のカラーフィルタ342の第2の領域A2の端部を通過する周辺光線(marginal ray)を意味する。
【0138】
一方、幾何光学により、テレセントリック光学系としての光学装置12を通過したR光の撮像位置は、
【0139】
【数2】
となる。ただし、式(2)の右辺の第2項は、第1のカラーフィルタ341の第2の領域A2の端部を通過する周辺光線である。
【0140】
式(1)及び式(2)より、物点Oの3次元空間における位置は、各光線の撮像位置を用いて、
【0141】
【0142】
本変形例に係る処理回路20は、式(3)を用いて、撮像データより物点Oの3次元位置を算出することができる。また、像面位置取得処理において、被検物S上の複数の物点Oに対応した複数の撮像位置が色ごとに取得される。そして、物点Oの集まりが、被検物Sの形状となる。このため、本変形例に係る光学検査システム2は、容器本体62内の被検物Sの物点Oの3次元位置を検出可能である。したがって、本変形例に係る処理回路20は、容器本体62内に被検物Sが封入された状態での撮像データにより被検物Sの3次元形状を算出できる。
【0143】
このように、本変形例によれば、例えば、容器本体62内に被検物Sが封入された状態であっても、被検物Sの傾き(接触角)などの状態変化を検査可能な光学検査装置4、及び、被検物Sの傾き(接触角)を算出するなどの光学検査方法に加えて、被検物Sの形状の光学検査方法を提供することができる。
【0144】
なお、第1実施形態で説明した処理回路20の色抽出部81及び散乱角算出部82としての機能を有する第1のプロセッサ、及び、変形例で説明した処理回路の色抽出部81、像面位置取得部83及び物点位置算出部84としての機能を有する第2のプロセッサは、同一であっても、異なっていてもよい。すなわち、第1のプロセッサ及び第2のプロセッサは、単一物として形成されていてもよく、分離されて形成されていてもよい。
【0145】
(第2実施形態)
次に、第2実施形態について、
図19から
図25を用いて説明する。本実施形態は変形例を含む第1実施形態の変形例であって、第1実施形態で説明した部材と同一の部材又は同一の機能を有する部材には極力同一の符号を付し、詳しい説明を省略する。
【0146】
図19に示すように、本実施形態において光学検査装置4及び容器16の容器本体62及び観察窓64は、例えば第1実施形態と同じ構造である。
【0147】
容器16の加熱部72は、観察窓64の直下のステージ66に設けられる。加熱部72は、例えばハロゲンヒータ72bを用いる。加熱部72は、被検物Sを設置するためのステージ66に取り付けられている。
【0148】
本実施形態では、容器16は、ガス供給部80を有する。ガス供給部80は、容器本体62に接続されるガス導入バルブ80aと、ガス導入バルブ80aを介して容器本体62内にガスを供給するガスボンベ80bとを備える。ガス導入バルブ80aは、任意のガス種のガスを容器本体62に導入可能である。本実施形態では、ガスボンベ80bに封入されているガスは、窒素ガスであるとする。このため、ガス供給部80は、ガス供給部80を通して容器本体62内を窒素ガスで満たすことが可能である。
【0149】
本実施形態において、被検物Sは、Cu基板S12、はんだ材S22、及び、表面実装部品S32を有する。なお、Cu基板S12の上面S121は水平な平面であり、表面実装部品S32の上面S321は平面であるとする。また、Cu基板S12の外径は、表面実装部品S32の上面S321の外径よりも大きい。
【0150】
加熱部72は、ステージ66とCu基板S12との間に配置されている。このため、加熱部72を加熱すると、Cu基板S12からはんだ材S22に熱が伝熱して溶融し、表面実装部品S32とCu基板S12とがはんだ材S22を介して接合される。
【0151】
ここで、表面実装部品S32の上面S321とCu基板S12の上面S121とは、平行であることが望ましい。しかしながら、溶融したはんだ材S22がCu基板S12と表面実装部品S32との間に不均一に広がることで、微小な傾きが発生し得る。
【0152】
本実施形態に係る光学検査装置4を用いて、容器16内を加熱し、Cu基板S12と表面実装部品S32の間のはんだ材S22を溶融し、液化させたときのCu基板S12の上面S121に対する表面実装部品S32の上面S321の傾斜角を測定する試験を行った。
【0153】
上述したように、被検物Sからの散乱光成分の撮像面14aへの入射位置及びカラーフィルタ34を通過し得る波長は、被検物Sとの遠近により変化する。このため、被検物Sとカメラ13との位置関係(距離)を調整し、散乱角θと傾斜角との関係を調整する。なお、被検物Sとカメラ13との位置関係(距離)による、散乱角θと傾斜角との関係は、予め実験により取得することができる。
【0154】
上述したように、本実施形態の例では、説明の簡略化のため、散乱角θと傾斜角とが1対1に対応する(散乱角θ=傾斜角)ように被検物Sとカメラ13との位置関係を調整する。そして、メモリ22に、散乱角θと傾斜角との関係を記憶させる。
【0155】
図19に示すように、容器16の観察窓64の直下のステージ66上に、Cu基板S12、はんだ材S22、及び、表面実装部品S32を設置した。光源18から照明光をハーフミラー36、観察窓64を介して、被検物SのCu基板S12に照射し、Cu基板S12の上面S121からの反射光を、観察窓64、ハーフミラー36を介してカメラ13で取得した。すなわち、ここでは、Cu基板S12の上面S121の像(RGB像)を、容器本体62で支持する観察窓64を介して、カメラ13を用いて取得し、RGB像、及び/又は、赤光像(R像)、青光像(B像)、及び、緑光像(G像)をディスプレイ6に表示させた。
【0156】
本実施形態において、光源18からの照明光に基づく、Cu基板S12の上面S121からの光がカラーフィルタ34の中心を通過するように光学装置12の光軸Cを調整する。すなわち、Cu基板S12の上面S121は、光軸Cに直交する。Cu基板S12の上面S121のうち、正反射光成分(明部)は、R像の一部として得られ得る。B像及びG像のうち、Cu基板S12の上面S121からの正反射成分は、黒色像として得られる。
【0157】
作業者がR像において、Cu基板S12の上面S121が明部として表示された状態を、ディスプレイ6を見て確認した後、容器本体62内を真空引きする。作業者は、圧力検知部78で容器本体62内の圧力を検知したときに、例えば真空度が10-3Pa以下になるまで待機する。
【0158】
圧力検知部78で検知した結果、容器本体62内の真空度が10-3Pa以下となった後、真空装置76の動作を停止させる。作業者は、ガス導入バルブ80aを開放し、ガスボンベ80b内の窒素ガスをガス導入バルブ80aを介して容器本体62内に導入する。作業者は、圧力検知部78で容器本体62内の圧力を検知したときに、容器本体62内の圧力が0.5Pa程度になるまで待機する。
【0159】
圧力検知部78で検知した結果、容器本体62内の圧力が0.5Pa程度になった後、作業者は、加熱部72のハロゲンヒータ72bに電力を供給し、ステージ66を加熱するとともに、カメラ13を用いて撮像した像に基づいて、光学検査装置4を用い、Cu基板S12の上面S121の傾斜(傾斜角)の角度情報の計測を開始する。
【0160】
例えば温度検知部(熱電対)74により、容器本体62内の温度が計測される。作業者は、Cu基板S12と表面実装部品S32との間のはんだ材S22が融点(ここでは230℃)程度になることを確認する。
【0161】
はんだ材S22が溶融するとき、Cu基板S12の上面S121に対する表面実装部品S32の上面S321の傾斜角が変化し得る。はんだ材S22がさらに溶融し、Cu基板S12の上面S121に対する表面実装部品S32の上面S321の傾斜が収まった時点での表面実装部品S32の上面S321の傾斜角を、Cu基板S12の上面S121に対する表面実装部品S32の上面S321の最終的な傾斜角とする。
【0162】
例えば、はんだ材S22が溶融した結果、
図20に示すように、Cu基板S12の上面S121に対して、表面実装部品S32の上面S321が平行又は略平行となることがある。このとき、撮像部14は、Cu基板S12の上面S121とともに、表面実装部品S32の上面S321の像を正反射成分として取得する。したがって、光学検査システム2のディスプレイ6には、
図21に示すように、R像において、Cu基板S12の上面S121とともに、表面実装部品S32の上面S321の像が表示される。
【0163】
メモリ22には、像が得られるチャンネルと散乱角との関係が予め記録されている。このため、表面実装部品S32の上面S321がR像として得られることが認識された場合、処理回路20は、その像における散乱角に対応する傾斜角をメモリ22から読み出す。そして、処理回路20は、その傾斜角をディスプレイ6に出力する。
図20に示す例の場合、R像が得られるため、処理回路20は、傾斜角(=散乱角)が0°とディスプレイ6に出力する。
【0164】
例えば、はんだ材S22が溶融した結果、
図22に示すように、Cu基板S12の上面S121に対して、表面実装部品S32の上面S321が角度(傾斜角度)αに傾くことがある。このとき、撮像部14は、Cu基板S12の上面S121の像を正反射成分として取得する。なお、撮像部14は、表面実装部品S32の上面S321の傾斜角度によっては、R像、B像、G像のいずれでも取得できない場合がある。傾斜角度αの場合、
図23に示すように、撮像部14は、表面実装部品S32の上面S321の像をG像として取得するものとする。
【0165】
メモリ22には、像が得られるチャンネルと散乱角との関係が予め記録されている。このため、表面実装部品S32の上面S321がG像として得られることが認識された場合、処理回路20は、その像における散乱角に対応する傾斜角をメモリ22から読み出す。そして、処理回路20は、その傾斜角をディスプレイ6に出力する。
図22に示す例の場合、G像が得られるため、処理回路20は、傾斜角(=散乱角)が角度αであるとディスプレイ6に出力する。
【0166】
例えば、はんだ材S22が溶融した結果、
図24に示すように、Cu基板S12の上面S121に対して、表面実装部品S32の上面S321が角度(傾斜角度)β(<α)に傾くことがある。このとき、撮像部14は、Cu基板S12の上面S121の像を正反射成分として取得する。傾斜角度βの場合、
図25に示すように、撮像部14は、表面実装部品S32の上面S321の像をB像として取得するものとする。
【0167】
メモリ22には、像が得られるチャンネルと散乱角との関係が予め記録されている。このため、表面実装部品S32の上面S321がB像として得られることが認識された場合、処理回路20は、その像における散乱角に対応する傾斜角をメモリ22から読み出す。そして、処理回路20は、その傾斜角をディスプレイ6に出力する。
図24に示す例の場合、B像が得られるため、処理回路20は、傾斜角(=散乱角)が角度βであるとディスプレイ6に出力する。
【0168】
なお、傾斜角α,βは、通常、例えば0°から数°の範囲である。
【0169】
はんだ材S22を溶融させた後、Cu基板S12の上面S121に対して表面実装部品S32の上面S321が平行であることが望ましい。しかし、溶融したはんだ材S22が不均一に広がることでCu基板S12の上面S121に対して表面実装部品S32の上面S321に微小な傾きが発生し得る。本実施形態によれば、はんだ材S22の溶融前と、溶融し、Cu基板S12と表面実装部品S32とを接合した後の、Cu基板S12の上面S121に対する表面実装部品S32の上面S321との角度変化を観察することで、表面実装部品S32とCu基板S12との間の接合不良の発見が可能である。
【0170】
本実施形態によれば、容器本体62内が数百℃などに加熱された状態であっても、加熱による温度の影響を受けることなく、被検物Sの傾きを算出可能な光学検査装置4、及び、被検物Sの傾きの算出方法を提供することができる。
【0171】
本実施形態によれば、適宜のガス雰囲気下でも、ガスの影響を受けることなく、被検物Sの傾きを算出可能な光学検査装置4、及び、被検物Sの傾きの算出方法を提供することができる。
【0172】
また、本実施形態においても、第1実施形態で説明した手法又は、第1実施形態の変形例で説明した手法による、被検物の形状の検出方法を用いて被検物の形状を検出することができる。したがって、本実施形態によれば、容器本体62内が数百℃などに加熱された状態であっても、加熱部72による温度の影響を受けることなく、被検物Sの形状を検出可能な光学検査装置4、及び、被検物の形状の検出方法を提供することができる。
【0173】
したがって、本実施形態によれば、例えば、容器本体62内に被検物が封入された状態であっても、被検物Sの傾きなどの状態変化を検査可能な光学検査装置4、被検物Sの光学検査方法、及び、被検物Sの形状の光学検査方法を提供することができる。
【0174】
以上述べた少なくともひとつの実施形態によれば、容器本体内に被検物が封入された状態であっても、被検物の傾きなどの状態変化を検査可能な光学検査装置、被検物の光学検査方法、及び、被検物の形状の光学検査方法を提供することができる。
【0175】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0176】
2…光学検査システム、4…光学検査装置、12…光学装置、13…カメラ、14…撮像部、14a…撮像面、16…容器、18…光源、32…結像光学系、34…カラーフィルタ、36…ハーフミラー、42,44,46…波長選択フィルタ、48…光線遮蔽部、62…容器本体、62a…開口縁、64…観察窓、64a,64b…平行面、66…ステージ、72…加熱部、74…温度検知部、76…真空装置、78…圧力検知部