(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023159987
(43)【公開日】2023-11-02
(54)【発明の名称】光検知素子
(51)【国際特許分類】
H10N 50/80 20230101AFI20231026BHJP
H10N 50/10 20230101ALI20231026BHJP
【FI】
H01L43/02 Z
H01L43/08 Z
H01L43/08 U
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022069959
(22)【出願日】2022-04-21
(71)【出願人】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】100141139
【弁理士】
【氏名又は名称】及川 周
(74)【代理人】
【識別番号】100163496
【弁理士】
【氏名又は名称】荒 則彦
(74)【代理人】
【識別番号】100169694
【弁理士】
【氏名又は名称】荻野 彰広
(74)【代理人】
【識別番号】100114937
【弁理士】
【氏名又は名称】松本 裕幸
(72)【発明者】
【氏名】野尻 武司
(72)【発明者】
【氏名】福澤 英明
(72)【発明者】
【氏名】柴田 哲也
(72)【発明者】
【氏名】水野 友人
(72)【発明者】
【氏名】青木 進
【テーマコード(参考)】
5F092
【Fターム(参考)】
5F092AB10
5F092AC08
5F092AC12
5F092AD23
5F092AD24
5F092BB04
5F092BB05
5F092BB10
5F092BB31
5F092BB34
5F092BB35
5F092BB36
5F092BB37
5F092BB38
5F092BB42
5F092BB43
5F092BB53
5F092BC03
5F092BC04
5F092BC07
5F092BC13
5F092CA25
5F092FA10
(57)【要約】
【課題】新規な光検知素子を提供する。
【解決手段】この光検知素子は、磁性素子と光導波路とを備え、前記磁性素子は、第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層とに挟まれたスペーサ層と、を有し、前記光導波路は、少なくともコアと前記コアの少なくとも一部を被覆するクラッドとによって形成され、前記光導波路を伝搬した光が、前記磁性素子に照射される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
磁性素子と光導波路とを備え、
前記磁性素子は、第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層とに挟まれたスペーサ層と、を有し、
前記光導波路は、少なくともコアと前記コアの少なくとも一部を被覆するクラッドとによって形成され、
前記光導波路を伝搬した光が、前記磁性素子に照射される、光検知素子。
【請求項2】
前記コアは、前記磁性素子の積層方向と交差する第1方向に延びる主部と、前記主部に接続される第1部分と、を備え、
前記コアの一部である前記第1部分と前記クラッドとの境界面の一部であり、前記積層方向及び前記第1方向と交差する傾斜反射面を、前記光導波路は有し、
前記傾斜反射面で反射した前記光が、前記磁性素子に照射される、請求項1に記載の光検知素子。
【請求項3】
前記傾斜反射面の前記積層方向の位置は、前記磁性素子の前記積層方向の位置とは異なる、請求項2に記載の光検知素子。
【請求項4】
基板をさらに備え、
前記磁性素子及び前記光導波路は、前記基板上にあり、
前記磁性素子の前記基板の面直方向の位置は、前記傾斜反射面の前記面直方向の位置と前記基板の前記面直方向の位置との間である、請求項2又は3に記載の光検知素子。
【請求項5】
基板をさらに備え、
前記磁性素子及び前記光導波路は、前記基板上にあり、
前記傾斜反射面の前記基板の面直方向の位置は、前記磁性素子の前記面直方向の位置と前記基板の前記面直方向の位置との間である、請求項2又は3に記載の光検知素子。
【請求項6】
基板をさらに備え、
前記基板は、厚み方向で対向する第1面と第2面とを有し、
前記光導波路は、前記第1面側にあり、
前記磁性素子は、前記第2面側にある、請求項2又は3に記載の光検知素子。
【請求項7】
前記基板は、前記コアと接する、請求項5に記載の光検知素子。
【請求項8】
前記基板は、前記コアと接する、請求項6に記載の光検知素子。
【請求項9】
前記コアは、前記磁性素子の積層方向と交差する第1方向に延びる主部と、前記主部に接続される第2部分と、を備え、
前記第2部分は、前記第1方向を基準に前記磁性素子に向かう方向に湾曲し、
前記第2部分を伝搬した前記光が、前記磁性素子に照射される、請求項1に記載の光検知素子。
【請求項10】
前記第2部分の前記積層方向の位置は、前記磁性素子の前記積層方向の位置とは異なる、請求項9に記載の光検知素子。
【請求項11】
電極をさらに備え、
前記電極は、前記磁性素子と電気的に接続され、前記コアと接し、
前記コアと前記電極との屈折率差の絶対値は、前記コアと前記クラッドとの屈折率差の絶対値より小さい、請求項1に記載の光検知素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光検知素子に関する。
【背景技術】
【0002】
光電変換素子は、様々な用途で用いられている。
【0003】
インターネットの普及に伴い通信量は飛躍的に増大しており、光通信の重要性が高まっている。光通信は、電気信号を光信号に変換し、光信号を用いて送受信を行う通信手段である。
【0004】
例えば、特許文献1には、フォトダイオードを用いて、光信号を受信する受信装置が記載されている。フォトダイオードは、例えば、半導体のpn接合を用いたpn接合ダイオード等である。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
半導体のpn接合を用いた光検知素子は光電変換素子として広く利用されているが、更なる発展のために新たなブレイクスルーが求められている。
【0007】
本発明は上記問題に鑑みてなされたものであり、新規な光検知素子を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するため、以下の手段を提供する。
【0009】
(1)第1の態様にかかる光検知素子は、磁性素子と光導波路とを備え、前記磁性素子は、第1強磁性層と、第2強磁性層と、前記第1強磁性層と前記第2強磁性層とに挟まれたスペーサ層と、を有し、前記光導波路は、少なくともコアと前記コアの少なくとも一部を被覆するクラッドとによって形成され、前記光導波路を伝搬した光が、前記磁性素子に照射される。
【0010】
(2)上記態様にかかる光検知素子において、前記コアは、前記磁性素子の積層方向と交差する第1方向に延びる主部と、前記主部に接続される第1部分と、を備え、前記コアの一部である前記第1部分と前記クラッドとの境界面の一部であり、前記積層方向及び前記第1方向と交差する傾斜反射面を、前記光導波路は有し、前記傾斜反射面で反射された前記光が、前記磁性素子に照射されてもよい。
【0011】
(3)上記態様にかかる光検知素子において、前記傾斜反射面の前記積層方向の位置は、前記磁性素子の前記積層方向の位置とは異なってもよい。
【0012】
(4)上記態様にかかる光検知素子は、基板をさらに備え、前記磁性素子及び前記光導波路は、前記基板上にあり、前記磁性素子の前記基板の面直方向の位置は、前記傾斜反射面の前記面直方向の位置と前記基板の前記面直方向の位置との間でもよい。
【0013】
(5)上記態様にかかる光検知素子は、基板をさらに備え、前記磁性素子及び前記光導波路は、前記基板上にあり、前記傾斜反射面の前記基板の面直方向の位置は、前記磁性素子の前記面直方向の位置と前記基板の前記面直方向の位置との間でもよい。
【0014】
(6)上記態様にかかる光検知素子は、基板をさらに備え、前記基板は、厚み方向で対向する第1面と第2面とを有し、前記光導波路は、前記基板の第1面側にあり、前記磁性素子は、前記第2面側にあってもよい。
【0015】
(7)上記態様にかかる光検知素子において、前記基板は、前記コアと接してもよい。
【0016】
(8)上記態様にかかる光検知素子において、前記コアは、前記磁性素子の積層方向と交差する第1方向に延びる主部と、前記主部に接続される第2部分と、を備え、前記第2部分は、前記第1方向を基準に前記磁性素子に向かう方向に湾曲し、前記第2部分を伝搬した前記光が、前記磁性素子に照射されてもよい。
【0017】
(9)上記態様にかかる光検知素子において、前記第2部分の前記積層方向の位置は、前記磁性素子の前記積層方向の位置とは異なってもよい。
【0018】
(10)上記態様にかかる光検知素子は、電極をさらに備え、前記電極は、前記磁性素子と電気的に接続され、前記コアと接し、前記コアと前記電極との屈折率差の絶対値は、前記コアと前記クラッドとの屈折率差の絶対値より小さくてもよい。
【発明の効果】
【0019】
上記態様にかかる光検知素子は、新規な原理で光の状態変化を検知できる。
【図面の簡単な説明】
【0020】
【
図1】第1実施形態に係る光検知素子の斜視図である。
【
図2】第1実施形態に係る光検知素子の断面図である。
【
図3】第1実施形態に係る光検知素子の断面図である。
【
図4】第1実施形態に係る光検知素子の平面図である。
【
図5】第1実施形態に係る磁性素子の断面図である。
【
図6】第1実施形態に係る磁性素子の第1動作例の第1メカニズムを説明するための図である。
【
図7】第1実施形態に係る磁性素子の第1動作例の第2メカニズムを説明するための図である。
【
図8】第1実施形態に係る磁性素子の第2動作例の第1メカニズムを説明するための図である。
【
図9】第1実施形態に係る磁性素子の第2動作例の第2メカニズムを説明するための図である。
【
図10】第1実施形態に係る磁性素子の第2動作例の別の例を説明するための図である。
【
図11】第1実施形態に係る磁性素子の第2動作例の別の例を説明するための図である。
【
図12】第2実施形態に係る光検知素子の斜視図である。
【
図13】第2実施形態に係る光検知素子の断面図である。
【
図14】第2実施形態に係る光検知素子の断面図である。
【
図15】第2実施形態の変形例に係る磁性素子の断面図である。
【
図16】第3実施形態に係る光検知素子の斜視図である。
【
図17】第3実施形態に係る光検知素子の断面図である。
【
図18】第3実施形態に係る光検知素子の断面図である。
【
図19】第3実施形態に係る光検知素子の変形例の断面図である。
【
図20】第4実施形態に係る光検知素子の斜視図である。
【
図21】第4実施形態に係る光検知素子の断面図である。
【
図22】第5実施形態に係る光検知素子の斜視図である。
【
図23】第5実施形態に係る光検知素子の断面図である。
【
図24】第1変形例に係る光検知素子の断面図である。
【
図25】第2変形例に係る光検知素子の断面図である。
【発明を実施するための形態】
【0021】
以下、実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
【0022】
方向について定義する。基板30が広がる面内の一方向をx方向、x方向と直交する面内の方向をy方向とする。例えば、後述する光導波路のコアの主部が延びる方向をx方向とする。基板30の面直方向(x方向及びy方向と直交する方向)をz方向とする。以下、+z方向を「上」、-z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。
【0023】
「第1実施形態」
図1は、第1実施形態に係る光検知素子100の斜視図である。
図2及び
図3は、第1実施形態に係る光検知素子100の断面図である。
図2は、コア21の幅方向中央を通るxz断面である。
図3は、磁性素子10の中央を通るyz断面である。
図4は、第1実施形態に係る光検知素子100の平面図である。
図4では、クラッド25及び絶縁層40が除かれて図示されている。
【0024】
光検知素子100は、例えば、磁性素子10と第1電極11と第2電極12と光導波路20と基板30と絶縁層40とを有する。光導波路20を伝搬した光が、磁性素子10に照射される。
【0025】
光導波路20には、光源から出射した光が伝搬する。光源は、例えば、レーザーダイオード、LED等である。光源と光導波路20の入力端との間には、光学部材があってもよい。光学部材は、例えば、レンズ、メタレンズ、波長フィルター、光ファイバー、リフレクタ等である。例えば、光源から出射され、光学部材を介して光導波路20を伝搬した光が、磁性素子10に照射される。また光源から出射された光の一部が、直接、光導波路20を伝搬して、磁性素子10に照射されてもよい。
【0026】
光導波路20を伝搬する光は、例えば、レーザー光のような単一波長の単色光である。光導波路20を伝搬する光は単色光でなくてもよく、ある程度の幅を持つ範囲に波長が限定された光でもよいし、連続スペクトルを有する光でもよい。光導波路20を伝搬する光は、可視光線に限らず、可視光線よりも波長の長い赤外線や、可視光線よりも波長の短い紫外線も含む。可視光線の波長は例えば、380nm以上800nm未満である。赤外線の波長は例えば、800nm以上1mm以下である。紫外線の波長は例えば、200nm以上380nm未満である。光導波路20を伝搬する光は、例えば、高周波の光信号を含み強度変化する光、又は、波長域が制御された光(例えば波長フィルターを通過した光)である。高周波の光信号は、例えば、100MHz以上の周波数を有する信号である。
【0027】
光導波路20は、少なくともコア21とクラッド25とによって形成されている。コア21の少なくとも一部はクラッド25で被覆されている。
【0028】
コア21は、例えば、主成分としてニオブ酸リチウムを含む。ニオブ酸リチウムの一部元素は、他の元素に置換されていてもよい。クラッド25は、例えば、SiO2、Al2O3、MgF2、La2O3、ZnO、HfO2、MgO、Y2O3、CaF2、In2O3等又はこれらの混合物である。コア21およびクラッド25の材料はこの例に限られない。例えば、コア21がシリコン又は酸化シリコンに酸化ゲルマニウムを添加したもので、クラッド25が酸化シリコンでもよい。またコア21には、酸化タンタル、窒化ケイ素(Si3N4)等も用いることができる。光導波路20は、プラズモニック導波路でもよい。光導波路20がプラズモニック導波路の場合、コア21は例えばシリコン又は酸化シリコンであり、クラッド25は例えば、Au、Ag、Alなどの金属である。
【0029】
コア21は、例えば、主部22と第1部分23とを備える。主部22は、例えば、x方向に延びる。x方向は、磁性素子10の積層方向と交差する第1方向の一例である。磁性素子10の積層方向は、例えば、z方向と一致する。コア21のy方向の幅は、例えば、0.4μm以上8μm以下である。コア21の主部22のz方向の厚みは、例えば、0.2μm以上8μm以下である。光導波路20がプラズモニック導波路の場合、コア21のy方向の幅は、例えば、20nm以上100nm以下であり、コア21の主部22のz方向の厚みは、例えば、20nm以上100nm以下である。
【0030】
第1部分23は、主部22に接続されている。第1部分23は、主部22の光の入射端と反対側の端部に接続されている。光は、主部22から第1部分23に向かって伝搬する。
【0031】
光導波路20は、傾斜反射面24を有する。傾斜反射面24は、コア21の一部である第1部分23とクラッド25との境界面の一部である。傾斜反射面24は、磁性素子10の積層方向及び上述の第1方向と交差している。傾斜反射面24は、例えば、x方向及びz方向と交差している。第1部分23のz方向の厚みは、例えば、第1部分23と主部22との接続面から離れるほど薄い。主部22を伝搬して傾斜反射面24で反射した光が、磁性素子10に照射される。傾斜反射面24のz方向(磁性素子10の積層方向)の位置は、磁性素子10のz方向の位置とは異なる。傾斜反射面24は、例えば、磁性素子10の積層方向から見て、磁性素子10と重なる位置にある。例えば、傾斜反射面24は、z方向の位置が磁性素子10よりも上方である。
【0032】
磁性素子10は、光導波路20を伝搬した光が照射される位置(傾斜反射面24で反射した光が照射される位置)にある。
図5は、第1実施形態に係る磁性素子10の断面図である。
図5では、第1電極11と第2電極12とを同時に図示し、強磁性体の後述する初期状態における磁化の向きを矢印で表している。
【0033】
磁性素子10は、少なくとも第1強磁性層1と第2強磁性層2とスペーサ層3とを有する。スペーサ層3は、第1強磁性層1と第2強磁性層2との間に位置する。磁性素子10は、これらの他に、第3強磁性層4、磁気結合層5、下地層6、垂直磁化誘起層7、キャップ層8を有してもよい。第3強磁性層4、磁気結合層5、下地層6は、第2強磁性層2と第2電極12との間に位置し、垂直磁化誘起層7及びキャップ層8は、第1強磁性層1と第1電極11との間に位置する。磁性素子10は、積層方向からの平面視における最長幅が、例えば、10nm以上2000nm以下であり、好ましくは30nm以上500nm以下である。磁性素子10の積層方向の厚みは、例えば、15nm以上40nm以下である。
【0034】
磁性素子10は、例えば、スペーサ層3が絶縁材料で構成されたMTJ(Magnetic Tunnel Junction)素子である。磁性素子10は、外部からの光が照射されると抵抗値が変化する。磁性素子10は、第1強磁性層1の磁化M1の状態と第2強磁性層2の磁化M2の状態との相対的な変化に応じて、z方向の抵抗値(z方向に電流を流した場合の抵抗値)が変化する。このような素子は磁気抵抗効果素子とも呼ばれる。
【0035】
第1強磁性層1は、光が照射されると磁化の状態が変化する光検知層である。第1強磁性層1は、磁化自由層とも呼ばれる。磁化自由層は、所定の外部からのエネルギーが印加された際に磁化の状態が変化する磁性体を含む層である。所定の外部からのエネルギーは、例えば、外部から照射される光、磁性素子10の積層方向に流れる電流、外部磁場である。第1強磁性層1の磁化M1は、照射される光の強度に応じて状態が変化する。
【0036】
第1強磁性層1は、強磁性体を含む。第1強磁性層1は、例えば、Co、FeまたはNi等の磁性元素のいずれかを少なくとも含む。第1強磁性層1は、上述のような磁性元素と共に、B、Mg、Hf、Gd等の非磁性元素を含んでもよい。第1強磁性層1は、例えば、磁性元素と非磁性元素とを含む合金でもよい。第1強磁性層1は、複数の層から構成されていてもよい。第1強磁性層1は、例えば、CoFeB合金、CoFeB合金層をFe層で挟んだ積層体、CoFeB合金層をCoFe層で挟んだ積層体である。
【0037】
また第1強磁性層1は、磁性層と非磁性層とが交互に積層された積層体でもよく、例えば、CoとPtとが交互に積層された積層体、CoとNiとが交互に積層された積層体でもよい。一般的に、「強磁性」は「フェリ磁性」を含む。第1強磁性層1は、フェリ磁性を示してもよい。一方、第1強磁性層1は、フェリ磁性ではない強磁性を示してもよい。例えば、CoFeB合金は、フェリ磁性ではない強磁性を示す。
【0038】
第1強磁性層1は、膜面内方向に磁化容易軸を有する面内磁化膜でも、膜面直方向(磁性素子10の積層方向)に磁化容易軸を有する垂直磁化膜でもよい。
【0039】
第1強磁性層1の膜厚は、例えば、1nm以上5nm以下である。第1強磁性層1の膜厚は、例えば、1nm以上2nm以下であることが好ましい。第1強磁性層1が垂直磁化膜の場合、第1強磁性層1の膜厚が薄いと、第1強磁性層1の上下にある層からの垂直磁気異方性印加効果が強まり、第1強磁性層1の垂直磁気異方性が高まる。つまり、第1強磁性層1の垂直磁気異方性が高いと、磁化M1が膜面直方向に(元の状態に)戻ろうとする力が強まる。一方、第1強磁性層1の膜厚が厚いと、第1強磁性層1の上下にある層からの垂直磁気異方性印加効果が相対的に弱まり、第1強磁性層1の垂直磁気異方性が弱まる。
【0040】
第1強磁性層1の膜厚が薄くなると強磁性体としての体積は小さくなり、厚くなると強磁性体としての体積は大きくなる。外部からのエネルギーが加わったときの第1強磁性層1の磁化の反応しやすさは、第1強磁性層1の磁気異方性(Ku)と体積(V)との積(KuV)に反比例する。つまり、第1強磁性層1の磁気異方性と体積との積が小さくなると、光に対する反応性が高まる。このような観点から、光に対する反応を高めるためには、第1強磁性層1の磁気異方性を適切に設計したうえで第1強磁性層1の体積を小さくすることが好ましい。
【0041】
第1強磁性層1の膜厚が2nmより厚い場合は、例えばMo,Wからなる挿入層を第1強磁性層1内に設けてもよい。すなわち、z方向に強磁性層、挿入層、強磁性層が順に積層された積層体を第1強磁性層1としてもよい。挿入層と強磁性層との界面における界面磁気異方性により第1強磁性層1全体の垂直磁気異方性が高まる。挿入層の膜厚は、例えば、0.1nm~0.6nmである。
【0042】
第2強磁性層2は、磁化固定層である。磁化固定層は、所定の外部からのエネルギーが印加された際に磁化の状態が磁化自由層よりも変化しにくい磁性体からなる層である。例えば、磁化固定層は、所定の外部からのエネルギーが印加された際に磁化の向きが磁化自由層よりも変化しにくい。また、例えば、磁化固定層は、所定の外部からのエネルギーが印加された際に磁化の大きさが磁化自由層よりも変化しにくい。第2強磁性層2の保磁力は、例えば、第1強磁性層1の保磁力よりも大きい。第2強磁性層2は、面内磁化膜でも、垂直磁化膜でもよい。
図5に示す例では、第2強磁性層2の磁化M2の方向はz方向である。第2強磁性層12の膜厚は、例えば、1nm以上5nm以下である。
【0043】
第2強磁性層2を構成する材料は、例えば、第1強磁性層1と同様である。第2強磁性層2は、例えば、0.4nm~1.0nmの厚みのCoと0.4nm~1.0nmの厚みのPtとが交互に数回積層された多層膜でもよい。第2強磁性層2は、例えば、0.4nm~1.0nmの厚みのCo、0.1nm~0.5nmの厚みのMo、0.3nm~1.0nmの厚みのCoFeB合金、0.3nm~1.0nmの厚みのFeが順に積層された積層体でもよい。
【0044】
第2強磁性層2の磁化M2は、例えば、磁気結合層5を介した第3強磁性層4との磁気結合によって固定してもよい。この場合、第2強磁性層2、磁気結合層5及び第3強磁性層4を合わせたものを磁化固定層と称する場合もある。第3強磁性層4及び磁気結合層5の詳細は、後述する。
【0045】
スペーサ層3は、第1強磁性層1と第2強磁性層2との間に配置される層である。スペーサ層3は、導電体、絶縁体もしくは半導体によって構成される層、又は、絶縁体中に導体によって構成される通電点を含む層で構成される。スペーサ層3は、例えば非磁性層である。スペーサ層3の膜厚は、後述する初期状態における第1強磁性層1の磁化M1と第2強磁性層2の磁化M2の配向方向に応じて調整できる。
【0046】
例えば、スペーサ層3が絶縁体からなる場合は、磁性素子10は、第1強磁性層1とスペーサ層3と第2強磁性層2とからなる磁気トンネル接合(MTJ:Magnetic Tunnel Junction)を有する。このような素子はMTJ素子と呼ばれる。この場合、磁性素子10はトンネル磁気抵抗(TMR:Tunnel Magnetoresistance)効果を発現することができる。例えば、スペーサ層3が金属からなる場合は、磁性素子10は、巨大磁気抵抗(GMR:Giant Magnetoresistance)効果を発現することができる。このような素子はGMR素子と呼ばれる。磁性素子10は、スペーサ層3の構成材料によって、MTJ素子、GMR素子などと呼び名が異なることがあるが、総称して磁気抵抗効果素子とも呼ばれる。
【0047】
スペーサ層3が絶縁材料で構成される場合、酸化アルミニウム、酸化マグネシウム、酸化チタン又は酸化ケイ素等を含む材料をスペーサ層3の材料として用いることができる。また、これら絶縁材料は、Al、B、Si、Mgなどの元素や、Co、Fe、Niなどの磁性元素を含んでもよい。第1強磁性層1と第2強磁性層2との間に高いTMR効果が発現するようにスペーサ層3の膜厚を調整することで、高い磁気抵抗変化率が得られる。TMR効果を効率よく利用するためには、スペーサ層3の膜厚は、0.5~5.0nm程度としてもよく、1.0~2.5nm程度としてもよい。
【0048】
スペーサ層3を非磁性導電材料で構成する場合、Cu、Ag、Au又はRu等の導電材料を用いることができる。GMR効果を効率よく利用するためには、スペーサ層3の膜厚は、0.5~5.0nm程度としてもよく、2.0~3.0nm程度としてもよい。
【0049】
スペーサ層3を非磁性半導体材料で構成する場合、酸化亜鉛、酸化インジウム、酸化錫、酸化ゲルマニウム、酸化ガリウム又はITO等の材料を用いることができる。この場合、スペーサ層3の膜厚は1.0~4.0nm程度としてもよい。
【0050】
スペーサ層3として非磁性絶縁体中の導体によって構成される通電点を含む層を適用する場合、酸化アルミニウムまたは酸化マグネシウムによって構成される非磁性絶縁体中に、Cu、Au、Alなどの非磁性の導体によって構成される通電点を含む構造としてもよい。また、Co、Fe、Niなどの磁性元素によって導体を構成してもよい。この場合、スペーサ層3の膜厚は、1.0~2.5nm程度としてもよい。通電点は、例えば、膜面に垂直な方向からみたときの直径が1nm以上5nm以下の柱状体である。
【0051】
第3強磁性層4は、例えば、第2強磁性層2と磁気結合する。磁気結合は、例えば、反強磁性的な結合であり、RKKY相互作用により生じる。第2強磁性層2の磁化M2の向きと第3強磁性層4の磁化M4の向きとは反平行の関係である。第3強磁性層4を構成する材料は、例えば、第1強磁性層1と同様である。
【0052】
磁気結合層5は、第2強磁性層2と第3強磁性層4との間に位置する。磁気結合層5は、例えば、Ru、Ir等である。
【0053】
下地層6は、第3強磁性層4と第2電極12との間にある。下地層6は、シード層又はバッファ層である。シード層は、シード層に接する層の結晶性を高める。シード層は、例えば、Pt、Ru、Hf、Zr、NiFeCrである。シード層の膜厚は、例えば1nm以上5nm以下である。バッファ層は、異なる結晶間の格子不整合を緩和する層である。バッファ層は、例えば、Ta、Ti、W、Zr、Hf又はこれらの元素の窒化物である。バッファ層の膜厚は、例えば、1nm以上5nm以下である。
【0054】
キャップ層8は、第1強磁性層1と第1電極11との間にある。キャップ層8は、アニール時にキャップ層8に接する層の結晶性を高める。キャップ層8の膜厚は、第1強磁性層1に十分な光が照射されるように、例えば10nm以下である。キャップ層8は、例えば、MgO、W、Mo、Ru、Ta、Cu、Crまたはこれらの積層膜などである。
【0055】
垂直磁化誘起層7は、第1強磁性層1の垂直磁気異方性を誘起する。垂直磁化誘起層7は、例えば酸化マグネシウム、W、Ta、Mo等である。垂直磁化誘起層7が酸化マグネシウムの場合は、導電性を高めるために、酸化マグネシウムが酸素欠損していることが好ましい。垂直磁化誘起層7の膜厚は、例えば、0.5nm以上5.0nm以下である。
【0056】
第1電極11は、例えば、磁性素子10に光が照射される側に配置される。この場合、第1電極11の少なくとも一部は、磁性素子10と第1部分23とに挟まれる。第1電極11は、例えば、磁性素子10と電気的に接続されている。また第1電極11は、例えば、コア21の第1部分23と接する。
【0057】
光導波路20を伝搬した光は、第1電極11側から磁性素子10に照射され、少なくとも第1強磁性層1に照射される。第1電極11は、導電性を有する材料からなる。第1電極11は、例えば、使用波長域の光に対して透過性を有する透明電極である。第1電極11は、例えば、使用波長域の光の80%以上を透過することが好ましい。
【0058】
第1電極11は、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化インジウムガリウム亜鉛(IGZO)等の酸化物である。第1電極11は、これらの酸化物の透明電極材料の中に複数の柱状金属を有する構成としてもよい。第1電極11として上記のような透明電極材料を用いることは必須ではなく、Au、CuまたはAlなどの金属材料を薄い膜厚で用いることで、照射される光を第1強磁性層1に到達させるようにしてもよい。第1電極11の材料として金属を用いる場合、第1電極11の膜厚は、例えば、3~10nmである。また第1電極11は、光が照射される照射面に反射防止膜を有してもよい。
【0059】
第1電極11がコア21と接する場合、第1電極11とコア21との屈折率差の絶対値は、コア21とクラッド25との屈折率差の絶対値より小さいことが好ましい。例えば、クラッド25が酸化アルミニウムの場合、第1電極11をITO(酸化インジウムと酸化スズとの混合比が2:1のもの)とし、コア21をニオブ酸リチウムとすると、上記の屈折率差の条件を満たす。上記の屈折率差の条件を満たすと、コア21と第1電極11との境界面におけるコア21を伝搬した光の反射を抑えることができ、磁性素子10にコア21を伝搬した光の多くを照射できる。ここでは、第1電極11の屈折率がコア21の屈折率よりも小さい例を挙げたが、第1電極11の屈折率がコア21の屈折率よりも大きくてもよいし、第1電極11の屈折率がコア21の屈折率と同じでもよい。
【0060】
第2電極12は、磁性素子10を挟んで第1電極11と反対側にある。第2電極12は、例えば、磁性素子10と電気的に接続されている。第2電極12は、導電性を有する材料からなる。第2電極12は、例えば、Cu、AlまたはAuなどの金属により構成される。これらの金属の上下にTaやTiを積層してもよい。また、CuとTaの積層膜、TaとCuとTiの積層膜、TaとCuとTaNの積層膜を用いてもよい。また、第2電極12として、TiNやTaNを用いてもよい。第2電極12の膜厚は、例えば200nm~800nmである。
【0061】
第2電極12は、磁性素子10に照射される光に対して透過性を有するようにしてもよい。第2電極12の材料として、第1電極11と同様に、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化インジウムガリウム亜鉛(IGZO)等の酸化物の透明電極材料を用いてもよい。第1電極11のほうから光が照射される場合においても、光の強度によっては光が第2電極12まで到達する場合もありうるが、この場合、第2電極12が酸化物の透明電極材料を含んで構成されていることで、第2電極12が金属で構成されている場合に比べて、第2電極12とそれに接する層との境界面における光の反射を抑制できる。
【0062】
第1電極11は、ビア配線51と接続されている。第2電極12は、ビア配線52と接続されている。ビア配線51は、第1電極11と外部電極53とを繋ぐ。ビア配線52は、第2電極12と外部電極54とを繋ぐ。ビア配線51、52のそれぞれは、クラッド25と絶縁層40とのうち少なくとも一方をz方向に貫通する。外部電極53、54のそれぞれは、例えば、クラッド25の上面に露出している。ビア配線51、52、外部電極53、54は、導電性を有する材料を含む。
【0063】
ビア配線51、52のそれぞれは、積層方向からの平面視における最長幅が、例えば、10nm以上2000nm以下であり、好ましくは30nm以上500nm以下である。ビア配線51の積層方向からの平面視における最長幅は、例えば、第1電極11のx方向の幅より短い。ビア配線52の積層方向からの平面視における最長幅は、例えば、第2電極12のx方向の幅より短い。
【0064】
絶縁層40は、磁性素子10の周囲を覆う。絶縁層40は、層間絶縁層である。絶縁層40は、例えば、Si、Al、Mgの酸化物、窒化物、酸窒化物である。絶縁層40は、例えば、酸化ケイ素(SiOx)、窒化ケイ素(SiNx)、炭化ケイ素(SiC)、窒化クロム(CrN)、炭窒化ケイ素(SiCN)、酸窒化ケイ素(SiON)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrOx)等である。絶縁層40は、クラッド25と同じ材料でもよく、絶縁層40とクラッド25とは一体化していてもよい。
【0065】
磁性素子10及び光導波路20は、例えば、基板30上にある。磁性素子10のz方向の位置は、傾斜反射面24のz方向の位置と基板30のz方向の位置との間である。例えば、磁性素子10は、基板30と傾斜反射面24とに、z方向に挟まれる。
【0066】
基板30は、例えば、酸化アルミニウムを含む。基板30は、例えば、サファイアである。基板30は、シリコン等の半導体基板でもよい。
【0067】
次いで、光検知素子100の製造方法について説明する。まず基板30上に、第2電極12、下地層6、第3強磁性層4、磁気結合層5、第2強磁性層2、スペーサ層3、第1強磁性層1、垂直磁化誘起層7、キャップ層8の順に積層した積層膜を形成する。各層は、例えば、スパッタリングにより成膜される。
【0068】
次いで、積層膜をアニールする。アニール温度は、例えば、250℃から450℃である。その後、積層膜をフォトリソグラフィ及びエッチングにより所定の柱状体に加工する。柱状体は、円柱でも角柱でもよい。例えば、柱状体を積層方向から見た際の幅は、10nm以上2000nm以下としてもよく、30nm以上500nm以下としてもよい。
【0069】
次いで、柱状体の側面を被覆するように、絶縁層40を形成する。絶縁層40は、複数回に亘って積層してもよい。次いで、化学機械研磨(CMP)により絶縁層40からキャップ層8の上面を露出し、キャップ層8上に、第1電極11を作製する。
【0070】
次いで、第1電極11の周囲を覆うようにクラッド25を形成する。次いで、化学機械研磨(CMP)により第1電極11とクラッド25の上面の高さ位置を揃える。次いで、一部が第1電極11と重なる位置にコア21を形成する。コア21となる層を積層後に、フォトリソグラフィ及びエッチングにより所定の形状に加工してコア21を形成する。その後、コア21を覆うように、クラッド25を形成する。次いで、クラッド25に貫通孔を形成し、内部を導電体で充填することで、ビア配線51、52が形成される。
【0071】
上述のように、磁性素子10及び光導波路20は、同一の基板30上に、例えば、真空成膜プロセスにより形成することが可能である。
【0072】
次いで、光検知素子100の動作について説明する。光源から出射された光は、光導波路20に入力される。光導波路20に入力される光は、強度変化を有する光であり、例えば、光強度変化を有する光信号を含む。このような光は、例えば光通信システムで使用される。光導波路20に入力された光は、光導波路20のコア21を伝搬する。コア21を伝搬する光は、傾斜反射面24で磁性素子10に向かって反射する。
【0073】
傾斜反射面24で反射した光は、磁性素子10に照射される。磁性素子10のz方向の抵抗値は、光導波路20を伝搬した含む光の第1強磁性層1への照射により変化する。第1強磁性層1に照射される光の強度が、第1強度と第2強度の2段階である場合を例に説明する。第2強度は、第1強度より大きいものとする。第1強度は、第1強磁性層1に照射される光の強度がゼロの場合でもよい。
図6及び
図7は、磁性素子10の第1動作例を説明するための図である。
図6は、第1動作例の第1メカニズムを説明するための図であり、
図7は、第1動作例の第2メカニズムを説明するための図である。
図6及び
図7では、磁性素子10のうち第1強磁性層1、第2強磁性層2及びスペーサ層3のみを抜き出して図示している。
図6及び
図7の上のグラフは、縦軸が第1強磁性層1に照射される光の強度であり、横軸が時間である。
図6及び
図7の下のグラフは、縦軸が磁性素子10のz方向の抵抗値であり、横軸が時間である。
【0074】
まず第1強磁性層1に第1強度の光が照射された状態(以下、初期状態と称する)において、第1強磁性層1の磁化M1と第2強磁性層2の磁化M2とは平行の関係にあり、磁性素子10のz方向の抵抗値は第1抵抗値R1を示し、磁性素子10からの出力電圧の大きさは第1の値を示す。磁性素子10のz方向の抵抗値は、磁性素子10のz方向にセンス電流Isを流すことで、磁性素子10のz方向の両端に電圧が発生し、その電圧値からオームの法則を用いて求められる。磁性素子10からの出力電圧は、第1電極11と第2電極12との間に発生する。
図6に示す例の場合、センス電流Isを第1強磁性層1から第2強磁性層2に向かって流す。この方向にセンス電流Isを流すことで、第1強磁性層1の磁化M1に対して、第2強磁性層2の磁化M2と同じ方向のスピントランスファートルクが作用し、初期状態において磁化M1と磁化M2とが平行になる。
図6に示す例では、初期状態において磁化M1の方向と磁化M2の方向とが共に+z方向となっている。また、この方向にセンス電流Isを流すことで、第1強磁性層1の磁化M1が動作時に反転することを防止することができる。
【0075】
次いで、第1強磁性層1に照射される光の強度が第1強度から第2強度に変化する。第2強度は、第1強度より大きく、第1強磁性層1の磁化M1は初期状態から変化する。第1強磁性層1に光が照射されていない状態における第1強磁性層1の磁化M1の状態と、第1強磁性層1に第2強度の光が照射されている状態における第1強磁性層1の磁化M1の状態とは異なる。磁化M1の状態とは、例えば、z方向に対する傾き角、大きさ等である。
【0076】
例えば、
図6に示すように、第1強磁性層1に照射される光の強度が第1強度から第2強度に変化すると、磁化M1はz方向に対して傾く。また例えば、
図7に示すように、第1強磁性層1に照射される光の強度が第1強度から第2強度に変化すると、磁化M1の大きさが小さくなる。例えば、第1強磁性層1の磁化M1が光の照射強度によってz方向に対して傾く場合、その傾き角度は、0°より大きく90°より小さい。
【0077】
第1強磁性層1の磁化M1が初期状態から変化すると、磁性素子10のz方向の抵抗値は第2抵抗値R2を示し、磁性素子10からの出力電圧の大きさは第2の値を示す。第2抵抗値R2は、第1抵抗値R1より大きく、出力電圧の第2の値は第1の値よりも大きい。第2抵抗値R2は、磁化M1と磁化M2とが平行である場合の抵抗値(第1抵抗値R1)と、磁化M1と磁化M2とが反平行である場合の抵抗値との間である。
【0078】
図6に示す場合は、第1強磁性層1の磁化M1には第2強磁性層2の磁化M2と同じ方向のスピントランスファートルクが作用している。したがって、磁化M1は磁化M2と平行状態に戻ろうとし、第1強磁性層1に照射される光の強度が第2強度から第1強度に変化すると、磁化M1は磁化M2と平行状態に戻る。
図7に示す場合は、第1強磁性層1に照射される光の強度が第1強度に戻ると、第1強磁性層1の磁化M1の大きさは初期状態の大きさに戻る。いずれの場合も磁性素子10のz方向の抵抗値は、第1抵抗値R1に戻る。つまり、第1強磁性層1に照射される光の強度が第2強度から第1強度に変化した際に、磁性素子10のz方向の抵抗値は、第2抵抗値R2から第1抵抗値R1へ変化し、磁性素子10からの出力電圧の大きさは、第2の値から第1の値へ変化する。
【0079】
磁性素子10からの出力電圧は、第1強磁性層1に照射される光の強度の変化に対応して変化し、照射される光の強度の変化を磁性素子10からの出力電圧の変化に変換することができる。すなわち、磁性素子10は、光を電気信号に置き換えることができる。例えば、光信号の受信装置は、磁性素子10からの出力電圧が閾値以上の場合を第1信号(例えば、“1”)、閾値未満の場合を第2信号(例えば、“0”)として処理する。
【0080】
ここでは初期状態において磁化M1と磁化M2とが平行な場合を例に説明したが、初期状態において磁化M1と磁化M2とが反平行でもよい。この場合、磁性素子10のz方向の抵抗値は、磁化M1の状態が変化するほど(例えば、磁化M1の初期状態からの角度変化が大きくなるほど)小さくなる。初期状態において磁化M1と磁化M2とが反平行な場合は、センス電流Isは第2強磁性層2から第1強磁性層1に向かって流すことが好ましい。この方向にセンス電流Isを流すことで、第1強磁性層1の磁化M1に対して、第2強磁性層2の磁化M2と反対方向のスピントランスファートルクが作用し、初期状態において磁化M1と磁化M2とが反平行になる。
【0081】
第1動作例では、第1強磁性層1に照射される光が、第1強度と第2強度の2段階である場合を例に説明したが、第2動作例では第1強磁性層1に照射される光の強度が多段又はアナログ的に変化する場合について説明する。
【0082】
図8及び
図9は、第1実施形態に係る磁性素子10の第2動作例を説明するための図である。
図8は、第2動作例の第1メカニズムを説明するための図であり、
図9は、第2動作例の第2メカニズムを説明するための図である。
図8及び
図9では、磁性素子10のうち第1強磁性層1、第2強磁性層2及びスペーサ層3のみを抜き出して図示している。
図8及び
図9の上のグラフは、縦軸が第1強磁性層1に照射される光の強度であり、横軸が時間である。
図8及び
図9の下のグラフは、縦軸が磁性素子10のz方向の抵抗値であり、横軸が時間である。
図8に示す例では、初期状態において磁化M1の方向と磁化M2の方向とが共に+z方向となっている。
【0083】
図8の場合、第1強磁性層1に照射される光の強度が大きくなると、光の照射による外部からのエネルギーによって第1強磁性層1の磁化M1は初期状態から傾く。第1強磁性層1に光が照射されていない状態における第1強磁性層1の磁化M1の方向と、光が照射された状態における磁化M1の方向との角度は、いずれも0°より大きく90°より小さい。
【0084】
第1強磁性層1の磁化M1が初期状態から傾くと、磁性素子10のz方向の抵抗値は変化する。そして、磁性素子10からの出力電圧は変化する。例えば、第1強磁性層1の磁化M1の傾きに応じて、磁性素子10のz方向の抵抗値は、第2抵抗値R2、第3抵抗値R3、第4抵抗値R4と変化し、磁性素子10からの出力電圧は第2の値、第3の値、第4の値と変化する。第1抵抗値R1、第2抵抗値R2、第3抵抗値R3、第4抵抗値R4の順に抵抗値は大きくなる。第1の値、第2の値、第3の値、第4の値の順に磁性素子10からの出力電圧は大きくなる。
【0085】
磁性素子10は、第1強磁性層1に照射される光の強度が変化した際に、磁性素子10からの出力電圧(磁性素子10のz方向の抵抗値)が変化する。例えば、第1の値(第1抵抗値R1)を“0”、第2の値(第2抵抗値R2)を“1”、第3の値(第3抵抗値R3)を“2”、第4の値(第4抵抗値R4)を“3”として規定すると、磁性素子10からは4値の情報を読み出すことができる。ここでは一例として4値を読み出す場合を示したが、磁性素子10からの出力電圧(磁性素子10の抵抗値)の閾値の設定により読み出す値の数は自由に設計できる。また磁性素子10の出力のアナログ値をそのまま利用してもよい。
【0086】
また
図9の場合も同様に、第1強磁性層1に照射される光の強度が大きくなると、光の照射による外部からのエネルギーによって第1強磁性層1の磁化M1の大きさは初期状態から小さくなる。第1強磁性層1の磁化M1が初期状態から小さくなると、磁性素子10のz方向の抵抗値は変化する。そして、磁性素子10からの出力電圧は変化する。例えば、第1強磁性層1の磁化M1の大きさに応じて、磁性素子10のz方向の抵抗値は、第2抵抗値R2、第3抵抗値R3、第4抵抗値R4と変化し、磁性素子10からの出力電圧は第2の値、第3の値、第4の値と変化する。したがって、
図8の場合と同様に、光検知素子100は、これらの出力電圧(抵抗値)の違いを、多値又はアナログデータとして読み出すことができる。
【0087】
また第2動作例の場合も、第1動作例の場合と同様に、第1強磁性層1に照射される光の強度が第1強度に戻ると、第1強磁性層1の磁化M1の状態は初期状態に戻る。第2動作例によれば、光検知素子100は、光の強度を多値又はアナログデータとして検知する素子として利用することができ、光通信システムだけでなく、イメージセンサー等の光センサー装置にも適用できる。
【0088】
ここでは初期状態において磁化M1と磁化M2とが平行な場合を例に説明したが、第2動作例においても、初期状態において磁化M1と磁化M2とが反平行でもよい。
【0089】
また第1動作例及び第2動作例では、初期状態において磁化M1と磁化M2とが平行又は反平行な場合を例示したが、初期状態において磁化M1と磁化M2とが直交していてもよい。例えば、初期状態において第1強磁性層1がxy平面のいずれかの方向に磁化M1が配向した面内磁化膜で、第2強磁性層2がz方向に磁化M2が配向した垂直磁化膜の場合が、この場合に該当する。磁気異方性により磁化M1がxy面内のいずれかの方向に配向し、磁化M2がz方向に配向することで、初期状態において磁化M1と磁化M2とが直交する。
【0090】
図10及び
図11は、第1実施形態に係る磁性素子10の第2動作例の別の例を説明するための図である。
図10及び
図11では、磁性素子10のうち第1強磁性層1、第2強磁性層2及びスペーサ層3のみを抜き出して図示している。
図10と
図11とは、磁性素子10に印加するセンス電流Isの流れ方向が異なる。
図10は、センス電流Isを第1強磁性層1から第2強磁性層2に向かって流している。
図11は、センス電流Isを第2強磁性層2から第1強磁性層1に向かって流している。
【0091】
図10及び
図11のいずれの場合でも、磁性素子10にセンス電流Isが流れることで、初期状態において磁化M1に対してスピントランスファートルクが作用している。
図10の場合は、磁化M1が第2強磁性層2の磁化M2と平行になるように、スピントランスファートルクが作用している。
図11の場合は、磁化M1が第2強磁性層2の磁化M2と反平行になるように、スピントランスファートルクが作用している。
図10及び
図11のいずれの場合でも、初期状態では、磁化M1に対する磁気異方性による作用がスピントランスファートルクの作用よりも大きいため、磁化M1はxy面内のいずれかの方向を向いている。
【0092】
第1強磁性層1に照射される光の強度が大きくなると、光の照射による外部からのエネルギーによって第1強磁性層1の磁化M1は初期状態から傾く。磁化M1に加わる光の照射による作用とスピントランスファートルクによる作用との和が、磁化M1に係る磁気異方性による作用より大きくなるためである。第1強磁性層1に照射される光の強度が大きくなると、
図10の場合の磁化M1は第2強磁性層2の磁化M2と平行になるように傾き、
図11の場合の磁化M1は第2強磁性層2の磁化M2と反平行になるように傾く。磁化M1に作用するスピントランスファートルクの方向が違うため、
図10と
図11における磁化M1の傾き方向は異なる。
【0093】
第1強磁性層1に照射される光の強度が大きくなると、
図10の場合は磁性素子10の抵抗値は小さくなり、磁性素子10からの出力電圧は小さくなる。
図11の場合は磁性素子10の抵抗値は大きくなり、磁性素子10からの出力電圧は大きくなる。
【0094】
第1強磁性層1に照射される光の強度が第1強度に戻ると、磁化M1に対する磁気異方性による作用により第1強磁性層1の磁化M1の状態は初期状態に戻る。
【0095】
ここでは第1強磁性層1が面内磁化膜であり、第2強磁性層2が垂直磁化膜の例を挙げて説明したが、この関係は逆でもよい。すなわち、初期状態において、磁化M1がz方向に配向し、磁化M2がxy面内のいずれかの方向に配向していてもよい。
【0096】
磁性素子10は、強度変化を有する光を電気信号に置き換える。電気信号は、例えば、外部電極53、54から外部に出力される。電気信号は、例えば、磁性素子10からの出力電圧である。
【0097】
第1実施形態に係る光検知素子100は、光導波路20を伝搬し磁性素子10に照射された光を、磁性素子10からの出力電圧に置き換えることで、光を電気信号に置き換えることができる。
【0098】
また第1強磁性層1の磁化M1は、第1強磁性層1の体積が小さいほど光の照射に対して変化しやすくなる。つまり、第1強磁性層1の磁化M1は、第1強磁性層1の体積が小さいほど光の照射により傾きやすい、又は、光の照射により小さくなりやすい。換言すると、第1強磁性層1の体積を小さくすると、わずかな光量の光でも磁化M1を変化させることができる。
【0099】
より正確には、磁化M1の変化しやすさは、第1強磁性層1の磁気異方性(Ku)と体積(V)との積(KuV)の大きさで決定される。KuVが小さいほどより微小な光量でも磁化M1は変化し、KuVが大きいほどより大きな光量でないと磁化M1は変化しない。つまり、アプリケーションで使用する外部から照射する光の光量に応じて、第1強磁性層1のKuVを設計することになる。極めて微量な超微小な光量、フォトン検出のようなことを想定した場合には、第1強磁性層1のKuVを小さくすることで、これらの微小な光量の光の検出が可能となる。このような微小な光量の光の検出は、従来のpn接合の半導体では素子サイズを小さくすると難しくなるため、大きなメリットである。つまりKuVを小さくするために、第1強磁性層1の体積を小さくする、つまり素子面積を小さくしたり、第1強磁性層1の膜厚を薄くすることで、フォトン検出も可能となる。
【0100】
また第1実施形態に係る光検知素子100は、照射される光の波長範囲によらず、光を検知できる。pn接合を利用した半導体フォトディテクタは、照射される光の波長によって、適切な半導体材料が異なる。例えば、波長が1.3μm以上1.5μm以下の近赤外光の検知には、InGaAs等が用いられる。また例えば、波長が400nm以上800nm以下の可視光の検知には、シリコンが用いられる。これに対し、第1実施形態に係る光検知素子100は、可視光、近赤外光などの光の波長によらず光を感度良く検知できる。
【0101】
第1実施形態に係る光検知素子100は、光が伝搬する光導波路20と、光を電気信号に変換する磁性素子10とが、同一の基板30に形成されており、一括形成可能である。また、第1実施形態に係る光検知素子100は、パッケージ化された一つの電子部品として扱うことが可能である。
【0102】
「第2実施形態」
図12は、第2実施形態に係る光検知素子101の斜視図である。
図13及び
図14は、第2実施形態に係る光検知素子101の断面図である。
図13は、コア21Aの幅方向中央を通るxz断面である。
図14は、磁性素子10の中央を通るyz断面である。
【0103】
光検知素子101は、例えば、磁性素子10と第1電極11Aと第2電極12Aと光導波路20Aと基板30と絶縁層40とを有する。光導波路20Aを伝搬した光が、磁性素子10に照射される。第2実施形態に係る光検知素子101において、第1実施形態に係る光検知素子100と同様の構成については同様の符号を付し、説明を省く。
【0104】
光導波路20Aには、光源から出射した光が伝搬する。光導波路20Aを伝搬する光は、第1実施形態に係る光導波路20を伝搬する光と同様である。
【0105】
光導波路20Aは、少なくともコア21Aとクラッド25とによって形成されている。コア21Aの少なくとも一部はクラッド25で被覆されている。コア21Aを構成する材料は、第1実施形態に係るコア21と同様である。
【0106】
コア21Aは基板30と接する。例えば、コア21Aの下面は、基板30と接する。基板30とコア21Aとの境界面で光は反射し、基板30はクラッド25の一部を構成する。基板30の屈折率は、コア21Aの屈折率よりも小さい。
【0107】
コア21Aは、例えば、主部22と第1部分23Aとを備える。第1部分23Aは、主部22に接続されている。光導波路20Aは、傾斜反射面24Aを有する。傾斜反射面24Aは、コア21Aの一部である第1部分23Aとクラッド25との境界面の一部である。傾斜反射面24Aは、磁性素子10の積層方向及び上述の第1方向と交差している。主部22を伝搬して傾斜反射面24Aで反射した光が、第2電極12A側から磁性素子10に照射される。磁性素子10に照射された光は、磁性素子10を構成する各層を透過して、第1強磁性層1に照射される。傾斜反射面24Aのz方向(磁性素子10の積層方向)の位置は、磁性素子10のz方向の位置とは異なる。傾斜反射面24Aは、例えば、磁性素子10の積層方向から見て、磁性素子10と重なる位置にある。例えば、傾斜反射面24Aは、z方向の位置が磁性素子10よりも下方である。
【0108】
磁性素子10及び光導波路20Aは、例えば、基板30上にある。傾斜反射面24Aのz方向の位置は、磁性素子10のz方向の位置と基板30のz方向の位置との間である。例えば、傾斜反射面24Aの少なくとも一部は、磁性素子10と基板30とに、z方向に挟まれる。磁性素子10は、光導波路20Aを伝搬した光が照射される位置(傾斜反射面24Aで反射した光が照射される位置)にあり、例えば、傾斜反射面24Aの上方にある。
【0109】
第1電極11A及び第2電極12Aのそれぞれは、例えば、磁性素子10と電気的に接続されている。第1電極11Aは、ビア配線51と接続されている。第2電極12Aは、ビア配線52と接続されている。第2電極12Aの少なくとも一部は、磁性素子10と第1部分23Aとに挟まれる。また第2電極12は、例えば、コア21Aの第1部分23Aと接する。第2電極12Aの構成は、第1実施形態における第1電極11の構成と同様である。第1電極11Aの構成は、第1実施形態における第2電極12の構成と同様である。第2電極12Aがコア21Aと接する場合、第2電極12Aとコア21Aとの屈折率差の絶対値は、コア21Aとクラッド25との屈折率差の絶対値より小さいことが好ましい。上記の屈折率差の条件を満たすと、コア21Aと第2電極12Aとの境界面におけるコア21Aを伝搬した光の反射を抑えることができ、磁性素子10にコア21Aを伝搬した光の多くを照射できる。第2電極12Aの屈折率はコア21Aの屈折率よりも小さくてもよいし、第2電極12Aの屈折率がコア21Aの屈折率よりも大きくてもよいし、第2電極12Aの屈折率がコア21Aの屈折率と同じでもよい。
【0110】
次いで、光検知素子101の製造方法について説明する。まず基板30上に、コア21Aとなる層を成膜する。例えば、サファイアの単結晶基板上に、ニオブ酸リチウムを結晶成長させる。次いで、成膜した層をフォトリソグラフィ及びエッチングにより所定の形状に加工し、コア21Aを形成する。
【0111】
次いで、コア21Aの第1部分23A上に、第2電極12A、下地層6、第3強磁性層4、磁気結合層5、第2強磁性層2、スペーサ層3、第1強磁性層1、垂直磁化誘起層7、キャップ層8の順に積層した積層膜を形成する。そして、積層膜をアニール後、所定の柱状体に加工し、磁性素子10を作製する。その後、キャップ層8上に、第1電極11Aを作製する。磁性素子10は、下地を構成する材料によらず作製が可能であり、接着層等を介さずに、コア21Aの一部である第1部分23A上に形成できる。
【0112】
次いで、コア21Aを覆うように、クラッド25を形制する。次いで、磁性素子10を被覆するように、絶縁層40を形成する。次いで、絶縁層40に貫通孔を形成し、内部を導電体で充填することで、ビア配線51、52が形成され、光検知素子101が得られる。
【0113】
また
図15は、第2実施形態の変形例に係る磁性素子10Aの断面図である。磁性素子10Aは、上記の光検知素子101の磁性素子10と置き換えることができる。この際、磁性素子10Aは、第1電極11が第2電極12より第1部分23A側になるように配置され、第1電極11の少なくとも一部は、磁性素子10Aと第1部分23Aとに挟まれる。磁性素子10Aには、第1電極11側から傾斜反射面24Aで反射した光が照射される。この場合、第1電極11は、例えば、コア21Aの第1部分23Aと接する。第1電極11がコア21Aと接する場合、第1電極11とコア21Aとの屈折率差の絶対値は、コア21Aとクラッド25との屈折率差の絶対値より小さいことが好ましい。第1電極11の屈折率はコア21Aの屈折率よりも小さくてもよいし、第1電極11の屈折率がコア21Aの屈折率よりも大きくてもよいし、第1電極11の屈折率がコア21Aの屈折率と同じでもよい。
【0114】
磁性素子10Aは、少なくとも第1強磁性層1と第2強磁性層2とスペーサ層3とを有する。スペーサ層3は、第1強磁性層1と第2強磁性層2との間に位置する。磁性素子10Aは、これらの他に、例えば、第3強磁性層4、磁気結合層5、下地層6、垂直磁化誘起層7、キャップ層8、シード層9A、バッファ層9Bを有する。
【0115】
磁性素子10Aは、キャップ層8、垂直磁化誘起層7、第1強磁性層1、スペーサ層3、第2強磁性層2、磁気結合層5、第3強磁性層4の積層順が、磁性素子10の積層順と反対である。磁性素子10Aは、磁性素子10とは異なり、下地層6はキャップ層8と第1電極11との間にあり、第1電極11と第2電極12との間に、下地層6、キャップ層8、垂直磁化誘起層7、第1強磁性層1、スペーサ層3、第2強磁性層2、磁気結合層5、第3強磁性層4、シード層9A及びバッファ層9Bが、第1電極層11側からこの順に積層されている。シード層9A及びバッファ層9Bのそれぞれには、下地層6のシード層とバッファ層のそれぞれと同様の材料を用いることができる。
【0116】
光検知素子101の動作は、光検知素子100と同様である。第2実施形態に係る光検知素子101は、光導波路20Aを伝搬し磁性素子10に照射された光を、磁性素子10からの出力電圧に置き換えることで、光を電気信号に置き換えることができる。第2実施形態に係る光検知素子101は、第1実施形態に係る光検知素子100と同様の効果を奏する。
【0117】
「第3実施形態」
図16は、第3実施形態に係る光検知素子102の斜視図である。
図17及び
図18は、第3実施形態に係る光検知素子102の断面図である。
図17は、コア21Bの幅方向中央を通るxz断面である。
図18は、磁性素子10の中央を通るyz断面である。
【0118】
光検知素子102は、例えば、磁性素子10と第1電極11Bと第2電極12Bと光導波路20Bと基板30と絶縁層40とを有する。第3実施形態に係る光検知素子102において、第1実施形態に係る光検知素子100と同様の構成については同様の符号を付し、説明を省く。
【0119】
光導波路20Bには、光源から出射した光が伝搬する。光導波路20Bを伝搬する光は、第1実施形態に係る光導波路20を伝搬する光と同様である。
【0120】
光導波路20Bは、少なくともコア21Bとクラッド25とによって形成されている。コア21Bを構成する材料は、第1実施形態に係るコア21と同様である。コア21Bは、例えば、主部22Bと第1部分23Bとを備える。光導波路20Bは、傾斜反射面24Bを有する。第1部分23Bは、主部22Bに接続されている。
【0121】
磁性素子10及び光導波路20Bは、いずれも基板30上に形成されている。基板30は、厚み方向で対向する第1面31と第2面32とを有している。光導波路20Bは、基板30の第1面31側にある。磁性素子10は、基板30の第2面32側にある光導波路20Bのコア21Bは基板30と接する。例えば、コア21Bの下面は、基板30と接する。基板30とコア21Bとの境界面で光は反射し、基板30はクラッド25の一部を構成する。基板30の屈折率は、コア21Bの屈折率よりも小さい。
【0122】
基板30のz方向の位置は、光導波路20の傾斜反射面24Bのz方向の位置と、磁性素子10のz方向の位置との間である。例えば、基板30の一部は、傾斜反射面24Bと磁性素子10とに、z方向に挟まれる。磁性素子10は、光導波路20Bを伝搬した光が照射される位置(傾斜反射面24で反射した光が照射される位置)にあり、例えば、傾斜反射面24Bの下方にある。傾斜反射面24Bのz方向(磁性素子10の積層方向)の位置は、磁性素子10のz方向の位置とは異なる。傾斜反射面24Bは、例えば、磁性素子10の積層方向から見て、磁性素子10と重なる位置にある。光導波路20Bを伝搬した光は、傾斜反射面24Bで反射し、基板30を透過し、第2電極12B側から磁性素子10に照射される。磁性素子10に照射された光は、磁性素子10を構成する各層を透過して、第1強磁性層1に照射される。
【0123】
第1電極11B及び第2電極12Bのそれぞれは、例えば、磁性素子10と電気的に接続されている。第1電極11Bは、ビア配線51と接続されている。第2電極12Bは、ビア配線52と接続されている。第2電極12Bの少なくとも一部は、磁性素子10と第1部分23Bとに挟まれる。第2電極12Bの構成は、第1実施形態における第1電極11の構成と同様である。第1電極11Bの構成は、第1実施形態における第2電極12の構成と同様である。
【0124】
次いで、光検知素子102の製造方法について説明する。まず基板30の第1面31上に、コア21Bとなる層を成膜する。例えば、サファイアの単結晶基板上に、ニオブ酸リチウムを結晶成長させる。次いで、成膜した層をフォトリソグラフィ及びエッチングにより所定の形状に加工し、コア21Bを形成する。次いで、コア21Bを覆うように、クラッド25を形成する。
【0125】
次いで、基板30の第2面32上に、第2電極12B、下地層6、第3強磁性層4、磁気結合層5、第2強磁性層2、スペーサ層3、第1強磁性層1、垂直磁化誘起層7、キャップ層8の順に積層した積層膜を形成する。そして、積層膜をアニール後、所定の柱状体に加工し、磁性素子10を作製する。その後、キャップ層8上に、第1電極11Bを作製する。
【0126】
次いで、磁性素子10を被覆するように、絶縁層40を形成する。次いで、絶縁層40に貫通孔を形成し、内部を導電体で充填することで、ビア配線51、52が形成され、光検知素子102が得られる。第3実施形態においても、磁性素子10を
図15に示す磁性素子10Aと置き換えることができる。この際、磁性素子10Aは、第1電極11が第2電極12より第1部分23B側になるように配置され、第1電極11の少なくとも一部は、磁性素子10Aと第1部分23Bとに挟まれる。磁性素子10Aには、第1電極11側から傾斜反射面24Bで反射した光が照射される。この場合、第1電極11は、例えば、コア21Bの第1部分23Bと接する。第1電極11がコア21Bと接する場合、第1電極11とコア21Bとの屈折率差の絶対値は、コア21Bとクラッド25との屈折率差の絶対値より小さいことが好ましい。第1電極11の屈折率はコア21Bの屈折率よりも小さくてもよいし、第1電極11の屈折率がコア21Bの屈折率よりも大きくてもよいし、第1電極11の屈折率がコア21Bの屈折率と同じでもよい。
【0127】
光検知素子102の動作は、光検知素子100と同様である。第3実施形態に係る光検知素子102は、光導波路20を伝搬し磁性素子10に照射された光を、磁性素子10からの出力電圧に置き換えることで、光を電気信号に置き換えることができる。第3実施形態に係る光検知素子102は、第1実施形態に係る光検知素子100と同様の効果を奏する。
【0128】
また
図19は、第3実施形態に係る光検知素子102の変形例の断面図である。変形例に係る光検知素子102Aは、コア21と基板30との間にクラッド25の一部がある点が、光検知素子102と異なる。変形例に示す光検知素子102Aのように、基板30は、クラッド25の一部を構成していなくてもよく、コア21は基板30と直接接していなくてもよい。
【0129】
「第4実施形態」
図20は、第4実施形態に係る光検知素子103の斜視図である。
図21は、第4実施形態に係る光検知素子103の断面図である。
図21は、コア61の幅方向中央を通るxz断面である。
【0130】
光検知素子103は、例えば、磁性素子10と光導波路60と基板30と絶縁層40とを有する。光導波路60を伝搬した光が、磁性素子10に照射される。第4実施形態に係る光検知素子103において、第1実施形態に係る光検知素子100と同様の構成については同様の符号を付し、説明を省く。
【0131】
光導波路60には、光源から出射した光が伝搬する。光導波路60を伝搬する光は、第1実施形態に係る光導波路20を伝搬する光と同様である。
【0132】
光導波路60は、少なくともコア61とクラッド65とによって形成されている。コア61の少なくとも一部はクラッド65で被覆されている。コア61を構成する材料は、第1実施形態に係るコア21と同様である。クラッド65を構成する材料は、第1実施形態に係るクラッド25と同様である。
【0133】
コア61は、例えば、主部62と第2部分63とを備える。主部62は、例えば、x方向に延びる。コア61のy方向の幅は、コア21と同等である。コア61の主部62のz方向の厚みは、コア21の主部22と同等である。
【0134】
第2部分63は、主部62に接続されている。第2部分63は、主部62の光の入射端と反対側の端部に接続されている。光は、主部62から第2部分63に向かって伝搬する。第2部分63は、第1方向を基準に磁性素子10に向かう方向に湾曲している。第2部分63は、例えば、x方向に延びる主部62から磁性素子10に向かって湾曲している。
【0135】
第2部分63を伝搬する光が、磁性素子10に照射される。第2部分63のz方向(磁性素子10の積層方向)の位置は、磁性素子10のz方向の位置とは異なる。第2部分63の少なくとも一部は、例えば、磁性素子10の積層方向から見て、磁性素子10と重なる位置にある。例えば、第2部分63は、z方向の位置が磁性素子10よりも上方である。磁性素子10には、光導波路60を伝搬した光が照射される。第1電極11がコア61と接する場合、第1電極11とコア61との屈折率差の絶対値は、コア61とクラッド65との屈折率差の絶対値より小さいことが好ましい。この屈折率差の条件を満たすと、コア61と第1電極11との境界面におけるコア61を伝搬した光の反射を抑えることができ、磁性素子10にコア61を伝搬した光の多くを照射できる。この場合、第1電極11の屈折率がコア61の屈折率よりも小さくても大きくてもよく、第1電極11の屈折率がコア21の屈折率と同じでもよい。
【0136】
磁性素子10及び光導波路60は、例えば、基板30上にある。磁性素子10のz方向の位置は、第2部分63のz方向の位置と基板30のz方向の位置との間である。例えば、磁性素子10は、基板30と第2部分63とに、z方向に挟まれる。
【0137】
光検知素子103は、光検知素子100と同様の手順で作製できる。光検知素子103は、光導波路60を伝搬する光が磁性素子10に照射されることで動作する。光導波路60を伝搬する光は、強度変化を有する光であり、例えば、光強度変化を有する光信号を含む。コア61を伝搬する光は、第2部分63を伝搬し、磁性素子10に照射される。磁性素子10は光を電気信号に変換する。磁性素子10が光を電気信号に変換する動作は、第1実施形態に係る光検知素子100と同様である。
【0138】
第4実施形態に係る光検知素子103は、光導波路60を伝搬し磁性素子10に照射された光を、磁性素子10からの出力電圧に置き換えることで、光を電気信号に置き換えることができる。第4実施形態に係る光検知素子103は、第1実施形態に係る光検知素子100と同様の効果を奏する。
【0139】
また第4実施形態において磁性素子10、光導波路60、基板30の位置関係は、
図20の構成に限られない。
【0140】
例えば、第2実施形態に係る光検知素子101のように、光導波路60の第2部分63は、基板30と磁性素子10との間にあってもよい。この場合、磁性素子10及び光導波路60は、いずれも基板30上にある。第2部分63のz方向の位置は、磁性素子10のz方向の位置と基板30のz方向の位置との間でもよい。例えば、第2部分63の少なくとも一部は、磁性素子10と基板30とに、z方向に挟まれる。磁性素子10は、光導波路60を伝搬した光が照射される位置にあり、例えば、z方向の位置が第2部分63の上方であってもよい。
【0141】
また例えば、第3実施形態に係る光検知素子102のように、光導波路60と磁性素子10とは、基板30の異なる面に形成されていてもよい。例えば、光導波路60が基板30の第1面31側にあり、磁性素子10が基板30の第2面32側にあってもよい。
【0142】
基板30のz方向の位置は、第2部分63のz方向の位置と、磁性素子10のz方向の位置との間でもよい。例えば、基板30の一部は、第2部分63と磁性素子10とに、z方向に挟まれていてもよい。磁性素子10は、光導波路60を伝搬した光が照射される位置にあり、例えば、z方向の位置が第2部分63の下方であってもよい。この場合、光導波路60の第2部分63を伝搬した光は、基板30を透過し、磁性素子10に照射される。
【0143】
「第5実施形態」
図22は、第5実施形態に係る光検知素子104の斜視図である。
図23は、第5実施形態に係る光検知素子104の断面図である。
図23は、コア71の幅方向中央を通るxz断面である。
【0144】
光検知素子104は、例えば、磁性素子10と光導波路70と基板30と絶縁層40とを有する。光導波路70を伝搬した光が、磁性素子10に照射される。第5実施形態に係る光検知素子104において、第1実施形態に係る光検知素子100と同様の構成については同様の符号を付し、説明を省く。
【0145】
光導波路70には、光源から出射した光が伝搬する。光導波路70を伝搬する光は、第1実施形態に係る光導波路20を伝搬する光と同様である。
【0146】
光導波路70は、少なくともコア71とクラッド75とによって形成されている。コア71の少なくとも一部はクラッド75で被覆されている。コア71を構成する材料は、第1実施形態に係るコア21と同様である。クラッド75を構成する材料は、第1実施形態に係るクラッド25と同様である。コア71のy方向の幅、z方向の厚みは、コア21と同等である。
【0147】
光導波路70を伝搬する光が、磁性素子10に照射される。コア71の一部は、例えば、磁性素子10の積層方向から見て、磁性素子10と重なる位置にある。第1電極11は、コア71と接し、第1電極11とコア71との屈折率差の絶対値は、コア71とクラッド75との屈折率差の絶対値より小さい。その結果、コア71と第1電極11との境界面におけるコア71を伝搬した光の反射を抑えることができ、コア71を伝搬した光は、第1電極11とコア71との境界面から磁性素子10に照射される。第1電極11の屈折率はコア71の屈折率よりも小さくても大きくてもよく、第1電極11の屈折率がコア71の屈折率と同じでもよい。
【0148】
磁性素子10及び光導波路70は、例えば、基板30上にある。磁性素子10のz方向の位置は、光導波路70の少なくとも一部のz方向の位置と基板30のz方向の位置との間である。例えば、磁性素子10は、基板30と光導波路70とに、z方向に挟まれる。
【0149】
光検知素子104は、光検知素子100と同様の手順で作製できる。光検知素子104は、光導波路70を伝搬する光が磁性素子10に照射されることで動作する。光導波路70を伝搬する光は、強度変化を有する光であり、例えば、光強度変化を有する光信号を含む。磁性素子10は光を電気信号に変換する。磁性素子10が光を電気信号に変換する動作は、第1実施形態に係る光検知素子100と同様である。
【0150】
第5実施形態に係る光検知素子104は、光導波路70を伝搬し磁性素子10に照射された光を、磁性素子10からの出力電圧に置き換えることで、光を電気信号に置き換えることができる。第5実施形態に係る光検知素子104は、第1実施形態に係る光検知素子100と同様の効果を奏する。
【0151】
また第5実施形態において磁性素子10、光導波路70、基板30の位置関係は、
図22の構成に限られない。
【0152】
例えば、第2実施形態に係る光検知素子101のように、光導波路70は、基板30と磁性素子10との間にあってもよい。光導波路70の少なくとも一部のz方向の位置は、磁性素子10のz方向の位置と基板30のz方向の位置との間でもよい。この場合、例えば、光導波路70の一部は、磁性素子10と基板30とに、z方向に挟まれる。
【0153】
また例えば、第3実施形態に係る光検知素子102のように、光導波路70と磁性素子10とは、基板30の異なる面に形成されていてもよい。例えば、光導波路70が基板30の第1面31側にあり、磁性素子10が基板30の第2面32側にあってもよい。光導波路70のコア71は基板30と接していても、接していなくてもよい。
【0154】
基板30のz方向の位置は、光導波路70の少なくとも一部のz方向の位置と、磁性素子10のz方向の高さ位置との間でもよい。例えば、基板30の一部は、光導波路70と磁性素子10とに、z方向に挟まれてもよい。
【0155】
以上、本発明は上記の実施形態及び変形例に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【0156】
例えば、
図24は、第1変形例に係る光検知素子110の断面図である。
図24は、磁性素子10の中央を通るyz断面である。光検知素子110は、ビア配線55、56及び外部電極57、58を有し、外部電極54、58が基準電位(例えばグラウンド)に接続されている点が、光検知素子100と異なる。基準電位は、グラウンドでもグラウンド以外でもよい。
【0157】
ビア配線55は、第1電極11と外部電極57とを繋ぐ。ビア配線56は、第2電極12と外部電極58とを繋ぐ。
【0158】
第1電極11にビア配線55及び外部電極57が接続され、第2電極12にビア配線56及び外部電極58が接続され、外部電極54、58が基準電位に接続される構成は、第2実施形態から第5実施形態のそれぞれに適用してもよい。
【0159】
また例えば、
図25は、第2変形例に係る光検知素子111の断面図である。
図25は、磁性素子10の中央を通るyz断面である。
図25に示すように、基板30には、トランジスタTr等を含む集積回路が形成されていてもよい。例えば、ビア配線52は、トランジスタTrと接続されていてもよい。集積回路は、例えば、磁性素子10と電気的に接続され、例えば、磁性素子10から出力電圧が閾値以上の場合を第1信号(例えば、“1”)、閾値未満の場合を第2信号(例えば、“0”)として処理する。
【0160】
基板30に集積回路を形成する構成は、第2実施形態から第5実施形態のそれぞれに適用してもよい。
【0161】
上記の実施形態及び変形例にかかる光検知素子は、イメージセンサー等の光センサー装置、通信システムの送受信装置等に適用できる。
【符号の説明】
【0162】
1…第1強磁性層、2…第2強磁性層、3…スペーサ層、4…第3強磁性層、5…磁気結合層、6…下地層、7…垂直磁化誘起層、8…キャップ層、10…磁性素子、11…第1電極、12…第2電極、20,20A…光導波路、21,21A,61,71…コア、22,62…主部、23,23A…第1部分、24,24A…傾斜反射面、25,25A,65,75…クラッド、30…基板、31…第1面、32…第2面、40…絶縁層、51,52,55,56…ビア配線、53,54…外部電極、57,58…グラウンド電極、60,70…光導波路、63…第2部分、100,101,102,102A,103,104,110,111…光検知素子