(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023161284
(43)【公開日】2023-11-07
(54)【発明の名称】水素エンジン
(51)【国際特許分類】
F02D 19/02 20060101AFI20231030BHJP
F02D 19/08 20060101ALI20231030BHJP
F02F 1/24 20060101ALI20231030BHJP
F02F 1/42 20060101ALI20231030BHJP
F02M 21/02 20060101ALI20231030BHJP
【FI】
F02D19/02 B
F02D19/08 C
F02F1/24 Q
F02F1/42 F
F02M21/02 G
F02M21/02 301H
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022071572
(22)【出願日】2022-04-25
(71)【出願人】
【識別番号】316015888
【氏名又は名称】三菱重工エンジン&ターボチャージャ株式会社
(74)【代理人】
【識別番号】110000785
【氏名又は名称】SSIP弁理士法人
(72)【発明者】
【氏名】遠藤 浩之
(72)【発明者】
【氏名】戸田 正樹
(72)【発明者】
【氏名】渡邉 壮太
(72)【発明者】
【氏名】野口 知宏
【テーマコード(参考)】
3G024
3G092
【Fターム(参考)】
3G024AA01
3G024AA09
3G024AA17
3G024AA72
3G024DA06
3G024DA30
3G092AA08
3G092AB09
3G092DA01
3G092DC06
3G092DF01
3G092FA19
3G092FA24
3G092HA13X
3G092HA13Z
(57)【要約】
【課題】逆火の発生を抑制するとともに高いエンジン効率を実現することができる水素エンジンを提供する。
【解決手段】水素を含む燃料ガスを使用する水素エンジンであって、シリンダと、シリンダ内を移動可能なピストンと、ピストンとの間に燃焼室を形成し、燃焼室に接続する吸気ポートと燃焼室に接続する燃料供給ポートを含むシリンダヘッドと、吸気ポートを開閉するための吸気弁と、燃料供給ポートを開閉するための燃料供給弁と、吸気弁と燃料供給弁とに共通して設けられ、吸気弁と燃料供給弁とを連動させて開閉するように構成された動弁機構と、を備え、燃料供給弁の開弁タイミングが吸気弁の開弁タイミングよりも遅角側となるように構成される。
【選択図】
図4
【特許請求の範囲】
【請求項1】
水素を含む燃料ガスを使用する水素エンジンであって、
シリンダと、
前記シリンダ内を移動可能なピストンと、
前記ピストンとの間に燃焼室を形成し、前記燃焼室に接続する吸気ポートと前記燃焼室に接続する燃料供給ポートを含むシリンダヘッドと、
前記吸気ポートを開閉するための吸気弁と、
前記燃料供給ポートを開閉するための燃料供給弁と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構と、
を備え、
前記燃料供給弁の開弁タイミングが前記吸気弁の開弁タイミングよりも遅角側となるように構成された、水素エンジン。
【請求項2】
前記動弁機構は、
所定の回転軸線の周りに回動し、前記吸気弁を押圧可能に構成された吸気用ロッカーアームと、
前記吸気用ロッカーアームとともに前記回転軸線の周りに回動し、前記燃料供給弁を押圧可能に構成された燃料供給弁用アームと、
を備え、
前記エンジンの1燃焼サイクルにおける前記燃料供給弁用アームと前記燃料供給弁との距離の最大値は、前記エンジンの1燃焼サイクルにおける前記吸気用ロッカーアームと前記吸気弁との距離の最大値より大きい、請求項1に記載の水素エンジン。
【請求項3】
前記エンジンの排気弁の閉弁タイミングにおける前記燃料供給弁用アームと前記燃料供給弁との距離が0よりも大きい、請求項2に記載の水素エンジン。
【請求項4】
前記燃料供給弁は、
弁棒と、
前記弁棒における一端側に設けられ、前記燃料供給ポートの弁座面に対して前記弁棒の軸方向に当接可能な弁体部と、
前記弁棒における前記弁体部側に設けられ、前記燃料供給ポートの弁座面に前記弁体部が当接した状態において、前記弁座面よりも前記燃料供給弁の軸方向における前記燃料ガスの流れの上流側に位置するカラー部と、
を備える、請求項1に記載の水素エンジン。
【請求項5】
前記エンジンの排気弁の閉弁タイミングでの前記燃料供給弁のリフト量をL、前記カラー部の高さをH1とすると、H1>0.7Lを満たす、請求項4に記載の水素エンジン。
【請求項6】
前記燃料供給ポートは、
前記燃料供給弁の軸方向に沿って設けられた第1流路部と、
前記第1流路部の下流側に設けられた弁座面と、
前記弁座面の下流側に設けられ、前記第1流路部の流路幅よりも大きな流路幅を有する第2流路部と、
を含み、
前記燃料供給弁の弁体部の外周面は、前記第2流路部の流路壁を摺動するように構成された、請求項1に記載の水素エンジン。
【請求項7】
前記エンジンの排気弁の閉弁タイミングでの前記燃料供給弁のリフト量をL、前記燃料供給弁の軸方向における前記第2流路部の長さをH2とすると、H2>0.7Lを満たす、請求項6に記載の水素エンジン。
【請求項8】
水素を含む燃料ガスを使用する水素エンジンであって、
シリンダと、
前記シリンダ内を移動可能なピストンと、
前記ピストンとの間に燃焼室を形成し、前記燃焼室に接続する吸気ポートと前記燃焼室に接続する燃料供給ポートと、前記燃焼室に接続する排気ポートとを含むシリンダヘッドと、
前記吸気ポートを開閉するための吸気弁と、
前記燃料供給ポートを開閉するための燃料供給弁と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構と、
前記燃料供給弁の開弁期間の少なくとも一部において前記燃料供給ポートの出口部のうち前記排気ポート側の少なくとも一部を覆うように構成されたカバー部と、
を備える、水素エンジン。
【請求項9】
前記カバー部は、前記燃料供給弁の弁棒における弁体部側に設けられたカラー部であり、
前記カラー部は、円板又は円柱状に形成されており、前記燃料供給ポートの弁座面に前記燃料供給弁の弁体部が当接した状態において、前記弁座面よりも前記燃料供給弁の軸方向における前記燃料ガスの流れの上流側に位置し、前記弁棒の外径よりも大きな外径を有する、請求項8に記載の水素エンジン。
【請求項10】
前記シリンダヘッドは、
シリンダヘッド本体と、
前記燃料供給ポートの弁座面を形成し、前記シリンダヘッド本体とは別体で構成された弁座部材と、
前記シリンダヘッド本体と前記弁座部材とに挟まれたマスクプレートと、
を含み、
前記マスクプレートは、前記燃料供給ポートの流路壁から前記燃料供給弁の弁棒に向けて突出する突出部を含み、
前記カバー部は前記突出部である、請求項8に記載の水素エンジン。
【請求項11】
前記シリンダヘッドは、
シリンダヘッド本体と、
前記燃料供給ポートの弁座面を形成し、前記シリンダヘッド本体とは別体で構成された弁座部材と、
を含み、
前記弁座部材は、前記燃料供給ポートの流路壁から前記燃料供給弁の弁棒に向けて突出する突出部を含み、
前記カバー部は、前記突出部である、請求項8に記載の水素エンジン。
【請求項12】
前記吸気ポートから前記燃焼室に流入した吸気の旋回流が前記エンジンの1回転の間に前記燃焼室を何回回るかを示す無次元数を前記旋回流の強さSとし、前記エンジンの1燃焼サイクルのうち、前記エンジンの排気弁の開弁期間と前記燃料供給弁の開弁期間とがオーバーラップしている期間に対応するクランク角度の幅を角度幅OLとし、前記旋回流の強さSと前記角度幅OLとの積を角度θとし、
前記燃料供給弁の軸線の周りの周方向について、前記排気ポート側の範囲をS1とし、前記範囲S1における前記旋回流の回転方向の上流端から前記旋回流の回転方向における上流側への前記角度θの範囲をS2とすると、
前記カバー部は、前記周方向における前記範囲S1と前記範囲S2とを含む範囲に設けられた、請求項8乃至11の何れか1項に記載の水素エンジン。
【請求項13】
水素を含む燃料ガスを使用する水素エンジンであって、
シリンダと、
前記シリンダ内を移動可能なピストンと、
前記ピストンとの間に燃焼室を形成し、前記燃焼室に接続する吸気ポートと前記燃焼室に接続する燃料供給ポートと、前記燃焼室に接続する排気ポートとを含むシリンダヘッドと、
前記吸気ポートを開閉するための吸気弁と、
前記燃料供給ポートを開閉するための燃料供給弁と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構と、
を備え、
前記シリンダヘッドの下面が平面に沿って形成されており、
前記燃料供給ポートに設けられた弁座面に前記燃料供給弁が当接している状態において前記燃料供給弁の下面は、前記シリンダヘッドの下面よりも前記燃料供給弁の軸方向における前記燃料ガスの流れの上流側に位置する、水素エンジン。
【請求項14】
前記エンジンの排気弁の閉弁タイミングでの前記燃料供給弁のリフト量をL、前記燃料供給ポートに設けられた弁座面に前記燃料供給弁が当接している状態での前記燃料供給弁の軸方向における前記燃料供給弁の下面と前記シリンダヘッドの下面との距離をH3とすると、H3>Lを満たす、請求項13に記載の水素エンジン。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、水素エンジンに関する。
【背景技術】
【0002】
特許文献1には、水素燃料を用いる水素エンジンが開示されている。この水素エンジンでは、吸気ポート内に水素燃料を噴射するためのインジェクタが設けられており、吸気ポートを流れる吸気とインジェクタから噴射された水素燃料とが混合されて燃焼室に供給される。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
水素の可燃範囲は広くその燃焼速度が速いため、特許文献1に記載のように吸気ポート内に水素燃料を噴射する場合、吸気ポートに火炎が遡る逆火が発生しやすく、吸気経路が損傷するリスクがある。このような逆火を抑制するために、吸気ポートとは別に燃料供給ポートを設けて吸気ポートを介さずに燃料ガスを燃焼室に供給する方法も考えられるが、吸気弁の開弁期間と排気弁の開弁期間とがオーバーラップする期間があるため、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されるとエンジン効率の低下を招いてしまう。
【0005】
上述の事情に鑑みて、本開示の少なくとも一実施形態は、逆火の発生を抑制するとともに高いエンジン効率を実現することができる水素エンジンを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本開示の少なくとも一実施形態に係る水素エンジンは、
水素を含む燃料ガスを使用する水素エンジンであって、
シリンダと、
前記シリンダ内を移動可能なピストンと、
前記ピストンとの間に燃焼室を形成し、前記燃焼室に接続する吸気ポートと前記燃焼室に接続する燃料供給ポートを含むシリンダヘッドと、
前記吸気ポートを開閉するための吸気弁と、
前記燃料供給ポートを開閉するための燃料供給弁と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構と、
を備え、
前記燃料供給弁の開弁タイミングが前記吸気弁の開弁タイミングよりも遅角側となるように構成される。
【0007】
上記目的を達成するため、本開示の少なくとも一実施形態に係る水素エンジンは、
水素を含む燃料ガスを使用する水素エンジンであって、
シリンダと、
前記シリンダ内を移動可能なピストンと、
前記ピストンとの間に燃焼室を形成し、前記燃焼室に接続する吸気ポートと前記燃焼室に接続する燃料供給ポートと、前記燃焼室に接続する排気ポートとを含むシリンダヘッドと、
前記吸気ポートを開閉するための吸気弁と、
前記燃料供給ポートを開閉するための燃料供給弁と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構と、
前記燃料供給弁の開弁期間の少なくとも一部において前記燃料供給ポートの出口部のうち前記排気ポート側の少なくとも一部を覆うように構成されたカバー部と、
を備える。
【0008】
上記目的を達成するため、本開示の少なくとも一実施形態に係る水素エンジンは、
水素を含む燃料ガスを使用する水素エンジンであって、
シリンダと、
前記シリンダ内を移動可能なピストンと、
前記ピストンとの間に燃焼室を形成し、前記燃焼室に接続する吸気ポートと前記燃焼室に接続する燃料供給ポートと、前記燃焼室に接続する排気ポートとを含むシリンダヘッドと、
前記吸気ポートを開閉するための吸気弁と、
前記燃料供給ポートを開閉するための燃料供給弁と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構と、
を備え、
前記シリンダヘッドの下面が平面に沿って形成されており、
前記燃料供給ポートに設けられた弁座面に前記燃料供給弁が当接している状態において前記燃料供給弁の下面は、前記シリンダヘッドの下面よりも前記燃料供給弁の軸方向における前記燃料ガスの流れの上流側に位置する。
【発明の効果】
【0009】
本開示の少なくとも一実施形態によれば、逆火の発生を抑制するとともに高いエンジン効率を実現することができる水素エンジンが提供される。
【図面の簡単な説明】
【0010】
【
図1】一実施形態に係る水素エンジン2の概略断面図である。
【
図2】動弁機構18の詳細構成の一例を示す側面図である。
【
図3】
図1及び
図2に示した吸気用ロッカーアーム44の他端部44bの近傍の構成の一例を拡大して示す図である。
【
図4】水素エンジン2の1燃焼サイクルにおける吸気弁10、排気弁14、燃料供給弁15の各々の有効開口面積の変化の一例を示す図である。
【
図5A】
図1及び
図2に示した燃料供給弁15の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
【
図5B】
図1及び
図2に示した燃料供給弁15の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
【
図5C】
図1及び
図2に示した燃料供給弁15の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が弁座面54から離間していて燃料供給弁15のカラー部50によって燃料供給ポート26が閉じている状態(
図5Aに示す状態と
図5Bに示す状態との間の状態)を示している。
【
図6】水素エンジン2のクランク角度と排気弁14及び燃料供給弁15の各々のリフト量との関係を示す図である。
【
図7A】
図1及び
図2に示したシリンダヘッド8の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
【
図7B】
図1及び
図2に示したシリンダヘッド8の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
【
図7C】
図1及び
図2に示したシリンダヘッド8の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が弁座面54から離間していて燃料供給弁15の弁体部36が弁座部材56の内周面に接触している状態(
図7Aに示す状態と
図7Bに示す状態との間の状態)を示している。
【
図8A】
図1及び
図2に示したシリンダヘッド8の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
【
図8B】
図1及び
図2に示したシリンダヘッド8の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
【
図8C】
図1及び
図2に示したシリンダヘッド8の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態(
図8Aに示す状態と
図8Bに示す状態との間の状態)を示している。
【
図9A】
図1及び
図2に示した燃料供給弁15の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
【
図9B】
図1及び
図2に示した燃料供給弁15の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
【
図9C】
図1及び
図2に示した燃料供給弁15の詳細構成の一例を説明するための図であり、燃料供給弁15の弁体部36が弁座面54から離間していて燃料供給ポート26の出口部70のうち排気ポート24側の少なくとも一部が燃料供給弁15のカラー部72(カバー部)によって覆われている状態(
図9Aに示す状態と
図9Bに示す状態との間の状態)を示している。
【
図10A】カラー部72を設ける範囲の一例を説明するための図である。
【
図10B】カラー部72を設ける範囲の他の一例を説明するための図である。
【
図11】
図1及び
図2に示したシリンダヘッド8の詳細構成の更に他の一例を説明するための図である。
【
図12A】マスクプレート74の突出部76を設ける範囲の一例を説明するための図である。
【
図12B】マスクプレート74の突出部76を設ける範囲の他の一例を説明するための図である。
【
図13】
図1及び
図2に示したシリンダヘッド8の詳細構成の更に他の一例を説明するための図である。
【
図14A】弁座部材56の突出部77を設ける範囲の一例を説明するための図である。
【
図14B】弁座部材56の突出部77を設ける範囲の他の一例を説明するための図である。
【発明を実施するための形態】
【0011】
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
【0012】
(水素エンジン)
図1は、一実施形態に係る水素エンジン2の概略断面図である。以下では、水素を含む燃料ガスを使用する4ストロークエンジンを例に水素エンジン2の説明を行う。水素エンジン2が使用する燃料ガスの水素濃度は、例えば50%以上であってもよいし、75%以上であってもよいし、99%以上であってもよい。
【0013】
図1に示すように、水素エンジン2は、シリンダ4、ピストン6、シリンダヘッド8、吸気弁10、バルブスプリング12、排気弁14、燃料供給弁15、バルブスプリング16及び動弁機構18を備える。
【0014】
ピストン6は、シリンダ4内を移動可能に構成されている。ピストン6は、ピストン6の外周面をシリンダ4の内周面に摺動させるようにシリンダ4内を往復運動し、ピストン6に連結された不図示のクランクシャフトがピストン6の往復運動に連動して回転する。
【0015】
シリンダヘッド8は、ピストン6との間に燃焼室20を形成する。シリンダヘッド8は、燃焼室20に接続する吸気ポート22と、燃焼室20に接続する排気ポート24と、燃焼室20に接続する燃料供給ポート26とを含む。図示する例では、シリンダヘッド8の下面9はピストン6の軸方向と直交する平面に沿って形成されている。
【0016】
吸気弁10は、吸気ポート22を開閉可能に構成されている。吸気弁10は、弁棒28と、弁棒28の一端側に設けられる弁体部30と、弁棒28の他端側に設けられる力受け部32とを含む。図示する例では、弁棒28は上下方向に沿って延在し、弁体部30は弁棒28の下端に設けられ、力受け部32は弁棒28の上端に設けられる。また、図示する例では、弁体部30は、吸気の流れの上流側に向かうにつれて弁体部30の外径が小さくなるように円錐台形状に形成されており、円錐台形状の傾斜面(吸気弁10の軸方向に対して傾斜した傾斜面)が吸気ポート22の弁座面に対して吸気弁10の軸方向(弁棒28の軸方向)に当接可能に設けられている。また、図示する例では、力受け部32は、吸気弁10の軸方向と直交する平面に沿って板状に形成されている。
【0017】
バルブスプリング12は、シリンダヘッド8の上面と力受け部32の下面との間に圧縮された状態で挟まれており、吸気弁10を閉じる方向に付勢するように力受け部32を上向きに付勢している。
【0018】
排気弁14は、排気ポート24を開閉可能に構成されている。排気弁14は、吸気弁10と同様の構造を有しており、不図示のバルブスプリングが排気弁14を閉じる方向に付勢している。
【0019】
燃料供給弁15は、燃料供給ポート26を開閉可能に構成されている。燃料供給弁15は、弁棒34と、弁棒34の一端側に設けられる弁体部36と、弁棒34の他端側に設けられる力受け部38とを含む。図示する例では、弁棒34は上下方向に沿って延在し、弁体部36は弁棒34の下端に設けられ、力受け部38は弁棒34の上端に設けられる。また、図示する例では、弁体部36は、燃料ガスの流れの上流側に向かうにつれて弁体部36の外径が小さくなるように円錐台形状に形成されており、円錐台形状の傾斜面53(燃料供給弁15の軸方向に対して傾斜した傾斜面)は燃料供給ポート26の弁座面54に対して燃料供給弁15の軸方向(弁棒34の軸方向)に当接可能に設けられている。また、図示する例では、力受け部38は、燃料供給弁15の軸方向と直交する平面に沿って板状に形成されている。
【0020】
バルブスプリング16は、シリンダヘッド8の上面と力受け部38の下面との間に圧縮された状態で挟まれており、燃料供給弁15を閉じる方向に付勢するように力受け部38を上向きに付勢している。
【0021】
動弁機構18は、吸気弁10と燃料供給弁15とに共通して設けられており、吸気弁10と燃料供給弁15とを連動させて開閉するように構成されている。動弁機構18の詳細構成の例については後述する。
【0022】
上記水素エンジン2では、燃料供給ポート26から供給された燃料ガスと吸気ポート22から供給された空気とが燃焼室20で混合され、不図示の点火装置により点火されて燃焼ガスが燃焼する。上記構成では、吸気ポート22とは別に燃料供給ポート26が設けられており、水素を含む燃料ガスが吸気ポート22を介さずに燃料供給ポート26から燃焼室20に供給される。このため、吸気ポート22に火炎が遡る逆火の発生を抑制することができる。
【0023】
(動弁機構)
図2は、動弁機構18の詳細構成の一例を示す側面図である。
図2に示すように、動弁機構18は、吸気カムシャフト40、吸気カム41、プッシュロッド42、吸気用ロッカーアーム44、ロッカーアームシャフト46及び燃料供給弁用アーム48を含む。
【0024】
吸気カム41は、吸気カムシャフト40に吸気カムシャフト40と一体で形成されている。水素エンジン2の不図示のクランクシャフトの回転に連動して吸気カムシャフト40が吸気カム41とともに回転する。プッシュロッド42はプッシュロッド42の下端部が吸気カム41の外周面(カム面)に当接しており、吸気カム41の回転に伴ってプッシュロッド42と吸気カム41の回転軸線C1との距離rが変化することで、プッシュロッド42がプッシュロッド42の軸方向に往復運動する。
【0025】
吸気用ロッカーアーム44はロッカーアームシャフト46によってロッカーアームシャフト46の中心軸線C2(吸気用ロッカーアーム44の回転軸線)の周りに回動可能に支持されている。吸気用ロッカーアーム44の一端部44aの下面はプッシュロッド42の上端部に当接している。吸気カム41の回転に応じてプッシュロッド42がプッシュロッド42の軸方向に往復運動することにより、プッシュロッド42の上端部が吸気用ロッカーアーム44の一端部44aの下面を押圧して吸気用ロッカーアーム44を上記回転軸線C2の周りに回動(揺動)させる。
【0026】
吸気用ロッカーアーム44の他端部44bの下面は、吸気用ロッカーアーム44の回動時に吸気弁10を押圧可能となっている。吸気用ロッカーアーム44の回動によって吸気用ロッカーアーム44の他端部44bの下面がバルブスプリング12(
図1参照)の付勢力に抗して吸気弁10を押し下げることにより、吸気弁10が開方向へ移動する。また、吸気用ロッカーアーム44の回動によって吸気用ロッカーアーム44の他端部44bがバルブスプリング12の付勢力の方向に変位することにより、吸気弁10が閉方向へ移動する。
【0027】
燃料供給弁用アーム48は、吸気用ロッカーアーム44の他端部44b側に接続しており、吸気用ロッカーアーム44とともに回転軸線C2の周りに回動する。燃料供給弁用アーム48が回転軸線C2の周りに回動することにより、燃料供給弁用アーム48の先端部48aが燃料供給弁15を押圧可能となっている。
【0028】
吸気用ロッカーアーム44の回動によって燃料供給弁用アーム48の先端部48aがバルブスプリング16(
図1参照)の付勢力に抗して燃料供給弁15を押し下げることにより、燃料供給弁15が開方向へ移動する。また、吸気用ロッカーアーム44の回動によって燃料供給弁用アーム48の先端部48aがバルブスプリング16の付勢力の方向に変位することにより、燃料供給弁15が閉方向へ移動する。
【0029】
(燃料供給弁及びその周囲の構成)
図3は、
図1及び
図2に示した吸気用ロッカーアーム44の他端部44bの近傍の構成の一例を拡大して示す図である。
図4は、水素エンジン2の1燃焼サイクルにおける吸気弁10、排気弁14、燃料供給弁15の各々の有効開口面積の変化の一例を示す図である。
【0030】
幾つかの実施形態では、例えば
図3に示すように、燃料供給弁用アーム48と燃料供給弁15との距離をg1、吸気用ロッカーアーム44と吸気弁10との距離をg2とすると、水素エンジン2の1燃焼サイクルにおける距離g1の最大値g1maxは、水素エンジン2の1燃焼サイクルにおける距離g2の最大値g2maxより大きくなっていてもよい。例えば
図2に示す構成の場合、吸気カム41が1回転する期間において吸気カム41の回転中心C1とプッシュロッド42との距離rが最小値をとるときに、燃料供給弁用アーム48と燃料供給弁15との距離g1と吸気用ロッカーアーム44と吸気弁10との距離g2とがそれぞれ最大値g1maxと最大値g2maxをとり(すなわち吸気弁10及び燃料供給弁15の各々が閉弁位置となり)、この最大値g1maxが最大値g2maxよりも大きくなっている。
【0031】
これにより、
図4に示すように、水素エンジン2の吸気行程において、燃料供給弁15の開弁タイミングFOが吸気弁10の開弁タイミングIOよりも遅角側となっている。なお、
図4において、一点鎖線は排気弁14の有効開口面積(排気ポート24における排気弁14の位置に対応するスロート面積)を示しており、実線は吸気弁10の有効開口面積(吸気ポート22における吸気弁10の位置に対応するスロート面積)を示しており、破線は燃料供給弁15の有効開口面積(燃料供給ポート26における燃料供給弁15の位置に対応するスロート面積)を示している。なお、
図4において、EOは排気弁14の開弁タイミングを示しており、ECは排気弁14の閉弁タイミングを示しており、FCは燃料供給弁15の閉弁タイミングを示しており、ICは吸気弁10の閉弁タイミングを示している。また、本明細書において「開弁タイミング」とは、弁が開き始めるタイミング(有効開口面積が0から増加し始めるタイミング)を意味し、「閉弁タイミング」とは弁が閉じるタイミング(有効開口面積が0となるタイミング)を意味する。
【0032】
また、
図3に示す構成では、水素エンジン2の排気工程における排気弁14の閉弁タイミングEC(
図4参照)において、燃料供給弁用アーム48と燃料供給弁15との距離g1が0よりも大きくなっていてもよい。
【0033】
上記水素エンジン2によれば、吸気ポート22とは別に燃料供給ポート26が設けられており、水素を含む燃料ガスが吸気ポート22を介さずに燃料供給ポート26から燃焼室20に供給される。このため、吸気ポート22に火炎が遡る逆火の発生を抑制することができる。
【0034】
また、水素エンジン2の1燃焼サイクルにおける距離g1の最大値g1maxを、水素エンジン2の該1燃焼サイクルにおける距離g2の最大値g2maxより大きくすることにより、燃料供給弁15の開弁タイミングFOを吸気弁10の開弁タイミングIOよりも遅角側とすることができる。このため、吸気弁10の開弁期間と排気弁14の開弁期間とがオーバーラップする期間(
図4における吸気弁10の開弁タイミングIOから排気弁14の閉弁タイミングECまでの期間)があっても、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを抑制することができる。このため、エンジン効率の低下を抑制し、高効率な水素エンジン2を実現することができる。また、排気弁14の閉弁タイミングECにおける燃料供給弁用アーム48と燃料供給弁15との距離g1を0よりも大きくすることにより、燃料供給弁15の開弁タイミングFOを排気弁14の閉弁タイミングECよりも遅角側にすることができる。このため、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを効果的に抑制することができる。
【0035】
図5A~
図5Cの各々は、
図1及び
図2に示した燃料供給弁15の詳細構成の一例を説明するための図である。
図5Aは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
図5Bは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
図5Cは燃料供給弁15の弁体部36が弁座面54から離間していて燃料供給弁15のカラー部50によって燃料供給ポート26が閉じている状態(
図5Aに示す状態と
図5Bに示す状態との間の状態)を示している。
【0036】
図5A~
図5Cに示す例では、燃料供給弁15は、上述した弁棒34、弁体部36及び力受け部38に加えて、カラー部50を備える。また、シリンダヘッド8は、シリンダヘッド本体52と、燃料供給ポート26の環状の弁座面54を形成し、シリンダヘッド本体52とは別体で構成された環状の弁座部材56とを含む。
【0037】
図示する例では、カラー部50は、弁棒34における弁体部36側(弁体部36の上端)に弁体部36に隣接して設けられており、円板又は円柱状に形成されている。カラー部50の外径は弁棒34の外径よりも大きく、燃料供給ポート26の流路幅すなわち環状の弁座部材56の内径に略一致する。カラー部50の外径は、カラー部50の外周面が燃料供給ポート26の流路壁75(図示する例では弁座部材56の内周面)を摺動できるような外径に設定されている。また、燃料供給ポート26の弁座面54に対して弁体部36が燃料供給弁15の軸方向に当接した状態(
図5A参照)において、カラー部50は、弁座面54よりも燃料供給弁15の軸方向における燃料ガスの流れの上流側に位置する。
【0038】
ここで、
図5Cに示すように、燃料供給弁15の軸方向におけるカラー部50の高さをH1とし、
図6に示すように、水素エンジン2の排気工程における排気弁14の閉弁タイミングEC(
図4参照)での燃料供給弁15のリフト量をLとすると、カラー部50は、H1>0.7×Lを満たすように構成されている。また、より好ましくは、カラー部50は、H1>Lを満たすように構成される。なお、
図6において、横軸は水素エンジン2のクランク角度を示しており、縦軸は排気弁14及び燃料供給弁15の各々のリフト量を意味する。また、
図6に示す上記リフト量Lは、水素エンジン2の排気工程における排気弁14の閉弁タイミングEC(
図4参照)での燃料供給弁15の弁体部36と弁座面54との距離を意味する。
【0039】
上記カラー部50を備える構成によれば、
図5Cに示すように、弁体部36が弁座面54から離れても、カラー部50の外周面が燃料供給ポート26の流路壁75と当接している間は燃料供給ポート26が閉じられた状態又は燃料供給ポート26の開口面積が小さい状態を維持することができるため、燃料供給弁15のリフトの初期に燃料ガスが燃焼室20に供給されなくなる。これにより、燃料供給弁15の開弁タイミングFOを吸気弁10の開弁タイミングIOよりも遅角側とすることができる。このため、吸気弁10の開弁期間と排気弁14の開弁期間とがオーバーラップする期間(
図4における吸気弁10の開弁タイミングIOから排気弁14の閉弁タイミングECまでの期間)があっても、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを抑制することができる。このため、エンジン効率の低下を抑制し、高効率な水素エンジン2を実現することができる。
【0040】
また、上記のように、H1>0.7Lを満たすカラー部50を燃料供給弁15が備えることにより(より好ましくはH1>Lを満たすことにより)、燃料供給弁15の開弁タイミングFOを排気弁14の閉弁タイミングECよりも遅角側にすることができるため、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを効果的に抑制することができる。
【0041】
図7A~
図7Cの各々は、
図1及び
図2に示したシリンダヘッド8の詳細構成の一例を説明するための図である。
図7Aは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
図7Bは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
図7Cは燃料供給弁15の弁体部36が弁座面54から離間していて燃料供給弁15の弁体部36が弁座部材56の内周面に接触している状態(
図7Aに示す状態と
図7Bに示す状態との間の状態)を示している。
【0042】
図7A~
図7Cに示す例では、燃料供給ポート26は、燃料供給弁15の軸方向に沿って設けられた第1流路部60と、第1流路部60の下流側に設けられた弁座面54と、弁座面54の下流側に設けられ、第1流路部60の流路幅W1よりも大きな流路幅W2を有する第2流路部62と、を含む。図示する例では、燃料供給ポート26の出口側の開口端63と弁座面54との間に段差65が形成されている。
【0043】
弁体部36の外径Dは第2流路部62の流路幅W2に略一致しており、燃料供給弁15の弁体部36の外周面53(上述の傾斜面53)の下流側端縁55(最大外径部)は、第2流路部62の流路壁64を摺動するように構成されている。なお、弁体部36の外径Dは、弁体部36の外径の最大値を意味し、図示する例では弁体部36の下端における弁体部36の外径を意味する。
【0044】
ここで、
図7Cに示すように、燃料供給弁15の軸方向における第2流路部62の長さ(上記段差65の高さ)をH2とし、
図6に示すように、水素エンジン2の排気工程における排気弁14の閉弁タイミングECでの燃料供給弁15のリフト量をLとすると、第2流路部62は、H2>0.7Lを満たすように構成されている。また、より好ましくは、第2流路部62は、H2>Lを満たすように構成される。
【0045】
図7A~
図7Cに示す構成によれば、弁座面54の下流側に第1流路部60の流路幅W1よりも大きな流路幅W2を有する第2流路部62が設けられており、弁体部36の外周面53が第2流路部62の流路壁64を摺動するように構成されている。このため、
図7Cに示すように、弁体部36が弁座面54から離れても、弁体部36の外周面53が第2流路部62の流路壁64を摺動している間は燃料供給ポート26を閉じた状態又は燃料供給ポート26の開口面積が小さい状態を維持することができる。これにより、燃料供給弁15の開弁タイミングFOを吸気弁10の開弁タイミングIOよりも遅角側とすることができる。このため、吸気弁10の開弁期間と排気弁14の開弁期間とがオーバーラップする期間があっても、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを抑制することができる。このため、エンジン効率の低下を抑制し、高効率な水素エンジン2を実現することができる。
【0046】
また、上記のように、H2>0.7Lを満たすことにより(より好ましくはH2>Lを満たすことにより)、燃料供給弁15の開弁タイミングFOを排気弁14の閉弁タイミングECよりも遅角側にすることができるため、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを効果的に抑制することができる。
【0047】
図8A~
図8Cの各々は、
図1及び
図2に示したシリンダヘッド8の詳細構成の他の一例を説明するための図である。
図8Aは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
図8Bは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
図8Cは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態(
図8Aに示す状態と
図8Bに示す状態との間の状態)を示している。
【0048】
図8A~
図8Cに示す構成では、燃料供給ポート26は、燃料供給弁15の軸方向に沿って設けられた第1流路部60と、第1流路部60の下流側に設けられた弁座面54と、弁座面54の下流側に設けられ、第1流路部60の流路幅W1よりも大きな流路幅W2(
図8A参照)を有する第2流路部62と、を含む。図示する例では、燃料供給ポート26の出口側の開口端63と弁座面54との間に段差65が形成されている。また、第2流路部62の流路幅W2は弁体部36の外径D(
図8A参照)よりも大きい。なお、弁体部36の外径Dは、弁体部36の外径の最大値を意味し、図示する例では弁体部36の下端における弁体部36の外径を意味する。
【0049】
また、
図8Aに示すように、燃料供給ポート26に設けられた弁座面54に燃料供給弁15が当接している状態において、燃料供給弁15の下面66は、シリンダヘッド8の下面9よりも燃料供給弁15の軸方向における燃料ガスの流れの上流側すなわち上側に位置する。
【0050】
また、
図8Aに示すように燃料供給ポート26に設けられた弁座面54に燃料供給弁15が当接している状態での燃料供給弁15の軸方向における燃料供給弁15の下面66とシリンダヘッド8の下面9の距離をH3とし、
図6に示すように、水素エンジン2の排気工程における排気弁14の閉弁タイミングECでの燃料供給弁15のリフト量をLとすると、H3>Lを満たすように第2流路部62が構成されている。
【0051】
図8A~
図8Cに示す構成によれば、
図8Cに示すように、弁体部36が弁座面54から離れても、燃料ガスは第2流路部62を流れてから燃焼室20に供給されるため、燃料ガスが排気弁14の位置に到達する時間を遅らせることができる。このため、吸気弁10の開弁期間と排気弁14の開弁期間とがオーバーラップする期間(
図4における吸気弁10の開弁タイミングIOから排気弁14の閉弁タイミングECまでの期間)があっても、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを抑制することができる。このため、エンジン効率の低下を抑制し、高効率な水素エンジン2を実現することができる。
【0052】
また、上記のようにH3>Lを満たすことにより、燃料供給弁15の開弁タイミングFOを排気弁14の閉弁タイミングECよりも遅角側にすることができる。このため、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを効果的に抑制することができる。
【0053】
図9A~
図9Cの各々は、
図1及び
図2に示した燃料供給弁15の詳細構成の他の一例を説明するための図である。
図9Aは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54に当接して燃料供給ポート26が閉じている状態を示している。
図9Bは燃料供給弁15の弁体部36が燃料供給ポート26の弁座面54から離間して燃料供給ポート26が開いた状態を示している。
図9Cは燃料供給弁15の弁体部36が弁座面54から離間していて燃料供給ポート26の出口部70のうち排気ポート24側の少なくとも一部が燃料供給弁15のカラー部72(カバー部)によって覆われている状態(
図9Aに示す状態と
図9Bに示す状態との間の状態)を示している。
【0054】
図9A~
図9Cに示す構成では、カラー部72は、弁棒34における弁体部36側(弁体部36の上端)に弁体部36に隣接して設けられており、燃料供給弁15の軸方向視において扇形状を有しており、弁棒34から弁棒34の径方向に突出するように設けられている。弁棒34の径方向における弁棒34からのカラー部72の突出量(上記扇形状の弦の長さ)は、カラー部72の外周面が燃料供給ポート26の流路壁(弁座部材56の内周面)を摺動できるような突出量に設定されていてもよい。また、燃料供給ポート26の弁座面54に対して弁体部36が燃料供給弁15の軸方向に当接した状態(
図9A参照)において、カラー部72は、弁座面54よりも燃料供給弁15の軸方向における燃料ガスの流れの上流側に位置する。
【0055】
図9A~
図9Cに示す構成では、カラー部72は、燃料供給弁15の開弁期間の少なくとも一部において燃料供給ポート26の出口部70のうち排気ポート24側の少なくとも一部を覆うように構成されている。これにより、燃料供給弁15のリフト動作の初期において、燃料供給ポート26から排気ポート24側への燃料ガスの流れを妨げて、燃料供給ポート26から吸気ポート22側へ燃料ガスを導くことができる。これにより、排気弁14の開弁期間における燃料供給ポート26から排気ポート24側への燃料ガスのすり抜けを抑制することができる。なお、上記カラー部72を含む構成では、燃料供給弁15を回転させないための回転止めを設けてもよい。回転止めは、例えば燃料供給弁15の弁棒34に切り欠きを設け、その切り欠きに係合する係合部をシリンダヘッド8に設けることで実現してもよい。
【0056】
また、例えば
図10Aに示すように、カラー部72は、燃料供給弁15の軸線C3(弁棒34の中心軸線)の周りの周方向について、排気ポート24側の範囲S1に設けられていてもよい。なお、
図10Aに示す例では、燃料供給弁15の軸線C3を含む平面Kに対して2つの吸気ポート22が配置される側を吸気ポート22側と定義し、2つの排気ポート24が配置される側を排気ポート24側とを定義している。
【0057】
また、例えば
図10Bに示すように、カラー部72は、燃料供給弁15の軸線C3の周りの周方向について、排気ポート24側の範囲S1を含む180°以上の範囲に設けられていてもよい。
図10Bに示す例では、カラー部72は、燃料供給弁15の軸線の周りの周方向について、排気ポート24側の範囲S1と、吸気ポート22から燃焼室20に流入した吸気の旋回流の旋回方向における範囲S1の上流側に隣接する範囲S2とに亘って設けられている。
【0058】
より詳細には、吸気ポート22から燃焼室20に流入した吸気の旋回流が水素エンジン2の1回転の間に燃焼室20を何回回るかを示す無次元数を旋回流の強さSとし、水素エンジン2の1燃焼サイクルのうち、排気弁14の開弁期間と燃料供給弁15の開弁期間とがオーバーラップしている期間に対応するクランク角度の幅(
図6における燃料供給弁15の開弁タイミングFOから排気弁14の閉弁タイミングECまでのクランク角度の幅)を角度幅OLとし、旋回流の強さSと角度幅OLとの積を角度θとすると、燃料供給弁15の軸線C3の周りの周方向について、排気ポート24側の範囲S1と、範囲S1における旋回流の回転方向の上流端から旋回流の回転方向における上流側への角度θの範囲S2と、を含む範囲にカラー部72が構成されていてもよい。これにより、燃焼室20に流入した吸気の旋回流の強さSを考慮して、排気弁14の開弁期間における燃料供給ポート26から排気ポート24側への燃料ガスのすり抜けを効果的に抑制することができる。
【0059】
図11は、
図1及び
図2に示したシリンダヘッド8の詳細構成の更に他の一例を説明するための図である。
図11に示す構成では、シリンダヘッド8は、シリンダヘッド本体52と、燃料供給ポート26の弁座面54を形成し、シリンダヘッド本体52とは別体で構成された環状の弁座部材56と、燃料供給弁15の軸方向におけるシリンダヘッド本体52と弁座部材56との間に位置するマスクプレート74と、を含む。
【0060】
マスクプレート74は、燃料供給弁15の軸方向において弁座部材56に対して燃料ガスの流れの上流側に位置し、シリンダヘッド本体52と弁座部材56とに挟まれている。マスクプレート74は、燃料供給弁15の軸方向視において扇形状を有しており、燃料供給ポート26の流路壁75から弁棒34に向けて突出する突出部76(カバー部)を含む。弁棒34の径方向における流路壁75からのマスクプレート74の突出量(上記扇形状の弦の長さ)は、マスクプレート74の内周縁が弁棒34の外周面を摺動できるような突出量に設定されていてもよい。
【0061】
マスクプレート74の突出部76は、燃料供給ポート26の出口部70のうち排気ポート24側の少なくとも一部を覆うように構成されている。これにより、燃料供給ポート26から排気ポート24側へ燃料ガスが流れにくくなるため、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを抑制することができる。また、
図9A~
図9Cに示した構成と比較して、燃料供給弁15の軽量化によって燃料供給弁15の応答性を向上することができるとともに、燃料供給弁15の製作や品質管理が容易となる。また、燃料供給弁15のリフト量に関わらず排気ポート24側へ燃料ガスが供給されにくくなることで、シリンダ4内の燃料分布が、吸気側で燃料濃度が高く排気側で燃料濃度が低い分布となる。このため、吸気側が排気側よりも先に燃焼するため、ノッキングを抑制することができる(仮に燃料濃度が均一の場合は温度が高い排気側が先に燃えて、吸気側が時間をかけて燃えるため、最後に吸気側の低温の壁面に残されたエンドガスが自着火してノッキングが発生する。)。
【0062】
上記マスクプレート74を有する構成では、例えば
図12Aに示すように、マスクプレート74の突出部76は、燃料供給弁15の軸線Cの周りの周方向について、排気ポート24側の範囲S1に設けられていてもよい。なお、
図12Aに示す例では、燃料供給弁15の軸線Cを含む平面Kに対して2つの吸気ポート22が配置される側を吸気ポート22側と定義し、2つの排気ポート24が配置される側を排気ポート24側とを定義している。
【0063】
また、例えば
図12Bに示すように、マスクプレート74の突出部76は、燃料供給弁15の軸線の周りの周方向について、排気ポート24側の範囲S1を含む180°以上の範囲に設けられていてもよい。
図12Bに示す例では、マスクプレート74の突出部76は、燃料供給弁15の軸線の周りの周方向について、排気ポート24側の範囲S1と、吸気ポートから燃焼室に流入した吸気の旋回流の旋回方向における範囲S1の上流側に隣接する範囲S2とに亘って設けられている。より詳細には、上述の旋回流の強さSと角度幅OLとの積を角度θとすると、燃料供給弁15の軸線Cの周りの周方向について、排気ポート24側の範囲S1と、範囲S1における旋回流の回転方向の上流端から旋回流の回転方向における上流側への角度θの範囲S2と、を含む範囲にマスクプレート74の突出部76が構成されていてもよい。これにより、燃焼室20に流入した吸気の旋回流の強さSを考慮して、排気弁の開弁期間における燃料供給ポート26から排気ポート24側への燃料ガスのすり抜けを効果的に抑制することができる。
【0064】
図13は、
図1及び
図2に示したシリンダヘッド8の詳細構成の更に他の一例を説明するための図である。
図13に示す構成では、環状の弁座部材56は、燃料供給ポート26の流路壁75から弁棒34に向けて突出する突出部77(カバー部)を含む。弁棒34の径方向における流路壁75からの弁座部材56の突出量(上記扇形状の弦の長さ)は、弁座部材56の突出部77が弁棒34の外周面を摺動できるような突出量に設定されていてもよい。
【0065】
弁座部材56の突出部77は、燃料供給ポート26の出口部70のうち排気ポート24側の少なくとも一部を覆うように構成されている。これにより、燃料供給ポート26から排気ポート24側へ燃料ガスが流れにくくなるため、燃料供給ポート26から燃焼室20に供給された燃料ガスの一部が燃焼されずに排気ポート24から排出されることを抑制することができる。また、
図9A~
図9Cに示した構成と比較して、燃料供給弁15の軽量化によって燃料供給弁15の応答性を向上することができるとともに、燃料供給弁15の製作や品質管理が容易となる。また、燃料供給弁15のリフト量に関わらず排気ポート24側へ燃料ガスが供給されにくくなることで、シリンダ4内の燃料分布が、吸気側で燃料濃度が高く排気側で燃料濃度が低い分布となる。このため、吸気側が排気側よりも先に燃焼するため、ノッキングを抑制することができる(仮に燃料濃度が均一の場合は温度が高い排気側が先に燃えて、吸気側が時間をかけて燃えるため、最後に吸気側の低温の壁面に残されたエンドガスが自着火してノッキングが発生する。)。また、
図11に示した構成と比較して部品点数を削減することができる。
【0066】
上記弁座部材56の突出部77を設ける場合、例えば
図14Aに示すように、弁座部材56の突出部77は、燃料供給弁15の軸線Cの周りの周方向について、排気ポート24側の範囲S1に設けられていてもよい。なお、
図14Aに示す例では、燃料供給弁15の軸線Cを含む平面Kに対して2つの吸気ポート22が配置される側を吸気ポート22側と定義し、2つの排気ポート24が配置される側を排気ポート24側とを定義している。
【0067】
また、例えば
図14Bに示すように、弁座部材56の突出部77は、燃料供給弁15の軸線の周りの周方向について、排気ポート24側の範囲S1を含む180°以上の範囲に設けられていてもよい。
図14Bに示す例では、弁座部材56の突出部77は、燃料供給弁15の軸線の周りの周方向について、排気ポート24側の範囲S1と、吸気ポートから燃焼室に流入した吸気の旋回流の旋回方向における範囲S1の上流側に隣接する範囲S2とに亘って設けられている。より詳細には、上述の旋回流の強さSと角度幅OLとの積を角度θとすると、排気ポート24側の範囲S1と、範囲S1における旋回流の回転方向の上流端から旋回流の回転方向における上流側への角度θの範囲S2と、を含む範囲に弁座部材56の突出部77が構成されていてもよい。これにより、燃焼室20に流入した吸気の旋回流の強さSを考慮して、排気弁の開弁期間における燃料供給ポート26から排気ポート24側への燃料ガスのすり抜けを効果的に抑制することができる。
【0068】
本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
【0069】
上記各実施形態に記載の内容は、例えば以下のように把握される。
【0070】
(1)本開示の少なくとも一実施形態に係る水素エンジンは、
水素を含む燃料ガスを使用する水素エンジン(例えば上述の水素エンジン2)であって、
シリンダ(例えば上述のシリンダ4)と、
前記シリンダ内を移動可能なピストン(例えば上述のピストン6)と、
前記ピストンとの間に燃焼室(例えば上述の燃焼室20)を形成し、前記燃焼室に接続する吸気ポート(例えば上述の吸気ポート22)と前記燃焼室に接続する燃料供給ポート(例えば上述の燃料供給ポート26)を含むシリンダヘッド(例えば上述のシリンダヘッド8)と、
前記吸気ポートを開閉するための吸気弁(例えば上述の吸気弁10)と、
前記燃料供給ポートを開閉するための燃料供給弁(例えば上述の燃料供給弁15)と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構(例えば上述の動弁機構18)と、
を備え、
前記燃料供給弁の開弁タイミング(例えば上述の開弁タイミングFO)が前記吸気弁の開弁タイミング(例えば上述の開弁タイミングIO)よりも遅角側となるように構成される。
【0071】
上記(1)に記載の水素エンジンによれば、吸気ポートとは別に燃料供給ポートが設けられており、燃料ガスが吸気ポートを介さずに燃料供給ポートから燃焼室に供給される。このため、吸気ポートに火炎が遡る逆火の発生を抑制することができる。また、燃料供給弁の開弁タイミングが吸気弁の開弁タイミングよりも遅角側であるため、吸気弁の開弁期間と排気弁の開弁期間とがオーバーラップする期間があっても、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されることを抑制することができる。このため、エンジン効率の低下を抑制し、高効率な水素エンジンを実現することができる。したがって、逆火の発生を抑制するとともに高いエンジン効率を実現することができる。
【0072】
(2)幾つかの実施形態では、上記(1)に記載の水素エンジンにおいて、
前記動弁機構は、
所定の回転軸線(例えば上述の回転軸線C2)の周りに回動し、前記吸気弁を押圧可能に構成された吸気用ロッカーアーム(例えば上述の吸気用ロッカーアーム44)と、
前記吸気用ロッカーアームとともに前記回転軸線の周りに回動し、前記燃料供給弁を押圧可能に構成された燃料供給弁用アーム(例えば上述の燃料供給弁用アーム48)と、
を備え、
前記エンジンの1燃焼サイクルにおける前記燃料供給弁用アームと前記燃料供給弁との距離の最大値(例えば上述の最大値g1max)は、前記エンジンの1燃焼サイクルにおける前記吸気用ロッカーアームと前記吸気弁との距離の最大値(例えば上述の最大値g2max)より大きい。
【0073】
上記(2)に記載の水素エンジンによれば、エンジンの1燃焼サイクルにおける燃料供給弁用アームと燃料供給弁との距離の最大値を、エンジンの1燃焼サイクルにおける吸気用ロッカーアームと吸気弁との距離の最大値より大きくすることにより、燃料供給弁の開弁タイミングを吸気弁の開弁タイミングよりも遅角側とすることができる。このため、簡素な構成で上記(1)に記載の効果を得ることができる。
【0074】
(3)幾つかの実施形態では、上記(2)に記載の水素エンジンにおいて、
前記エンジンの排気弁の閉弁タイミング(例えば上述の閉弁タイミングEC)における前記燃料供給弁用アームと前記燃料供給弁との距離(例えば上述の距離g1)が0よりも大きい。
【0075】
上記(3)に記載の水素エンジンによれば、エンジンの排気弁の閉弁タイミングにおける燃料供給弁用アームと燃料供給弁との距離を0よりも大きくすることにより、燃料供給弁の開弁タイミングを排気弁の閉弁タイミングよりも遅角側にすることができる。このため、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されることを効果的に抑制することができる。
【0076】
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかに記載の水素エンジンにおいて、
前記燃料供給弁は、
弁棒(例えば上述の弁棒34)と、
前記弁棒における一端側に設けられ、前記燃料供給ポートの弁座面に対して前記弁棒の軸方向に当接可能な弁体部(例えば上述の弁体部36)と、
前記弁棒における前記弁体部側に設けられ、前記燃料供給ポートの弁座面に前記弁体部が当接した状態において、前記弁座面よりも前記燃料供給弁の軸方向における前記燃料ガスの流れの上流側に位置するカラー部(例えば上述のカラー部50)と、
を備える。
【0077】
上記(4)に記載の水素エンジンによれば、燃料供給弁に上記カラー部を設けたことにより、燃料供給弁の開弁タイミングを吸気弁の開弁タイミングよりも遅角側とすることができる。このため、簡素な構成で上記(1)に記載の効果を得ることができる。
【0078】
(5)幾つかの実施形態では、上記(4)に記載の水素エンジンにおいて、
前記エンジンの排気弁の閉弁タイミングでの前記燃料供給弁のリフト量をL、前記カラー部の高さをH1とすると、H1>0.7Lを満たす。
【0079】
上記(5)に記載の水素エンジンによれば、H1>0.7Lを満たすカラー部を燃料供給弁が備えることにより、燃料供給弁の開弁タイミングを排気弁の閉弁タイミングよりも遅角側にすることができる。このため、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されることを効果的に抑制することができる。
【0080】
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかに記載の水素エンジンにおいて、
前記燃料供給ポートは、
前記燃料供給弁の軸方向に沿って設けられた第1流路部(例えば上述の第1流路部60)と、
前記第1流路部の下流側に設けられた弁座面(例えば上述の弁座面54)と、
前記弁座面の下流側に設けられ、前記第1流路部の流路幅よりも大きな流路幅を有する第2流路部(例えば上述の第2流路部62)と、
を含み、
前記燃料供給弁の弁体部の外周面は、前記第2流路部の流路壁(例えば上述の流路壁64)を摺動するように構成される。
【0081】
上記(6)に記載の水素エンジンによれば、燃料供給弁の弁体部が弁座面から離れても、弁体部の外周面が第2流路部の流路壁を摺動している間は燃料供給ポートが閉鎖された状態を維持することができる。これにより、燃料供給弁の開弁タイミングが吸気弁の開弁タイミングよりも遅角側とすることができる。このため、簡素な構成で(1)に記載の効果を得ることができる。また、(4)に記載の構成よりも燃料供給弁を軽量化することができるため、燃料供給弁の応答性を向上することができる。
【0082】
(7)幾つかの実施形態では、上記(6)に記載の水素エンジンにおいて、
前記エンジンの排気弁の閉弁タイミングでの前記燃料供給弁のリフト量をL、前記燃料供給弁の軸方向における前記第2流路部の長さをH2とすると、H2>0.7Lを満たす。
【0083】
上記(7)に記載の水素エンジンによれば、H2>0.7Lを満たすことにより、燃料供給弁の開弁タイミングを排気弁の閉弁タイミングよりも遅角側にすることができる。このため、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されることを効果的に抑制することができる。
【0084】
(8)本開示の少なくとも一実施形態に係る水素エンジンは、
水素を含む燃料ガスを使用する水素エンジン(例えば上述の水素エンジン2)であって、
シリンダ(例えば上述のシリンダ4)と、
前記シリンダ内を移動可能なピストン(例えば上述のピストン6)と、
前記ピストンとの間に燃焼室(例えば上述の燃焼室20)を形成し、前記燃焼室に接続する吸気ポート(例えば上述の吸気ポート22)と前記燃焼室に接続する燃料供給ポート(例えば上述の燃料供給ポート26)と、前記燃焼室に接続する排気ポート(例えば上述の排気ポート24)とを含むシリンダヘッドと、
前記吸気ポートを開閉するための吸気弁(例えば上述の吸気弁10)と、
前記燃料供給ポートを開閉するための燃料供給弁(例えば上述の燃料供給弁15)と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構(例えば上述の動弁機構18)と、
前記燃料供給弁の開弁期間の少なくとも一部において前記燃料供給ポートの出口部のうち前記排気ポート側の少なくとも一部を覆うように構成されたカバー部(例えば上述のカラー部72、突出部76又は突出部77)と、
を備える。
【0085】
上記(8)に記載の水素エンジンによれば、燃料供給弁の開弁期間の少なくとも一部において燃料供給ポートの出口部のうち排気ポート側の少なくとも一部がカバー部によって覆われるため、燃料供給弁から排気ポート側へ燃料ガスが流れにくくなる。このため、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されることを抑制することができる。
【0086】
(9)幾つかの実施形態では、上記(8)に記載の水素エンジンにおいて、
前記カバー部は、前記燃料供給弁の弁棒における弁体部側に設けられたカラー部(例えば上述のカラー部72)であり、
前記カラー部は、円板又は円柱状に形成されており、前記燃料供給ポートの弁座面に前記燃料供給弁の弁体部が当接した状態において、前記弁座面よりも前記燃料供給弁の軸方向における前記燃料ガスの流れの上流側に位置し、前記弁棒の外径よりも大きな外径を有する。
【0087】
上記(9)に記載の水素エンジンによれば、燃料供給ポートから排気ポート側への燃料ガスの流れをカラー部によって抑制することができる。このため、簡素な構成で上記(8)に記載の効果を得ることができる。
【0088】
(10)幾つかの実施形態では、上記(8)に記載の水素エンジンにおいて、
前記シリンダヘッドは、
シリンダヘッド本体(例えば上述のシリンダヘッド本体52)と、
前記燃料供給ポートの弁座面を形成し、前記シリンダヘッド本体とは別体で構成された弁座部材(例えば上述の弁座部材56)と、
前記シリンダヘッド本体と前記弁座部材とに挟まれたマスクプレート(例えば上述のマスクプレート74)と、
を含み、
前記マスクプレートは、前記燃料供給ポートの流路壁から前記燃料供給弁の弁棒に向けて突出する突出部(例えば上述の突出部76)を含み、
前記カバー部は前記突出部である。
【0089】
上記(10)に記載の水素エンジンによれば、燃料供給ポートから排気ポート側への燃料ガスの流れをマスクプレートの突出部によって抑制することができる。このため、簡素な構成で上記(8)に記載の効果を得ることができる。また、上記(9)の構成と比較して、燃料供給弁の軽量化によって燃料供給弁の応答性を向上することができるとともに、燃料供給弁の製作や品質管理が容易となる。また、燃料供給弁のリフト量に関わらず排気ポート側へ燃料ガスが供給されにくくなることで、シリンダ内の燃料分布が、吸気側で燃料濃度が高く排気側で燃料濃度が低い分布となる。このため、吸気側が排気側よりも先に燃焼するため、ノッキングを抑制することができる(仮に燃料濃度が均一の場合は温度が高い排気側が先に燃えて、吸気側が時間をかけて燃えるため、最後に吸気側の低温の壁面に残されたエンドガスが自着火してノッキングが発生する。)。
【0090】
(11)幾つかの実施形態では、上記(8)に記載の水素エンジンにおいて、
前記シリンダヘッドは、
シリンダヘッド本体(例えば上述のシリンダヘッド本体52)と、
前記燃料供給ポートの弁座面を形成し、前記シリンダヘッド本体とは別体で構成された弁座部材(例えば上述の弁座部材56)と、
を含み、
前記弁座部材は、前記燃料供給ポートの流路壁から前記燃料供給弁の弁棒に向けて突出する突出部(例えば上述の突出部77)を含み、
前記カバー部は、前記突出部である。
【0091】
上記(11)に記載の水素エンジンによれば、燃料供給ポートから排気ポート側への燃料ガスの流れを弁座部材の突出部によって抑制することができる。このため、簡素な構成で上記(8)に記載の効果を得ることができる。また、上記(9)の構成と比較して、燃料供給弁の軽量化によって燃料供給弁の応答性を向上することができるとともに、燃料供給弁の製作や品質管理が容易となる。また、燃料供給弁のリフト量に関わらず排気ポート側へ燃料ガスが供給されにくくなることで、シリンダ内の燃料分布が、吸気側で燃料濃度が高く排気側で燃料濃度が低い分布となる。このため、吸気側が排気側よりも先に燃焼するため、ノッキングを抑制することができる(仮に燃料濃度が均一の場合は温度が高い排気側が先に燃えて、吸気側が時間をかけて燃えるため、最後に吸気側の低温の壁面に残されたエンドガスが自着火してノッキングが発生する。)。また、上記(10)の構成と比較して部品点数を削減することができる。
【0092】
(12)幾つかの実施形態では、上記(8)乃至(11)の何れかに記載の水素エンジンにおいて、
前記吸気ポートから前記燃焼室に流入した吸気の旋回流が前記エンジンの1回転の間に前記燃焼室を何回回るかを示す無次元数を前記旋回流の強さSとし、前記エンジンの1燃焼サイクルのうち、前記エンジンの排気弁の開弁期間と前記燃料供給弁の開弁期間とがオーバーラップしている期間に対応するクランク角度の幅を角度幅OLとし、前記旋回流の強さSと前記角度幅OLとの積を角度θとし、
前記燃料供給弁の軸線の周りの周方向について、前記排気ポート側の範囲をS1とし、前記範囲S1における前記旋回流の回転方向の上流端から前記旋回流の回転方向における上流側への前記角度θの範囲をS2とすると、
前記カバー部は、前記周方向における前記範囲S1と前記範囲S2とを含む範囲に設けられる。
【0093】
上記(12)に記載の水素エンジンによれば、燃焼室に流入した吸気の旋回流の強さSを考慮して、排気弁の開弁期間における燃料供給ポートから排気ポート側への燃料ガスのすり抜けを効果的に抑制することができる。
【0094】
(13)本開示の少なくとも一実施形態に係る水素エンジンは、
水素を含む燃料ガスを使用する水素エンジン(例えば上述の水素エンジン2)であって、
シリンダ(例えば上述のシリンダ4)と、
前記シリンダ内を移動可能なピストン(例えば上述のピストン6)と、
前記ピストンとの間に燃焼室(例えば上述の燃焼室20)を形成し、前記燃焼室に接続する吸気ポート(例えば上述の吸気ポート22)と前記燃焼室に接続する燃料供給ポート(例えば上述の燃料供給ポート26)と、前記燃焼室に接続する排気ポート(例えば上述の排気ポート24)とを含むシリンダヘッド(例えば上述のシリンダヘッド8)と、
前記吸気ポートを開閉するための吸気弁(例えば上述の吸気弁10)と、
前記燃料供給ポートを開閉するための燃料供給弁(例えば上述の燃料供給弁15)と、
前記吸気弁と前記燃料供給弁とに共通して設けられ、前記吸気弁と前記燃料供給弁とを連動させて開閉するように構成された動弁機構(例えば上述の動弁機構18)と、
を備え、
前記シリンダヘッドの下面が平面に沿って形成されており、
前記燃料供給ポートに設けられた弁座面に前記燃料供給弁が当接している状態において前記燃料供給弁の下面(例えば上述の下面66)は、前記シリンダヘッドの下面(例えば上述の下面9)よりも前記燃料供給弁の軸方向における前記燃料ガスの流れの上流側に位置する。
【0095】
上記(13)に記載の水素エンジンによれば、燃料供給ポートに設けられた弁座面に燃料供給弁が当接している状態において燃料供給弁の下面がシリンダヘッドの下面よりも燃料ガスの流れの上流側に位置するため、燃料供給弁の下面がシリンダヘッドの下面よりも燃料ガスの流れの下流側に位置する場合よりも、燃料供給弁が開いてから燃料ガスが排気弁の位置に到達するまでの時間を長くすることができる。このため、吸気弁の開弁期間と排気弁の開弁期間とがオーバーラップする期間があっても、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されることを抑制することができる。このため、エンジン効率の低下を抑制し、高効率な水素エンジンを実現することができる。
【0096】
(14)幾つかの実施形態では、上記(13)に記載の水素エンジンにおいて、
前記エンジンの排気弁の閉弁タイミングでの前記燃料供給弁のリフト量をL、前記燃料供給ポートに設けられた弁座面に前記燃料供給弁が当接している状態での前記燃料供給弁の軸方向における前記燃料供給弁の下面と前記シリンダヘッドの下面との距離をH3とすると、H3>Lを満たす。
【0097】
上記(14)に記載の水素エンジンによれば、H3>Lを満たすことにより、燃料供給弁の開弁タイミングを排気弁の閉弁タイミングよりも遅角側にすることができる。このため、燃料供給ポートから燃焼室に供給された燃料ガスの一部が燃焼されずに排気ポートから排出されることを効果的に抑制することができる。
【符号の説明】
【0098】
2 水素エンジン
4 シリンダ
6 ピストン
8 シリンダヘッド
9 下面
10 吸気弁
12,16 バルブスプリング
14 排気弁
15 燃料供給弁
18 動弁機構
20 燃焼室
22 吸気ポート
24 排気ポート
26 燃料供給ポート
28,34 弁棒
30,36 弁体部
32,38 力受け部
40 吸気カムシャフト
41 吸気カム
42 プッシュロッド
44 吸気用ロッカーアーム
44a 一端部
44b 他端部
46 ロッカーアームシャフト
48 燃料供給弁用アーム
48a 先端部
50,72 カラー部
52 シリンダヘッド本体
53 傾斜面(外周面)
54 弁座面
56 弁座部材
60 第1流路部
62 第2流路部
63 開口端
64,75 流路壁
65 段差
66 下面
70 出口部
74 マスクプレート
76,77 突出部