(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023162184
(43)【公開日】2023-11-08
(54)【発明の名称】蛍光体プレートおよびそれを用いた発光装置
(51)【国際特許分類】
C09K 11/08 20060101AFI20231031BHJP
C09K 11/00 20060101ALI20231031BHJP
C09K 11/02 20060101ALI20231031BHJP
C09K 11/80 20060101ALI20231031BHJP
C04B 35/599 20060101ALI20231031BHJP
H01L 33/50 20100101ALI20231031BHJP
H01L 33/32 20100101ALI20231031BHJP
【FI】
C09K11/08 E
C09K11/00 C
C09K11/02 Z
C09K11/80
C04B35/599
H01L33/50
H01L33/32
【審査請求】有
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2023125391
(22)【出願日】2023-08-01
(62)【分割の表示】P 2020550014の分割
【原出願日】2019-08-21
(31)【優先権主張番号】P 2018189141
(32)【優先日】2018-10-04
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000003296
【氏名又は名称】デンカ株式会社
(74)【代理人】
【識別番号】100110928
【弁理士】
【氏名又は名称】速水 進治
(72)【発明者】
【氏名】久保田 雄起
(72)【発明者】
【氏名】山浦 太陽
(72)【発明者】
【氏名】江本 秀幸
(72)【発明者】
【氏名】伊藤 和弘
(57)【要約】
【課題】発光効率に優れた蛍光体プレートを提供する。
【解決手段】α型サイアロン蛍光体と、アルミナを含む焼結体と、を含む複合体からなる蛍光体プレートである。
【選択図】
図1
【特許請求の範囲】
【請求項1】
α型サイアロン蛍光体と、アルミナを含む焼結体と、を含む複合体からなる蛍光体プレート。
【請求項2】
請求項1に記載の蛍光体プレートであって、
当該蛍光体プレートの熱伝導率が、10W/m・K以上40W/m・K以下である、蛍光体プレート。
【請求項3】
請求項1または2に記載の蛍光体プレートであって、
前記α型サイアロン蛍光体の含有量は、前記複合体全体に対して、体積換算で、5Vol%以上50Vol%以下である、蛍光体プレート。
【請求項4】
請求項1~3のいずれか一項に記載の蛍光体プレートであって、
前記α型サイアロン蛍光体および前記アルミナの含有量の合計値は、前記複合体全体に対して、体積換算で、95Vol%以上100Vol%以下である、蛍光体プレート。
【請求項5】
請求項1~4のいずれか一項に記載の蛍光体プレートであって、
前記α型サイアロン蛍光体は、下記一般式(1)で表されるEu元素を含有するα型サイアロン蛍光体を含む、蛍光体プレート。
(M)m(1-x)/p(Eu)mx/2(Si)12-(m+n)(Al)m+n(O)n(N)16-n ・・一般式(1)
(上記一般式(1)中、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる1種以上の元素を表し、pはM元素の価数、0<x<0.5、1.5≦m≦4.0、0≦n≦2.0を表す。)
【請求項6】
請求項1~5のいずれか一項に記載の蛍光体プレートであって、
前記アルミナが、αアルミナおよびγアルミナからなる群から選択される一種以上を含む、蛍光体プレート。
【請求項7】
請求項1~6のいずれか一項に記載の蛍光体プレートであって、
前記複合体中のα型サイアロン蛍光体の平均粒子径D50が、5μm以上30μm以下である、蛍光体プレート。
【請求項8】
請求項1~7のいずれか一項に記載の蛍光体プレートであって、
当該蛍光体プレートの主面における表面粗さRaが、0.1μm以上2.0μm以下である、蛍光体プレート。
【請求項9】
請求項1~8のいずれか一項に記載の蛍光体プレートであって、
照射された青色光を橙色光に変換して発光する波長変換体として用いる、蛍光体プレート。
【請求項10】
請求項1~9のいずれか一項に記載の蛍光体プレートであって、
450nmの青色光における光線透過率が10%以下である、蛍光体プレート。
【請求項11】
III族窒化物半導体発光素子と、
前記III族窒化物半導体発光素子の一面上に設けられた請求項1~10のいずれか一項に記載の蛍光体プレートと、
を備える、発光装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蛍光体プレートおよびそれを用いた発光装置に関する。
【背景技術】
【0002】
これまで蛍光体プレートにおいて様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、SiO
2系ガラスに無機蛍光体が分散されてなるプレート状の発光色変換部材が記載されている(特許文献1の
図4、請求項1)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、本発明者が検討した結果、上記特許文献1に記載のプレート状の発光色変換部材において、発光効率の点で改善の余地があることが判明した。
【課題を解決するための手段】
【0005】
本発明者はさらに検討したところ、α型サイアロン蛍光体とアルミナ(Al2O3)との適切な材料を組み合わせて複合化することで、安定的な発光効率が得られる蛍光体プレートを実現できることを見出し、本発明を完成するに至った。
【0006】
本発明によれば、
α型サイアロン蛍光体と、アルミナを含む焼結体と、を含む複合体からなる蛍光体プレートが提供される。
【0007】
また本発明によれば、
III族窒化物半導体発光素子と、
前記III族窒化物半導体発光素子の一面上に設けられた上記の蛍光体プレートと、
を備える、発光装置が提供される。
【発明の効果】
【0008】
本発明によれば、発光効率に優れた蛍光体プレート、およびそれを用いた発光装置が提供される。
【図面の簡単な説明】
【0009】
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
【0010】
【
図1】本実施形態の蛍光体プレートの構成の一例を示す模式図である。
【
図2】(a)はフリップチップ型の発光装置の構成を模式的に示す断面図であり、(b)はワイヤボンディング型の発光素子の構成を模式的に示す断面図である。
【
図3】複合体の発光スペクトルを測定するための装置の概略図である。
【
図4】実施例1、2および比較例1の複合体で得られた発光スペクトルである。
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
【0012】
本実施形態の蛍光体プレートの概要を説明する。
本実施形態の蛍光体プレートは、α型サイアロン蛍光体と、アルミナを含む焼結体と、を含む複合体からなる板状部材で構成される。
【0013】
上記蛍光体プレートは、照射された青色光を橙色光に変換して発光する波長変換体として機能し得る。
【0014】
本発明者の知見によれば、複合体を構成する成分として、α型サイアロン蛍光体とアルミナ(Al2O3)との適切な材料の組み合わせることで、安定的な発光効率が得られる蛍光体プレートを実現できることが見出された。
【0015】
詳細なメカニズムは定かでないが、α型サイアロン蛍光体とアルミナとの屈折率差を適度に小さくするで、α型サイアロン蛍光体とガラス粉末(SiO2)との複合体と比べて、α型サイアロン蛍光体から発光された光が取り出しやすくなり、光の変換効率が高まると、考えられる。また、ガラス粉末を使用した場合と比較して、アルミナを使用することで熱伝導率を高められる。これにより、加熱による発光強度の低下が抑制されるため、本実施形態の蛍光体プレートを高出力の発光素子に適用することが可能になる。
【0016】
一方、YAG蛍光体とアルミナとの組み合わせのように屈折率差が小さすぎると、光散乱がしにくくなり、青色光の透過を防ぐためには蛍光体含有率を高める必要がある。これに対して、α型サイアロン蛍光体とアルミナとの屈折率差は適度に大きく、青色光の散乱を促し、低い蛍光体含有率で効率良く青色光の透過を抑制でき、輝度が高い橙色を発光できる、と考えられる。
【0017】
ここで、各成分の屈折率の代表値として、α型サイアロン蛍光体:2程度、YAG蛍光体:約1.8、Al2O3:約1.7、SiO2:約1.4が知られている。
【0018】
上記蛍光体プレートによれば、波長455nmの青色光が照射された場合、蛍光体プレートから発せられる波長変換光のピーク波長は585nm以上605nm以下であることが好ましい。また、これによれば、青色光を発光する発光素子に蛍光体プレートを組み合わせることで、輝度が高い橙色を発光する発光装置を得ることができる。
【0019】
本実施形態の蛍光体プレートの構成について詳述する。
【0020】
上記蛍光体プレートを構成する複合体中には、α型サイアロン蛍光体とアルミナとが混在されている。混在とは、母材(マトリックス相)となるアルミナ中にα型サイアロン蛍光体が分散された状態を意味する。すなわち、複合体は、母材が構成する(多)結晶体の結晶粒間および/または結晶粒内にα型サイアロン蛍光体粒子が分散された構造を有してもよい。このα型サイアロン蛍光体粒子は、母材(アルミナ焼結体)中に均一に分散されていてもよい。
【0021】
(α型サイアロン蛍光体)
本実施形態のα型サイアロン蛍光体は、下記一般式(1)で表されるEu元素を含有するα型サイアロン蛍光体を含むものである。
(M)m(1-x)/p(Eu)mx/2(Si)12-(m+n)(Al)m+n(O)n(N)16-n ・・一般式(1)
【0022】
上記一般式(1)中、MはLi、Mg、Ca、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる1種以上の元素を表し、pはM元素の価数、0<x<0.5、1.5≦m≦4.0、0≦n≦2.0を表す。nは、例えば、2.0以下でもよく、1.0以下でもよく、0.8以下でもよい。
【0023】
α型サイアロンの固溶組成は、α型窒化ケイ素の単位胞(Si12N16)のm個のSi-N結合をAl-N結合に、n個のSi-N結合をAl-O結合に置換し、電気的中性を保つために、m/p個のカチオン(M、Eu)が結晶格子内に侵入固溶し、上記一般式のように表される。特にMとして、Caを使用すると、幅広い組成範囲でα型サイアロンが安定化し、その一部を発光中心となるEuで置換することにより、紫外から青色の幅広い波長域の光で励起され、黄から橙色の可視発光を示す蛍光体が得られる。
【0024】
一般に、α型サイアロンは、当該α型サイアロンとは異なる第二結晶相や不可避的に存在する非晶質相のため、組成分析等により固溶組成を厳密に規定することができない。α型サイアロンの結晶相としては、α型サイアロン単相が好ましく、他の結晶相としてβ型サイアロン、窒化アルミニウム又はそのポリタイポイド、Ca2Si5N8、CaAlSiN3等を含んでいてもよい。
【0025】
α型サイアロン蛍光体の製造方法としては、窒化ケイ素、窒化アルミニウム及び侵入固溶元素の化合物からなる混合粉末を高温の窒素雰囲気中で加熱して反応させる方法がある。加熱工程で構成成分の一部が液相を形成し、この液相に物質が移動することにより、α型サイアロン固溶体が生成する。合成後のα型サイアロン蛍光体は複数の等軸状の一次粒子が焼結して塊状の二次粒子を形成する。本実施形態における一次粒子とは、粒子内の結晶方位が同一であり、単独で存在することができる最小粒子をいう。
【0026】
α型サイアロン蛍光体の平均粒子径の下限は、5μm以上が好ましく、10μm以上がより好ましい。また、α型サイアロン蛍光体の平均粒子径の上限は、30μm以下が好ましく、20μm以下がより好ましい。α型サイアロン蛍光体の平均粒子径は上記二次粒子における寸法である。α型サイアロン蛍光体の平均粒子径を5μm以上とすることにより、複合体の透明性をより高めることができる。一方、α型サイアロン蛍光体の平均粒子径を30μm以下とすることにより、ダイサー等で蛍光体プレートを切断加工する際に、チッピングが生じることを抑制することができる。
【0027】
ここで、α型サイアロン蛍光体の平均粒子径とは、レーザー回析散乱式粒度分布測定法(ベックマンコールター社製、LS13-320)により測定して得られる体積基準粒度分布において、小粒径側からの通過分積算(積算通過分率)50%の粒子径D50をいう。
【0028】
α型サイアロン蛍光体の含有量の下限値は、複合体全体に対して、体積換算で、例えば、5Vol%以上、好ましくは10Vol%以上、より好ましくは15Vol%以上である。これにより、薄層の蛍光体プレートにおける発光強度を高めることができる。また、蛍光体プレートの光変換効率を向上できる。一方、α型サイアロン蛍光体の含有量の上限値は、複合体全体に対して、体積換算で、例えば、50Vol%以下、好ましくは45Vol%以下、より好ましくは40Vol%以下である。蛍光体プレートの熱伝導性の低下を抑制できる。
【0029】
上記焼結体中のアルミナは、可視光の吸収が少ないため、蛍光体プレートの発光強度を高めることができる。また、アルミナは熱伝導性が高いため、アルミナを含む蛍光体プレートにおける耐熱性を向上させることができる。さらには、アルミナは機械的強度にも優れるため、蛍光体プレートの耐久性を高めることができる。
【0030】
上記焼結体中のアルミナは、光の取り出し効率の観点から、不純物が少ないことが望ましい。例えば、上記焼結体中のアルミナにおいて、Al2O3化合物の純度は、例えば、98%wt以上、好ましくは99%wt以上とすることができる。
【0031】
上記焼結体中のアルミナは、αアルミナおよびγアルミナからなる群から選択される一種以上を含むことができる。これにより、蛍光体プレートの光変換効率を向上できる。
【0032】
α型サイアロン蛍光体およびアルミナの含有量の下限値は、例えば、複合体全体に対して、体積換算で、95Vol%以上、好ましくは98Vol%以上、より好ましくは99Vol%以上である。つまり、蛍光体プレートを構成する複合体は、α型サイアロン蛍光体およびアルミナを主成分として含むことを意味する。これにより、耐熱性や耐久性を高められる上に、安定的な発光効率を実現できる。一方、α型サイアロン蛍光体およびアルミナの含有量の上限値は、特に限定されないが、例えば、複合体全体に対して、体積換算で、100Vol%以下としてもよい。
【0033】
上記蛍光体プレートの熱伝導率の下限値は、例えば、10W/m・K以上、好ましくは15W/m・K、より好ましくは20W/m・K以上である。これにより、高熱伝導率を実現できるため、耐熱性に優れた蛍光体プレートを実現できる。一方、上記蛍光体プレートの熱伝導率の上限値は、特に限定されないが、例えば、40W/m・K以下としてもよい。
【0034】
近年、光源の高輝度化により蛍光体が高温化する傾向が知られている。このような場合でも、熱伝導率に優れた蛍光体プレートを用いることにより、高輝度の橙色を安定的に発光させることが可能である。
【0035】
上記蛍光体プレートの少なくとも主面、または主面および裏面の両面における表面が表面処理されていてもよい。表面処理としては、例えば、ダイアモンド砥石等を用いた研削、ラッピング、ポリッシング等の研磨などが挙げられる。
上記蛍光体プレートの主面における表面粗さRaは、例えば、0.1μm以上2.0μm以下、好ましくは0.3μm以上1.5μm以下である。
一方、上記蛍光体プレートの裏面における表面粗さRaは、例えば、0.1μm以上2.0μm以下、好ましくは0.3μm以上1.5μm以下である。
上記表面粗さを上記上限値以下とすることで、光の取り出し効率や、面内方向における光強度のバラツキを抑制できる。上記表面粗さを上記下限値以上とすることで、被着体との密着性を高められることが期待される。
【0036】
上記蛍光体プレートにおいて、450nmの青色光における光線透過率の上限値は、例えば、10%以下、好ましくは5%以下、より好ましくは1%以下である。これにより、青色光が蛍光体プレートを透過することを抑制できるため、輝度が高い橙色を発光できる。α型サイアロン蛍光体の含有量や蛍光体プレートの厚みを適切に調整することで、450nmの青色光における光線透過率を低減できる。
なお、450nmの青色光における光線透過率の下限値は、特に限定されないが、例えば、0.01%以上としてもよい。
【0037】
本実施形態の蛍光体プレートの製造工程について詳述する。
【0038】
本実施形態の蛍光体プレートの製造方法は、アルミナ粉末と、発光中心として少なくともEu元素を含有するα型サイアロン蛍光体粉末とを混合する工程(1)と、アルミナ粉末とα型サイアロン蛍光体粉末との混合物を1300℃以上1700℃以下で加熱して緻密な複合体を焼成する工程(2)とを有することができる。
【0039】
工程(1)において、原料として用いるアルミナ粉末とα型サイアロン蛍光体粉末は、できるだけ高純度であるものが好ましく、構成元素以外の元素の不純物は0.1%以下であることが好ましい。また、本発明の蛍光体プレートはアルミナ粉末の焼結により、緻密化が進行するため、微粉末のアルミナを使用することが好ましく、原料として用いるアルミナ粉末の平均粒子径は1μm以下であることが好ましい。原料粉末の混合は、乾式、湿式の種々の方法を適用できるが、原料として用いるαサイアロン蛍光体粒子が極力粉砕されず、また混合時に装置からの不純物が極力混入しない方法が好ましい。
【0040】
工程(2)において、アルミナ粉末とαサイアロン蛍光体粉末との混合物を1300℃以上1700℃以下で焼成を行う。複合体を緻密化するためには、焼成温度が高い方が好ましいが、焼成温度が高いほど、αサイアロン蛍光体の蛍光特性が低下するので、前記範囲が好ましい。焼成方法は常圧焼結でも加圧焼結でも構わないが、αサイアロン蛍光体の特性低下を抑制し、且つ緻密な複合体を得るために、常圧焼結よりも緻密化させやすい加圧焼結が好ましい。加圧焼結方法としては、ホットプレス焼結や放電プラズマ焼結(SPS)、熱間等方加圧焼結(HIP)などが挙げられる。ホットプレス焼結やSPS焼結の場合、圧力は10MPa以上、好ましくは30MPa以上が好ましく、100MPa以下が好ましい。
焼成雰囲気はαサイアロンの酸化を防ぐ目的のため、窒素やアルゴンなどの非酸化性の不活性ガス、もしくは真空雰囲気下が好ましい。
【0041】
本実施形態の発光装置について説明する。
【0042】
本実施形態の発光装置は、III族窒化物半導体発光素子(発光素子20)と、III族窒化物半導体発光素子の一面上に設けられた上記の蛍光体プレート10と、を備えるものである。III族窒化物半導体発光素子は、例えば、AlGaN、GaN、InAlGaN系材料などのIII族窒化物半導体で構成される、n層、発光層、およびp層を備えるものである。III族窒化物半導体発光素子として、青色光を発光する青色LEDを用いることができる。
蛍光体プレート10は、発光素子20の一面上に直接配置されてもよいが、光透過性部材またはスペーサーを介して配置され得る。
【0043】
発光素子20の上に配置される蛍光体プレート10は、
図1に示す円板形状の蛍光体プレート100(蛍光体ウェハ)を用いてもよいが、蛍光体プレート100を個片化したものを用いることができる。
図1は、蛍光体プレートの構成の一例を示す模式図である。
図1に示す蛍光体プレート100の厚みとしては、例えば、100μm以上1mm以下としてもよい。蛍光体プレート100の厚みは、上記の製造工程で得られた後、研削などにより、適当に調整され得る。
なお、円板形状の蛍光体プレート100は、四角形状の場合と比べて、角部における欠けや割れの発生が抑制されるため、耐久性や搬送性に優れる。
【0044】
上記の半導体装置の一例を、
図2(a)、(b)に示す。
図2(a)はフリップチップ型の発光装置110の構成を模式的に示す断面図であり、
図2(b)はワイヤボンディング型の発光装置120の構成を模式的に示す断面図である。
【0045】
図2(a)の発光装置110は、基板30と、半田40(ダイボンド材)を介して基板30と電気的に接続された発光素子20と、発光素子20の発光面上に設けられた蛍光体プレート10と、を備える。フリップチップ型の発光装置110は、フェイスアップ型およびフェイスダウン型のいずれの構造でもよい。
また、
図2(b)の発光装置120は、基板30と、ボンディングワイヤ60および電極50を介して基板30と電気的に接続された発光素子20と、発光素子20の発光面上に設けられた蛍光体プレート10と、を備える。
図2中、発光素子20と蛍光体プレート10とは、公知の方法で貼り付けられており、例えば、シリコーン系接着剤や熱融着等の方法で貼り合わされてもよい。
また、発光装置110、発光装置120は、全体を透明封止材で封止されていてもよい。
【0046】
なお、基板30に実装された発光素子20に対し、個片化された蛍光体プレート10を貼り付けてもよい。大面積の蛍光体プレート100に複数の発光素子20を貼り付けてから、ダイシングにより、蛍光体プレート10付き発光素子20ごとに個片化してもよい。また、複数の発光素子20が表面に形成された半導体ウェハに、大面積の蛍光体プレート100を貼り付け、その後、半導体ウェハと蛍光体プレート100を一括して個片化してもよい。
【0047】
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
【実施例0048】
以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
【0049】
(実施例1)
実施例1の蛍光体プレートの原料として、アルミナ粉末(TM-DAR、大明化学工業株式会社製)、Ca-αサイアロン蛍光体(アロンブライトYL-600B、デンカ株式会社製、平均粒径D50:15μm)を用いた。アルミナ粉末を7.857g、Ca-αサイアロン蛍光体粉末を2.833g秤量し、メノウ乳鉢により乾式混合した。混合後の原料を目開き75μmのナイロン製メッシュ篩を通して凝集を解き、原料混合粉末を得た。尚、原料の真密度(アルミナ:3.97g/cm3、Ca-αサイアロン蛍光体:3.34g/cm3)から算出した配合比は、アルミナ:Ca-αサイアロン蛍光体=70:30体積%である。
【0050】
約11gの原料混合粉末をカーボン製下パンチをセットした内径30mmのカーボン製ダイスに充填し、カーボン製上パンチをセットし、原料粉末を挟み込んだ。尚、原料混合粉末とカーボン治具の間には固着防止のために、厚み0.127mmのカーボンシート(GraTech社製、GRAFOIL)をセットした。
【0051】
この原料混合粉末を充填したホットプレス治具をカーボンヒーターの多目的高温炉(富士電波工業株式会社製、ハイマルチ5000)にセットした。炉内を0.1Pa以下まで真空排気し、減圧状態を保ったまま、上下パンチを55MPaのプレス圧で加圧した。加圧状態を維持したまま、毎分5℃の速さで1600℃まで昇温した。1600℃に到達後、加熱を止め、室温まで徐冷し、除圧した。その後、外径30mmの焼成物を回収し、平面研削盤と円筒研削盤を用いて、外周部を研削し、直径25mm、厚さ1.5mmの円板状の蛍光体プレートを得た。
実施例1の蛍光体プレートのかさ密度をJIS-R1634:1998に準拠した方法により測定したところ、3.729g/cm3であった。原料の真密度と配合比から算出した混合物の理論密度が3.781g/cm3であるので、実施例1の蛍光体プレートの相対密度は98.6%であった。
実施例1の蛍光体プレートを研磨してSEM観察を実施した結果、アルミナマトリックス相の間にCa-αサイアロン蛍光体粒子が分散した状態が観察された。
なお、JIS B0601:1994に準拠し、表面粗さ測定器(ミツトヨ製、SJ-400)を用いて測定した実施例1の蛍光体プレートの主面の表面粗さRaが1.0μmであり、主面とは反対側の裏面の表面粗さRaが1.0μmであった。
【0052】
(実施例2)
実施例2の蛍光体プレートの原料として、実施例1と同じアルミナ粉末とCa-αサイアロン蛍光体を用いた。アルミナ粉末を6.701g、Ca-αサイアロン蛍光体を3.777g秤量し、メノウ乳鉢で乾式混合した。原料の真密度から算出した配合比は、アルミナ:Ca-αサイアロン蛍光体=60:40体積%である。
実施例2の蛍光体プレートの作製方法は、アルミナ粉末とCa-αサイアロン蛍光体の配合比が異なることを除いて、実施例1の蛍光体プレートの作製方法と同様である。
実施例2の蛍光体プレートのかさ密度を実施例1の測定方法と同様に測定した結果、3.665g/cm3であった。原料混合物の理論密度が3.717g/cm3であるので、実施例2の蛍光体プレートの相対密度は98.6%であった。
実施例2の蛍光体プレートの主面の表面粗さRaは1.0μmであり、主面とは反対側の裏面の表面粗さRaは1.1μmであった。
【0053】
(比較例1)
比較例1の蛍光体プレートの原料として、SiO2粉末(FB-9DCグレード、デンカ株式会社製)、Ca-αサイアロン蛍光体(アロンブライトYL-600B、デンカ株式会社製)を用いた。SiO2粉末を4.354g、Ca-αサイアロン蛍光体粉末を2.723g秤量し、メノウ乳鉢により乾式混合した。混合後の原料を目開き75μmのナイロン製メッシュの篩を通し、原料混合粉末を得た。原料の真密度から算出した配合比は、SiO2:Ca-αサイアロン蛍光体=70:30体積%である。
約7gの原料混合粉末を実施例1と同様にホットプレス用のカーボンダイスに充填し、多目的高温炉により、ホットプレス焼結を行った。炉内を0.1Pa以下まで真空排気し、減圧状態を保ったまま、室温から毎分20℃の速度で昇温し、800℃で窒素ガスを炉内
へ導入し、炉内雰囲気圧力を0.1MPa・Gとした。窒素ガス導入後は毎分5℃の速度で1375℃まで昇温し、1375℃で15分間保持した。その後、毎分5℃の速度で室温まで降温し、除圧した後、外径30mmの焼成物を回収し、実施例1と同様に加工して、直径25mm、厚さ1.5mmの円板状の蛍光体プレートを得た。
【0054】
[熱伝導率測定]
実施例1、2及び比較例1の蛍光体のプレートの室温(25℃)での熱伝導率は、JIS1611:2010に準拠し、フラッシュ法により、測定した。
・熱拡散率:キセノンフラッシュアナライザー(LFA447、ネッチ・ジャパン株式会社製)を用いて測定した。
・比熱容量:JIS K7123に準拠し、DSC測定装置(DSC8000、パーキンエルマー社製)を用いて求めた。
・かさ密度:JIS-R1634:1998に準拠した方法で測定した。
熱伝導率(W/m・K)=かさ密度(g/cm3)×熱拡散率(m2/s)×比熱容量(J/(kg・K))
実施例1の蛍光体プレートの熱伝導率が18W/m・K、実施例2の蛍光体プレートの熱伝導率が15W/m・K、比較例1の蛍光体プレートの熱伝導率が1.9W/m・Kであった。
【0055】
[結晶構造解析]
実施例1、2の蛍光体プレートを乳鉢で粉砕して粉末状のサンプルを作成し、X線回折装置(製品名:UltimaIV、リガク社製)を用いて、得られたサンプルにおける回折パターンを測定した結果、アルミナ焼結体に結晶相が存在することを確認した。この結晶相には、主相としてαアルミナが含まれており、僅かにγアルミナが混在していることが分かった。
【0056】
[光学特性の評価]
蛍光体プレートの光学特性は、チップオンボード型(COB型)のLEDパッケージ130を用いて測定した。
図3は、蛍光体プレート100の発光スペクトルを測定するための装置(LEDパッケージ130)の概略図である。
まず、得られた厚さ1.5mmの円板状の蛍光体プレート100の厚みを0.25mmまで薄く加工し実施した。
次いで、凹部70が形成されたアルミ基板(基板30)を用意した。凹部70の底面の径φを13.5mmとし、凹部70の開口部の径φを16mmとした。基板30の凹部70の内部に、青色発光光源として青色LED(発光素子20)を実装した。
その後、基板30の凹部70の開口部を塞ぐように、青色LEDの上部に円形状の蛍光体プレート100を設置し、
図3に示す装置(チップオンボード型(COB型)のLEDパッケージ130)を作製した。
【0057】
全光束測定システム(HalfMoon/φ1000mm積分球システム、大塚電子株式会社製)を用いて、作製したLEDパッケージ130の青色LEDを点灯した時の、蛍光体プレート100の表面における発光スペクトルを測定した。測定結果を
図4に示す。
【0058】
図4は、実施例1、2および比較例1の蛍光体プレートを使用したときの発光スペクトルを示す。
図4の縦軸の発光強度は、実施例1の最大発光強度を100としたときの相対値である。なお、発光スペクトルにおいて、波長が595nm以上605nmである橙色光(Orange)の発光強度の最大値をT
Oとし、波長が445nm以上465nmである青色光(Blue)の発光強度の最大値をT
Bとしたとき、青色LEDからの青色光の透過量をT
B/T
Oと定義した。
【0059】
図4に示すとおり、実施例1、2および比較例1の発光スペクトルのピーク波長は約600nmであった。しかしながら、実施例1、2におけるピーク波長における発光強度は、比較例1と比べて、高い値を示すことが判明した。
また、実施例1、2および比較例1のいずれにおいても、波長450nm付近に、青色LEDの透過光に由来するスペクトルがわずかに観測された。しかしながら、実施例1、2における青色LEDからの青色光の透過率T
B/T
Oは、比較例1と比べて、同程度の値を示すことが判明した。
なお、実施例1の蛍光体プレートにおいて、波長450nmにおける青色光の光線透過率が1.5%であったことから、十分に青色光の透過が抑制されたことが分かった。
実施例1、2の蛍光体プレートを使用することで、橙色光の蛍光強度に優れており、青色光を橙色光に変換する発光効率に優れた発光装置を実現できることが分かった。
【0060】
この出願は2018年10月4日に出願された日本出願特願2018-189141号を基礎とする優先権を主張し、その開示の全てをここに取り込む。