(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023162631
(43)【公開日】2023-11-09
(54)【発明の名称】プラズマアークハイブリッド溶接装置
(51)【国際特許分類】
B23K 9/16 20060101AFI20231101BHJP
B23K 9/173 20060101ALI20231101BHJP
B23K 10/02 20060101ALI20231101BHJP
B23K 9/095 20060101ALI20231101BHJP
B23K 9/073 20060101ALI20231101BHJP
【FI】
B23K9/16 K
B23K9/173 A
B23K10/02 A
B23K9/095 501F
B23K9/073 545
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022073101
(22)【出願日】2022-04-27
(71)【出願人】
【識別番号】000000262
【氏名又は名称】株式会社ダイヘン
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】藤原 雅之
【テーマコード(参考)】
4E001
4E082
【Fターム(参考)】
4E001AA03
4E001BB08
4E001BB11
4E001DD02
4E001DD04
4E001DF04
4E082AA04
4E082AA09
4E082AB01
4E082EF27
(57)【要約】
【課題】溶接領域の接合幅の広さを拡大することができるプラズマ溶接とアーク溶接とを併用するプラズマアークハイブリッド溶接装置を提供する。
【解決手段】プラズマ溶接と消耗電極式アーク溶接とを併用するプラズマアークハイブリッド溶接装置1は、消耗電極式アーク溶接に用いる第1溶接トーチ30と、第1溶接トーチから溶接の進行方向に離隔して設けられ、プラズマ溶接に用いる第2溶接トーチ20と、プラズマ溶接において、第2溶接トーチ20を溶接の進行方向に対して交差する方向にウィービング動作させるウィービング装置10とを備える。プラズマアークハイブリッド溶接装置1は、溶接対象となる母材においてウィービング装置によりウィービング動作される第2溶接トーチ20を用いたプラズマ溶接により溶接された溶接領域を、第1溶接トーチ30を用いた消耗電極式アーク溶接によりさらに溶接するように溶接を進行させる。
【選択図】
図1
【特許請求の範囲】
【請求項1】
プラズマ溶接と消耗電極式アーク溶接とを併用するプラズマアークハイブリッド溶接装置であって、
前記消耗電極式アーク溶接に用いる第1溶接トーチと、
前記第1溶接トーチから溶接の進行方向に離隔して設けられ、前記プラズマ溶接に用いる第2溶接トーチと、
前記プラズマ溶接において、前記第2溶接トーチを前記溶接の進行方向に対して交差する方向にウィービング動作させるウィービング装置とを備え、
溶接対象となる母材において前記ウィービング装置によりウィービング動作される前記第2溶接トーチを用いた前記プラズマ溶接により溶接された溶接領域を、前記第1溶接トーチを用いた前記消耗電極式アーク溶接によりさらに溶接するように溶接を進行させる、プラズマアークハイブリッド溶接装置。
【請求項2】
前記ウィービング装置による前記ウィービング動作の幅は、前記溶接領域における接合幅に対して少なくとも0.5倍である、請求項1に記載のプラズマアークハイブリッド溶接装置。
【請求項3】
前記消耗電極式アーク溶接による前記溶接領域の幅方向における入熱量の分布のプロファイルは、前記溶接領域の幅方向において中央部から両端部に向かって入熱量が減少するプロファイルであり、
前記プロファイルに応じて、前記溶接領域の幅方向において中央部から両端部に向かって入熱量が増加する分布となるように、前記プラズマ溶接における溶接電流を制御する制御装置をさらに備えた、請求項1または請求項2に記載のプラズマアークハイブリッド溶接装置。
【請求項4】
前記消耗電極式アーク溶接においては、短絡移行溶接を行なう、請求項1または請求項2に記載のプラズマアークハイブリッド溶接装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、プラズマ溶接とアーク溶接とを併用するプラズマアークハイブリッド溶接装置に関する。
【背景技術】
【0002】
プラズマ溶接とアーク溶接とを併用する従来の溶接方法としては、プラズマ電極を中空形状とし、プラズマ電極内に配置された給電チップを介して給電される溶接ワイヤを中空形状内を通って送給し、給電チップと母材との間にミグ溶接電圧を印加してミグ溶接電流を通電することによってミグアークを発生させるプラズマミグ溶接方法がある(特許文献1)。このようなプラズマミグ溶接方法では、ビード止端部のなじみを良好にするためのなどの目的で、プラズマ電極がウィービングさせられる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1に記載された溶接方法を実現する溶接装置においては、プラズマ電極と、給電チップとが同軸的に配置されており、プラズマ電極のウィービング動作が制限されるので、溶接領域の接合幅が狭くなるという問題があった。
【0005】
本開示は、溶接領域の接合幅の広さを拡大することができるプラズマ溶接とアーク溶接とを併用するプラズマアークハイブリッド溶接装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示は、プラズマ溶接と消耗電極式アーク溶接とを併用するプラズマアークハイブリッド溶接装置に関する。プラズマアークハイブリッド溶接装置は、消耗電極式アーク溶接に用いる第1溶接トーチと、第1溶接トーチから溶接の進行方向に離隔して設けられ、プラズマ溶接に用いる第2溶接トーチと、プラズマ溶接において、第2溶接トーチを溶接の進行方向に対して交差する方向にウィービング動作させるウィービング装置とを備える。プラズマアークハイブリッド溶接装置は、溶接対象となる母材においてウィービング装置によりウィービング動作される第2溶接トーチを用いたプラズマ溶接により溶接された溶接領域を、第1溶接トーチを用いた消耗電極式アーク溶接によりさらに溶接するように溶接を進行させる。
【発明の効果】
【0007】
本開示のプラズマアークハイブリッド溶接装置によれば、溶接領域の接合幅の広さを拡大することができる。
【図面の簡単な説明】
【0008】
【
図1】実施の形態1のプラズマアークハイブリッド溶接方法を実施するためのプラズマアークハイブリッド溶接装置1の構成図である。
【
図2】実施の形態1のプラズマアークハイブリッド溶接装置1における第2溶接トーチ20のウィービング動作の状態を示す母材4の平面図である。
【
図3】実施の形態1のプラズマアークハイブリッド溶接装置1による溶接の接合幅方向の入熱量の分布を示す図である。
【
図4】消耗電極式アーク溶接による入熱量の分布のプロファイルに応じた第2溶接トーチ20の出力制御の処理手順を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
【0010】
[実施の形態1]
図1は、実施の形態1のプラズマアークハイブリッド溶接方法を実施するためのプラズマアークハイブリッド溶接装置1の構成図である。
【0011】
プラズマアークハイブリッド溶接装置1は、溶接トーチユニットWTと、電源ユニットPSとを備える。電源ユニットPSは、プラズマ溶接電源装置11と、アーク溶接電源装置12とを含む。溶接トーチユニットWTは、第1溶接トーチ30、第2溶接トーチ20、ウィービング装置10、および、図示しないガスノズルを含む。
【0012】
第1溶接トーチ30は、消耗電極式アーク溶接に用いられる溶接トーチであり、給電チップ3と溶接ワイヤ7とを含む。消耗電極式アーク溶接には、例えばミグ溶接またはマグ溶接などの各種の消耗電極式のアーク溶接が含まれる。第2溶接トーチ20は、プラズマ溶接に用いられる溶接トーチであり、プラズマ電極2を含む。第2溶接トーチ20は、第1溶接トーチ30から溶接の進行方向に離隔して設けられる。溶接の進行方向は、図中において矢印で示されている。ウィービング装置10は、ウィービング機構8およびウィービング駆動装置9を含む。
【0013】
溶接トーチユニットWTにおいて、ガスノズルからは、たとえばアルゴンガス、アルゴンガスと炭酸ガスとの混合ガス等のシールドガスが供給される。第1溶接トーチ30において、給電チップ3に設けられた貫通孔からは、溶接ワイヤ7が送給される。給電チップ3は、溶接ワイヤ7に対して導通している。しかし、溶接ワイヤ7は、プラズマ電極2とは絶縁されている。溶接ワイヤ7は、図示しないが、送給モータを駆動源とする送給ロールの回転によって送給される。
【0014】
第2溶接トーチ20において、プラズマ電極2は、たとえば銅または銅合金で形成されている。プラズマ電極2は、冷却水によって直接的または間接的に冷却されていることが好ましい。
【0015】
溶接トーチユニットWTは、ロボット等によって保持された状態で、母材4に対して図中の矢印で示すような溶接方向に移動する。第2溶接トーチ20において、プラズマ電極2と母材4との間には、プラズマアーク5が発生する。第1溶接トーチ30において、溶接ワイヤ7の先端と母材4との間には、消耗電極式アーク6が発生する。以下の説明においては、プラズマ溶接において発生させるアークをプラズマアークと呼び、消耗電極式アーク溶接において発生させる消耗電極式アークを単にアークと呼ぶことにより、名称を区別して記載する。
【0016】
プラズマ溶接電源装置11は、プラズマ電極2と母材4との間にプラズマ溶接電圧を印加することによりプラズマ溶接電流を通電するための電源である。アーク溶接電源装置12は、給電チップ3を介して溶接ワイヤ7と溶接対象となる母材4との間に、アーク溶接電圧を印加することにより、アーク溶接電流を通電するための電源である。
【0017】
プラズマ溶接電源装置11は、マイクロコンピュータを含み、当該マイクロコンピュータにより、前述のプラズマ溶接電流を制御する機能、および、ウィービング装置10を制御することにより第2溶接トーチ20をウィービング動作させる機能も有する。このように、プラズマ溶接電源装置11は、制御装置としての機能も有する。
【0018】
アーク溶接電源装置12は、マイクロコンピュータを含み、当該マイクロコンピュータにより、前述のアーク溶接電流を制御する機能、および、第1溶接トーチ30における溶接ワイヤ7の送り速度を制御する機能も有する。このように、アーク溶接電源装置12は、制御装置としての機能も有する。
【0019】
ウィービング機構8は、第2溶接トーチ20をウィービング動作させる機構である。ウィービング機構8は、ウィービング駆動装置9により駆動され、第2溶接トーチ20をウィービング動作させる。ウィービング駆動装置9は、ステッピングモータよりなる駆動源、および、駆動源の駆動回路を含む。プラズマ溶接電源装置11は、ウィービング駆動装置9の駆動回路に制御信号を送る。ウィービング機構8は、ウィービング駆動装置9におけるステッピングモータの回転運動を滑子クランク機構により直線運動に変換する機構が用いられる。なお、ウィービング機構8は、ラックアンドピニオン機構など、テッピングモータの回転運動を直線運動に変換する機構であれば、その他の構成を用いてもよい。また、ウィービング駆動装置9は、駆動源として、ステッピングモータ以外のモータを用いてもよい。
【0020】
第2溶接トーチ20は、溶接の進行方向に対して交差する方向にウィービング動作をさせられる。ウィービング駆動装置9では、プラズマ溶接電源装置11から供給される制御信号によりステッピングモータが制御される。ウィービング機構8では、ウィービング駆動装置9におけるステッピングモータの回転運動が滑り子クランク機構により直線運動に変換されることにより、第2溶接トーチ20を溶接方向に交差する方向にウィービングさせる。このようなウィービング機構8とウィービング駆動装置9とによりウィービング装置10が構成される。
【0021】
プラズマアークハイブリッド溶接装置1では、溶接をする場合に、矢印で示されるような溶接の進行方向に溶接トーチユニットWTが移動させられる。このように溶接が行なわれる場合は、溶接対象となる母材4においてウィービング装置10によりウィービング動作される第2溶接トーチ20を用いたプラズマ溶接により溶接された溶接領域を、第1溶接トーチ30を用いた消耗電極式アーク溶接によりさらに溶接するように溶接が進行させられる。
【0022】
言い換えると、プラズマアークハイブリッド溶接装置1により溶接が行なわれる場合は、母材4における溶接領域に対して、先にウィービング装置10によりウィービング動作される第2溶接トーチ20を用いたプラズマアークによる溶接が行なわれ、その後に第1溶接トーチ30を用いた消耗電極式アーク溶接による溶接が続いて行なわれる。
【0023】
図2は、実施の形態1のプラズマアークハイブリッド溶接装置1における第2溶接トーチ20のウィービング動作の状態を示す母材4の平面図である。
【0024】
図2を参照して、第2溶接トーチ20のウィービング動作の動作イメージが、動作パターン21により示されている。動作パターン21では、ウィービング動作の進行方向が矢印で示される。プラズマアークハイブリッド溶接装置1が母材4を接合する溶接をする場合の接合領域である溶接領域22において、第2溶接トーチ20のウィービング動作の幅W1は、溶接領域22における接合幅W2に対して0.5倍(1/2×W2)以上となるように設定される。
【0025】
ウィービング装置10では、プラズマアークハイブリッド溶接装置1で溶接が行なわれる場合に、ウィービング装置10において、ウィービング駆動装置9がウィービング機構8を駆動することにより、前述のように設定された幅W1で第2溶接トーチ20がウィービング動作をさせられる。第2溶接トーチ20のウィービング動作は、一定周期で実行される。第2溶接トーチ20のウィービング動作の周期は、プラズマ溶接電源装置11により制御される。
【0026】
図3は、実施の形態1のプラズマアークハイブリッド溶接装置1による溶接の接合幅方向の入熱量の分布を示す図である。
図3(a)は、第2溶接トーチ20からのプラズマアークによるプラズマ溶接の入熱量の分布を示す。
図3(b)は、第1溶接トーチ30からのアークによる消耗電極式アーク溶接の入熱量の分布を示す。
図3(c)は、第2溶接トーチ20からのプラズマアークによる入熱量と第1溶接トーチ30からのアークによる入熱量との和の分布を示す。すなわち、
図3(c)は、第2溶接トーチ20からのプラズマアークによるプラズマ溶接と、第1溶接トーチ30からのアークによる消耗電極式アーク溶接とのトータルの入熱量の分布を示している。各図において、縦軸は、入熱量Qを示し、Y軸方向は、溶接の接合幅方向を示す。入熱量Qは、幅方向の各点において、溶接開始から終了までのトータルの入熱量(J)である。
【0027】
第2溶接トーチ20からのプラズマアークによる入熱量の分布は、
図3(a)に示されるように、幅方向の中央Cにおける入熱量が少なく、両端部へ向かうにつれて入熱量が多くなるプロファイルである。
【0028】
第1溶接トーチ30からのアークによる入熱量の分布は、
図3(b)に示されるように、幅方向の中央Cにおける入熱量が多く、両端部へ向かうにつれて入熱量が少なくなるプロファイルとなる。したがって、第2溶接トーチ20からのプラズマアークによる入熱量と第1溶接トーチ30からのアークによる入熱量との和の熱分布は、
図3(c)に示されるように、幅方向において略均一となっている。
【0029】
プラズマアークハイブリッド溶接装置1では、
図3(b)のような第1溶接トーチ30からのアークによる入熱量のプロファイルを考慮して、
図3(a)のような第2溶接トーチ20からのプラズマアークによる入熱量と
図3(b)のような第1溶接トーチ30からのアークによる入熱量との和の熱分布のプロファイルが
図3(c)のように幅方向において略均一となるように、第2溶接トーチ20からのプラズマアークのウィービングパターンが決定し、その入熱量のプロファイルが決定される。そして、その第2溶接トーチ20からのプラズマアークによる入熱量のプロファイルに基づいて、第2溶接トーチ20からのプラズマアークの出力制御がプラズマ溶接電源装置11により行なわれる。
【0030】
第2溶接トーチ20からのプラズマアークの出力制御は、プラズマ溶接電源装置11により、例えば次のように行なわれる。プラズマ溶接電源装置11においては、第2溶接トーチ20のウィービング動作の動作パターンから、第2溶接トーチ20の現在のウィービング動作位置を確認し、確認したウィービング動作位置に応じて、前述のように決定されたプラズマアークによる入熱量のプロファイルに対応する入熱量となるように、プラズマアークの出力を制御する。
【0031】
溶接領域への入熱量および各溶接プロセスの熱分布によって溶接領域の機械的特性が決まることから、前述のように第2溶接トーチ20からのプラズマアークによる入熱量と第1溶接トーチ30からのアークによる入熱量との和を調整することにより、溶接領域において所望の機械的特性を得ることができる。そして、第2溶接トーチ20からのプラズマアークによる入熱量と第1溶接トーチ30からのアークによる入熱量との和を幅方向において均一化することにより、生成される金属間化合物が一部に集中することのない、品質の高い溶接ビードを形成することができる。
【0032】
なお、特に異材接合の溶接(たとえば、アルミニウム合金板と溶融亜鉛メッキ鋼板との溶接等)においては、金属間化合物の生成量およびその分布を制御する上で、溶融金属の量およびその分布を制御する必要がある。実施の形態1では、第2溶接トーチ20からのプラズマアークによる入熱量のプロファイルを調整することにより、主に母材の溶融を調整することができ、溶接のビード幅と、溶融池の深さ(溶込深さ)およびその分布とを調整することができる。また、第1溶接トーチ30の出力をアーク溶接電源装置12によって調整することにより、主に溶接ワイヤ7の溶融を調整することができ、溶融金属の量を調整することができる。
【0033】
次に、プラズマ溶接電源装置11により実行される第2溶接トーチ20の出力制御に関する制御処理の一例を説明する。
図4は、消耗電極式アーク溶接による入熱量の分布のプロファイルに応じた第2溶接トーチ20の出力制御の処理手順を示すフローチャートである。
【0034】
プラズマ溶接電源装置11では、消耗電極式アーク溶接による入熱量の分布のプロファイルに応じた第2溶接トーチ20の出力制御をする場合に、マイクロコンピュータが以下のような処理を実行する。
【0035】
ステップS1では、現在の状態が溶接動作の開始後の状態であるか否かを確認する。ステップS1で溶接動作の開始後の状態ではない場合、すなわち、溶接動作の開始前の状態であると判定された場合は、ステップS2において、
図3(b)のような消耗電極式アーク溶接の入熱量の熱分布のプロファイルのデータを取得する。ステップS1で取得するプロファイルのデータは、プラズマ溶接電源装置11が備えるメモリに予め記憶されている。
【0036】
ステップS3では、
図3(b)のような消耗電極式アーク溶接の入熱量の熱分布のプロファイルから、第2溶接トーチ20からのプラズマアークによる入熱量と第1溶接トーチ30からのアークによる入熱量との和を幅方向において均一化できる
図3(a)のようなプラズマ溶接の入熱量の熱分布のプロファイルを決定する。ステップS3では、決定されたプロファイルのデータが、プラズマ溶接電源装置11が備えるメモリに記憶される。
【0037】
プラズマ溶接電源装置11のマイクロコンピュータにおいては、プラズマ溶接電源装置11が通電するプラズマ溶接電流とプラズマアークによる入熱量との関係を示す溶接電流と入熱量との関係データがメモリに記憶されている。
【0038】
ステップS4では、ステップS3で決定されたプラズマ溶接の入熱量の熱分布のプロファイルのデータと、メモリに記憶されている溶接電流と入熱量との関係を示すデータとに基づいて、ステップS3で決定されたプラズマ溶接の入熱量の熱分布のプロファイルを実現することが可能となるウィービング動作位置と溶接電流値との相関関係を示す溶接電流テーブルのデータを作成する。ステップS4では、作成された溶接電流テーブルのデータが、プラズマ溶接電源装置11が備えるメモリに記憶される。
【0039】
その後、現在の状態が、前述のステップS1で溶接動作の開始後の状態、すなわち、溶接動作の実行中の状態であると判定された場合は、ステップS5において、プラズマ溶接における第2溶接トーチ20の現在のウィービング動作位置のデータを取得する。ステップS5では、プラズマアークハイブリッド溶接装置1の溶接動作の実行時において、プラズマ溶接電源装置11からウィービング駆動装置9に送るステッピングモータの制御信号(パルス信号数)をモニタリングすることに基づいて、ステッピングモータの現在の回転角度を認識し、現在の回転角度に対応する現在のウィービング動作位置のデータを取得する。なお、第2溶接トーチ20の現在のウィービング動作位置は、イメージセンサなどの第2溶接トーチ20の位置を検出可能なセンサを設け、そのようなセンサにより現在のウィービング動作位置を検出することにより取得してもよい。
【0040】
ステップS6では、ステップS4で作成された溶接電流テーブルのデータから、ステップS5で取得した現在のウィービング動作位置のデータに対応する溶接電流を決定する。これにより、現在のウィービング動作位置に対応して、S3で決定されたプラズマ溶接の入熱量の熱分布のプロファイルを実現する溶接電流が決定される。
【0041】
ステップS7では、プラズマ溶接の溶接電流値を、ステップS6で決定された溶接電流値に制御する。これにより、第2溶接トーチ20からのプラズマアークによる入熱量が
図3(a)のような熱分布のプロファイルとなるように、プラズマ溶接電源装置11によりプラズマ溶接が制御される。
【0042】
なお、前述したステップS2~ステップS4の処理は、プラズマアークハイブリッド溶接装置1の電源投入後において溶接動作の開始前に実行される例を示した。しかし、前述したステップS2~ステップS4の処理は、プラズマ溶接電源装置11のマイクロコンピュータとは別のコンピュータにより事前に実行してもよい。その場合には、ステップS3で決定されるプラズマ溶接の入熱量の熱分布のプロファイルのデータ、および、ステップS4で作成される溶接電流テーブルのデータをプラズマ溶接電源装置11のメモリとは異なる記憶媒体に記憶しておき、その記憶媒体からプラズマ溶接電源装置11のメモリにデータを転送することにより、プラズマ溶接電源装置11のメモリがこれらのデータを記憶するようにしてもよい。
【0043】
前述したステップS1~ステップS7の処理が実行されることにより、第2溶接トーチ20からのプラズマアークによる入熱量が
図3(a)のような熱分布のプロファイルとなるように、プラズマ溶接電源装置11によりプラズマ溶接を制御することができる。
【0044】
以上説明した実施の形態1のプラズマアークハイブリッド溶接装置1によれば、
図1に示すように、プラズマ溶接に用いる第2溶接トーチ20が、消耗電極式アーク溶接に用いる第1溶接トーチ30から溶接の進行方向に離隔して設けられる。そして、溶接対象となる母材4においてウィービング装置10によりウィービング動作される第2溶接トーチ20を用いたプラズマ溶接で溶接された溶接領域22を、第1溶接トーチ30を用いた消耗電極式アーク溶接でさらに溶接するように溶接を進行させることにより、ウィービング動作が制限されなくなるので、プラズマ溶接の溶接領域の接合幅の広さを拡大することができる。
【0045】
また、
図2に示すように、第2溶接トーチ20のウィービング動作の幅W1は、溶接領域22における接合幅W2に対して0.5倍(W2×1/2)以上となるように設定される。これにより、第2溶接トーチ20のウィービング動作の幅W1を適切な幅にして、溶接領域22の溶着強度を高めることができる。
【0046】
また、
図3(a)に示すように、消耗電極式アーク溶接による溶接領域22の幅方向における入熱量の分布のプロファイルは、溶接領域22の幅方向において中央部から両端部に向かって入熱量が減少するプロファイルである。そのようなプロファイルに応じて、
図4のステップS5~ステップS7では、溶接領域22の幅方向において中央部から両端部に向かって入熱量が増加する分布となるように、プラズマ溶接における溶接電流を制御するので、第2溶接トーチ20からのプラズマアークによる入熱量と第1溶接トーチ30からのアークによる入熱量との和を幅方向において均一化することが可能となるため、生成される金属間化合物が一部に集中することのない、品質の高い溶接ビードを形成することができる。
【0047】
[実施の形態2]
実施の形態2では、実施の形態1に示したプラズマアークハイブリッド溶接装置1の消耗電極式アーク溶接において、短絡移行溶接を行なう例を説明する。実施の形態1では、短絡移行溶接をしない例が示されている。短絡移行溶接は、溶接ワイヤ7が溶接中アークなどの熱によって溶融金属がたまった溶融池に接触するたびに、溶融金属が母材へ移行するアーク溶接である。短絡移行溶接は、例えば溶接電流値の設定を標準的な溶接電流値よりも低くしてアーク長を短くすることにより行なうことができる。
【0048】
実施の形態2における短絡移行溶接は、実施の形態1に示した
図1~
図4と同様の構成により、実現することができる。このように、実施の形態1に示した構成のプラズマアークハイブリッド溶接装置1の消耗電極式アーク溶接において、アーク溶接電源装置12により溶接電流を制御して短絡移行溶接を行えば、次のような技術的効果を得ることができる。
【0049】
プラズマアークハイブリッド溶接装置1におけるプラズマ溶接は、ウィービング動作が行なわれるので、ウィービング動作中にプラズマ溶接および消耗電極式アーク溶接において極間距離が変化する。極間距離が変化すると、プラズマ溶接および消耗電極式アーク溶接において、働く電磁力が変化することにより、発生するアークが不安定になりやすいという問題が生じる。
【0050】
実施の形態2では、消耗電極式アーク溶接においてアーク長が短い短絡移行溶接を行なうことにより、消耗電極式アーク溶接におけるアークを安定化することができる。
【0051】
実施の形態2による消耗電極式アーク溶接において短絡移行溶接を行なう構成では、次のような溶接結果が得られた。
【0052】
厚さ1.6mmの亜鉛めっき鋼板と厚さ2.0mmのアルミとの重ね隅肉継手において、先行溶接として実行するプラズマ溶接の条件を、ウィービング幅5.0mm、ウィービング周波数10Hz、溶接電流100Aとし、後行溶接として短絡移行溶接を実行する消耗電極式アーク溶接の条件を、溶接電流100A、溶接速度1.0m/分とした溶接を行なった。その溶接結果としては、溶接の進行方向の接合幅を5.0mm確保しつつ、母材の溶融が表面のみに抑えられ、金属間化合物の生成が抑制された。これにより、割れのない接合をすることが可能であった。一方、プラズマ溶接においてウィービングを行なわずに溶接を行った場合には、溶融幅が狭くなり、オーバーラップを生じるとともに、母材が溶融し、母材に割れが発生した。
【0053】
以上説明したように、実施の形態1,2のプラズマアークハイブリッド溶接装置1によれば、プラズマ溶接に用いられる第2溶接トーチ20と、消耗電極式アークプラズマ溶接に用いられる第1溶接トーチ30とが溶接の進行方法に離隔して設けられ、溶接ウィービング動作を行なうプラズマ溶接が先行溶接として実行され、消耗電極式アーク溶接が後行溶接として実行されることより、ウィービング動作が制限されなくなるので、プラズマ溶接の溶接領域の接合幅の広さを拡大することができる。
【0054】
なお、実施の形態1,2では、消耗電極式アーク溶接において、第1溶接トーチ30についてウィービング動作をさせない例を示した。しかし、これに限らず、第1溶接トーチ30についは、ウィービング動作をさせてもよい。
【0055】
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0056】
1 プラズマアークハイブリッド溶接装置、30 第1溶接トーチ、20 第2溶接トーチ、10 ウィービング装置。