(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023163336
(43)【公開日】2023-11-10
(54)【発明の名称】直交加速飛行時間型質量分析装置、及びその調整方法
(51)【国際特許分類】
H01J 49/40 20060101AFI20231102BHJP
H01J 49/06 20060101ALI20231102BHJP
H01J 49/00 20060101ALI20231102BHJP
H01J 49/26 20060101ALI20231102BHJP
G01N 27/62 20210101ALI20231102BHJP
【FI】
H01J49/40 100
H01J49/06 100
H01J49/00 310
H01J49/00 360
H01J49/26
G01N27/62 D
G01N27/62 G
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022074176
(22)【出願日】2022-04-28
(71)【出願人】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】110001069
【氏名又は名称】弁理士法人京都国際特許事務所
(72)【発明者】
【氏名】大城 朝是
(72)【発明者】
【氏名】内山 皓介
【テーマコード(参考)】
2G041
5C038
【Fターム(参考)】
2G041CA01
2G041DA05
2G041GA06
2G041GA08
5C038HH26
5C038HH28
5C038HH30
(57)【要約】
【課題】直交加速飛行時間型質量分析装置において、高い測定感度と高い質量分解能の両方を得る。
【解決手段】イオン源201と、イオンの飛行方向を偏向する直交加速電極242と、該偏向されたイオンの飛行経路を規定する飛行経路規定電極244、246、247と、該飛行経路を飛行したイオンを検出するイオン検出部245と、直交加速電極及び飛行経路規定電極に電圧を印加する電圧印加部3と、電圧印加部から直交加速電極に印加する電圧の値が異なる複数の測定条件で所定量の既知試料から生成される所定の既知イオンを測定することによりマススペクトルデータを取得する測定制御部43と、該複数の測定条件のそれぞれで取得されたマススペクトルデータにおけるマスピークの強度及び質量分解能を用いて所定の計算式に基づきスコア値を算出するスコア値算出部44とを備える直交加速飛行時間型質量分析装置1。
【選択図】
図1
【特許請求の範囲】
【請求項1】
イオン源と、
前記イオン源から入射するイオンの飛行方向を偏向する直交加速電極と、
前記直交加速電極で偏向されたイオンの飛行経路を規定する飛行経路規定電極と、
前記飛行経路を飛行したイオンを検出するイオン検出部と、
前記直交加速電極及び前記飛行経路規定電極のそれぞれに電圧を印加する電圧印加部と、
前記電圧印加部から前記直交加速電極に印加する電圧の値が異なる複数の測定条件で、所定量の既知試料から生成される所定の既知イオンを測定することによりマススペクトルデータを取得する測定制御部と、
前記複数の測定条件のそれぞれで取得された前記マススペクトルデータにおけるマスピークの強度及び質量分解能を用いて所定の計算式に基づきスコア値を算出するスコア値算出部と
を備える直交加速飛行時間型質量分析装置。
【請求項2】
前記電圧印加部は、前記直交加速電極に対して、所定の周期で前記イオンの飛行方向を偏向するパルス電圧を印加し、それ以外の時間帯に待機時電圧を印加するものであり、
前記測定制御部は、前記待機時電圧の値が異なる複数の測定条件で前記マススペクトルデータを取得する
ものである、請求項1に記載の直交加速飛行時間型質量分析装置。
【請求項3】
さらに、前記測定制御部が、前記飛行経路規定電極に印加する電圧の値が異なる複数の測定条件で、前記既知イオンを測定することによりマススペクトルデータを取得する
ものである、請求項1に記載の直交加速飛行時間型質量分析装置。
【請求項4】
さらに、
前記マスピークの強度に対する係数と前記質量分解能に対する係数の入力を受け付けるチューニング条件設定部
を備え、
前記スコア値算出部は、前記マスピークの強度から算出された強度パラメータ値に該マスピークの強度に対する係数を乗じた値と、前記質量分解能から算出された分解能パラメータ値に該質量分解能に対する係数を乗じた値の和として前記スコア値を算出する
ものである、請求項1に記載の直交加速飛行時間型質量分析装置。
【請求項5】
前記強度パラメータ値は、前記複数の測定条件で取得されたマススペクトルデータのうち最も大きなマスピークの強度の値を基準として規格化された値であり、前記分解能パラメータ値は、前記複数の測定条件で取得されたマススペクトルデータのうち最も高い質量分解能の値を基準として規格化された値である、請求項4に記載の直交加速飛行時間型質量分析装置。
【請求項6】
イオン源で試料から所定の既知イオンを生成するステップと、
直交加速電極に電圧を印加して前記イオン源から入射するイオンの飛行方向を偏向し、飛行経路規定電極によって規定される飛行経路を飛行させるステップと、
前記飛行経路を飛行する間に質量分離されたイオンを検出してマススペクトルデータを取得するステップと、
前記マススペクトルデータにおける前記既知イオンのマスピークの強度及び質量分解能を用いて所定の計算式に基づきスコア値を算出するステップと
を含み、
前記直交加速電極に印加する電圧の値が異なる複数の測定条件のそれぞれについて前記スコア値を算出し、
前記複数の測定条件のそれぞれについて算出された前記スコア値に基づいて、前記直交加速電極に印加する電圧の値を決定する
ものである、直交加速飛行時間型質量分析装置の調整方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、直交加速飛行時間型質量分析装置に関する。
【背景技術】
【0002】
試料に含まれる未知化合物を同定したり、既知化合物を定量したりするために、質量分析装置が用いられている。質量分析装置では、例えば液体試料に電荷を付与して噴霧することによって該液体試料に含まれる各種の化合物をイオン化し、それらのイオンを質量電荷比に応じて分離し、質量電荷比毎にイオンの強度を測定する。こうして得られた測定データに基づいて、イオンの質量電荷比と測定強度を2軸とするグラフを描画することによりマススペクトルを作成する。そして、マススペクトル上のマスピークの質量電荷比に基づいて未知化合物を同定し、マスピークの強度に基づいて既知化合物を定量する。
【0003】
質量分析装置は、イオン化部、イオン輸送光学系、質量分離部、イオン検出部などのユニットで構成されており、それぞれにイオンを収束させるなどの電場を形成するための電極が配置されている。質量分析装置を据付した直後や、試料に含まれる微量の目的化合物を測定する前には、質量分析装置の各部に設けられた電極に印加する電圧を調整して最適化する作業が行われる。特許文献1には、それらの各電極に印加する電圧を自動的に調整(オートチューニング)することが記載されている。オートチューニングでは、所定量の標準物質を含む試料を質量分析装置に導入し、各電極に印加する電圧の値を変更しながら該標準物質から生成される所定の既知イオンの強度を測定する。そして、イオンの測定強度が最も大きくなる(最も測定感度が高くなる)ように各電極に印加する電圧の値を決定する。
【0004】
試料に含まれる化合物を高質量分解能で質量分離するために、直交加速飛行時間型質量分析装置が用いられている。直交加速飛行時間型質量分析装置では、イオン源で生成されたイオン群の飛行方向を直交加速部で直交方向に偏向するとともに一定の運動エネルギーを付与して所定の飛行経路に導入し、該測定飛行経路を飛行したイオンの強度を順次、測定する。イオン源からは複数のイオンが一群のイオンとして直交加速部に供給されるが、各イオン群に含まれる複数のイオンは直交加速部にある程度の広がりをもって入射する。それら複数のイオンは直交加速部において、入射方向と直交する方向に偏向されて測定飛行空間内を飛行するため、直交加速部への入射方向に関しては、群内のイオンの広がりの影響を受けることなく高い質量分解能を得ることができる。特許文献2及び3には、こうした直交加速飛行時間型質量分析装置において、イオンの検出強度が最も高くなるように、あるいはイオンの質量分解能が最も高くなるように各電極に印加する電圧の値を調整することが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2018-120804号公報
【特許文献2】国際公開第2004/030025号
【特許文献3】米国特許出願公開第2021/0111013号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
四重極電場によりイオンを質量分離する質量分析装置や、イオントラップで捕捉したイオンを飛行空間に放出するイオントラップ飛行時間型質量分析装置では、イオンの検出強度が最も高くなるように各電極に印加する電圧の値を調整すると、高い質量分解能も同時に得られる。あるいは、質量分解能が最も高くなるように測定パラメータの値を調整することによっても、高い感度が同時に得られる。しかし、直交加速飛行時間型質量分析装置では、イオンの測定感度が最も高くなるように測定パラメータの値を最適化しても質量分解能に関しては最適化されるとは限らず、また、イオンの質量分解能が最も高くなるように測定パラメータの値を最適化しても測定感度に関しては最適化されるとは限らないことが分かった。
【0007】
本発明が解決しようとする課題は、直交加速飛行時間型質量分析装置において、高い測定感度と高い質量分解能の両方を得ることができる技術を提供することである。
【課題を解決するための手段】
【0008】
上記課題を解決するために成された本発明に係る直交加速飛行時間型質量分析装置の調整方法は、
イオン源で試料から所定の既知イオンを生成するステップと、
直交加速電極に電圧を印加して前記イオン源から入射するイオンの飛行方向を偏向し、飛行経路規定電極によって規定される飛行経路を飛行させるステップと、
前記飛行経路を飛行する間に質量分離されたイオンを検出してマススペクトルデータを取得するステップと、
前記マススペクトルデータにおける前記既知イオンのマスピークの強度及び質量分解能を用いて所定の計算式に基づきスコア値を算出するステップと
を含み、
前記直交加速電極に印加する電圧の値が異なる複数の測定条件のそれぞれについて前記スコア値を算出し、
前記複数の測定条件のそれぞれについて算出された前記スコア値に基づいて、前記直交加速電極に印加する電圧の値を決定する
ものである。
【0009】
また、本発明に係る直交加速飛行時間型質量分析装置は、
イオン源と、
前記イオン源から入射するイオンの飛行方向を偏向する直交加速電極と、
前記直交加速電極で偏向されたイオンの飛行経路を規定する飛行経路規定電極と、
前記飛行経路を飛行したイオンを検出するイオン検出部と、
前記直交加速電極及び前記飛行経路規定電極のそれぞれに電圧を印加する電圧印加部と、
前記電圧印加部から前記直交加速電極に印加する電圧の値が異なる複数の測定条件で、所定量の既知試料から生成される所定の既知イオンを測定することによりマススペクトルデータを取得する測定制御部と、
前記複数の測定条件のそれぞれで取得された前記マススペクトルデータにおけるマスピークの強度及び質量分解能を用いて所定の計算式に基づきスコア値を算出するスコア値算出部と
を備える。
【発明の効果】
【0010】
本発明に係る直交加速飛行時間型質量分析装置は、イオン源と、該イオン源から入射するイオンの飛行方向を偏向する直交加速電極と、該直交加速電極で偏向されたイオンの飛行経路を規定する飛行経路規定電極と、該飛行経路を飛行したイオンを検出するイオン検出部を備えている。直交加速電極には、例えば、イオン源から入射するイオンの飛行経路の中心軸を挟んで飛行空間と反対側に配置される押出電極と、飛行空間の側に配置される引込電極が含まれる。また、飛行経路規定電極には、例えば飛行空間の外縁に配置されるフライトチューブが含まれる。さらに、リフレクトロン型の質量分析装置では、例えばイオンの飛行経路を折り返すリフレクトロンやバックプレートも飛行経路規定電極に含まれる。
【0011】
イオン源において生成された同量のイオンが全てイオン検出部で検出されると仮定すれば、マススペクトルデータにおけるマスピークの面積は常に一定であり、マスピークが最も高いときにマスピークのピーク幅が最も狭くなる。つまり、最高の測定強度と最高の質量分解能の両方が得られることになる。しかし、直交加速飛行時間型質量分析装置では、例えば直交加速電極に印加する電圧の値を変更して質量分解能を高めると、直交加速電極に入射したイオンの一部が飛行空間に導入されなくなり測定強度が低下するといった状況、あるいはその逆に、イオンをより多く飛行空間に導入して測定強度を高めようとすると質量分解能が低下するといった状況が生じうる。そのため、同量のイオンをイオン源で生成したとしても、直交加速電極や飛行空間規定電極に印加する電圧の値によってイオン検出器に到達するイオンの量が大きく変化しうる。そのため、直交加速飛行時間型質量分析装置では、イオンの測定感度が最も高くなるように測定パラメータの値を最適化すると質量分解能が悪くなり、イオンの質量分解能が最も高くなるように測定パラメータの値を最適化すると測定感度が悪くなる場合があったと考えられる。
【0012】
本発明では、直交加速電極に印加する電圧の値が異なる複数の測定条件で、所定量の既知試料から生成される所定の既知イオンを測定することによりマススペクトルデータを取得する。そして、複数の測定条件のそれぞれで取得されたマススペクトルデータにおけるマスピークの強度及び質量分解能を用いて、所定の計算式に基づきスコア値を算出する。本発明では、このように、既知イオンの強度と質量分解能の両方を考慮してスコア値を算出するため、算出されたスコア値に基づいて直交加速電極に印加する電圧の値を決定することにより、高い測定感度と高い質量分解能の両方を得ることができる。
【図面の簡単な説明】
【0013】
【
図1】本発明に係る直交加速飛行時間型質量分析装置の一実施形態の要部構成図。
【
図2】本実施形態直交加速飛行時間型質量分析装置において分析室に配置された各電極の電位を説明する図。
【
図3】イオンレンズの軸がずれている場合のイオン群の飛行経路を説明する図。
【
図4】直交加速空間におけるイオン群の飛行経路の一例。
【
図5】直交加速空間におけるイオン群の飛行経路の別の一例。
【
図6】第2加速電極に対する印加電圧と、マスピークの強度及び質量分解能の実測値の関係を示すグラフ。
【
図7】第2加速電極に対する印加電圧と、マスピークの強度及び質量分解能の規格化後の値の関係を示すグラフ。
【
図8】第2加速電極に対する印加電圧と、本実施形態により求められるスコア値の関係を示すグラフ。
【発明を実施するための形態】
【0014】
本発明に係る直交加速飛行時間型質量分析装置、及びその調整方法の一実施形態について、以下、図面を参照して説明する。
【0015】
図1に、本実施形態の直交加速飛行時間型質量分析装置(OA-TOF-MS: Orthogonal Acceleration-Time of Flight Mass Spectrometer)1の概略構成を示す。本実施形態のOA-TOF-MS1は、大別して、質量分析部2、電圧印加部3、及びこれらの動作を制御する制御・処理部4を有する。
【0016】
質量分析部2は、略大気圧であるイオン化室20と真空チャンバを備えている。真空チャンバの内部には、イオン化室20の側から順に、第1中間真空室21、第2中間真空室22、第3中間真空室23、及び分析室24が設けられている。これらの各室は図示しない真空ポンプにより排気されており、第1中間真空室21から分析室24に向かって段階的に真空度が高くなる、多段差動排気系の構成を有している。
【0017】
イオン化室20には液体試料に電荷を付与して帯電液滴として噴霧するエレクトロスプレイイオン化用プローブ(ESIプローブ)201が配置されている。イオン化室20と第1中間真空室21は、細径のキャピラリである脱溶媒管202を通して連通している。脱溶媒管202には図示しないガス源から加熱されたカーテンガスが吹き付けられており、ESIプローブ201から噴霧された帯電液滴は、イオン化室20から脱溶媒管202を通って第1中間真空室21に入射する間に脱溶媒されイオン化される。
【0018】
第1中間真空室21には、複数のリング電極で構成されるイオンガイド211が配置されている。第1中間真空室21に進入したイオンは、イオンガイド211によってイオン光軸Cに沿って飛行するように収束される。第1中間真空室21と第2中間真空室22は頂部に小孔を有するスキマー212で隔てられている。イオンガイド211で収束されたイオンはスキマー212を通って第2中間真空室22に進入する。
【0019】
第2中間真空室22には、複数のロッド電極で構成されるイオンガイド221が配置されている。第2中間真空室22に進入したイオンは、イオンガイド221によってイオン光軸Cに沿って飛行するように収束される。第2中間真空室22と第3中間真空室23はイオン光軸C上の位置に開口を有する隔壁で区画されている。イオンガイド221で収束されたイオンはこの開口を通って第3中間真空室23に進入する。
【0020】
第3中間真空室23には、イオンを質量電荷比に応じて分離する四重極マスフィルタ231、多重極イオンガイド233を内部に備えたコリジョンセル232、及び複数のリング電極で構成されたイオンガイド234が配置されている。コリジョンセル232の内部には、アルゴン、窒素などの衝突誘起解離(CID: Collision-Induced Dissociation)ガスが、図示しないガス源から必要に応じて供給される。例えば、MS/MS分析では、第3中間真空室23に進入したイオンのうち、特定の質量電荷比を持つイオンが四重極マスフィルタ231によってプリカーサイオンとして選別され、コリジョンセル232に進入する。コリジョンセル232では、プリカーサイオンとCIDガスの衝突によってコリジョンセル232からプロダクトイオンが生成される。コリジョンセル232で生成されたプロダクトイオンは、イオンガイド234によってイオン光軸Cに沿って飛行するように収束されて分析室24に進入する。
【0021】
分析室24には、複数のリング電極で構成されたイオンレンズ241、押出電極2421と引込電極2422で構成される直交加速電極242、第2加速電極243、リフレクトロン244、フライトチューブ246、バックプレート247、及びイオン検出器245が配置されている。押出電極2421は板状電極、引込電極2422は中央にイオン通過部が形成された全体として板状の電極である。第2加速電極243は複数のリング状の電極とその後段側に位置するスリットを有している。リフレクトロン244は、いずれも複数のリング状の電極である第1リフレクトロン2441と第2リフレクトロン2442で構成される。フライトチューブ246は筒状の電極、バックプレート247は板状の電極である。
【0022】
分析室24に進入したイオンは、イオンレンズ241によってイオン光軸Cに沿って収束されたあと、押出電極2421と引込電極2422の間の空間(直交加速空間)に入射する。
【0023】
押出電極2421には一定の周期でパルス電圧が印加される。このパルス電圧の印加によって直交加速空間内に、イオンの飛行方向を直交方向(押出電極2421から引込電極2422に向かう方向)に偏向する電場が形成される。直交加速電極242によって飛行方向が偏向されたイオンは、第2加速電極243に印加された電圧によって形成される加速電場によって一定の運動エネルギーが付与された後、リフレクトロン244、フライトチューブ246、及びバックプレート247によって規定される折り返しの飛行経路を飛行してイオン検出器245に入射する。このとき、質量電荷比が小さいイオンほどより速く飛行するため、飛行経路を飛行する間に各イオンはそれぞれが有する質量電荷比に応じて分離され、質量電荷比が小さいイオンから順にイオン検出器245に入射して検出される。
【0024】
電圧印加部3は、制御・処理部4から送信される制御信号に基づいて、質量分析部2の各電極に所定の電圧を印加する。
【0025】
制御・処理部4は、記憶部41を有するとともに、機能ブロックとして、チューニング条件設定部42、測定制御部43、スコア値算出部44、及び電圧決定部45を備えている。制御・処理部4の実体はパーソナルコンピュータであり、該コンピュータに予めインストールされた質量分析用プログラムを実行することにより上記機能ブロックが動作する。また、制御・処理部4には、キーボードやマウスなどを含む入力部6と、液晶ディスプレイなどで構成される表示部7が接続されている。
【0026】
記憶部41には、各種化合物の測定条件(MRM測定におけるプリカーサイオンとプリカーサイオンであるMRMトランジションの質量電荷比など)や、測定飛行空間におけるイオンの飛行時間と質量電荷比の関係を表す情報(数式やテーブルなど)が保存されている。さらに、チューニング時に各電極に印加する電圧の初期設定値と、電圧走査時のステップ幅(例えば1V)、走査範囲(例えば±50V)、及び電圧走査時の強度や分解能などの情報も保存されている。
【0027】
本実施形態のOA-TOF-MS1は、分析室24内に配置されている各電極に印加する電圧の値の調整に特徴を有する。四重極電場によりイオンを質量分離する質量分析装置や、イオントラップで捕捉したイオンを飛行空間に放出するイオントラップ飛行時間型質量分析装置では、イオンの検出強度が最も高くなるように各電極に印加する電圧の値を調整すると、高い質量分解能も同時に得られる。あるいは、質量分解能が最も高くなるように測定パラメータの値を調整することによっても、高い感度が同時に得られる。しかし、直交加速飛行時間型質量分析装置では、イオンの測定感度が最も高くなるように測定パラメータの値を最適化すると質量分解能に関しては最適化されるとは限らず、イオンの質量分解能が最も高くなるように測定パラメータの値を最適化すると測定感度に関しては最適化されるとは限らない。この点について、以下、説明する。
【0028】
まず、OA-TOF-MS1の分析室24内の各電極に印加される電圧について、
図2を参照して説明する。ここでは、イオンが理想的な挙動を示す場合を例に説明する。上記したチューニング時の初期設定値には、イオンが理想的な挙動を示す場合に各電極に印加される電圧の値を用いても良いし、あるいは、エンジニアが装置固有に入力した値を初期設定値として用いても良い。以下の説明では、測定対象が正イオンである場合に各電極に印加される電圧を説明する。測定対象が負イオンである場合には、各電極に印加される電圧の値の大小関係を逆にすればよい。
【0029】
分析室24内に進入したイオンは、イオンレンズ241を構成する複数のレンズ電極のそれぞれの中心(イオン光軸C上)を通って押出電極2421と引込電極2422の間に形成される直交加速空間に入射する。
図1及び
図2に模式的に示すように、直交加速空間に入射した全てのイオンは、後記するパルス電圧が押出電極2421に印加される時点で該直交加速空間の中心の1点に入射する。
【0030】
引込電極2422には常時、電圧V2が印加されており、押出電極2421には一定の周期でパルス電圧V1(V1>V2)が印加される。これにより、押出電極2421から引込電極2422に向かって下がる電位勾配が形成され、それによって、直交加速空間に入射したイオンの飛行方向が直交方向に偏向される。パルス電圧が印加される時間帯(以下、「加速時間帯」と呼ぶ。)以外の時間帯(以下、「待機時間帯」と呼ぶ。)には、押出電極2421にも、引込電極2422と同じ電圧V2が印加されており、両者の間に電位勾配は形成されない。
【0031】
第2加速電極243では、引込電極2422に最も近く位置する電極に電圧V3(V2>V3)が印加され、リフレクトロン244の側に向かって下りの電位勾配が形成されるように各電極に電圧が印加される。これによって、直交加速電極242で飛行方向が偏向されたイオンが、フライトチューブ246、リフレクトロン244、及びバックプレート247で囲まれた飛行空間に向かって加速される。
【0032】
フライトチューブ246には電圧V4(V3>V4)が印加されている。また、飛行空間に面した側に位置する第1リフレクトロン2441、バックプレート247側に位置する第2リフレクトロン2442、及びバックプレート247にはそれぞれ、フライトチューブ246からバックプレート247に向かって上りの電位勾配を形成するように電圧が印加される。バックプレート247には電圧V5(V5>V4)が印加されている。
【0033】
第2加速電極243によって飛行空間に導入されたイオンは、フライトチューブ246で囲まれた、実質的に無電場の空間(無電場空間)を飛行したあと、リフレクトロン244で囲まれた空間(折り返し飛行空間)に入射する。折り返し飛行空間には上りの電位勾配が形成されているため、イオンは徐々に減速し、飛行方向を反転させて再び無電場空間へと向かい、該無電場空間を飛行したあと、イオン検出器245に入射する。
【0034】
上記のように全てのイオンが理想的な挙動を示す場合には、直交加速空間の中心に入射した全てのイオンが同一の飛行経路を飛行してイオン検出器245に入射する。また、同じ質量電荷比のイオンは全て同じ飛行時間でこの飛行経路を飛行して、同時にイオン検出器245に入射する。しかし、実際には、イオン間のクーロン斥力によってある程度の空間的な広がりを持った状態でイオン群が直交加速空間に入射する。また、それらの各イオンの飛行方向及び飛行速度にも多少のばらつきがある。さらに、質量分析装置の組立精度によって、イオン光軸Cに多少のずれが生じることもある。
【0035】
イオンが空間的な広がりを持った状態で直交加速空間に入射する場合、押出電極2421にパルス電圧V1を印加して電場を形成すると、押出電極2421に近い位置に入射したイオンほど、その電場によってより多くのエネルギーが付与されて第2加速電極243に入射する。つまり、パルス電圧V1が印加された時点でのイオンの位置によって、イオンに付与されるエネルギーの大きさが異なり、第2加速電極243で加速された後に各イオンが有する運動エネルギーにばらつきが生じる。リフレクトロン244を備えず、イオンを直線的に飛行させる飛行時間型質量分析装置の場合、イオンの運動エネルギーのばらつきがそのまま飛行時間のばらつきになり、質量分解能の低下をもたらす。
【0036】
本実施形態のようなOA-TOF-MS1では、リフレクトロン244によって形成される折り返し電場を適切に設定することによって、イオンの空間的な広がりに起因する、イオンの運動エネルギーのばらつきを解消できる。第2加速電極243で加速されたイオンは、フライトチューブ246で囲まれた無電場空間を飛行したあと、リフレクトロン244で囲まれた折り返し飛行空間に入射する。リフレクトロン244を構成する複数の電極には、バックプレート247に向かって上りの電位勾配を形成するように電圧が印加されているため、折り返し飛行空間に入射したイオンは徐々に運動エネルギーを失い、その後、逆方向に向かって加速される。折り返し飛行空間に入射したときに大きな運動エネルギーを持つイオンほど、折り返し飛行空間の奥深く(バックプレート247の近く)まで進入する。つまり、イオンの運動エネルギーが大きいイオンほどより長い距離を飛行することになる。従って、リフレクトロン244に印加する電圧を適切に設定すれば、OA-TOF-MS1では、イオンの運動エネルギーの差異を補償することができる。
【0037】
一方、イオンが持つ飛行方向及び飛行速度のばらつきは、リフレクトロン244で解消することができない。押出電極2421にパルス電圧V1を印加したときに、イオン光軸Cに沿って飛行しているイオンと引込電極2422側に向かって飛行しているイオンは即時に引込電極2422に向かって加速される。一方、押出電極2421に向かって飛行しているイオンは、引込電極2422側に飛行方向が変わるまでに時間を要する。この時間はターンアラウンドタイムと呼ばれる。このように、イオンが持つ飛行成分によって、第2加速電極243に向かって飛行を開始するまでの間に時間差が生じる。この時間差は、イオン検出器245に入射するまで解消されないため、質量分解能を低下させる要因になる。
【0038】
イオンレンズ241を構成する複数のリング電極の中心位置にずれがあると、イオン群は理想的な配置を想定したイオン光軸Cから傾いた軸C’を中心とする空間的な広がりを持った状態で直交加速空間に入射する。例えば、
図3に示すように、イオンレンズ241を構成する複数のリング電極の中心位置が、後段側に位置するリング電極ほど押出電極2421側にずれていると、
図4に示すように、押出電極2421側に向かう軸C’を中心とする空間的な広がりを持ったイオン群が直交加速空間に入射する。また、このイオン群に含まれるイオンの多くは、押出電極2421に向かって飛行する。
【0039】
図4は、押出電極2421に対して待機時間帯に電圧V2を印加した場合に、該押出電極2421に対してパルス電圧V1が印加される時点までのイオンの飛行経路を示したものである。待機時間帯に押出電極2421に対して印加される電圧V2は、引込電極2422に対して印加される電圧V2と同じであり、直交加速空間は無電場空間であるため、イオンレンズ241を通過して加速飛行空間に入射したイオンは、押出電極2421にパルス電圧V1がされるまでの間、加速飛行空間に入射したときの飛行方向及び飛行速度を維持して飛行を続ける。そのため、直交加速空間に入射したときのイオンビームの角度広がりが、ほぼそのまま、飛行方向及び飛行速度のばらつきとなり、そのばらつきによって生じるターンアラウンドタイムが質量分解能の低下をもたらす。
【0040】
図5は、押出電極2421に対して待機時間帯に電圧V6(V6<V2)を印加した場合に、該押出電極2421に対してパルス電圧V1が印加される時点までのイオンの飛行経路を示したものである。待機時間帯に押出電極2421に対して印加される電圧V6は、引込電極2422に対して印加される電圧V2よりも低いため、イオンレンズ241を通過して加速飛行空間に入射したイオンは、押出電極2421にパルス電圧V1がされるまでの間、押出電極2421に向かって徐々に引き寄せられるように飛行する。その結果、イオン群に含まれる一部のイオンは押出電極2421に衝突して消失する。しかし、その一方で、押出電極2421にパルス電圧V1がされる時点でのイオンの角度広がりは、直交加速空間に入射したときよりも小さくなる。その結果、飛行方向及び飛行速度のばらつきが小さくなり、
図4に示す場合に比べて質量分解能は向上し、イオンの検出感度は低下する。
【0041】
このように、OA-TOF-MS1では、装置内の各部の位置関係やイオンの挙動によって、直交加速電極242(特に押出電極2421)に印加する電圧の値をチューニングしても、イオンの感度と質量分解能の両方が必ずしも同じ条件で最適にならないことがある。
図4及び
図5により説明したのは一例であり、イオン光軸C’が引込電極2422側にずれている場合など、他の要因によっても上記同様の状況が生じうる。また、ここでは待機時間帯に押出電極2421に印加する電圧によって生じる状況を説明したが、加速時間帯に押出電極2421に印加する電圧と引込電極2422に印加する電圧によって形成される電位勾配の大きさによってもイオンの挙動が変化しうる。
【0042】
また、第2加速電極243においても同様に、該第2加速電極243に印加する電圧の値をチューニングしても、イオンの感度と質量分解能の両方が必ずしも最適にならないことがある。この点について、以下、説明する。
【0043】
例えば、第2加速電極243に形成される電位が、引込電極2422とフライトチューブ246の電位を結ぶ電位勾配から高電位側に離れていると、該第2加速電極243で囲まれた空間(第2加速空間)を飛行するイオンに広がりが生じやすくなる。この現象はレンズ効果と呼ばれる。そのため、レンズ効果を生じさせると、第2加速空間の出口に達するまでに第2加速電極243を構成するレンズ電極、あるいはその出口にあるスリットにイオンが衝突して消失しやすい。従って、レンズ効果を生じさせないほうが、イオンの検出感度は高くなる。
【0044】
1回のパルス電圧の印加で飛行空間が変更される1つのイオン群に含まれる各イオンが直交加速空間に入射するタイミングにも多少のばらつきがある。そのため、直交加速空間に入射したタイミングが早いイオンほど、該直交加速空間内を中心軸C’に沿って奥まで進入する。このとき、例えば、イオンの検出感度よりも質量分解能を優先して
図5に示したように待機時間帯に電圧V6(V6<V2)を印加すると、直交加速空間に入射するタイミングが早いイオンほど、より長時間、該直交加速空間を飛行する。その結果、該直交加速空間の奥まで進入し、かつ押出電極2421に引き寄せられる。こうしたイオンは、
図5に示す直交加速空間の右上の領域Aに位置し、かつ、直交加速方向と反対側に大きな飛行速度を持つ。これらのイオンは直交加速時のターンアラウンドタイムが長いため、イオン検出器245に入射して検出されると質量分解能が低下する。
【0045】
直交加速空間の奥深くまで進入したイオンは、第2加速空間内の、イオン検出器245の側に近い位置に入射する。そのため、第2加速電極243に印加する電圧によって第2加速空間にレンズ効果を生じさせると、第2加速電極243を構成するレンズ電極やスリットに衝突しやすい。従って、第2加速電極243においてレンズ効果を生じさせると、大きなターンアラウンドタイムを持つイオンが消失して質量分解能が向上する。
【0046】
本実施形態では、上記のような事情を踏まえてチューニングを行う。以下、チューニング作業の手順を説明する。
【0047】
使用者がチューニング作業の開始を指示すると、チューニング条件設定部42は、表示部7の画面に、チューニングの条件を使用者に入力させる画面を表示する。この画面では、後述するスコア値の算出において、イオンの検出感度から求められる値と、質量分解能から求められる値に付す重みづけの係数を使用者に設定させる。使用者がイオンの検出感度について、0よりも大きく1よりも小さい値Xを入力すると、質量分解能には自動的に1-Xの値が設定される。これにより、スコア値Zを求める以下の数式(1)が作成され、記憶部41に保存される。
Z=X*I+(1-X)*R …(1)
ここで、Iは所定の質量電荷比を有する標準物質由来のイオンのマスピークの強度を規格化した値、Rはマスピークの質量分解能を規格化した値である。もちろん、使用者に質量分解能について、0よりも大きく1よりも小さい値Xを入力させ、イオンの検出感度に自動的に1-Xの値を設定してもよい。
【0048】
使用者が予め決められた標準試料をセットして測定開始を指示すると、測定制御部43は、OA-TOF-MS1を構成する電極のそれぞれについて、記憶部41に保存された初期設定値を読み出し、それらの電圧を各電極に印加した状態で測定を実行する。この測定では、ESIプローブ201に所定量の標準物質を含んだ標準試料を連続的に導入してイオンを生成し、直交加速電極242を含む各電極に電圧を印加して所定の飛行経路を飛行させ、該飛行経路を飛行したイオンを検出してマススペクトルデータを取得する。続いて、得られたマススペクトルデータから所定の質量電荷比を有する既知イオンのマスピークを特定する。そして、特定した既知オンのマスピークの高さや面積からマスピークの強度を求め、既知イオンの質量電荷比の値とピーク幅から質量分解能を求める。
【0049】
初期設定値についてマススペクトルデータが算出されると、測定制御部43は、ESIプローブ201からイオンレンズ241までの間に位置する各電極について、該電極に印加する値を所定値(例えば初期設定値の5%)ずつ変更した、少なくとも1つの電極に対する印加電圧の値が異なる複数の測定条件を設定する。そして、上記同様に標準試料中の標準物質から生成される所定の質量電荷比のイオンを測定してマススペクトルデータを取得する。最初に、ESIプローブ201からイオンレンズ241までの間に位置する各電極に印加する電圧の値をチューニングするのは、これらの各電極に印加する電圧の値を多少変更してもイオンが大量に消失することがないためである。
【0050】
イオン化室20で生成された全てのイオンが測定条件に関わらず、常にイオン検出器245で検出されると仮定すれば、マススペクトルデータにおけるマスピークの面積は常に一定であり、マスピークが最も高いときにマスピークのピーク幅が最も狭くなる。つまり、最高の測定強度と最高の質量分解能の両方が得られる。しかし、上記の通り、直交加速電極242や第2加速電極243に印加する電圧の値を変更すると多くのイオンが消失する場合があり、イオンの測定感度及び/又は質量分解能が大きく変動する。また、これらの電極に印加する電圧の値を変更すると、第2加速電極243で加速された後のイオンの飛行経路も変化しうる。そのため、本実施形態では、まず、ESIプローブ201からイオンレンズ241までの間に位置する各電極に印加する電圧の値をチューニングし、それらの電極に印加する値を決定した後、分析室24内の各電極に印加する電圧の値をチューニングする。
【0051】
複数の測定条件のそれぞれについてマススペクトルデータを取得すると、各マススペクトルデータにおける上記の既知イオンのマスピークの強度と質量分解能を求める。次に、スコア値算出部44は、全てのマススペクトルデータの中で最も高いマスピークの強度値を基準として他のマススペクトルデータにおけるマスピークの強度値を規格化する。これにより、上式(1)における値Iが算出される。また、質量分解能についても同様に、全てのマススペクトルデータの中で最も高い質量分解能の値を基準として他のマススペクトルデータの質量分解能の値を規格化する。こうして算出したマスピークの強度値Iと質量分解能の値Rを上式(1)に代入することにより、各測定条件におけるスコア値を求める。その後、スコア値が最も高い測定条件に基づいて、ESIプローブ201からイオンレンズ241までの間に位置する各電極への印加電圧の値を決定する。
【0052】
次に、分析室24内に位置する、リフレクトロン244、フライトチューブ246、及びバックプレート247に印加する電圧の値をチューニングする。ESIプローブ201からイオンレンズ241までの間に位置する各電極については、上記の通り決定した電圧を印加し、直交加速電極242と第2加速電極243には初期設定値の電圧を印加する。そして、リフレクトロン244、フライトチューブ246、及びバックプレート247について、印加する電圧の値の組み合わせが異なる複数の測定条件を設定し、各測定条件でマススペクトルデータを取得する。続いて、各マススペクトルデータから上記所定の質量電荷比のイオンのマスピークの強度と質量分解能を求める。その後、スコア値算出部44は、上記同様の方法でマスピークの強度値と質量分解能の値をそれぞれ規格化してスコア値を求める。最後に、スコア値が最も高い測定条件に基づいて、リフレクトロン244、フライトチューブ246、及びバックプレート247への印加電圧の値を決定する。
【0053】
分析室24内に位置するこれらの電極は、イオンの折り返し飛行経路を規定する電極であり、リフレクトロン244やバックプレート247に印加する電圧は、折り返し飛行経路における電位勾配の高さに関係する。折り返し飛行経路の電位勾配の高さは、イオンの進入深さに影響を与える要素であるが、この電位勾配を多少変更してもイオンの消失が生じることは考えにくい。また、フライトチューブ246は実質的に無電場の飛行空間を形成するためのものであり、これについても印加電圧の値によってイオンの消失が生じることは考えにくい。そのため、直交加速電極242及び第2加速電極243に印加する電圧の値をチューニングする前に、これらの電極に対して印加する電圧の値をチューニングする。ここでも上記同様に、複数の測定条件のそれぞれで得られたマススペクトルデータのそれぞれについて、マスピークの強度を規格化した値Iと質量分解能を規格化した値Rを求め、上式(1)によりスコア値を算出する。そして、スコア値が最も高い測定条件に基づいて、リフレクトロン244、フライトチューブ246、及びバックプレート247に印加する電圧の値を決定する。
【0054】
その後、直交加速電極242と第2加速電極243についても、上記同様に、各電圧の値の組み合わせが異なる複数の測定条件を設定し、各測定条件でマススペクトルデータを取得する。そして、各マススペクトルデータから上記所定の質量電荷比のイオンのマスピークの強度と質量分解能を求める。その後、スコア値算出部44は、上記同様の方法でマスピークの強度値と質量分解能の値をそれぞれ規格化してスコア値を求める。最後に、スコア値が最も高い測定条件に基づいて、直交加速電極242と第2加速電極243への印加電圧の値を決定する。
【0055】
上記の処理によって、OA-TOF-MS1を構成する各電極に印加する電圧のチューニングは一旦、完了するが、上記の通り、直交加速電極242と第2加速電極243に印加する電圧の値を変更すると、イオンの飛行経路が変化する。そのため、先にチューニングした、リフレクトロン244、フライトチューブ246、及びバックプレート247に印加する電圧の値が必ずしも最適でない可能性があり得る。従って、これらの電極に印加する電圧の値を再度チューニングすることが好ましい。
【0056】
そこで、リフレクトロン244、フライトチューブ246、及びバックプレート247に印加する電圧の値について、再度、先に決定した電圧値を中心に、所定値(例えば先に決定した電圧値の3%)ずつ異なる複数の電圧値を設定し、リフレクトロン244、フライトチューブ246、及びバックプレート247に印加する電圧の値の組み合わせが異なる複数の測定条件を設定して、再度、上記同様に、最もスコア値が高くなる測定条件を特定し、リフレクトロン244、フライトチューブ246、及びバックプレート247に印加する電圧の値を決定する。
【0057】
本実施形態のOA-TOF-MS1では、以上の各処理を実行することにより、各電極に印加する電圧の値をチューニングする。これにより、イオンの検出感度と質量分解能に対して使用者が任意の重みづけを付したチューニング条件を満たす、最適な印加電圧の組み合わせを決定することができる。
【0058】
ここで、第2加速電極243に印加する電圧のチューニングを行った実際の例を説明する。
【0059】
図6は、第2加速電極243に印加する電圧が異なる複数の測定条件でマススペクトルデータを取得し、所定の質量電荷比のイオンのマスピークの強度と質量分解能を求めた結果を示すグラフである。
図6に示す例では、マスピークの強度が最大になる印加電圧の値と、質量分解能が最大になる印加電圧の値が異なっている。
【0060】
そこで、
図7に示すように、複数のマススペクトルデータから得られた最大のマスピークの強度と、最大の質量分解能の値をそれぞれ基準として、各マススペクトルデータにおけるマスピークの強度と質量分解能をそれぞれ規格化する。なお、
図7では、規格化後の値I, Rを規格化パラメータと記載している。
【0061】
そして、使用者が設定した重みづけの係数を付した上式(1)により、スコア値を算出する。
図8は、マスピークの強度を規格化した値Iに対する係数Xを0.3、質量分解能の値を規格化した値Rに対する係数1-Xを0.7としたときのスコア値(スコア化パラメータ)をプロットしたグラフである。このようにしてスコア値を求め、そのスコア値が最大になる印加電圧を決定することにより、使用者が希望するイオンの検出感度と質量分解能のバランスに最適な印加電圧の値を決定することができる。なお、
図8では、規格化後の値I, R、及びスコア値Zを規格化パラメータと記載している。
【0062】
上記実施形態は一例であって、本発明の趣旨に沿って適宜に変更することができる。
【0063】
上記実施形態では、ESIプローブ201からイオンレンズ241までの間に位置する各電極を1つの電極群、リフレクトロン244、フライトチューブ246、及びバックプレート247を1つの電極群、直交加速電極242及び第2加速電極243を1つの電極群として、各電極群に印加する電圧の値を順番にチューニングし、その後、再びリフレクトロン244、フライトチューブ246、及びバックプレート247に印加する電圧の値をチューニングしたが、1つの電極群に含める電極の組み合わせは適宜に変更することができる。例えば、直交加速電極242と第2加速電極243をそれぞれ別の電極群として個別に印加電圧をチューニングしてもよい。
【0064】
また、上記実施形態では、上記3つの電極群の全てについて、上式(1)によりスコア値を算出したが、例えば、ESIプローブ201からイオンレンズ241までの間に位置する各電極のように印加電圧が相違してもイオンが消失しにくい場合には、イオンの検出感度(マスピークの強度)と質量分機能の一方を最適化するようにチューニングを行ってもよい。
【0065】
上記実施形態では、全てのマススペクトルデータの中から最も高いマスピークの強度と、最も高い質量分解能を基準とし、他のマススペクトルデータにおけるマスピークの強度と質量分解能を規格化したが、予め設定した基準値を用いた規格化を行ってもよい。その場合には、1つのマススペクトルデータを取得する毎にスコア値を算出することができる。
【0066】
上記実施形態では、イオン源としてESIプローブ201を用いたが、他のイオン源を備えてもよい。また、測定対象の試料は液体に限らず、気体や固体であってもよい。さらに、上記実施形態のOA-TOF-MS1のうち、分析室24に直交加速電極242を備えること、及び該直交加速電極242で飛行方向が偏向されたイオンの飛行経路を規定する電極を備えることは必須であるが、それ以外の各電極等の構成要素は適宜に変更することができる。
【0067】
[態様]
上述した例示的な実施形態が以下の態様の具体例であることは、当業者には明らかである。
【0068】
(第1項)
本発明の一態様に係る直交加速飛行時間型質量分析装置は、
イオン源と、
前記イオン源から入射するイオンの飛行方向を偏向する直交加速電極と、
前記直交加速電極で偏向されたイオンの飛行経路を規定する飛行経路規定電極と、
前記飛行経路を飛行したイオンを検出するイオン検出部と、
前記直交加速電極及び前記飛行経路規定電極のそれぞれに電圧を印加する電圧印加部と、
前記電圧印加部から前記直交加速電極に印加する電圧の値が異なる複数の測定条件で、所定量の既知試料から生成される所定の既知イオンを測定することによりマススペクトルデータを取得する測定制御部と、
前記複数の測定条件のそれぞれで取得された前記マススペクトルデータにおけるマスピークの強度及び質量分解能を用いて所定の計算式に基づきスコア値を算出するスコア値算出部と
を備える。
【0069】
(第6項)
本発明の一態様に係る直交加速飛行時間型質量分析装置の調整方法は、
イオン源で試料から所定の既知イオンを生成するステップと、
直交加速電極に電圧を印加して前記イオン源から入射するイオンの飛行方向を偏向し、飛行経路規定電極によって規定される飛行経路を飛行させるステップと、
前記飛行経路を飛行する間に質量分離されたイオンを検出してマススペクトルデータを取得するステップと、
前記マススペクトルデータにおける前記既知イオンのマスピークの強度及び質量分解能を用いて所定の計算式に基づきスコア値を算出するステップと
を含み、
前記直交加速電極に印加する電圧の値が異なる複数の測定条件のそれぞれについて前記スコア値を算出し、
前記複数の測定条件のそれぞれについて算出された前記スコア値に基づいて、前記直交加速電極に印加する電圧の値を決定する
ものである。
【0070】
第1項に係る直交加速飛行時間型質量分析装置は、イオン源と、該イオン源から入射するイオンの飛行方向を偏向する直交加速電極と、該直交加速電極で偏向されたイオンの飛行経路を規定する飛行経路規定電極と、該飛行経路を飛行したイオンを検出するイオン検出部を備えている。また、第6項に係る直交加速飛行時間型質量分析装置の調整方法では、そうした直交加速飛行時間型質量分析装置を調整する。直交加速電極には、例えば、イオン源から入射するイオンの飛行経路の中心軸を挟んで飛行空間と反対側に配置される押出電極と、飛行空間の側に配置される引込電極が含まれる。また、飛行経路規定電極には、例えば飛行空間の外縁に配置されるフライトチューブが含まれる。さらに、リフレクトロン型の質量分析装置では、例えばイオンの飛行経路を折り返すリフレクトロンも飛行経路規定電極に含まれる。
【0071】
イオン源において生成された同量のイオンが全てイオン検出部で検出されると仮定すれば、マススペクトルデータにおけるマスピークの面積は常に一定であり、マスピークが最も高いときにマスピークのピーク幅が最も狭くなる。つまり、最高の測定強度と最高の質量分解能の両方が得られることになる。しかし、直交加速飛行時間型質量分析装置では、例えば直交加速電極に印加する電圧の値を変更して質量分解能を高めると、直交加速電極に入射したイオンの一部が飛行空間に導入されなくなるといった状況、あるいはその逆の状況が生じうる。そのため、同量のイオンをイオン源で生成したとしても、直交加速電極や飛行空間規定電極に印加する電圧の値によってイオン検出器に到達するイオンの量が大きく変化しうる。そのため、直交加速飛行時間型質量分析装置では、イオンの測定感度が最も高くなるように測定パラメータの値を最適化すると質量分解能が悪くなり、イオンの質量分解能が最も高くなるように測定パラメータの値を最適化すると測定感度が悪くなる場合があったと考えられる。
【0072】
第1項に係る直交加速飛行時間型質量分析装置及び第6項に係る調整方法では、直交加速電極に印加する電圧の値と、飛行経路規定電極に印加する電圧の値の少なくとも一方が異なる複数の測定条件で、所定量の既知試料から生成される所定の既知イオンを測定することによりマススペクトルデータを取得する。そして、複数の測定条件のそれぞれで取得されたマススペクトルデータにおけるマスピークの強度及び質量分解能を用いて、所定の計算式に基づきスコア値を算出する。第1項に係る直交加速飛行時間型質量分析装置及び第6項に係る調整方法では、このように、既知イオンの強度と質量分解能の両方を考慮してスコア値を算出するため、算出されたスコア値に基づいて直交加速電極及び飛行経路規定電極に印加する電圧の値を決定することにより、高い測定感度と高い質量分解能の両方を得ることができる。
【0073】
(第2項)
第2項に係る直交加速飛行時間型質量分析装置は、第1項に係る直交加速飛行時間型質量分析装置において、
前記電圧印加部は、前記直交加速電極に対して、所定の周期で前記イオンの飛行方向を偏向するパルス電圧を印加し、それ以外の時間帯に待機時電圧を印加するものであり、
前記測定制御部は、前記待機時電圧の値が異なる複数の測定条件で前記マススペクトルデータを取得する。
【0074】
第2項に係る直交加速飛行時間型質量分析装置によれば、待機時電圧の値をチューニングすることにより、質量分解能を高めることができる。
【0075】
(第3項)
第3項に係る直交加速飛行時間型質量分析装置は、第1項又は第2項に係る直交加速飛行時間型質量分析装置において、
前記測定制御部が、前記飛行経路規定電極に印加する電圧の値が異なる複数の測定条件で、前記既知イオンを測定することによりマススペクトルデータを取得する。
【0076】
第3項に係る直交加速飛行時間型質量分析装置によれば、直交加速電極に印加する電圧の値によって飛行経路が変化した場合でも、変化後の飛行経路に適した電圧を飛行経路規定電極に印加することができる。
【0077】
(第4項)
第4項に係る直交加速飛行時間型質量分析装置は、第1項から第3項のいずれかに係る直交加速飛行時間型質量分析装置において、さらに、
前記マスピークの強度に対する係数と前記質量分解能に対する係数の入力を受け付けるチューニング条件設定部
を備え、
前記スコア値算出部は、前記マスピークの強度から算出された強度パラメータ値に該マスピークの強度に対する係数を乗じた値と、前記質量分解能から算出された分解能パラメータ値に該質量分解能に対する係数を乗じた値の和として前記スコア値を算出する。
【0078】
第4項に係る直交加速飛行時間型質量分析装置によれば、使用者がイオンの検出感度と質量分解能のバランスを任意に調整することができる。
【0079】
(第5項)
第5項に係る直交加速飛行時間型質量分析装置は、第1項に係る直交加速飛行時間型質量分析装置において、
前記強度パラメータ値は、前記複数の測定条件で取得されたマススペクトルデータのうち最も大きなマスピークの強度の値を基準として規格化された値であり、前記分解能パラメータ値は、前記複数の測定条件で取得されたマススペクトルデータのうち最も高い質量分解能の値を基準として規格化された値である。
【0080】
第5項に係る直交加速飛行時間型質量分析装置によれば、実際に測定されたマスピークの強度の測定値と、質量分解能の値を適切に反映したスコア値を算出することができる。
【符号の説明】
【0081】
1…直交加速飛行時間型質量分析装置
2…質量分析部
20…イオン化室
201…ESIプローブ
202…脱溶媒管
21…第1中間真空室
211…イオンガイド
212…スキマー
22…第2中間真空室
221…イオンガイド
23…第3中間真空室
231…四重極マスフィルタ
232…コリジョンセル
233…多重極イオンガイド
234…イオンガイド
24…分析室
241…イオンレンズ
242…直交加速電極
2421…押出電極
2422…引込電極
243…第2加速電極
244…リフレクトロン
2441…第1リフレクトロン
2442…第2リフレクトロン
245…イオン検出器
246…フライトチューブ
247…バックプレート
3…電圧印加部
4…制御・処理部
41…記憶部
42…チューニング条件設定部
43…測定制御部
44…スコア値算出部
45…電圧決定部
6…入力部
7…表示部
C…イオン光軸
C’…実際に直交加速空間に入射するイオンの中心軸