(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023163838
(43)【公開日】2023-11-10
(54)【発明の名称】三次元造形物の製造方法
(51)【国際特許分類】
B29C 64/379 20170101AFI20231102BHJP
B29C 64/112 20170101ALI20231102BHJP
B33Y 10/00 20150101ALI20231102BHJP
B33Y 70/00 20200101ALI20231102BHJP
C08F 20/00 20060101ALI20231102BHJP
C08F 2/50 20060101ALI20231102BHJP
【FI】
B29C64/379
B29C64/112
B33Y10/00
B33Y70/00
C08F20/00 510
C08F2/50
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022075022
(22)【出願日】2022-04-28
(71)【出願人】
【識別番号】000137823
【氏名又は名称】株式会社ミマキエンジニアリング
(74)【代理人】
【識別番号】100104329
【弁理士】
【氏名又は名称】原田 卓治
(74)【代理人】
【識別番号】100177149
【弁理士】
【氏名又は名称】佐藤 浩義
(72)【発明者】
【氏名】西澤 遼
(72)【発明者】
【氏名】本郷 健太
【テーマコード(参考)】
4F213
4J011
【Fターム(参考)】
4F213AA44
4F213AB04
4F213AP05
4F213WA25
4F213WA54
4F213WA83
4F213WA86
4F213WB01
4F213WL03
4F213WL12
4F213WL22
4F213WL55
4F213WL77
4J011AA05
4J011AC04
4J011QA03
4J011QA06
4J011QA17
4J011SA01
4J011SA64
4J011SA84
4J011UA01
4J011VA04
4J011VA06
4J011WA05
4J011WA07
(57)【要約】
【課題】電子線硬化インクを用いて三次元造形した三次元造形物の変色を解消または低減する新規な方法を提供すること。
【解決手段】三次元造形物の製造方法は、三次元造形物の製造方法であって、電子線硬化インクを用いて三次元造形した被処理三次元造形物を準備する準備工程S1と、前記被処理三次元造形物に、430nm未満の波長を含む光を照射する照射処理S2-1、および熱を加える熱処理S2-2を行うことで、前記被処理三次元造形物の変色部分の色みを減少させるエイジング工程S2と、を含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
三次元造形物の製造方法であって、
電子線硬化インクを用いて三次元造形した被処理三次元造形物を準備する準備工程と、
前記被処理三次元造形物に、430nm未満の波長を含む光を照射する照射処理、および熱を加える熱処理を行うことで、前記被処理三次元造形物の変色部分の色みを減少させるエイジング工程と、
を含む、三次元造形物の製造方法。
【請求項2】
前記エイジング工程において前記照射処理および前記熱処理を同時に行う、請求項1に記載の三次元造形物の製造方法。
【請求項3】
前記電子線硬化インクは、光重合開始剤としてホスフィンオキサイド系光重合開始剤、アルキルフェノン系光重合開始剤、チオキサントン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤及びチタノセン系光重合開始剤からなる群から選ばれる少なくとも1種を含有する、請求項1または2に記載の三次元造形物の製造方法。
【請求項4】
前記熱処理は、10℃以上100℃以下の熱を加える、請求項1または2に記載の三次元造形物の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、三次元造形物の製造方法に関する。
【背景技術】
【0002】
三次元造形物を造形する方法として、UV硬化性インクなどの電子線硬化インクを用いて三次元形状を作る三次元造形物の造形方法が知られている。
【0003】
例えば、液状の電子線硬化性インクをインクジェットまたはディスペンサで吐出することでインクの層を形成し、それに電子線を照射することでインクを硬化させてインクが硬化したインク硬化層を形成し、この吐出と硬化を繰り返してインク硬化層を積層し、三次元形状を作る。
【0004】
三次元造形物によっては、電子線硬化性インクとして、透明インク(クリアインク)と有色インクとを用いることがある。この場合、三次元造形物は、クリアインクの領域の透明部分と有色インクの領域の有色部分で構成される。このような透明部分で構成される三次元造形物では、製造後に、透明部分が黄変していたり、有色部分が変色していたりすることがあった。
【0005】
このような三次元造形物の黄変などの変色を解消する方法が、検討されている。
【0006】
例えば、特許文献1には、三次元造形物に、430~500nmの範囲内の波長を有する光を含み且つ波長が400nm以下の光を含まない光を、三次元造形物の表面での波長430~500nmの光の合計照射強度が15W/m2以上となるように照射する処理方法が記載されている。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
三次元造形物を造形する際に、デザインによっては、造形物の外側を透明インク(クリアインク)で覆うように造形することがある。このような三次元造形物の場合、クリアインクの領域が大きくなり厚みも増すため、クリアインクの変色が進行したり、目立ったりすることがあった。また、特にUV-LED向けのインク組成物を用いる場合には、重合開始剤によって特に黄色みを帯びることがあった。
【0009】
しかしながら、特許文献1に記載のような方法で造形完了後の造形物を処理しても、変色を完全に除去することが困難であったり、時間がかかったりするといった問題があった。
【0010】
従って、本願発明の課題は、電子線硬化インクを用いて三次元造形した三次元造形物の変色を解消または低減する新規な方法を提供することにある。
【課題を解決するための手段】
【0011】
本発明者らは、上記課題に鑑みて検討を行い、電子線硬化インクを用いて三次元造形した三次元造形物を分析したところ、変色の原因が、重合開始剤の残分、中間生成物などであること、所定の光を照射することで変色が低減するのは、これらの重合開始剤の残分や中間生成物が消失すること、さらに加熱することで変色が低減することを見出した。本発明者らは、この知見を基に更に検討を行い、本発明を完成するに至った。
【0012】
すなわち、前述の課題を解決するため、本発明の第一の観点に係る三次元造形物の製造方法は、三次元造形物の製造方法であって、
電子線硬化インクを用いて三次元造形した被処理三次元造形物を準備する準備工程と、
前記被処理三次元造形物に、430nm未満の波長を含む光を照射する照射処理、および熱を加える熱処理を行うことで、前記被処理三次元造形物の変色部分の色みを減少させるエイジング工程と、
を含む。
【0013】
以上の構成の三次元造形物の製造方法は、電子線硬化インクを用いて三次元造形した三次元造形物の変色を解消または低減する新規な方法である。
【0014】
前記エイジング工程において前記照射処理および前記熱処理を同時に行う、と好ましい。
【0015】
以上の構成の製造方法によれば、黄変部分の色みの減少の速度が速い。
【0016】
前記電子線硬化インクは、光重合開始剤としてホスフィンオキサイド系光重合開始剤、アルキルフェノン系光重合開始剤、チオキサントン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤及びチタノセン系光重合開始剤からなる群から選ばれる少なくとも1種を含有する、と好ましい。
【0017】
以上の構成の製造方法によれば、光重合開始剤の残渣、または反応しきれていない光重合開始剤により変色された黄変部分の色みの減少の効果が大きい。
【0018】
前記熱処理は、10℃以上100℃以下の熱を加える、と好ましい。
【0019】
以上の構成の製造方法によれば、黄変部分の色みの減少の速度が速い。
【発明の効果】
【0020】
本発明によれば、電子線硬化インクを用いて三次元造形した三次元造形物の変色を解消または低減する新規な方法が提供される。
【図面の簡単な説明】
【0021】
【
図1】本発明の一実施形態に係る三次元造形物の製造方法のフロー図。
【
図2】本発明の一実施形態に係る被処理三次元造形物を示す概略図。
【
図4】実験例1の光源(屋内天井の蛍光灯ランプ)の分光スペクトル。
【
図5】実験例2の光源(45Wの3波長形蛍光ランプ)の照度と分光スペクトル。
【
図6】実験例5の光源(単波長ランプ(385nm))の照度と分光スペクトル。
【
図7】実験例6の光源(単波長ランプ(405nm))の照度と分光スペクトル。
【
図8】実験例9の光源(白熱電球(UVA+UVB))の照度と分光スペクトル。
【
図9】実験例10の光源(白熱電球3波長形(Hyper Sun UV100W))の照度と分光スペクトル。
【
図10】実験例11の光源(LEDランプ(白熱電球100形昼光色))の照度と分光スペクトル。
【
図11】比較例2~5のエイジング効果を示すグラフ。
【
図12】比較例6~9のエイジング効果を示すグラフ。
【
図13】比較例10~12のエイジング効果を示すグラフ。
【
図14】実施例1~4のエイジング効果を示すグラフ。
【発明を実施するための形態】
【0022】
次に、本発明の一実施形態に係る三次元造形物の製造方法について、図を参照しながら説明するが、本発明はこれに限定されない。
【0023】
本製造方法は、
図1に示すように、準備工程S1と、エイジング工程と、を含む。以下各工程について詳細に説明する。
【0024】
(準備工程S1)
準備工程S1では、電子線硬化インクを用いて三次元造形した被処理三次元造形物1を準備する(
図1参照)。
図2は、被処理三次元造形物1を示す概略図であり、例えば、無色透明部分2と有色不透明部分3とを備える。
【0025】
本実施形態に係る電子線硬化インクは、例えば、電子線硬化性化合物、光重合開始剤、増感剤、色材、その他の成分を含有する。
【0026】
電子線硬化性化合物としては、ラジカル重合性化合物が挙げられる。ラジカル重合性化合物は、ラジカル重合性を有する化合物であれば特に限定されないが、重合性、硬化物の耐久性、開始剤・増感剤の溶解性などの点でアクリレートが好ましい。
【0027】
アクリレートしては、フェノールEO変性アクリレート、ノニルフェノールEO変性アクリレート、エトキシジエチレングリコールアクリレートなどの単官能アクリレート、ヘキサンジオールジアクリレート、ヘキサンジオールEO変性ジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ネオペンチルグリコールPO変性ジアクリレート、トリプロピレングリコールジアクリレート、ジプロピレングリコールジアクリレート、ビスフェノールA EO変性ジアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレートなどの二官能アクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンEO変性トリアクリレート、トリメチロールプロパンPO変性トリアクリレート、グリセリンプロポキシトリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールEO変性テトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどの多官能アクリレートが挙げられる。
【0028】
これらのラジカル重合性化合物は、一種単独で、又は複数種を組み合わせて用いることができる。
【0029】
光重合開始剤は、光が照射されることによって、ラジカルを生じ、電子線硬化性化合物を硬化する。特に、LEDで照射する光によって硬化する場合に有効である光重合開始剤であることが好ましい。光重合開始剤としては、例えば、アミノアルキルフェノン系光重合開始剤、ホスフィンオキサイド系光重合開始剤、アルキルフェノン系光重合開始剤、チオキサントン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤などが挙げられる。また、カチオン型光重合開始剤として、ヨードニウム塩系光重合開始剤、及びスルフォニウム塩系光重合開始剤等を使用することができる。これらの光重合開始剤は、単独でインクに含有させてもよいし、2種以上を混合してインクに含有させてもよい。
【0030】
アミノアルキルフェノン系光重合開始剤としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-(ジメチルアミノ)-4’-モルフォリノブチロフェノン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オンなどが挙げられる。
【0031】
ホスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド、ビズ(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシドなどが挙げられる。
【0032】
アルキルフェノン系光重合開始剤としては、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等が挙げられる。チオキサントン系重合開始剤としては、2-イソプロピルチオキサントン、2、4-ジエチルチオキサントン、2-クロロチオキサントンなどが挙げられる。
【0033】
アシルフォスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどが挙げられる。
【0034】
チタノセン系光重合開始剤としては、ビス(シクロペンタジエニル)-ジ-クロロ-チタニウム、ビス(シクロペンタジエニル)-ジ-フェニル-チタニウム、ビス(シクロペンタジエニル)-ビス(2,3,4,5,6ペンタフルオロフェニル)チタニウム、ビス(シクロペンタジエニル)-ビス(2,6ジフルオロフェニル)チタニウム、ビス(η5-シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウムなどが挙げられる。
【0035】
カチオン型光重合開始剤のヨードニウム塩系光重合開始剤としては、ヨードニウム(4-メチルフェニル)[4-(2-メチルプロピル)フェニル]-ヘキサフルオロフォスフェートなどが挙げられる。スルフォニウム塩系光重合開始剤としては、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィドビスヘキサフルオロホスフェートなどが挙げられる。
【0036】
増感剤は、光重合開始剤に光感性を有さない波長領域に感光性を与えたり、光重合開始剤の光感度を増大させたりする。増感剤としては、チオキサントン系増感剤などが挙げられる。
【0037】
チオキサントン系増感剤としては、チオキサントン、2,4-ジエチル-9H-チオキサンテン-9-オン、2-イソプロピルチオキサントンなどが挙げられる。
【0038】
色材としては、公知の染料及び顔料が挙げられ、顔料としては、無機顔料や有機顔料が挙げられる。
図1の被処理三次元造形物1において、無色透明部分2は色材を含有しない、または黄色味を軽減するために透明度を損なわない程度の青系の色材を含有する電子線硬化インクの領域であり、有色不透明部分3は無機顔料又は有機顔料等の色材を含有する電子線硬化インクの領域である。
【0039】
無機顔料としては、例えば、酸化チタン、亜鉛華、酸化亜鉛、トリポン、酸化鉄、酸化アルミニウム、二酸化ケイ素、カオリナイト、モンモリロナイト、タルク、硫酸バリウム、炭酸カルシウム、シリカ、アルミナ、カドミウムレッド、べんがら、モリブデンレッド、クロムバーミリオン、モリブデートオレンジ、黄鉛、クロムイエロー、カドミウムイエロー、黄色酸化鉄、チタンイエロー、酸化クロム、ピリジアン、コバルトグリーン、チタンコバルトグリーン、コバルトクロムグリーン、群青、ウルトラマリンブルー、紺青、コバルトブルー、セルリアンブルー、マンガンバイオレット、コバルトバイオレット、マイカなどが挙げられる。
【0040】
有機顔料としては、例えば、アゾ系、アゾメチン系、ポリアゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、インジゴ系、チオインジゴ系、キノフタロン系、ベンツイミダゾロン系、イソインドリン系、イソインドリノン系、カーボンブラックなどが挙げられる。
【0041】
他の成分としては、フィラー、色材、分散剤、可塑剤、界面活性剤、表面調整剤、レベリング剤、消泡剤、酸化防止剤、電荷付与剤、殺菌剤、防腐剤、防臭剤、電荷調整剤、湿潤剤、皮はり防止剤、香料、顔料誘導体、溶剤などが挙げられる。
【0042】
(三次元造形)
電子線硬化インクを用いて三次元造形は、インクジェット方式、ディスペンサ方式などで、電子線硬化インクを吐出し、インク層を形成し、前記インク層に、例えば波長405nm~420nmの波長の光を照射することにより前記インク層を硬化させて硬化層を形成し、このインク吐出と硬化とを複数回行うことによって複数の層で形成された三次元造形物を得る。通常、インク吐出工程と硬化工程は交互に行うが、インク吐出工程を複数回行った後に、硬化工程を行うこともできる。
【0043】
準備工程S1では、前述のように三次元造形を行い、得られた三次元造形物を被処理三次元造形物1として準備することができ、また、別途入手した三次元造形物を被処理三次元造形物1として準備することもできる。
【0044】
(エイジング工程S2)
エイジング工程S2は、前記被処理三次元造形物に、430nm未満の波長を含む光を照射する照射処理S2-1、および熱を加える熱処理S2-2を行うことで、前記被処理三次元造形物の変色部分の色みを減少させる。
【0045】
照射処理S2-1および熱処理S2-2は、照射処理S2-1および熱処理S2-2を同時に行っても良いし、照射処理S2-1を行ったあとに熱処理S2-2を行っても良く、熱処理S2-2を行ったあとに照射処理S2-1を行っても良い。
【0046】
(照射処理S2-1)
照射処理S2-1では前記被処理三次元造形物に、造形が完了した後、前記非処理三次元造形物内に残留して造形物の色みを変色させる可能性のある光重合開始剤の残渣または反応しきれていない光重合開始剤の中間生成物等を除去するために430nm未満の波長を含む光を照射する。この際、前記非処理三次元造形物に照射する光に含まれる430nm未満の波長は、前記非処理三次元造形物を構成している樹脂等の成分には影響を与えず、光重合開始剤の残渣のみ除去するための光の波長の範囲である。電子線を用いた三次元造形において用いられる光重合開始剤は、造形中に該当の電子線によって分解されることを想定している。しかしながら実際にはインクに含まれている光重合開始剤が完全に消耗できてないため、前記非処理三次元造形物内に残留している光重合開始剤による反応が進むことによって前記非処理三次元造形物の変色が生じる。そのため、照射処理S2-1をすることで光重合開始剤が除去することを目的とする。
【0047】
照射処理S2-1は、430nm未満の波長を含む光を発生させる光源を、被処理三次元造形物から任意の距離で配置し、光を照射する。
【0048】
430nm未満の波長を含む光を発生させる光源は、430nm未満の波長の光を発する光源であれば、特に限定されないが、430nm未満の波長の光を発する短波長ランプ、3波長形蛍光ランプなどが挙げられる。
【0049】
光の照度は、エイジングが起きる範囲で特に限定されないが、被処理三次元造形物の表面で20W/m2以上であると好ましく、50W/m2以上であるとより好ましく、60W/m2以上であると特に好ましい。光の照度は、光源と前記被処理三次元造形物の距離で調整することもできる。
【0050】
照射処理S2-1による前記被処理三次元造形物の変色部分の色みの減少は、熱処理S2-2に比べると遅い速度で進行するが、色みの減少量は熱処理S2-2に比べると大きい。熱処理S2-2の時間は、例えば、1時間以上が好ましく、2時間以上がより好ましく、6時間以上が特に好ましい。また、前記被処理三次元造形物の変色部分の色みの減少速度は、徐々に低下するため、熱処理S2-2の時間を長くしても、変色部分の色みの減少の効果は低下するので、処理時間の観点で、24時間以下が好ましい。
【0051】
(熱処理S2-2)
熱処理S2-2では、被処理三次元造形物に、熱を加える。
【0052】
熱を加える手段は特に限定されないが、ヒーターで加熱したり、恒温槽に浸漬したりすることができる。照射処理S2-1と同時に行う場合には、光源を熱源として併用することもできる。
【0053】
熱処理S2-2は、例えば、10℃以上、被処理三次元造形物が熱で劣化する温度未満の温度条件下に被処理三次元造形物を配置することで行うことができる。温度条件は、例えば、10℃以上が好ましく、20℃以上がより好ましく30℃以上が特に好ましく、100℃以下が好ましく、80℃以下がより好ましく、70℃以下が特に好ましい。熱処理S2-2の温度が100℃を超過すると熱による変形または変色が生じる可能性がある。
【0054】
熱処理S2-2による前記被処理三次元造形物の変色部分の色みの減少は、照射処理S2-1に比べて早い速度で進行するが、色みの減少量は照射処理S2-1に比べると小さい。熱処理S2-2の時間は、例えば、1時間以上が好ましく、2時間以上がより好ましく、6時間以上が特に好ましい。また、前記被処理三次元造形物の変色部分の色みの減少速度は、徐々に低下するため、熱処理S2-2の時間が長くなると熱による変形または変色が生じる可能性があるため、処理時間の観点で、24時間以下が好ましい。また、熱処理S2-2の温度によって適宜時間を調整するのが好ましい。
【0055】
(実施例)
以下、本発明を実施例に基づき説明するが、本発明はこれら実施例に限定されない。光源の特性、エイジングの効果の評価については、以下の方法で行った。
【0056】
(照度)
評価サンプルから所定の距離に光源を設置して光を照射し、評価サンプルの表面で、分光放射照度計(コニカミノルタ株式会社製、商品名:CL-500A)を用いて、照度測定を行った。
【0057】
(分光スペクトル(分光波形))
評価サンプルから所定の距離に光源を設置して光を照射し、評価サンプルの表面で、分光放射照度計(コニカミノルタ株式会社製、商品名:CL-500A)を用いて、分光放射照度の測定を行った。
【0058】
(評価サンプルの色度)
分光測色計(コニカミノルタ株式会社製、商品名:CM-2600d)を用いて、以下の条件で色度を測定した。
SN:D1012947
光源:D65
視野:10°
反射/透過:反射
正反射光処理:SCI+SCE(数値はSCEで管理)
測定径:SAV(3mm)
【0059】
(エイジング評価:彩度c*)
明度L*、色度a*b*を測定し、彩度c*を求めて、変色が低減する速度、最終的な低減量を評価した。
サンプル形状:30×30×20mm
測定装置:分光測色計(コニカミノルタ株式会社製、商品名:CM-2600d)
c*が10未満となる条件では、エイジングが良好である。
【0060】
(エイジング評価:積分球ホルダー)
エイジングの完了度合いの確認は、1)UV-vis:光重合開始剤特有ピークの消失、2)測色:特にb*の推移で確認した。
サンプル形状:30×30×20mm
測定装置:UV-vis(積分球ホルダー)(日本分光株式会社製、商品名:ISV―722)
解析:UV-vis備え付けの解析ソフトで色味を算出
なお、積分球はでの測定は測定時の背景などに影響されず、造形物そのものの色の測定が可能である。
【0061】
(製造例1:評価サンプルの作成)
電子線硬化インクとしてUV硬化インク(株式会社ミマキエンジニアリング社製、商品名:MH―110PCL、成分:アクリルモノマー、オリゴマー、TPO、ACMO等)を用い、インクジェット方式の3Dプリンタ(株式会社ミマキエンジニアリング社製、商品名:3DUJ-553)で、40×40×2mmの透明な三次元形状を造形して被処理三次元造形物Eを作成した。
【0062】
(実験例1)
光源としての屋内天井の蛍光灯(3波長形)の分光放射照度を測定した。分光スペクトルを
図4に示す。
被処理三次元造形物Eに、光源として屋内天井に付けてある直管型の蛍光灯を用いてサンプル温度室温で光を照射してエイジングを22時間行った。この時、光源の室内天井の蛍光灯から被処理三次元造形物Eまでの距離は1.9mだった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度は共に2.4W/m
2であった。結果を
図3に示す。ここで初期とは、光を照射し始めてエイジングを開始した時点(0時間目)を意味する。
【0063】
(実験例2)
光源としての電球型45Wの3波長形蛍光ランプ(ALBA ALB-45F)の照度および分光放射照度を距離20cmで測定した。照度は69.6W/m
2であった。照度および分光スペクトルを
図5に示す(ここで、電球型とは、蛍光管が球形、またはスパイラル型、D型等の形をしている蛍光灯を意味する)。
被処理三次元造形物Eに、光源として電球型45Wの3波長形蛍光ランプ(ALBA ALB-45F(紫外線カットフィルム(株式会社ヤマヒラ社製、WINCOSウインコス(旧ルミクール)1905UH、300nm~500nmの紫外線の遮断)あり))を用いて、距離5cmで光を照射してエイジングを22時間行った。サンプル表面温度はランプで熱せられ60℃であった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ76.7、50.3W/m
2であった。結果を
図3に示す。
【0064】
(実験例3)
被処理三次元造形物Eに、光源として電球型45Wの3波長形蛍光ランプ(ALBA ALB-45F(紫外線カットフィルムなし))を用いて、距離18cmで光を照射してエイジングを22時間行った。サンプル表面温度はランプで熱せられ35℃であった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ80.7、48.1W/m
2であった。結果を
図3に示す。
【0065】
(実験例4)
光源としての単波長ランプ(385nm)の照度および分光放射照度を距離20cmで測定した。照度は93.0ルクスであった。照度および分光スペクトルを
図6に示す。
被処理三次元造形物Eに、光源として単波長ランプ(385nm)を用いて、距離22cmで光を照射してエイジングを22時間行った。サンプル表面温度はランプで熱せられ28℃であった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ76.2、67.2W/m
2であった。結果を
図3に示す。
【0066】
(実験例5)
光源としての単波長ランプ(405nm)(INTEGRATION405)の照度および分光放射照度を距離20cmで測定した。照度は81.31ルクスであった。照度および分光スペクトルを
図7に示す。
被処理三次元造形物Eに、光源として単波長ランプ(405nm)(INTEGRATION405)を用いて、距離20cmで光を照射してエイジングを22時間行った。サンプル表面温度はランプで熱せられ26℃であった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ82.3、85.6W/m
2であった。結果を
図3に示す。
【0067】
(実験例6)
実験例5でエイジングを22時間行った後の評価サンプルを、70℃の恒温槽で1時間エイジングを行った。結果を
図6に示す。
【0068】
(実験例7)
被処理三次元造形物Eに、光源として単波長ランプ(405nm)(INTEGRATION405)を用いて距離20cmで、ヒーター設定50℃(ヒーター表面温度40℃、サンプル表面温度38℃)で光を照射してエイジングを22時間行った。結果を
図3に示す。
【0069】
(実験例8)
光源としての白熱電球(UVA+UVB)の照度および分光放射照度を距離20cmで測定した。照度は122.5ルクスであった。照度および分光スペクトルを
図8に示す。
被処理三次元造形物Eに、光源として白熱電球(UVA+UVB)を用いて距離24cmで光を照射してエイジングを22時間行った。サンプル表面温度はランプで熱せられ57℃であった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ79.7、76.1W/m
2であった。結果を
図3に示す。
【0070】
(実験例9)
光源としての白熱電球3波長形(Hyper Sun UV100W)の照度および分光放射照度を距離20cmで測定した。照度は58.0ルクスであった。照度および分光スペクトルを
図9に示す。
被処理三次元造形物Eに、光源として白熱電球3波長形(Hyper Sun UV100W)を用いて距離12cmで光を照射してエイジングを22時間行った。サンプル表面温度はランプで熱せられ90℃であった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ56.1、75.4W/m
2であった。結果を
図3に示す。
【0071】
(実験例10)
光源としてのLEDランプ(白熱電球100形昼光色)の照度および分光放射照度を距離20cmで測定した。照度は83.0ルクスであった。照度および分光スペクトルを
図10に示す。
被処理三次元造形物Eに、光源としてLEDランプ(白熱電球100形昼白色)を用いて距離20cmで光を照射してエイジングを22時間行った。サンプル表面温度はランプで熱せられ30℃であった。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ75.0、71.3W/m
2であった。結果を
図3に示す。
【0072】
(実験例11)
被処理三次元造形物Eに、光源を用いず、70℃の恒温槽に浸漬してエイジングを22時間行った。初期、1、3、6、22時間後の明度L
*、色度a
*b
*を測定し、彩度c
*を求めた。初期および22時間後の照度はそれぞれ75.0、71.3W/m
2であった。結果を
図3に示す。
【0073】
(実験例1~11のまとめ)
実験例1~11では、測色器を用いてc*を測定したが、測定の際にサンプルが置かれる背景の色に影響されることがあるが、c*が10未満となる条件では、エイジングが良好である。具体的には、屋内天井の蛍光灯下に静置した場合(実験例1)に比べて、任意の光を照射したり、熱のみを加えたりすることでエイジングの効果がある程度得られるが、変色の除去が不十分であったり遅い。それに対して、実験例3、6、7のように、430nm未満の波長を含む光を照射する照射処理、および熱を加える熱処理が行われた場合、エイジングの効果が速く、変色の除去も優れていた。
【0074】
(比較例1)
被処理三次元造形物Eを、40時間、暗所に保管し、変色の変化を調べた。初期、8、16、40、64時間後の明度L*、色度a*b*を積分球ホルダーで測定し、彩度c*を求めた。結果を表1に示す。
【0075】
【0076】
(比較例2~5)
被処理三次元造形物Eに、光源を用いず、加熱(それぞれ40℃、50℃、60℃、または70℃)のみを行って、エイジングを40時間行った。初期、1、8、16、40時間後の明度L
*、色度a
*b
*を積分球ホルダーで測定し、彩度c
*を求めた。結果を表2および
図11に示す。
【0077】
【0078】
(比較例6~9)
被処理三次元造形物Eに、光源として405nm単波長ランプ(INTEGRATION405)を用いて、距離を調整して照度30mW/cm
2、15mW/cm
2、5mW/cm
2、または1mW/cm
2で光を照射してエイジングを40時間行った。初期、8、16、40時間後の明度L
*、色度a
*b
*を積分球ホルダーで測定し、彩度c
*を求めた。結果を表3および
図12に示す。
【0079】
【0080】
(比較例10~12)
被処理三次元造形物Eに、光源として385nm単波長ランプを用いて、距離を調整して照度30mW/cm
2、15mW/cm
2、または5mW/cm
2で光を照射してエイジングを40時間行った。初期、8、16、40時間後の明度L
*、色度a
*b
*を積分球ホルダーで測定し、彩度c
*を求めた。結果を表4および
図13に示す。
【0081】
【0082】
(実施例1~4)
被処理三次元造形物Eに、光源として405nm単波長ランプ(INTEGRATION405)を用いて、距離を調整して照度30mW/cm
2、15mW/cm
2、5mW/cm
2、または1mW/cm
2で光を照射して70℃に加温しながら、エイジングを40時間行った。初期、8、16、40時間後の明度L
*、色度a
*b
*を積分球ホルダーで測定し、彩度c
*を求めた。結果を表5および
図14に示す。
【0083】
【0084】
(比較例1~12、実施例1~4のまとめ)
比較例1では、暗所に保管しており、ほとんどエイジング効果は得られないことがわかる。熱処理のみを行った比較例2~5では、高温で熱処理を行うと、8時間後にエイジング効果がある程度観測できるが、変色の除去が不十分であることがわかる。430nm未満の波長を含む光を照射する照射処理のみを行った比較例6~9および比較例10~12では、照度が高いとエイジング効果がある程度観測できるものの、エイジングの速度が遅く、その速度は、照度を15mW/cm2から更に30mW/cm2に上げても効果がほとんど無いことがわかる。430nm未満の波長を含む光を照射する照射処理および熱を加える熱処理を行った実施例1~4では、8時間後に既に十分なエイジング効果が観測できた。
【0085】
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
【符号の説明】
【0086】
1 被処理三次元造形物
2 無色透明部分
3 有色不透明部分
S1 準備工程
S2 エイジング工程
S2-1 熱処理
S2-2 照射処理