IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 京セラ株式会社の特許一覧

<>
  • 特開-試料保持具 図1
  • 特開-試料保持具 図2
  • 特開-試料保持具 図3
  • 特開-試料保持具 図4
  • 特開-試料保持具 図5
  • 特開-試料保持具 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023165726
(43)【公開日】2023-11-17
(54)【発明の名称】試料保持具
(51)【国際特許分類】
   C04B 35/582 20060101AFI20231110BHJP
   H01L 21/683 20060101ALI20231110BHJP
   H02N 13/00 20060101ALI20231110BHJP
【FI】
C04B35/582
H01L21/68 R
H02N13/00 D
【審査請求】有
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2023140933
(22)【出願日】2023-08-31
(62)【分割の表示】P 2022536277の分割
【原出願日】2021-07-06
(31)【優先権主張番号】P 2020120020
(32)【優先日】2020-07-13
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2020174081
(32)【優先日】2020-10-15
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000006633
【氏名又は名称】京セラ株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】楢崎 義悟
(57)【要約】
【課題】窒化アルミニウム基体の体積固有抵抗を高めることができる試料保持具を提供する。
【解決手段】本開示の試料保持具10は、窒化アルミニウム基体1と、窒化アルミニウム基体1に設けられた内部電極2と、を備えている。窒化アルミニウム基体1は、複数の窒化アルミニウム粒子11および窒化アルミニウム粒子11同士の結晶粒界に位置する酸窒化アルミニウム粒子12を有する。酸窒化アルミニウム粒子12にはチタン13が固溶している。
【選択図】図2
【特許請求の範囲】
【請求項1】
複数の窒化アルミニウム粒子および該窒化アルミニウム粒子同士の結晶粒界に位置する酸窒化アルミニウム粒子を有する窒化アルミニウム基体と、
該窒化アルミニウム基体に設けられた内部電極と、を備えており、
前記酸窒化アルミニウム粒子にはチタンが固溶していることを特徴とする試料保持具。
【請求項2】
前記酸窒化アルミニウム粒子は、前記内部電極の周辺にある請求項1に記載の試料保持具。
【請求項3】
前記酸窒化アルミニウム粒子は、前記内部電極に接している請求項2に記載の試料保持具。
【請求項4】
前記酸窒化アルミニウム粒子は、前記試料保持具のウエハ載置面側よりも内部電極側に多く存在している請求項1乃至請求項3のいずれかに記載の試料保持具。
【請求項5】
前記酸窒化アルミニウム粒子は、前記窒化アルミニウム粒子に接している部分にチタンが偏析している部位を有する請求項1乃至請求項4のいずれかに記載の試料保持具。
【請求項6】
前記窒化アルミニウム粒子は、前記酸窒化アルミニウム粒子に接している部分にチタンが偏析している部位を有する請求項1乃至請求項5のいずれかに記載の試料保持具。
【請求項7】
前記内部電極は、窒化アルミニウムを含む請求項1乃至請求項6のいずれかに記載の試料保持具。
【請求項8】
前記内部電極は静電吸着用電極であって、
前記窒化アルミニウム基体は、ヒータ電極を更に備えており、
該ヒータ電極の周辺に、チタンが固溶している酸窒化アルミニウム粒子を更に有する請求項1乃至請求項7のいずれかに記載の試料保持具。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、試料保持具に関するものである。
【背景技術】
【0002】
従来技術として、例えば、特開平6-128041号公報、特開平11-335173号公報および特開2020-88195号公報に示す窒化アルミニウム焼結体が知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6-128041号公報
【特許文献2】特開平11-335173号公報
【特許文献3】特開2020-88195号公報
【発明の概要】
【0004】
本開示の試料保持具は、複数の窒化アルミニウム粒子および該窒化アルミニウム粒子同士の結晶粒界に位置する酸窒化アルミニウム粒子を有する窒化アルミニウム基体と、該窒化アルミニウム基体に設けられた内部電極と、を備えており、前記酸窒化アルミニウム粒子にはチタンが固溶している。
【図面の簡単な説明】
【0005】
図1】本開示の試料保持具を示す縦断面図である。
図2図1に示す試料保持具の窒化アルミニウム基体における、窒化アルミニウム粒子、酸窒化アルミニウム粒子および酸窒化アルミニウム粒子に固溶しているチタンを示す摸式図である。
図3】別の例の試料保持具の窒化アルミニウム基体における、窒化アルミニウム粒子、酸窒化アルミニウム粒子および酸窒化アルミニウム粒子に固溶しているチタンを示す摸式図である。
図4】別の例の試料保持具の窒化アルミニウム基体における、窒化アルミニウム粒子、酸窒化アルミニウム粒子および酸窒化アルミニウム粒子に固溶しているチタンを示す摸式図である。
図5】別の例の試料保持具の窒化アルミニウム基体における、窒化アルミニウム粒子、酸窒化アルミニウム粒子および酸窒化アルミニウム粒子に固溶しているチタンを示す摸式図である。
図6】別の例の試料保持具を示す縦断面図である。
【発明を実施するための形態】
【0006】
以下、本開示の試料保持具10の例について図面を用いて詳細に説明する。
【0007】
図1に示す試料保持具10は、窒化アルミニウム粒子11および酸窒化アルミニウム粒子12を含む窒化アルミニウム基体1と、窒化アルミニウム基体1に設けられた内部電極2とを備えている。なお、本開示における粒子とは、連続した原子配列を有する結晶粒を示している。
【0008】
窒化アルミニウム基体1は、試料を保持するための部材である。窒化アルミニウム基体1は、例えば板状の部材であってもよく、円板状または角板状であってもよい。窒化アルミニウム基体1は、例えば板状であるとき、一方の主面がウエハ載置面であってもよい。窒化アルミニウム基体1の寸法は、例えば窒化アルミニウム基体1が円板形状のときに、直径を200~500mmに、厚みを1~15mmにすることができる。
【0009】
窒化アルミニウム基体1は、複数の窒化アルミニウム粒子11と酸窒化アルミニウム粒子12とを含んでいる。ここで、窒化アルミニウム粒子11は、窒化アルミニウムからなる粒子であるが、窒化アルミニウム以外の不純物または格子欠陥等を含んでいてもよい。また、酸窒化アルミニウム粒子12は酸窒化アルミニウム(AlON)からなる粒子であるが、酸窒化アルミニウム以外の不純物または格子欠陥等を含んでいてもよい。窒化アルミニウム基体1において、窒化アルミニウムおよび酸窒化アルミニウムの存在比率は、例えばX線回折(XRD:X-ray diffraction)で分析し、X線源としてCuKα線を用いた場合、窒化アルミニウムは2θ=33.2°付近に出現する(100)面のピーク、酸窒化アルミニウムは一例として27R-酸窒化アルミニウムであれば2θ=33.8°付近に出現する(101)面のメインピークとして、その強度を比較した時に、窒化アルミニウム粒子11は95%程度で、酸窒化アルミニウムは5%程度であってもよい。
【0010】
窒化アルミニウム基体1は、表面または内部に内部電極2を有している。試料保持具10を静電チャックとして用いる場合においては、内部電極2は、静電吸着用電極であってもよい。このときに、内部電極2の材料は、白金、またはタングステン等の金属であってもよい。また、内部電極2の寸法は、例えば厚みを0.01mm~0.5mmに、面積を30000mm~190000mmにすることができる。また、内部電極2は、発熱抵抗体であってもよい。このときに、内部電極2は、銀パラジウム等の金属成分と、ケイ素、ビスマス、カルシウム、アルミニウムおよびホウ素等の材料の酸化物を有するガラス成分とを含んでいてもよい。このときに、内部電極2の寸法は、例えば厚みを0.01mm~0.1mmに、幅を0.5mm~5mmに長さを1000mm~50000mmにすることができる。また、窒化アルミニウム基体1は、複数の内部電極2を有していてもよい。また、窒化アルミニウム基体1は、静電吸着用電極と、ヒータ電極3とを、それぞれ有していてもよい。
【0011】
本開示の窒化アルミニウム基体1は、窒化アルミニウム粒子11と酸窒化アルミニウム粒子12とを含み、酸窒化アルミニウム粒子12には、チタン13が固溶している。つまり、本開示の試料保持具10は、複数の窒化アルミニウム粒子11および該窒化アルミニウム粒子11同士の結晶粒界に位置する酸窒化アルミニウム粒子12を有する窒化アルミニウム基体1と、該窒化アルミニウム基体1に設けられた内部電極2と、を備えており、前記酸窒化アルミニウム粒子12にはチタン13が固溶している。これにより、窒化アルミニウム基体1の体積固有抵抗を高めることができる。理由を以下に説明する。
【0012】
まず、チタン13が固溶している酸窒化アルミニウム粒子12は、通常の酸窒化アルミニウム粒子12と比較して、チタン13の欠陥が電気的にプラスである。これは、酸窒化アルミニウム粒子12のアルミニウムがチタン13に置き換わることで電子が1つ不足するためである。また、窒化アルミニウム粒子11はアルミニウム空孔を有し、アルミニウム空孔は、電気的にマイナスである。このように、酸窒化アルミニウム粒子12のチタン欠陥と窒化アルミニウム粒子11のアルミニウム空孔とは、逆の電荷を有する。そのため、チタン13が固溶している酸窒化アルミニウム粒子12は、窒化アルミニウム粒子11内の粒界付近に存在するアルミニウム空孔を静電気的にピン止めすることができる。その結果、チタン13が酸窒化アルミニウム粒子12に固溶していない場合と比較して、窒化アルミニウム基体1の体積固有抵抗を高めることができる。
【0013】
図2は、酸窒化アルミニウム粒子12および窒化アルミニウム粒子11の基体中での存在形態の例を模式的に表している。図2においては、ハッチングされた領域を酸窒化アルミニウム粒子12とし、それ以外の領域を、窒化アルミニウム粒子11とする。また、酸窒化アルミニウム粒子12内部に存在し、丸く囲って示したものを、チタン13としている。
【0014】
図2に示すように、本開示の窒化アルミニウム基体1は、窒化アルミニウム粒子11と酸窒化アルミニウム粒子12とを含み、酸窒化アルミニウム粒子12には、チタン13が固溶している。チタン13は、酸窒化アルミニウム粒子12の中に、複数の領域に分かれて固溶していてもよい。また、窒化アルミニウム基体1は、チタン13が固溶していない酸窒化アルミニウム粒子12を有していてもよい。また、チタン13は、窒化アルミニウム粒子11と酸窒化アルミニウム粒子12との粒界に存在していてもよい。また、チタン13は、窒化アルミニウム粒子11の粒界に存在していてもよい。また、チタン13は、酸窒化アルミニウム粒子12と酸窒化アルミニウム粒子12との粒界に存在していてもよい。
【0015】
また、図3に示すように、酸窒化アルミニウム粒子12は、細長い形状であってもよい。または、窒化アルミニウム基体1中において、酸窒化アルミニウム粒子12の存在領域が細長く存在していてもよい。この場合は、粒界の広範囲において、チタン13が固溶している酸窒化アルミニウム粒子12が存在するため、チタン13が存在する酸窒化アルミニウム粒子12は、窒化アルミニウム粒子11の粒界に存在するアルミニウム空孔を、より多く静電気的にピン止めすることができる。その結果、窒化アルミニウム基体1の体積固有抵抗をより高めることができる。
【0016】
なお、窒化アルミニウム基体1が窒化アルミニウム粒子11と酸窒化アルミニウム粒子12とを含み、酸窒化アルミニウム粒子12にチタン13が固溶していることは、以下の手法により構造解析することで確認することができる。まず、窒化アルミニウム基体1の所定の部位を切削、切断、研磨等の公知の手法で取り出す。次に、取り出した部位を、アルゴンイオンミリング法等の公知の手法で薄片化し、試料とする。そして、その試料を、透過型電子顕微鏡(TEM)、電子回折、エネルギー分散型X線分光法(EDS)、電子エネルギー損失分光法(EELS)、マッピング分析またはX線回折(XRD:X-ray diffraction)等の公知の手法により構造解析することで、焼結体中の酸窒化アルミニウムと同時に酸窒化アルミニウムに含まれる酸素)を特定する。次に、上記の手法または飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)等の手法により、焼結体中のチタン13を特定する。酸素とチタン13の分布が重なっていれば、酸窒化アルミニウム粒子12にチタン13が固溶しているものとすることができる。
【0017】
また、酸窒化アルミニウム粒子12は、内部電極2の周辺にあってもよい。このことにより、内部電極2周辺でのアルミニウム空孔をピン止めすることができるため、電圧印加時に窒化アルミニウムから内部電極2への電荷の移動を抑止できる。その結果、窒化アルミニウム基体1の体積固有抵抗をより高めることができる。例えば、酸窒化アルミニウム粒子12は、内部電極2の表面から0.01~1.5mmの位置にあってもよい。
【0018】
また、酸窒化アルミニウム粒子12は、内部電極2に接していてもよい。このことにより、電圧印加時に窒化アルミニウム基体1から電極へ向かって移動してくる電荷をピン止めして電荷の補償を行うことができる。これにより、内部電極2に接する部位の体積固有抵抗を高めることができる。その結果、試料の着脱性をより高めることができる。
【0019】
また、酸窒化アルミニウム粒子12は、試料保持具1のウエハ載置面側よりも内部電極2側に多く存在していてもよい。このことにより、ウエハ載置面側の領域よりも内部電極2側の領域のピン止め効果を大きくすることができる。そのため、電極に給電した場合の電荷の移動にメリハリがつき応答速度を高めることができる。その結果、試料保持具1の静電吸着用電極への電圧印可を停止した後の分極を低減し、試料を脱着しやすくすることができる。
【0020】
ここでいう「ウエハ載置面側」とは、ウエハ載置面から0.01~1.5mmの領域を意味している。また、ここでいう「内部電極2側」とは、内部電極2から0.01~1.5mmの領域を意味している。酸窒化アルミニウム粒子12がウエハ載置面側よりも内部電極2側に多く存在していることは、例えば分析装置として波長分散型X線分光法(WDS)またはX線光電子分光法(XPS)を用いて、試料保持具1のウエハ載置面側および内部電極2側の酸素の存在箇所を検出することにより確認することができる。
【0021】
また、図4に示すように、酸窒化アルミニウム粒子12は、窒化アルミニウム粒子11に接している部分にチタンが偏析している部位を有していてもよい。これにより、より効率的に窒化アルミニウム粒子11内の粒界付近に存在するアルミニウム空孔を静電気的にピン止めすることができる。これにより、窒化アルミニウム基体1の体積固有抵抗をより高めることができる。
【0022】
また、図5に示すように、窒化アルミニウム粒子11は、酸窒化アルミニウム粒子12に接している部分にチタン13が偏析している部位を有していてもよい。このことにより、窒化アルミニウム粒子11内のチタン欠陥がアルミニウム空孔を静電気的にピン止めすることができる。これにより、窒化アルミニウム基体1の体積固有抵抗をより高めることができる。
【0023】
また、内部電極2は、窒化アルミニウムを含んでいてもよい。このことにより内部電極2に含まれる窒化アルミニウムと、内部電極2を挟んだウエハ保持面側および反対側の窒化アルミニウム粒子11との間で、電荷の補償を取り合うことができる。そのため、試料保持具10内部で電荷の偏りを低減することができる。
【0024】
また、図6に示すように、内部電極2は静電吸着用電極であって、窒化アルミニウム基体1は、ヒータ電極3を更に備えており、ヒータ電極3の周辺に、チタン13が固溶している酸窒化アルミニウム粒子12を更に有していてもよい。これにより、温度が高くなり窒化アルミニウム粒子11からの電荷の発生が多くなる部位のピン止め効果を高めることができる。その結果、窒化アルミニウム基体1の体積固有抵抗をより高めることができる。例えば、酸窒化アルミニウム粒子12は、ヒータ電極3の表面から0.01~1.5mmの位置にあってもよい。また、酸窒化アルミニウム粒子12は、ヒータ電極3に接していてもよい。
【0025】
以下に、本開示の試料保持具10に用いられる窒化アルミニウム基体1の製法について示す。まず、窒化アルミニウム粉体と、酸化アルミニウム粉体と、酸化チタン粉体と、バインダー等の焼成時に炭素を生成しうる物質と、を混合し、所定の形状に成形する。次に、成形体を2000℃以上で焼成し、100℃まで冷却する。この時に、例えば、冷却速度を3.5~5.0℃毎分とすることにより、過冷却にすることができる。このときに、過冷却でなければ生じないはずのチタン13が固溶した27R-酸窒化アルミニウムが、窒化アルミニウム焼結体中に析出する。これにより、チタン13が固溶している酸窒化アルミニウム粒子12を含む窒化アルミニウム基体1を得ることができる。以上の製法により、チタン13が固溶した酸窒化アルミニウム粒子12を含む試料1を作成した。
【0026】
また、チタン13が固溶してない酸窒化アルミニウム粒子12を含む試料2を通常の過冷却を行わない製法で作成した。これらの体積固有抵抗を、以下の方法で評価した。まず、窒化アルミニウム焼結体から縦50~60mm横50~60mm厚み0.5~2mmのサンプルを切り出し、酸・アルカリ洗浄を行い乾燥させた。次にこのサンプルに主電極、リング電極、対向電極を印刷し焼付けを行い、3端子法(JIS C 2141:1992)を用いて体積固有抵抗を測定した。その結果を表1に示す。
【0027】
【表1】
【0028】
表1に示すように、チタン13が固溶している酸窒化アルミニウム粒子12を含まない試料2は、400℃における体積抵抗値が5×10Ωcmである。これに対し、チタン13が固溶している酸窒化アルミニウム粒子12を含む試料1は、400℃における体積抵抗値が5×10Ωcmである。このように、チタン13が固溶している酸窒化アルミニウム粒子12を含むことで、試料保持具10に用いる窒化アルミニウム基体1の体積固有抵抗を高めることができる。このような窒化アルミニウム基体1を試料保持具10として用いることで、静電吸着用電極への電圧印可を停止した後の分極が解消し、ウエハの脱着を容易に行うことができる。
【符号の説明】
【0029】
1:窒化アルミニウム基体
11:窒化アルミニウム粒子
12:酸窒化アルミニウム粒子
13:チタン
2:内部電極
3:ヒータ電極
10:試料保持具
図1
図2
図3
図4
図5
図6
【手続補正書】
【提出日】2023-10-25
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
複数の窒化アルミニウム粒子および該窒化アルミニウム粒子同士の結晶粒界に位置する酸窒化アルミニウム粒子を有する窒化アルミニウム基体を備えており、
前記酸窒化アルミニウム粒子にはチタンが固溶していることを特徴とする試料保持具。
【請求項2】
前記酸窒化アルミニウム粒子は、細長い形状であることを特徴とする請求項1に記載の試料保持具。
【請求項3】
前記酸窒化アルミニウム粒子は、複数の前記窒化アルミニウム粒子に連続して接していることを特徴とする請求項2に記載の試料保持具。
【請求項4】
前記チタンは、前記酸窒化アルミニウム粒子の中に、複数の領域に分かれて固溶していることを特徴とする請求項1乃至請求項3のいずれかに記載の試料保持具。
【請求項5】
前記窒化アルミニウム基体は、前記チタンが固溶していない酸窒化アルミニウム粒子を有していることを特徴とする請求項1乃至請求項4のいずれかに記載の試料保持具。
【請求項6】
前記チタンは、前記窒化アルミニウム粒子と前記酸窒化アルミニウム粒子との粒界に存在していることを特徴とする請求項1乃至請求項5のいずれかに記載の試料保持具。
【請求項7】
前記チタンは、前記窒化アルミニウム粒子の粒界に存在していることを特徴とする請求項1乃至請求項6のいずれかに記載の試料保持具。
【請求項8】
前記チタンは、前記酸窒化アルミニウム粒子と前記酸窒化アルミニウム粒子との粒界に存在していることを特徴とする請求項1乃至請求項7のいずれかに記載の試料保持具。
【請求項9】
前記酸窒化アルミニウム粒子は、前記窒化アルミニウム粒子に接している部分にチタンが偏析している部位を有する請求項1乃至請求項のいずれかに記載の試料保持具。
【請求項10】
前記窒化アルミニウム粒子は、前記酸窒化アルミニウム粒子に接している部分にチタンが偏析している部位を有する請求項1乃至請求項のいずれかに記載の試料保持具。
【請求項11】
前記窒化アルミニウム基体の内部に電極を備えることを特徴とする請求項2乃至請求項10のいずれかに記載の試料保持具。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0004
【補正方法】変更
【補正の内容】
【0004】
本開示の試料保持具は、複数の窒化アルミニウム粒子および該窒化アルミニウム粒子同士の結晶粒界に位置する酸窒化アルミニウム粒子を有する窒化アルミニウム基体を備えており、前記酸窒化アルミニウム粒子にはチタンが固溶している。