IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社半導体エネルギー研究所の特許一覧

<>
  • 特開-表示装置 図1
  • 特開-表示装置 図2
  • 特開-表示装置 図3
  • 特開-表示装置 図4
  • 特開-表示装置 図5
  • 特開-表示装置 図6
  • 特開-表示装置 図7
  • 特開-表示装置 図8
  • 特開-表示装置 図9
  • 特開-表示装置 図10
  • 特開-表示装置 図11
  • 特開-表示装置 図12
  • 特開-表示装置 図13
  • 特開-表示装置 図14
  • 特開-表示装置 図15
  • 特開-表示装置 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023165734
(43)【公開日】2023-11-17
(54)【発明の名称】表示装置
(51)【国際特許分類】
   G02F 1/1368 20060101AFI20231110BHJP
   G09F 9/30 20060101ALI20231110BHJP
   G09F 9/35 20060101ALI20231110BHJP
   H01L 21/02 20060101ALI20231110BHJP
   H01L 27/12 20060101ALI20231110BHJP
   H01L 21/336 20060101ALI20231110BHJP
   G02F 1/1333 20060101ALN20231110BHJP
【FI】
G02F1/1368
G09F9/30 338
G09F9/35
H01L27/12 B
H01L27/12 L
H01L29/78 626C
H01L29/78 612Z
G02F1/1333 500
【審査請求】有
【請求項の数】2
【出願形態】OL
(21)【出願番号】P 2023142370
(22)【出願日】2023-09-01
(62)【分割の表示】P 2022141910の分割
【原出願日】2008-11-28
(31)【優先権主張番号】P 2007312546
(32)【優先日】2007-12-03
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】笠原 崇廣
(57)【要約】
【課題】表示部に副画素を制御するTFTが一定の間隔でマトリクス状に形成されている
場合、大型のSOI基板を作製する際に形成される隣接するSOI層間の継ぎ目を避けて
全てのTFTを配置することは困難である。そのため、表示不良や生産性の低下が起こり
やすい。
【解決手段】副画素を制御するTFTを走査線と信号線の交差部を囲むように複数個まと
めて配置することで、TFTが位置する領域間の間隔を拡張する。TFTが表示部内に一
定の間隔で配置される従来の配置に比べ、TFTが位置する領域間の間隔が拡張されるた
め、TFTがSOI層間の継ぎ目にかかることを回避することができる。
【選択図】図1
【特許請求の範囲】
【請求項1】
第1の走査線と、第2の走査線と、第3の走査線と、信号線と、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、を画素部に有する表示装置であって、
前記第1のトランジスタは、ソース及びドレインの一方が前記信号線に電気的に接続され、ソース及びドレインの他方が第1の液晶素子に電気的に接続され、ゲートが前記第1の走査線に電気的に接続され、
前記第2のトランジスタは、ソース及びドレインの一方が前記信号線に電気的に接続され、ソース及びドレインの他方が第2の液晶素子に電気的に接続され、ゲートが前記第2の走査線に電気的に接続され、
前記第3のトランジスタは、ソース及びドレインの一方が前記信号線に電気的に接続され、ソース及びドレインの他方が第3の液晶素子に電気的に接続され、ゲートが前記第3の走査線に電気的に接続され、
前記画素部の平面視において、前記第1の走査線と前記第2の走査線と前記第3の走査線とは、第1の方向に延在して配置され、
前記画素部の平面視において、前記第2の走査線は、前記第1の走査線及び前記第3の走査線に隣接し、かつ前記第1の走査線と前記第3の走査線との間に設けられ、
前記画素部の平面視において、前記信号線は、前記第1のトランジスタと前記第2のトランジスタとの間に配置された領域を有し、
前記画素部の平面視において、前記信号線は、前記第2のトランジスタと前記第3のトランジスタとの間に配置された領域を有し、
前記画素部の平面視において、前記第1の走査線と前記第2の走査線との間には画素が配置されず、
前記画素部の平面視において、前記信号線は、前記第1の方向と交差する第2の方向に延在して配置される第1の領域と、前記第1の方向と交差し且つ前記第2の方向と交差する第3の方向に延在して配置される第2の領域と、を有し、
前記画素部の平面視において、前記第2の領域は、前記第1の走査線と前記第2の走査線との間に配置され、
前記画素部の平面視において、前記第1のトランジスタと前記第2のトランジスタとの距離は、前記第2のトランジスタと前記第3のトランジスタの距離よりも小さく、
前記画素部の平面視において、前記第2のトランジスタと前記第3のトランジスタとの間には、前記第2の液晶素子の画素電極と、前記第3の液晶素子の画素電極とが配置されている、表示装置。
【請求項2】
第1の走査線と、第2の走査線と、第3の走査線と、信号線と、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、を画素部に有する表示装置であって、
前記第1のトランジスタは、ソース及びドレインの一方が前記信号線に電気的に接続され、ソース及びドレインの他方が第1の液晶素子に電気的に接続され、ゲートが前記第1の走査線に電気的に接続され、
前記第2のトランジスタは、ソース及びドレインの一方が前記信号線に電気的に接続され、ソース及びドレインの他方が第2の液晶素子に電気的に接続され、ゲートが前記第2の走査線に電気的に接続され、
前記第3のトランジスタは、ソース及びドレインの一方が前記信号線に電気的に接続され、ソース及びドレインの他方が第3の液晶素子に電気的に接続され、ゲートが前記第3の走査線に電気的に接続され、
前記第1の液晶素子に対応する画素の色は、前記第2の液晶素子に対応する画素の色と異なり、
前記第2の液晶素子に対応する画素の色は、前記第3の液晶素子に対応する画素の色と異なり、
前記画素部の平面視において、前記第1の走査線と前記第2の走査線と前記第3の走査線とは、第1の方向に延在して配置され、
前記画素部の平面視において、前記第2の走査線は、前記第1の走査線及び前記第3の走査線に隣接し、かつ前記第1の走査線と前記第3の走査線との間に設けられ、
前記画素部の平面視において、前記信号線は、前記第1のトランジスタと前記第2のトランジスタとの間に配置された領域を有し、
前記画素部の平面視において、前記信号線は、前記第2のトランジスタと前記第3のトランジスタとの間に配置された領域を有し、
前記画素部の平面視において、前記第1の走査線と前記第2の走査線との間には画素が配置されず、
前記画素部の平面視において、前記信号線は、前記第1の方向と交差する第2の方向に延在して配置される第1の領域と、前記第1の方向と交差し且つ前記第2の方向と交差する第3の方向に延在して配置される第2の領域と、を有し、
前記画素部の平面視において、前記第2の領域は、前記第1の走査線と前記第2の走査線との間に配置され、
前記画素部の平面視において、前記第1のトランジスタと前記第2のトランジスタとの距離は、前記第2のトランジスタと前記第3のトランジスタの距離よりも小さく、
前記画素部の平面視において、前記第2のトランジスタと前記第3のトランジスタとの間には、前記第2の液晶素子の画素電極と、前記第3の液晶素子の画素電極とが配置されている、表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は絶縁表面上に半導体層が設けられた所謂SOI(Silicon on Ins
ulator)構造を有する表示装置に関する。
【背景技術】
【0002】
単結晶半導体のインゴットを薄くスライスして作製されるシリコンウェハに代わり、絶縁
表面に薄い単結晶半導体層を設けたシリコン・オン・インシュレータ(以下、「SOI」
ともいう)と呼ばれる半導体基板を使った集積回路が開発されている。SOI基板を使っ
た集積回路は、トランジスタのドレインと基板間における寄生容量を低減し、半導体集積
回路の性能を向上させるものとして注目を集めている。
【0003】
SOI基板の製造方法は様々なものがあるが、SOI層の品質と生産しやすさ(高スルー
プット)を両立させたものとして、スマートカット(登録商標)と呼ばれる方法が知られ
ている。このSOI基板は、シリコン層のベースとなるベースウェハに水素イオンを注入
し、別のウェハ(ボンドウェハ)と室温で張り合わせる。ベースウェハとボンドウェアの
張り合わせにはファン・デル・ワールス力が働き、室温でも強固な接合を形成することが
できる。ボンドウェハと接合されたシリコン層は、500℃程度の温度で熱処理すること
で、水素イオンが注入された層を境界としてベースウェハから剥離される。
【0004】
高耐熱性ガラスである結晶化ガラス上に、スマートカット法を利用して得られた単結晶シ
リコン薄膜を形成する方法として、本出願人によるものが知られている(特許文献1参照
)。
【0005】
また、液晶及び有機EL等のディスプレイの駆動回路・制御回路を構成する薄膜トランジ
スタは、ガラス基板上に成膜されたアモルファスシリコン膜、多結晶シリコン膜等により
形成されている。近年、前記ディスプレイのさらなる高精細化、高速駆動の要望が高まっ
ており、ガラス基板上に、よりキャリアの移動度が高い単結晶シリコン膜を形成する試み
が盛んになされている。
【0006】
近頃の画面サイズの大型化、1基板あたりの取り数増加による生産性の効率化にともない
、マザーガラスは大型化の一途をたどっている。例えば、現時点で実用化には至っていな
いが、大きなもので基板サイズ2850mm×3050mm(所謂第10世代)のマザー
ガラスが知られている。
【0007】
一方、シリコンウェハは大きなものでも直径300mmであり、大型のガラス基板一面に
SOI層を形成するためには複数枚のシリコンウェハを貼り合わせる必要がある。この際
、大型ガラス基板上において、隣接するSOI層間の継ぎ目(隙間)を作らずに大型のS
OI基板を作製することは容易ではない。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平11-163363号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
以下、本明細書では、発光する、あるいは光を透過する点の一つを副画素と定義し、互い
に異なる発色を示す複数の副画素により構成される副画素群を画素と定義する。例えば、
R(赤)、G(緑)、B(青)のそれぞれを副画素とし、これらの副画素群を画素とする
ことができる。
【0010】
従来例として、1つの画素が、a(第1の副画素ともいう)、b(第2の副画素ともいう
)、c(第3の副画素ともいう)、3つの副画素で構成され、各副画素にスイッチング素
子である薄膜トランジスタ(以下、TFTとする)が設けられているアクティブマトリク
ス型表示装置の画素構成の例を図2に示す。図2に示すように、最も簡単な表示部の画素
配置は、3つの副画素がストライプ配列の画素配置である。各副画素の周囲は走査線と信
号線からなる配線で囲まれており、TFT、画素電極のレイアウトは全ての副画素で同様
のレイアウトである(保持容量は図面簡略化のため図示せず)。このように、隣接するT
FTの間隔は副画素のピッチと同等である。
【0011】
多くのアクティブマトリクス型表示装置では、隣接するTFT間の間隔が狭い。このため
、複数の単結晶半導体基板を大型のガラス基板に貼り合わせることによって形成された、
大型のSOI基板を用いて表示装置を作製する場合、表示部内のTFT全てを、隣接する
SOI層間の継ぎ目を避けて配置することは困難である。このため、ある副画素ではTF
Tが形成できない、若しくは形成できたとしても正常に動作しないということが起こりや
すくなり、点欠陥や線欠陥等の表示不良が発生しやすいという問題点がある。したがって
、SOI層形成時における位置合わせのマージンが少なく、SOI層の位置合わせに対し
、高い精度が要求される。
【0012】
また、多くの液晶表示装置には、コントラストの向上や光照射によるリーク電流の発生防
止を目的として、TFTが設けられた基板(以下、TFT基板とする)に対向する基板(
以下、対向基板とする)上に、ブラックマトリックス(以下、BMとする)が設けられて
いる。通常、BMは、TFT基板と対向基板の貼り合わせの際に生じる位置ずれに対する
マージンをもたすため、幅広く形成されている。そのため、BMの位置ずれが大きくなる
と、BMによって遮蔽される画素領域が大きくなり、開口率が低下する。
【0013】
本発明は、このような課題を鑑み成されたものであり、SOI層形成時における位置合わ
せのマージンが広い、又はTFT基板と対向基板の貼り合わせにおける位置ずれの際の開
口率の低下が抑制されるTFT配置を提案するものである。また、前記TFT配置を適用
した表示装置を提供する。
【課題を解決するための手段】
【0014】
本発明は表示装置に係り、マトリクス状に配列された画素を複数個含む表示部を有し、画
素は複数の副画素を有するものであって、複数の走査線又は複数の信号線が隣接する画素
の間に設置され、あるいは複数の走査線及び複数の信号線が隣接する画素の間に設置され
且つ複数の副画素それぞれに設けられたTFTは、走査線と信号線の交差部に複数近接し
て配置されていることを要旨とする。
【0015】
また、この時の複数のTFTの配置としては、隣り合うTFT同士が走査線または信号線
を挟んで正対配置される配置等が適用可能である。
【0016】
すなわち、本発明は、副画素を制御するTFTを走査線と信号線の交差部を囲むように複
数個まとめて配置することで、複数のTFTが位置する領域の間隔を拡張し、上記課題を
解決するものである。TFTが表示部内に一定の間隔で配置される場合に比べ、複数のT
FTが位置する領域の間隔が大きいため、TFTがSOI層間の継ぎ目にかかることを回
避することができる。また、走査線や信号線と重なるように設けられるBMのマージンの
面積を減少させ、TFT基板と対向基板とが位置ずれを起こした際の開口率の低下を抑制
することが出来る。
【発明の効果】
【0017】
本発明によれば、SOI層形成時における位置合わせのマージンが増大すること、又はT
FT基板と対向基板の貼り合わせにおける位置ずれの際の開口率の低下が抑制されること
により、生産性の向上、及び表示不良の低減を図ることができる。
【図面の簡単な説明】
【0018】
図1】本発明に係る表示部の画素配置の一例を示す模式図。
図2】表示部における従来の画素配置の一例を示す模式図。
図3】本発明に係る表示部の画素配置の一例を示す模式図。
図4】表示部における従来の画素配置の一例を示す模式図。
図5】本発明に係る表示部の画素配置の一例を示す模式図。
図6】本発明に係る表示部の画素配置の一例を示す模式図。
図7】本発明に係る表示部の画素配置の一例を示す模式図。
図8】本発明に係る表示部の画素配置の一例を示す模式図。
図9】表示部における従来の画素配置の一例を示す模式図。
図10】本発明に係る表示部の画素配置の一例を示す模式図。
図11】表示部における従来の画素配置の一例を示す模式図。
図12】表示部における従来の画素とBMの配置関係の一例を示す模式図。
図13】本発明に係る表示部の画素とBMの配置関係の一例を示す模式図。
図14】本発明に係る表示装置の作製工程の一例を示す断面図。
図15】本発明に係る表示装置の断面構造の一例を示す図。
図16】本発明に係る表示装置の一例の構成を示す図。
【発明を実施するための形態】
【0019】
本発明の実施の形態について、図面を用いて以下に説明する。但し、本発明は以下の説明
に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細をさま
ざまに変更しうることは当業者であれば容易に理解される。従って、本発明は以下に示す
実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明
の構成において、同じか又は対応する要素を指す符号は異なる図面間で共通して用いるこ
ととする。
【0020】
(実施の形態1)
図1は、本発明の一実施形態に係るアクティブマトリクス型表示装置の構成例を示す模式
図である。本実施の形態における画素は、a(第1の副画素とも言う)、b(第2の副画
素とも言う)、c(第3の副画素とも言う)、3つの長方形又は長方形に準じた形状の副
画素が、長辺が信号線と平行になるようにストライプ配列され、且つ隣接する画素の間に
3本の信号線が集められた構成となっている。
【0021】
なお、具体的な副画素a、b、cの構成は限定されない。例えば、R(赤)、G(緑)、
B(青)を3つの副画素に適用することができる。
【0022】
走査線G(i)、G(i+1)及び信号線S(j+3)~S(j+5)、S(j+6)~
S(j+8)で囲まれた領域に配置された第1の画素の第1の副画素に設けられたTFT
をTr1(第1の薄膜トランジスタともいう)とし、走査線G(i+1)、G(i+2)
及び信号線S(j+3)~S(j+5)、S(j+6)~S(j+8)で囲まれた領域に
設置された第2の画素の第2の副画素に設けられたTFTをTr2(第2の薄膜トランジ
スタともいう)とし、走査線G(i+1)、G(i+2)及び信号線S(j)~S(j+
3)、S(j+4)~S(j+5)で囲まれた領域に設置された第3の画素の第3の副画
素に設けられたTFTをTr3(第3の薄膜トランジスタともいう)とする。Tr1は走
査線G(i+1)及び信号線S(j+5)に接続され、Tr2は走査線G(i+1)及び
信号線S(j+4)に接続され、Tr3は走査線G(i+1)及び信号線S(j+3)に
接続されている。他の画素においても同様であり、走査線と3本の信号線の交差部に近接
するように3つのTFTで構成されるグループを配置する。
【0023】
以下に示すように、本実施の形態の構成を別の表現で記述することができる。本実施の形
態で示す画素は、互いに平行に配置された第1から第3の副画素を有し、互いに平行な第
1から第3の信号線(例えばS(j+1)からS(j+3))と、互いに平行な第1と第
2の走査線(例えばG(i)とG(i+1))を有している。第2の副画素は第1と第3
の副画素の間に設けられ、第1から第3の信号線は第1と第2の走査線と直交しており、
第2の信号線は第1と第3の信号線の間に設けられ、第1から第3の副画素は、第2の信
号線と第3の信号線ならびに第1の走査線と第2の走査線で囲まれる領域に設けられてい
る。各副画素はTFTを有しており、第1の副画素のTFTは第2の走査線と第2の信号
線によって駆動され、第2の副画素のTFTは第1の走査線と第1の信号線によって駆動
され、第3の副画素のTFTは第1の走査線と第3の信号線によって駆動される。さらに
、第1の副画素のTFTは第3の信号線よりも第2の信号線により近く配置され、且つ第
1の走査線よりも第2の走査線により近く配置される。また、第2の副画素のTFTは第
3の信号線よりも第2の信号線により近く配置され、且つ第2の走査線よりも第1の走査
線により近く配置される。また、第3の副画素のTFTは第2の信号線よりも第3の信号
線により近く配置され、且つ第2の走査線よりも第1の走査線により近く配置される。本
実施の形態によれば、全てのTFTが均等な間隔で配置される従来の配置と異なり、異な
る画素に含まれる3つのTFTが3つの信号線と1本の走査線の交差部近傍に設置されて
一つのTFT群を形成する。このTFT群において、図1に示すように、それぞれのTF
Tは走査線又は信号線を挟んで互いに正対するような配置とすることで、図2に示す従来
のTFT配置と比較して、TFTが位置する領域の間隔を約2倍に拡張することができる
。すなわち、図1と2に示すように、異なる画素に含まれる3つのTFTを含むTFT群
間の距離Xは、図2で示す従来のTFT配置における隣接TFT間距離Xよりも大き
い。したがって、SOI層形成時における位置合わせのマージンが増大する。
【0024】
次に、画素とBMの配置に関して図12及び図13を用いて説明する。図12は従来の表
示装置のBMと画素の配置関係を示し、図13は本実施の形態を用いて形成される表示装
置のBMと画素の配置関係を示している。別言すると、図12図2の一部に対応し、図
13は図1の一部に対応する。
【0025】
図12では、各信号線上にBM10が設けられるため、比較的幅の狭いBM10が多数設
けられるのに対し、図13では、集められた3本の信号線上にBM11が設けられるため
、比較的幅の広いBM11が少数設けられることになる。基板上に同一本数の信号線が設
けられている場合、図13では各信号線に設けられるマージンを共有できるため、BMが
形成される面積を図12よりも小さくできる。
【0026】
つまり、本実施の形態のように信号線が複数集められた画素において、走査線及び信号線
と重なるBMを形成すると、TFT基板と対向基板との位置ずれを考慮して設けるマージ
ンの合計面積が小さくなる。そのため、位置ずれの際の開口率の低下を抑制することが出
来る。
【0027】
上述したTFT配置を適用することにより、各副画素に設けられた薄膜トランジスタのそ
れぞれを、走査線と信号線の交差部に複数近接して設けることができる。そのため、SO
I層形成時における位置合わせのマージンを増加、又はTFT基板と対向基板の貼り合わ
せにおける位置ずれの際の開口率の低下を抑制することができる。
【0028】
(実施の形態2)
図3は、本発明の一実施形態に係るアクティブマトリクス型表示装置の構成例を示す模式
図である。本実施の形態における画素は、a(第1の副画素とも言う)、b(第2の副画
素とも言う)、c(第3の副画素とも言う)、3つの長方形又は長方形に準じた形状の副
画素が、長辺が走査線と平行になるようにストライプ配列され、且つ隣接する画素の間に
3本の走査線が集められた構成となっている。
【0029】
なお、具体的な副画素a、b、cの構成は限定されない。例えば、R(赤)、G(緑)、
B(青)を3つの副画素に適用することができる。
【0030】
走査線G(i)~G(i+2)、G(i+3)~G(i+5)及び信号線S(j+1)、
S(j+2)で囲まれた領域に配置された第1の画素の第1の副画素に設けられたTFT
をTr1(第1の薄膜トランジスタともいう)とし、走査線G(i+3)~G(i+5)
、G(i+6)~G(i+8)及び信号線S(j+1)、S(j+2)で囲まれた領域に
設置された第2の画素の第2の副画素に設けられたTFTをTr2(第2の薄膜トランジ
スタともいう)とし、走査線G(i+3)~G(i+5)、G(i+6)~G(i+8)
及び信号線S(j)、S(j+1)で囲まれた領域に設置された第3の画素の第3の副画
素に設けられたTFTをTr3(第3の薄膜トランジスタともいう)とする。Tr1は走
査線G(i+3)及び信号線S(j+1)に接続され、Tr2は走査線G(i+5)及び
信号線S(j+1)に接続され、Tr3は走査線G(i+4)及び信号線S(j+1)に
接続されている。他の画素においても同様であり、3本の走査線と信号線の交差部に近接
するように3つのTFTで構成されるグループを配置する。
【0031】
以下に示すように、本実施の形態の構成を別の表現で記述することができる。本実施の形
態で示す画素は、互いに平行に配置された第1から第3の副画素を有し、互いに平行な第
1と第2の信号線(例えばS(j)とS(j+1))と、互いに平行な第1から第3の走
査線(例えばG(i+1)からG(i+3))を有している。第3の副画素は第1と第2
の副画素の間に設けられ、第1と第2の信号線は第1から第3の走査線と直交しており、
第2の走査線は第1と第3の走査線の間に設けられ、第1から第3の副画素は、第1の信
号線と第2の信号線ならびに第2の走査線と第3の走査線で囲まれる領域に設けられてい
る。各副画素はTFTを有しており、第1の副画素のTFTは第3の走査線と第1の信号
線によって駆動され、第2の副画素のTFTは第2の走査線と第1の信号線によって駆動
され、第3の副画素のTFTは第1の走査線と第2の信号線によって駆動される。さらに
、第1の副画素のTFTは第2の信号線よりも第1の信号線により近く配置され、且つ第
2の走査線よりも第3の走査線により近く配置される。また、第2の副画素のTFTは第
2の信号線よりも第1の信号線により近く配置され、且つ第3の走査線よりも第2の走査
線により近く配置される。また、第3の副画素のTFTは第1の信号線よりも第2の信号
線により近く配置され、且つ第3の走査線よりも第2の走査線により近く配置される。本
実施の形態によれば、全てのTFTが均等な間隔で配置される従来の配置と異なり、異な
る画素に含まれる3つのTFTが1本の信号線と3本の走査線の交差部近傍に設置されて
一つのTFT群を形成する。このTFT群において、図3に示すように、それぞれのTF
Tは走査線又は信号線を挟んで互いに正対するような配置とすることで、図4に示す従来
のTFT配置と比較して、TFTが位置する領域の間隔を約2倍に拡張することができる
。すなわち、図3と4に示すように、異なる画素に含まれる3つのTFTを含むTFT群
間の距離Xは、図2で示す従来のTFT配置におけるTFT間距離Xよりも大きい。
したがって、SOI層形成時における位置合わせのマージンが増大する。
【0032】
また、本発明のように走査線が複数集められた画素において、走査線及び信号線と重なる
BMを形成すると、TFT基板と対向基板との位置ずれを考慮して設けるマージンの合計
面積を小さく出来る。そのため、位置ずれの際の開口率の低下を抑制することが出来る。
【0033】
上述したTFT配置を適用することにより、各副画素に設けられた薄膜トランジスタのそ
れぞれを、走査線と信号線の交差部に複数近接して設けることができる。そのため、SO
I層形成時における位置合わせのマージンを増加、又はTFT基板と対向基板の貼り合わ
せにおける位置ずれの際の開口率の低下を抑制することができる。
【0034】
(実施の形態3)
図5は、アクティブマトリクス型表示装置において、走査線と信号線の交差部の周辺に4
つTFTを配置した構成例を示す図である。本実施の形態における画素は、a(第1の副
画素とも言う)、b(第2の副画素とも言う)、c(第3の副画素とも言う)、3つの長
方形又は長方形に準じた形状の副画素が、長辺が信号線と平行になるようにストライプ配
列され、且つ4本の信号線が集められた構成となっている。
【0035】
また、本実施の形態における画素は、a(第1の副画素とも言う)、b(第2の副画素と
も言う)、c(第3の副画素とも言う)、α(第4の副画素とも言う(α=a、b、c)
)、4つの長方形又は長方形に準じた形状の副画素が、長辺が信号線と平行になるように
ストライプ配列され、且つ隣接する画素の間に4本の信号線が集められた構成となってい
る、と言い換えることができる。
【0036】
なお、具体的な副画素a、b、cの構成は限定されない。例えば、R(赤)、G(緑)、
B(青)を3つの副画素に適用することができる。
【0037】
走査線と信号線で形成される格子の内部に4つの副画素が配置されている。そのため、あ
る任意の行(i行)を例にとると、行方向に連続して並ぶ3つの格子を単位として、4画
素分の副画素(12個の副画素)が配置されることとなる。
【0038】
走査線G(i)、G(i+1)及び信号線S(j)~S(j+3)、S(j+4)~S(
j+7)で囲まれた領域に配置された第1の画素の第1の副画素に設けられたTFTをT
r1(第1の薄膜トランジスタともいう)とし、走査線G(i+1)、G(i+2)及び
信号線S(j)~S(j+3)、S(j+4)~S(j+7)で囲まれた領域に設置され
た第2の画素の第2の副画素に設けられたTFTをTr2(第2の薄膜トランジスタとも
いう)とし、走査線G(i)、G(i+1)及び信号線S(j+4)~S(j+7)、S
(j+8)~S(j+11)で囲まれた領域に設置された第3の画素の第3の副画素に設
けられたTFTをTr3(第3の薄膜トランジスタともいう)とし、走査線G(i+1)
、G(i+2)及び信号線S(j+4)~S(j+7)、S(j+8)~S(j+11)
で囲まれた領域に設置された第4の画素の第4の副画素に設けられたTFTをTr4(第
4の薄膜トランジスタともいう)とする。Tr1は走査線G(i+1)及び信号線S(j
+4)に接続され、Tr2は走査線G(i+1)及び信号線S(j+5)に接続され、T
r3は走査線G(i+1)及び信号線S(j+7)に接続され、Tr4は走査線G(i+
1)及び信号線S(j+6)に接続されている。他の画素においても同様であり、走査線
と4本の信号線の交差部に近接するように4つのTFTで構成されるグループを配置する
【0039】
なお、本実施の形態では、副画素の長辺が信号線と平行となるようにストライプ配列し、
且つ4本の信号線が集められた構成を示したが、副画素の長辺を走査線と平行となるよう
にストライプ配列し、且つ4本の走査線が集められた構成においても、4つのTFTで構
成されるグループを走査線及び信号線の交差部に配置することが出来る(図示しない)。
【0040】
以下に示すように、本実施の形態の構成を別の表現で記述することができる。本実施の形
態で示す画素は、互いに平行に配置された第1から第4の副画素を有し、互いに平行な第
1から第4の信号線(例えばS(j+2)からS(j+5))と、互いに平行な第1と第
2の走査線(例えばG(i)とG(i+1))を有している。第1と第3の副画素は第2
と第4の副画素の間に設けられ、第3の副画素は第4の副画素よりも第2の副画素に近く
、第1の副画素は第2の副画素よりも第4の副画素に近い。第1から第4の信号線は第1
と第2の走査線と直交しており、第2と第3の信号線は第1と第4の信号線の間に設けら
れ、第2の信号線は第4の信号線よりも第1の信号線に近く、第3の信号線は第1の信号
線よりも第4の信号線に近い。第1から第4の副画素は、第2の信号線と第3の信号線な
らびに第1の走査線と第2の走査線で囲まれる領域に設けられている。各副画素はTFT
を有しており、第1の副画素のTFTは第2の走査線と第3の信号線によって駆動され、
第2の副画素のTFTは第2の走査線と第2の信号線によって駆動され、第3の副画素の
TFTは第1の走査線と第1の信号線によって駆動され、第4の副画素のTFTは第1の
走査線と第4の信号線によって駆動される。さらに、第1の副画素のTFTは第2の信号
線よりも第3の信号線により近く配置され、且つ第1の走査線よりも第2の走査線により
近く配置される。また、第2の副画素のTFTは第3の信号線よりも第2の信号線により
近く配置され、且つ第1の走査線よりも第2の走査線により近く配置される。また、第3
の副画素のTFTは第3の信号線よりも第2の信号線により近く配置され、且つ第2の走
査線よりも第1の走査線により近く配置され、第4の副画素のTFTは第2の信号線より
も第3の信号線により近く配置され、且つ第2の走査線よりも第1の走査線により近く配
置される。本実施の形態によれば、全てのTFTが均等な間隔で配置される従来の配置と
異なり、異なる画素に含まれる4つのTFTが4本の信号線と1本の走査線の交差部近傍
に設置されて一つのTFT群を形成する。このTFT群において、図5に示すように、そ
れぞれのTFTは走査線又は信号線を挟んで互いに正対するような配置とすることで、図
2に示す従来のTFT配置と比較して、TFTが位置する領域の間隔を約3倍に拡張する
ことができる。すなわち、図5に示すように、異なる画素に含まれる4つのTFTを含む
TFT群間の距離Xは、従来のTFT配置におけるTFT間距離よりも大きい。したが
って、SOI層形成時における位置合わせのマージンが増大する。
【0041】
また、本発明のように走査線又は信号線が複数集められた画素において、走査線及び信号
線と重なるBMを形成すると、TFT基板と対向基板との位置ずれを考慮して設けるマー
ジンの合計面積を小さくすることが出来る。そのため、位置ずれの際の開口率の低下を抑
制することが出来る。
【0042】
上述したTFT配置を適用することにより、各副画素に設けられた薄膜トランジスタのそ
れぞれを、走査線と信号線の交差部に複数近接して設けることができる。そのため、SO
I層形成時における位置合わせのマージンを増加、又はTFT基板と対向基板の貼り合わ
せにおける位置ずれの際の開口率の低下を抑制することができる。
【0043】
(実施の形態4)
図6は、アクティブマトリクス型表示装置において、走査線と信号線の交差部の周辺に4
つTFTを配置した構成例を示す図である。本実施の形態における画素は、a(第1の副
画素とも言う)、b(第2の副画素とも言う)、c(第3の副画素とも言う)、d(第4
の副画素とも言う)、4つの長方形又は長方形に準じた形状の副画素が、長辺が信号線と
平行になるようにストライプ配列され、且つ隣接する画素の間に4本の信号線が集められ
た構成となっている。
【0044】
なお、具体的な副画素a、b、c、dの構成は限定されない。例えば、R(赤)、G(緑
)、B(青)、W(白)を4つの副画素に適用することができる。
【0045】
走査線G(i)、G(i+1)及び信号線S(j)~S(j+3)、S(j+4)~S(
j+7)で囲まれた領域に配置された第1の画素の第1の副画素に設けられたTFTをT
r1(第1の薄膜トランジスタともいう)とし、走査線G(i+1)、G(i+2)及び
信号線S(j)~S(j+3)、S(j+4)~S(j+7)で囲まれた領域に設置され
た第2の画素の第2の副画素に設けられたTFTをTr2(第2の薄膜トランジスタとも
いう)とし、走査線G(i)、G(i+1)及び信号線S(j+4)~S(j+7)、S
(j+8)~S(j+11)で囲まれた領域に設置された第3の画素の第3の副画素に設
けられたTFTをTr3(第3の薄膜トランジスタともいう)とし、走査線G(i+1)
、G(i+2)及び信号線S(j+4)~S(j+7)、S(j+8)~S(j+11)
で囲まれた領域に設置された第4の画素の第4の副画素に設けられたTFTをTr4(第
4の薄膜トランジスタともいう)とする。Tr1は走査線G(i+1)及び信号線S(j
+4)に接続され、Tr2は走査線G(i+1)及び信号線S(j+5)に接続され、T
r3は走査線G(i+1)及び信号線S(j+7)に接続され、Tr4は走査線G(i+
1)及び信号線S(j+6)に接続されている。他の画素においても同様であり、走査線
と信号線の交差部に近接するように4つのTFTで構成されるグループを配置する。
【0046】
なお、本実施の形態では、副画素の長辺が信号線と平行となるようにストライプ配列し、
且つ4本の信号線が集められた構成を示したが、副画素の長辺を走査線と平行となるよう
にストライプ配列し、且つ4本の走査線が集められた構成においても、4つのTFTで構
成されるグループを走査線及び信号線の交差部に配置することが出来る(図示しない)。
【0047】
以下に示すように、本実施の形態の構成を別の表現で記述することができる。本実施の形
態で示す画素は、互いに平行に配置された第1から第4の副画素を有し、互いに平行な第
1から第4の信号線(例えばS(j+2)からS(j+5))と、互いに平行な第1と第
2の走査線(例えばG(i)とG(i+1))を有している。第1と第4の副画素は第2
と第3の副画素の間に設けられ、第1の副画素は第3の副画素よりも第2の副画素に近く
、第4の副画素は第2の副画素よりも第3の副画素に近い。第1から第4の信号線は第1
と第2の走査線と直交しており、第2と第3の信号線は第1と第4の信号線の間に設けら
れ、第2の信号線は第4の信号線よりも第1の信号線に近く、第3の信号線は第1の信号
線よりも第4の信号線に近い。第1から第4の副画素は、第2の信号線と第3の信号線な
らびに第1の走査線と第2の走査線で囲まれる領域に設けられている。各副画素はTFT
を有している。第1の副画素のTFTは第2の走査線と第3の信号線によって駆動され、
第2の副画素のTFTは第1の走査線と第4の信号線によって駆動され、第3の副画素の
TFTは第2の走査線と第2の信号線によって駆動され、第4の副画素のTFTは第1の
走査線と第1の信号線によって駆動される。さらに、第1の副画素のTFTは第2の信号
線よりも第3の信号線により近く配置され、且つ第1の走査線よりも第2の走査線により
近く配置される。また、第2の副画素のTFTは第2の信号線よりも第3の信号線により
近く配置され、且つ第2の走査線よりも第1の走査線により近く配置される。また、第3
の副画素のTFTは第3の信号線よりも第2の信号線により近く配置され、且つ第1の走
査線よりも第2の走査線により近く配置され、第4の副画素のTFTは第3の信号線より
も第2の信号線により近く配置され、且つ第2の走査線よりも第1の走査線により近く配
置される。本実施の形態によれば、全てのTFTが均等な間隔で配置される従来の配置と
異なり、異なる画素に含まれる4つのTFTが4本の信号線と1本の走査線の交差部近傍
に設置されて一つのTFT群を形成する。このTFT群において、図6に示すように、そ
れぞれのTFTは走査線又は信号線を挟んで互いに正対するような配置とすることで、従
来のTFT配置と比較して、TFTが位置する領域の間隔を約3倍に拡張することができ
る。すなわち、図6に示すように、異なる画素に含まれる4つのTFTを含むTFT群間
の距離Xは、従来のTFT配置におけるTFT間距離よりも大きい。したがって、SO
I層形成時における位置合わせのマージンが増大する。
【0048】
また、本発明のように走査線又は信号線、あるいは走査線及び信号線が複数集められた画
素において、走査線及び信号線と重なるBMを形成すると、TFT基板と対向基板との位
置ずれを考慮して設けられるマージンの合計面積が小さくなる。そのため、位置ずれの際
の開口率の低下を抑制することが出来る。
【0049】
上述したTFT配置を適用することにより、各副画素に設けられた薄膜トランジスタのそ
れぞれを、走査線と信号線の交差部に複数近接して設けることができる。そのため、SO
I層形成時における位置合わせのマージンを増加、又はTFT基板と対向基板の貼り合わ
せにおける位置ずれの際の開口率の低下を抑制することができる。
【0050】
(実施の形態5)
図7は、アクティブマトリクス型表示装置において、走査線と信号線の交差部の周辺に4
つTFTを配置した構成例を示す図である。本実施の形態における画素は、a(第1の副
画素とも言う)、b(第2の副画素とも言う)、c(第3の副画素とも言う)、d(第4
の副画素とも言う)、4つの正方形又は正方形に準じた形状の副画素がモザイク配列され
、且つ隣接する画素の間に4本の信号線が集められた構成となっている。
【0051】
なお、具体的な副画素a、b、c、dの構成は限定されない。例えば、R(赤)、G(緑
)、B(青)、W(白)を4つの副画素に適用することができる。
【0052】
走査線G(i)、G(i+1)及び信号線S(j)~S(j+3)、S(j+4)~S(
j+7)で囲まれた領域に配置された第1の画素の第1の副画素に設けられたTFTをT
r1(第1の薄膜トランジスタともいう)とし、走査線G(i+1)、G(i+2)及び
信号線S(j)~S(j+3)、S(j+4)~S(j+7)で囲まれた領域に設置され
た第2の画素の第2の副画素に設けられたTFTをTr2(第2の薄膜トランジスタとも
いう)とし、走査線G(i)、G(i+1)及び信号線S(j+4)~S(j+7)、S
(j+8)~S(j+11)で囲まれた領域に設置された第3の画素の第3の副画素に設
けられたTFTをTr3(第3の薄膜トランジスタともいう)とし、走査線G(i+1)
、G(i+2)及び信号線S(j+4)~S(j+7)、S(j+8)~S(j+11)
で囲まれた領域に設置された第4の画素の第4の副画素に設けられたTFTをTr4(第
4の薄膜トランジスタともいう)とする。Tr1は走査線G(i+1)及び信号線S(j
+4)に接続され、Tr2は走査線G(i+1)及び信号線S(j+5)に接続され、T
r3は走査線G(i+1)及び信号線S(j+7)に接続され、Tr4は走査線G(i+
1)及び信号線S(j+6)に接続されている。他の画素においても同様であり、走査線
と4本の信号線の交差部に近接するように4つのTFTで構成されるグループを配置する
【0053】
なお、本実施の形態では、4本の信号線が集められた構成を示したが、4本の走査線が集
められた構成においても、4つのTFTで構成されるグループを走査線及び信号線の交差
部に配置することが出来る(図示しない)。また、図8に示すように、走査線及び信号線
をそれぞれ2本ずつ集めることによっても同様のTFT配置を実現することができる。
【0054】
以下に示すように、図7で示された本実施の形態の構成を別の表現で記述することができ
る。図7の本実施の形態で示す画素は、モザイク配列された第1から第4の副画素を有し
、互いに平行に配置された第1から第4の信号線(例えばS(j+2)からS(j+5)
)と、互いに平行な第1と第2の走査線(例えばG(i)とG(i+1))を有している
。第1の副画素は第1の走査線よりも第2の走査線に近く、且つ第2の信号線よりも第3
の信号線に近い。第2の副画素は第2の走査線よりも第1の走査線に近く、且つ第2の信
号線よりも第3の信号線に近い。第3の副画素は第1の走査線よりも第2の走査線に近く
、且つ第3の信号線よりも第2の信号線に近い。第4の副画素は第2の走査線よりも第1
の走査線に近く、且つ第3の信号線よりも第2の信号線に近い。第1から第4の信号線は
第1と第2の走査線と直交しており、第2と第3の信号線は第1と第4の信号線の間に設
けられ、第2の信号線は第4の信号線よりも第1の信号線に近く、第3の信号線は第1の
信号線よりも第4の信号線に近い。第1から第4の副画素は、第2の信号線と第3の信号
線ならびに第1の走査線と第2の走査線で囲まれる領域に設けられている。各副画素はT
FTを有している。第1の副画素のTFTは第2の走査線と第3の信号線によって駆動さ
れ、第2の副画素のTFTは第1の走査線と第4の信号線によって駆動され、第3の副画
素のTFTは第2の走査線と第2の信号線によって駆動され、第4の副画素のTFTは第
1の走査線と第1の信号線によって駆動される。さらに、第1の副画素のTFTは第2の
信号線よりも第3の信号線により近く配置され、且つ第1の走査線よりも第2の走査線に
より近く配置される。また、第2の副画素のTFTは第2の信号線よりも第3の信号線に
より近く配置され、且つ第2の走査線よりも第1の走査線により近く配置される。また、
第3の副画素のTFTは第3の信号線よりも第2の信号線により近く配置され、且つ第1
の走査線よりも第2の走査線により近く配置され、第4の副画素のTFTは第3の信号線
よりも第2の信号線により近く配置され、且つ第2の走査線よりも第1の走査線により近
く配置される。同様に、以下に示すように、図8で示された本実施の形態の構成を別の表
現で記述することができる。画素は、モザイク配列された第1から第4の副画素を有し、
互いに平行に配置された第1と第2の信号線(例えばS(j+1)とS(j+2))と、
互いに平行な第1と第2の走査線(例えばG(i+1)とG(i+2))を有している。
第1の副画素は第2の走査線よりも第1の走査線に近く、且つ第2の信号線よりも第1の
信号線に近い。第2の副画素は第2の走査線よりも第1の走査線に近く、且つ第1の信号
線よりも第2の信号線に近い。第3の副画素は第1の走査線よりも第2の走査線に近く、
且つ第2の信号線よりも第1の信号線に近い。第4の副画素は第1の走査線よりも第2の
走査線に近く、且つ第1の信号線よりも第2の信号線に近い。第1と第2の信号線は第1
と第2の走査線と直交している。第1から第4の副画素は、第1の信号線と第2の信号線
ならびに第1の走査線と第2の走査線で囲まれる領域に設けられている。各副画素はTF
Tを有している。第1の副画素のTFTは第1の走査線と第1の信号線によって駆動され
、第2の副画素のTFTは第1の走査線と第2の信号線によって駆動され、第3の副画素
のTFTは第2の走査線と第1の信号線によって駆動され、第4の副画素のTFTは第2
の走査線と第2の信号線によって駆動される。さらに、第1の副画素のTFTは第2の信
号線よりも第1の信号線により近く配置され、且つ第2の走査線よりも第1の走査線によ
り近く配置される。また、第2の副画素のTFTは第1の信号線よりも第2の信号線によ
り近く配置され、且つ第2の走査線よりも第1の走査線により近く配置される。また、第
3の副画素のTFTは第2の信号線よりも第1の信号線により近く配置され、且つ第1の
走査線よりも第2の走査線により近く配置され、第4の副画素のTFTは第1の信号線よ
りも第2の信号線により近く配置され、且つ第1の走査線よりも第2の走査線により近く
配置される。本実施の形態によれば、全てのTFTが均等な間隔で配置される従来の配置
と異なり、異なる画素に含まれる4つのTFTが4本の信号線と1本の走査線の交差部近
傍、あるいは2つの信号線と2つの走査線の交差部近傍に設置されて一つのTFT群を形
成する。このTFT群において、図7、8に示すように、それぞれのTFTは走査線又は
信号線を挟んで互いに正対するような配置とすることで、図9に示す従来のTFT配置と
比較して、TFTが位置する領域の間隔を約2倍に拡張することができる。すなわち、図
7、8に示すように異なる画素に含まれる4つのTFTを含むTFT群間の距離Xは、
図9に示すTFT配置におけるTFT間距離Xよりも大きい。したがって、SOI層形
成時における位置合わせのマージンが増大する。また、副画素を図7及び図8に示すよう
なモザイク配列とすることで、視認性が向上するという副次的効果も得られる。
【0055】
さらに、図8では、上面図においてTFTの配線と走査線及び信号線がまたがることがな
い。通常の作製プロセスでは、走査線又は信号線との接続をさけるために、絶縁層を形成
し、コンタクトホールを形成し、導電層を形成することによって、TFTと、所望の走査
線又は信号線と、を電気的に接続させる。しかしながら、図8に示す形態ではこのような
プロセスが不要となる。
【0056】
また、本発明のように走査線又は信号線、あるいは走査線及び信号線が複数集められた画
素において、走査線及び信号線と重なるBMを形成すると、TFT基板と対向基板との位
置ずれを考慮して設けられるマージンの合計面積が小さくなる。そのため、位置ずれの際
の開口率の低下を抑制することが出来る。
【0057】
上述したTFT配置を適用することにより、各副画素に設けられた薄膜トランジスタのそ
れぞれを、走査線と信号線の交差部に複数近接して設けることができる。そのため、SO
I層形成時における位置合わせのマージンを増加、又はTFT基板と対向基板の貼り合わ
せにおける位置ずれの際の開口率の低下を抑制することができる。
【0058】
(実施の形態6)
図10は、アクティブマトリクス型表示装置において、走査線と信号線の交差部の周辺に
2つTFTを配置した構成例を示す図である。本実施の形態における画素は、a(第1の
副画素とも言う)、b(第2の副画素とも言う)、c(第3の副画素とも言う)、3つの
長方形形状又は長方形に準じた形状の副画素がデルタ配列され、且つ隣接する画素の間に
2本の走査線が集められた構成となっている。
【0059】
なお、具体的な副画素a、b、cの構成は限定されない。例えば、R(赤)、G(緑)、
B(青)を3つの副画素に適用することができる。
【0060】
走査線G(i)及びG(i+1)、G(i+2)及びG(i+3)、並びに信号線S(j
+1)、S(j+2)で囲まれた領域に配置された第1の画素の第1の副画素に設けられ
たTFTをTr1(第1の薄膜トランジスタともいう)とし、走査線G(i+2)及びG
(i+3)、G(i+4)及びG(i+5)、並びに信号線S(j)、S(j+1)で囲
まれた領域に設置された第2の画素の第2の副画素に設けられたTFTをTr2(第2の
薄膜トランジスタともいう)とする。Tr1は走査線G(i+2)及び信号線S(j+1
)に接続され、Tr2は走査線G(i+3)及び信号線S(j+1)に接続されている。
他の画素においても同様であり、2本の走査線と信号線の交差部に近接するように2つの
TFTで構成されるグループを配置する。
【0061】
なお、本実施の形態では、2本の走査線が集められた構成を示したが、2本の信号線が集
められた構成においても、2つのTFTを走査線及び信号線の交差部近傍に配置すること
が出来る(図示しない)。また、走査線及び信号線をそれぞれ2本ずつ集めることによっ
て、4つの4つのTFTが走査線及び信号線の交差部の近傍に配置される構成にすること
もできる(図示しない)。
【0062】
本実施の形態によれば、表示部の副画素を構成するTFTの配置を図10に示すような配
置とすることで、図11に示すような、全てのTFTが一定の間隔で配置された従来のT
FT配置と比較して、TFTが位置する領域間の間隔を約2倍に拡張することができる。
すなわち、図10に示すように異なる画素に含まれる2つのTFTを含むTFT群間の距
離Xは、図11に示したTFT配置におけるTFT間距離Xよりも大きい。したがっ
て、SOI層形成時における位置合わせのマージンが増大する。
【0063】
また、本発明のように走査線又は信号線、あるいは走査線及び信号線が複数集められた画
素において、走査線及び信号線と重なるBMを形成すると、TFT基板と対向基板との位
置ずれを考慮して設けられるマージンの合計面積が小さくなる。そのため、位置ずれの際
の開口率の低下を抑制することが出来る。
【0064】
さらに、図10では、上面図においてTFTの配線と走査線及び信号線がまたがることが
ない。通常の作製プロセスにおいては、走査線又は信号線との接続をさけるために、絶縁
層を形成し、コンタクトホールを形成し、導電層を形成することによって、TFTと、所
望の走査線又は信号線と、を電気的に接続させる。しかしながら、本実施の形態では、こ
のようなプロセスが不要となる。
【0065】
上述したTFT配置を適用することにより、各副画素に設けられた薄膜トランジスタのそ
れぞれを、走査線と信号線の交差部に複数近接して設けることができる。そのため、SO
I層形成時における位置合わせのマージンを増加、又はTFT基板と対向基板の貼り合わ
せにおける位置ずれの際の開口率の低下を抑制することができる。
【0066】
(実施の形態7)
本実施の形態では、実施の形態1乃至6に示すようなTFT配置を有する透過型液晶表示
装置の作製方法について説明する。
【0067】
まず、ベース基板上に単結晶半導体薄膜を形成する工程について、図14を用いて説明す
る。矩形状に成形された単結晶半導体基板100上に酸化珪素膜又は酸化窒化珪素膜を形
成し、その上に窒化珪素膜又は窒化酸化珪素膜を形成する。ここでは、酸化窒化珪素膜1
01、窒化酸化珪素膜102を順次形成することとする。その際、酸化窒化珪素膜は、膜
厚10nm以上150nm以下程度で形成することが好ましい。また、窒化酸化珪素膜は
、膜厚10nm以上200nm以下程度で形成することが好ましい。
【0068】
なお、酸化窒化珪素膜101及び窒化酸化珪素膜102はベース基板106からナトリウ
ムイオンなどの不純物が拡散して単結晶半導体層を汚染しないために設けられている。こ
こで、窒化酸化珪素膜とは、その組成として、酸素よりも窒素の含有量が多いものであっ
て、濃度範囲として酸素が15~30原子%、窒素が20~35原子%、Siが25~3
5原子%、水素が15~25原子%の範囲において、合計100原子%となるように各元
素を任意の濃度で含むものをいう。また、酸化窒化珪素膜とは、その組成として、窒素よ
りも酸素の含有量が多いものであって、濃度範囲として酸素が55~65原子%、窒素が
1~20原子%、Siが25~35原子%、水素が0.1~10原子%の範囲において、
合計100原子%となるように各元素を任意の濃度で含むものをいう。なお、窒化アルミ
ニウム、窒素酸化アルミニウムなどを用いてもよい。なお、酸化窒化珪素膜101又は窒
化酸化珪素膜102は必ずしも設ける必要はなく、後記する単結晶半導体基板にイオン注
入を行いイオン注入層のみが形成された基板を用いてもよい。
【0069】
次に、単結晶半導体基板100に水素イオン103を注入しイオン注入層104を形成す
る(図14(A))。ここでの水素イオンの注入はベース基板に転置される単結晶半導体
層の厚さを考慮して行われる。当該単結晶半導体層の厚さは10nm乃至200nm、好
ましくは10nm乃至50nmの厚さとする。水素イオンを注入する際の加速電圧はこの
ような厚さを考慮して設定される。この処理によって単結晶半導体基板100の表面から
一定の深さの領域にイオン注入層104が形成される。なお、イオン注入層104は、水
素のみでなく希ガスを用いてもよく、或いは両者を混合させて用いてもよい。
【0070】
次に、窒化酸化珪素膜102上に、TEOSガスと酸素ガスとの混合ガスを用いて化学気
相成長法(CVD法:Chemical Vapor Deposition法)又はプ
ラズマ化学気相成長法(プラズマCVD法)によって成膜された酸化珪素膜105を形成
する(図14(B))。なお、酸化珪素膜105は、単結晶半導体基板100にイオン注
入を行う前に形成してもよい。なお、TEOSガスと酸素ガスとの混合ガスを用いてCV
D法又はプラズマCVD法によって成膜された酸化珪素膜を形成する場合、10nm以上
800nm以下の膜厚で形成することが好ましい。
【0071】
なお、ここでTEOSガスとは、Tetra Ethyl Ortho Silicat
eガスを意味する。TEOSガスと酸素ガスとを用いたCVD法又はプラズマCVD法に
よって成膜された酸化珪素膜を、単結晶半導体基板と支持基板との貼り合わせ界面に設け
ることにより、基板の密着性をより向上させることができる。
【0072】
なお、酸化窒化珪素膜101又は窒化酸化珪素膜102を形成しない場合、単結晶半導体
基板100の表面に、自然酸化膜、化学的に形成された酸化膜、又は酸素を含む雰囲気で
UV光を照射することにより形成された極薄酸化膜を形成しておくことが好ましい。同様
に、単結晶半導体基板上に酸化窒化珪素膜101又は窒化酸化珪素膜102を形成する前
に、単結晶半導体基板100の表面に、上記極薄酸化膜を形成しておくことが好ましい。
ここで、化学的に形成された酸化膜は、オゾン水、過酸化水素水、硫酸等の酸化剤で単結
晶半導体基板表面を処理することにより形成することができる。
【0073】
次に、図14(A)、(B)の工程を経た単結晶半導体基板100を複数枚用意し、図1
4(C)で示すように単結晶半導体基板100上に形成された酸化珪素膜105とベース
基板106とを接合させる。図面の簡略化のため、ここでは2枚の単結晶半導体基板10
0を貼り合わせる工程を示す図となっている。なお、ここでベース基板106の表面には
下地膜107が形成される。下地膜としては、TEOSガスと酸素ガスとの混合ガスを用
いてCVD法又はプラズマCVD法によって成膜された酸化珪素膜が挙げられ、酸化珪素
膜105と下地膜107とを接合することにより、単結晶半導体基板100とベース基板
106とを貼り合わせることができる。なお、酸化珪素膜なとの下地膜107は必ずしも
形成する必要はないが、基板の密着性を向上させるために設けることが好ましい。
【0074】
ここで、ベース基板106は、透明性を有している基板であれば良いため、ガラス、石英
、などの絶縁基板を適用することができる。本実施の形態では、ガラス基板を用いること
とする。
【0075】
本実施の形態において、接合は単結晶半導体基板100側の酸化珪素膜105とベース基
板側の下地膜107とが密接することにより形成される。接合の形成は室温で行うことが
可能である。この接合は原子レベルで行われ、ファン・デル・ワールス力が作用して室温
で強固な接合が形成される。
【0076】
単結晶半導体基板100とベース基板106との接合を形成した後、熱処理を行い、単結
晶半導体基板100の一部(すなわち単結晶半導体層108)を剥離する(図14(D)
)。加熱することによりイオン注入層104に形成された微小な空洞の体積変化が起こり
、イオン注入層104に沿って破断面が発生し、破断面に沿って単結晶半導体層108を
剥離(分断)することができる。その後、接合をさらに強固なものとするために、400
℃乃至700の熱処理を行うことが好ましい。このようにして、ベース基板106上に薄
膜の単結晶半導体層109が形成される。その後、その表面を平坦化するため、化学的機
械的研磨(Chemical Mechanical Polishing:CMP)を
行うことが好ましい。
【0077】
図14(D)で示すように、ベース基板106上に形成された複数の単結晶半導体層10
9において、隣接する単結晶半導体層間には継ぎ目110(隙間)が生じる。例えば、図
2、図4図9図11に示す従来のTFT配置を用いると、各TFT同士の間隔が狭い
ため、継ぎ目110を避けて全てのTFTを形成することは非常に困難である。これに対
し、実施の形態1乃至6に示すTFT配置を用いることで、継ぎ目110を避けて効率的
にTFTを配置することが可能となる。
【0078】
次に、単結晶半導体層109上に選択的にレジストを形成し、レジストをマスクとして単
結晶半導体層109をエッチングすることにより、島状の単結晶半導体層201を形成す
る(図14(E))。
【0079】
以下、図15を用いて、TFTの形成及び液晶表示装置の作製工程を説明する。
【0080】
島状の単結晶半導体層201を覆う第1の絶縁層202を形成する。第1の絶縁層202
はプラズマCVD法またはスパッタ法などを用い、厚さを10~150nmとして珪素を
含む絶縁膜で形成する。第1の絶縁層202としては、窒化珪素、酸化珪素、酸化窒化珪
素、窒化酸化珪素に代表される珪素の酸化物又は窒化物等の材料で形成すればよく、積層
でも単層でもよい。また、絶縁層は窒化珪素膜、酸化珪素膜、窒化珪素膜の3層の積層、
酸化窒化珪素膜の単層、2層からなる積層でも良い。好適には、緻密な膜質を有する窒化
珪素膜を用いるとよい。さらに島状の単結晶半導体層201と第1の絶縁層202の間に
、膜厚1~100nm、好ましくは1~10nm、さらに好ましくは2~5nmである膜
厚の薄い酸化珪素膜を形成してもよい。薄い酸化珪素膜の形成方法としては、GRTA法
、LRTA法等を用いて半導体領域表面を酸化し、熱酸化膜を形成する方法が挙げられ、
膜厚の薄い酸化珪素膜を形成することができる。なお、低い成膜温度でゲートリーク電流
の少ない緻密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、
形成される絶縁膜中に混入させると良い。ここで、第1の絶縁層202はゲート絶縁層と
して機能する。
【0081】
次いで、第1の絶縁層202上にゲート電極層や接続電極として機能する第1の導電層2
03を形成する。ここでは、第1の導電層203は単層で形成した例を示しているが、導
電性材料を2層又は3層以上の積層で設けた構造としてもよい。なお、第1の導電層20
3は、第1の絶縁層202上を覆って形成された導電層を選択的にエッチングすることに
より形成される。
【0082】
第1の導電層203は、タンタル(Ta)、タングステン(W)、チタン(Ti)、モリ
ブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ニオブ(Nb)
等から選択された元素またはこれらの元素を主成分とする合金若しくは化合物で形成する
ことができる。また、リン等の不純物元素をドーピングした多結晶珪素に代表される半導
体材料により形成することもできる。例えば、第1の導電層203を積層構造とする場合
、第1層として窒化タンタルを用い、第2層としてタングステンを用いて形成するとよい
。なお、この組み合わせに限られず、上記材料を自由に組み合わせて設けることができる
【0083】
続いて、第1の導電層203をマスクとして島状の単結晶半導体層201に不純物元素を
導入することによって、島状の単結晶半導体層201に不純物領域201b、201c及
び不純物元素が導入されないチャネル領域201aを形成する。なお、ここでは、第1の
導電層203を島状の単結晶半導体層201を横断するように形成した後に不純物元素を
導入するため、第1の導電層203に覆われていない領域に不純物が導入されて不純物領
域201b、201cが形成され、第1の導電層203に覆われた領域には不純物元素が
導入されないチャネル領域201aが形成される。
【0084】
ここで、不純物元素としては、n型を付与する不純物元素又はp型を付与する不純物元素
を用いることができる。n型を示す不純物元素としては、リン(P)やヒ素(As)等を
用いることができる。p型を示す不純物元素としては、ボロン(B)やアルミニウム(A
l)やガリウム(Ga)等を用いることができる。例えば、不純物元素として、リン(P
)を1×1018~1×1021atoms/cmの濃度で含まれるように島状の単結
晶半導体層201に導入し、n型を示す不純物領域201b、201cを形成すればよい
。なお、チャネル領域201aとソース領域又はドレイン領域との間に、低濃度に不純物
が添加された低濃度不純物領域(LDD領域)を形成してもよい。
【0085】
次に、第1の導電層203及び第1の絶縁層202を覆うように第2の絶縁層204を形
成する。ここで、第2の絶縁層204は、CVD法やスパッタリング法等で形成した、酸
化シリコン、酸化窒化シリコン(SiOxNy)(x>y>0)、窒化酸化シリコン(S
iNxOy)(x>y>0)などを用いることができる。また、ポリイミド、ポリアミド
、ポリビニルフェノール、ベンゾシクロブテン系樹脂、アクリル、エポキシ等の有機材料
、またはシロキサン樹脂等のシロキサン材料、オキサゾール樹脂などからなる単層または
積層構造で設けることができる。なお、シロキサン材料とは、Si-O-Si結合を含む
材料に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構
成される。置換基として、有機基(例えばアルキル基、芳香族炭化水素)やフルオロ基を
用いても良い。有機基はフルオロ基を含んでもよい。オキサゾール樹脂は、例えば、感光
性ポリベンゾオキサゾール等である。感光性ポリベンゾオキサゾールは、比誘電率が低く
(常温1MHzで比誘電率2.9)、耐熱性が高く(示差熱熱重量同時測定(TG/DT
A:Thermogravimetry-Differential Thermal
Analysis)で昇温5℃/minで熱分解温度550℃)、吸水率が低い(常温2
4時間で0.3%)材料である。オキサゾール樹脂は、ポリイミド等の比誘電率(3.2
~3.4程度)と比較すると、比誘電率が低いため(2.9程度)、寄生容量の発生を抑
制し、高速動作を行うことができる。ここでは、第2の絶縁層204として、CVD法で
形成した酸化シリコン、酸化窒化シリコン(SiOxNy)(x>y>0)又は窒化酸化
シリコン(SiNxOy)(x>y>0)を単層又は積層して形成する。また、さらに、
ポリイミド、ポリアミド、ポリビニルフェノール、ベンゾシクロブテン系樹脂、アクリル
、エポキシ等の有機材料、シロキサン樹脂等のシロキサン材料、又はオキサゾール樹脂を
積層して形成してもよい。次に、第2の絶縁層204上に選択的にレジストを形成する。
レジストとしては、ポジ型のフォトレジストやネガ型のフォトレジスト等を適宜選択して
用いることができる。
【0086】
続いて、レジストをマスクとして、第2の絶縁層204及び第1の絶縁層202をドライ
エッチングして、島状の単結晶半導体層201に達するコンタクトホールを形成する。な
お、ドライエッチングの際のエッチングガスとしては、半導体層がエッチングされないよ
うに第2の絶縁層204及び第1の絶縁層202との選択比がとれるものであれば特に限
定されないが、例えばCF、NF、SF、CHF、CF等のフッ素系のガス、
又は該フッ素系ガスにOガス、Hガス、HeやAr等の不活性ガスを適宜加えた混合
ガス等を用いることができる。好ましくは、CHFとHeとの混合ガス、CFとH
との混合ガス、又はCHFとHeとHとの混合ガスを用いるとよい。
【0087】
次に、第2の絶縁層204及び第1の絶縁層202に形成されたコンタクトホールに導電
性材料を充填して、島状の単結晶半導体層201の不純物領域201b、201cの表面
で電気的に接続する第2の導電層205を形成する。なお、第2の導電層205は、第2
の絶縁層204上を覆って形成された導電層を選択的にエッチングすることにより形成す
ることができる。
【0088】
次に、第2の絶縁層204及び第2の導電層205を覆うように第3の絶縁層206を形
成する。第3の絶縁層206としては酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素
、窒化アルミニウム、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量より
も多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライク
カーボン(DLC)、窒素含有炭素膜(CN)、PSG(リンガラス)、BPSG(リン
ボロンガラス)、アルミナ膜、ポリシラザン、その他の無機絶縁性材料を含む物質から選
ばれた材料で形成することができる。また、シロキサン樹脂を用いてもよい。また、有機
絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どちらでも良く、ポリ
イミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン系
樹脂を用いることができる。
【0089】
本実施の形態では、第3の絶縁層206の形成方法としては、スピンコート法等を用いる
と好ましい。
【0090】
次に、第3の絶縁層206上に選択的にレジストを形成し、レジストをマスクとしてエッ
チングを行うことで、第2の導電層205に達するコンタクトホールを形成する。続いて
、第3の絶縁層206上に第2の導電層205と電気的に接続された画素電極207を形
成し、さらに、第3の絶縁層206及び画素電極207上に配向膜208を形成する。
【0091】
次に対向基板802を用意する。対向基板802は、ガラス基板300、透明導電膜から
なる対向電極301、及び配向膜302で構成される。
【0092】
次に、上記工程により得たTFT基板801及び対向基板802をシール材を介して貼り
合わせる。ここで、両基板の間隔を一定に保つために、配向膜208と配向膜302との
間にスペーサを設けても良い。その後、両基板の間に液晶803を注入し、封止材によっ
て封止することで図15に示すような透過型液晶表示装置が完成する。
【0093】
本発明を用いることにより、SOI層形成時における位置合わせのマージンが増大し、生
産性の向上、及び表示不良の低減を図ることができる。すなわち、信頼性の高い表示装置
を作製することが可能となる。
【0094】
なお、本実施の形態においては透過型の液晶表示装置について説明したが、本発明を適用
した表示装置はこれに限定されない。例えば、画素電極207として反射性を有する電極
層を用いたり、画素電極207の上面又は下面に反射膜を設けることで、反射型液晶表示
装置に適用することができる。また、エレクトロルミネッセンス素子を有する表示装置(
EL表示装置)に適用することもできる。
【0095】
(実施の形態8)
図16は本発明を適用した携帯電話1000の構成の一例であり、図16(A)が正面図
図16(B)が背面図、図16(C)が展開図である。携帯電話1000は、電話と携
帯情報端末の双方の機能を備えており、コンピュータを内蔵し、音声通話以外にも様々な
データ処理が可能な所謂スマートフォンである。
【0096】
携帯電話1000は、筐体1001及び1002の二つの筐体で構成されている。筐体1
001には、表示部1101、スピーカー1102、マイクロフォン1103、操作キー
1104、ポインティングデバイス1105、カメラ用レンズ1106、外部接続端子1
107等を備え、筐体1002には、キーボード1201、外部メモリスロット1202
、カメラ用レンズ1203、ライト1204、イヤホン端子1108等を備えている。ま
た、アンテナは筐体1001内部に内蔵されている。
【0097】
また、上記構成に加えて、非接触ICチップ、小型記録装置等を内蔵していてもよい。
【0098】
表示部1101には、上記実施例に示される表示装置を組み込むことが可能であり、使用
形態に応じて表示の方向が適宜変化する。表示部1101と同一面上にカメラ用レンズ1
106を備えているため、テレビ電話が可能である。また、表示部1101をファインダ
ーとしカメラ用レンズ1203及びライト1204で静止画及び動画の撮影が可能である
。スピーカー1102及びマイクロフォン1103は音声通話に限らず、テレビ電話、録
音、再生等が可能である。操作キー1104では、電話の発着信、電子メール等の簡単な
情報入力、画面のスクロール、カーソル移動等が可能である。更に、重なり合った筐体1
001と筐体1002(図16(A))は、スライドし図16(C)のように展開し、携
帯情報端末として使用できる。この場合、キーボード1201、ポインティングデバイス
1105を用い円滑な操作が可能である。外部接続端子1107はACアダプタ及びUS
Bケーブル等の各種ケーブルと接続可能であり、充電及びパーソナルコンピュータ等との
データ通信が可能である。また、外部メモリスロット1202に記録媒体を挿入しより大
量のデータ保存及び移動に対応できる。
【0099】
また、上記機能に加えて、赤外線通信機能、テレビ受信機能等を備えたものであってもよ
い。
【0100】
本発明を用いることにより、表示不良が低減された信頼性の高い表示装置を作製すること
が可能となる。
【符号の説明】
【0101】
10 BM
11 BM
100 単結晶半導体基板
101 酸化窒化珪素膜
102 窒化酸化珪素膜
103 水素イオン
104 イオン注入層
105 酸化珪素膜
106 ベース基板
107 下地膜
108 単結晶半導体層
109 単結晶半導体層
110 継ぎ目
201 島状の単結晶半導体層
201a チャネル領域
201b 不純物領域
201c 不純物領域
202 第1の絶縁層
203 第1の導電層
204 第2の絶縁層
205 第2の導電層
206 第3の絶縁層
207 画素電極
208 配向膜
300 ガラス基板
301 対向電極
302 配向膜
801 TFT基板
802 対向基板
803 液晶
1000 携帯電話
1001 筐体
1002 筐体
1101 表示部
1102 スピーカー
1103 マイクロフォン
1104 操作キー
1105 ポインティングデバイス
1106 カメラ用レンズ
1107 外部接続端子
1108 イヤホン端子
1201 キーボード
1202 外部メモリスロット
1203 カメラ用レンズ
1204 ライト
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16