(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023165771
(43)【公開日】2023-11-17
(54)【発明の名称】蓄電デバイス用外装材、その製造方法、フィルム、及び蓄電デバイス
(51)【国際特許分類】
H01M 50/131 20210101AFI20231110BHJP
H01M 50/105 20210101ALI20231110BHJP
H01M 50/121 20210101ALI20231110BHJP
H01M 50/129 20210101ALI20231110BHJP
H01G 11/78 20130101ALI20231110BHJP
【FI】
H01M50/131
H01M50/105
H01M50/121
H01M50/129
H01G11/78
【審査請求】未請求
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2023148790
(22)【出願日】2023-09-13
(62)【分割の表示】P 2023516585の分割
【原出願日】2022-09-15
(31)【優先権主張番号】P 2021150660
(32)【優先日】2021-09-15
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000002897
【氏名又は名称】大日本印刷株式会社
(74)【代理人】
【識別番号】100124431
【弁理士】
【氏名又は名称】田中 順也
(74)【代理人】
【識別番号】100174160
【弁理士】
【氏名又は名称】水谷 馨也
(72)【発明者】
【氏名】加賀田 翼
(72)【発明者】
【氏名】田淵 直人
(72)【発明者】
【氏名】佐々木 美帆
(72)【発明者】
【氏名】岡野 愛
(57)【要約】
【課題】低温から高温の幅広い温度環境において高いシール強度を発揮できる蓄電デバイス用外装材を提供することができる。
【解決手段】少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記熱融着性樹脂層は、フィルムを含んでおり、
前記フィルムは、3種類以上の構成単位を含む樹脂により形成されてなり、
前記フィルムは、融解ピーク温度が170℃以上である、蓄電デバイス用外装材。
【選択図】なし
【特許請求の範囲】
【請求項1】
少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記熱融着性樹脂層は、フィルムを含んでおり、
前記フィルムは、3種類以上の構成単位を含む樹脂により形成されてなり、
前記フィルムは、融解ピーク温度が170℃以上である、蓄電デバイス用外装材。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、蓄電デバイス用外装材、その製造方法、フィルム、及び蓄電デバイスに関する。
【背景技術】
【0002】
従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。
【0003】
一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
【0004】
そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。
【0005】
このような蓄電デバイス用外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
近年のIoT化の進展により、様々な種類のIoTデバイスが市場に流通している。IoTデバイスの種類によっては、低温から高温の幅広い温度環境での使用が想定されている。従って、IoTデバイスに搭載される蓄電デバイスにも、幅広い温度範囲での耐久性が求められる。例えば、車載用の電子デバイスの中でもエンジンルームなどからデータを取得するIotデバイスであれば、125℃という高温環境での耐久性が求められることがある。
【0008】
蓄電デバイスの中でも、例えばリチウムイオン電池は、有機溶媒を含む電解液を使用しているため、電解液溶媒の沸点以上での使用は想定されていない。これに対して、全固体電池は、電解質が固体であるため、現行のリチウムイオン電池などと比較して高温環境で使用することができ、前述したような幅広い温度環境で使用されるIoTデバイスへの要求に応えることができる。
【0009】
例えば電気自動車の駆動用電池として全固体電池を用い、充電時に全固体電池を加熱することで高速充電が可能になると考えられている。このような加熱による高温環境についても、現行のリチウムイオン電池には適用されない高温環境である。したがって、全固体電池用の外装材にも幅広い温度環境における耐久性が要求される。
【0010】
従来、有機溶媒を含む電解液リチウムイオン電池において、外装材の熱融着性樹脂層に使用されているフィルムは、ポリプロピレンフィルムなどによって形成されており、100℃以上の高温環境では耐久性(シール強度)が著しく低下する。また、電気自動車の駆動用電池などでは、高温のみならず、低温環境にも晒されるので、低温でも電池の気密性を維持する、すなわち一定以上のシール強度の維持が必要である。ところが、ポリプロピレンフィルムなどを熱融着性樹脂層に用いた蓄電デバイス用外装材では、高温環境での耐久性が不十分である。また、例えば、ポリプロピレンフィルムの代わりに、ポリエステルフィルムなどの高温環境での耐久性の高いフィルムについては、低温環境(例えば-30℃程度)での耐久性が不十分である。このように、従来、熱融着性樹脂層に使用されているフィルムは、低温から高温の幅広い温度環境(例えば-30℃から150℃の範囲)で使用される蓄電デバイスに対しては十分に適用できるものではない。
【0011】
このような状況下、本開示は、低温から高温の幅広い温度環境において高いシール強度を発揮できる蓄電デバイス用外装材を提供することを主な目的とする。本開示は、当該蓄電デバイス用外装材の製造方法及び当該蓄電デバイス用外装材を用いた蓄電デバイスを提供することも目的とする。さらに、本開示は、低温から高温の幅広い温度環境において高いシール強度を発揮できるフィルムを提供することも目的とする。
【課題を解決するための手段】
【0012】
本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成された蓄電デバイス用外装材であって、熱融着性樹脂層がフィルムを含んでおり、フィルムを3種類以上の構成単位を含む樹脂により形成し、かつ、フィルムの融解ピーク温度を170℃以上とすることにより、低温から高温の幅広い温度環境(例えば-30℃から150℃の範囲)において高いシール強度が発揮されることを見出した。
【0013】
本開示は、このような新規な知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記熱融着性樹脂層は、フィルムを含んでおり、
前記フィルムは、3種類以上の構成単位を含む樹脂により形成されてなり、
前記フィルムは、融解ピーク温度が170℃以上である、蓄電デバイス用外装材。
【発明の効果】
【0014】
本開示によれば、低温から高温の幅広い温度環境において高いシール強度を発揮できる蓄電デバイス用外装材を提供することができる。また、本開示によれば、当該蓄電デバイス用外装材の製造方法及び当該蓄電デバイス用外装材を用いた蓄電デバイスを提供することもできる。さらに、本開示によれば、低温から高温の幅広い温度環境において高いシール強度を発揮できるフィルムを提供することもできる。
【図面の簡単な説明】
【0015】
【
図1】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
【
図2】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
【
図3】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
【
図4】本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。
【
図5】本開示の蓄電デバイス用外装材の熱融着性樹脂層(フィルム)の断面構造の一例を示す模式図である。
【
図6】本開示の蓄電デバイス用外装材の熱融着性樹脂層(フィルムを含む)の断面構造の一例を示す模式図である。
【
図7】本開示の蓄電デバイス用外装材の熱融着性樹脂層(フィルムを含む)の断面構造の一例を示す模式図である。
【
図8】本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する方法を説明するための模式図である。
【
図9】シール強度の測定方法を説明するための模式図である。
【
図10】シール強度の測定方法を説明するための模式図である。
【発明を実施するための形態】
【0016】
本開示の蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、熱融着性樹脂層は、フィルムを含んでおり、フィルムは、3種類以上の構成単位を含む樹脂により形成されてなり、フィルムは、融解ピーク温度が170℃以上であることを特徴とする。本開示の蓄電デバイス用外装材は、低温から高温の幅広い温度環境において高いシール強度を発揮できる。
【0017】
以下、本開示の蓄電デバイス用外装材について詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。
【0018】
1.蓄電デバイス用外装材の積層構造
本開示の蓄電デバイス用外装材10は、例えば
図1に示すように、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも基材層1側が外側である。
【0019】
蓄電デバイス用外装材10は、例えば
図2から
図4に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば
図3及び
図4に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、
図4に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。
【0020】
本開示の蓄電デバイス用外装材10は、熱融着性樹脂層4にフィルムを含んでいる。熱融着性樹脂層4が単層により構成されている場合には、熱融着性樹脂層4はフィルムにより構成されており、熱融着性樹脂層4が2層以上により構成されているである場合には、熱融着性樹脂層4に含まれる層のうち少なくとも1層がフィルムにより構成されている。後述の通り、熱融着性樹脂層4が2層以上により構成されている場合、熱融着性樹脂層4のバリア層3側とは反対側の表面(すなわち蓄電デバイス用外装材10の最内層表面)がフィルムによって形成されていることが好ましい。
【0021】
蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば190μm以下、好ましくは約180μm以下、約155μm以下、約120μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、35~190μm程度、35~180μm程度、35~155μm程度、35~120μm程度、45~190μm程度、45~180μm程度、45~155μm程度、45~120μm程度、60~190μm程度、60~180μm程度、60~155μm程度、60~120μm程度が挙げられ、特に60~155μm程度が好ましい。
【0022】
また蓄電デバイス用外装材10は、全固体電池に対して好適に適用することができる。この場合、蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、好ましくは約10000μm以下、約8000μm以下、約5000μm以下が挙げられ、電池素子を保護するという全固体電池用外装材の機能を維持する観点からは、好ましくは約10μm以上、約15μm以上、約20μm以上が挙げられ、好ましい範囲については、例えば、10~10000μm程度、10~8000μm程度、10~5000μm程度、15~10000μm程度、15~8000μm程度、15~5000μm程度、20~10000μm程度、20~8000μm程度、20~5000μm程度が挙げられ、特に20~5000μm程度が好ましい。
【0023】
蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。
【0024】
また、本開示の蓄電デバイス用外装材10は、以下の測定方法によって測定される-30℃環境でのシール強度が、好ましくは40N/15mm以上、より好ましくは80N/15mm以上である。なお、当該シール強度の上限は、例えば200N/15mm以下、好ましくは180N/15mm以下である。当該シール強度の好ましい範囲としては、40~200N/15mm程度、40~180N/15mm程度、80~200N/15mm程度、80~180N/15mm程度が挙げられる。
【0025】
また、本開示の蓄電デバイス用外装材10は、以下の測定方法によって測定される23℃環境でのシール強度が、好ましくは40N/15mm以上、より好ましくは80N/15mm以上である。なお、当該シール強度の上限は、例えば200N/15mm以下、好ましくは180N/15mm以下である。当該シール強度の好ましい範囲としては、40~200N/15mm程度、40~180N程度、80~200N/15mm程度、80~180N/15mm程度が挙げられる。
【0026】
また、本開示の蓄電デバイス用外装材10は、以下の測定方法によって測定される120℃環境でのシール強度が、好ましくは30N/15mm以上、より好ましくは50N/15mm以上である。なお、当該シール強度の上限は、例えば150N/15mm以下、好ましくは120N/15mm以下である。当該シール強度の好ましい範囲としては、30~150N/15mm程度、30~120N/15mm程度、50~150N/15mm程度、50~120N/15mm程度が挙げられる。
【0027】
また、本開示の蓄電デバイス用外装材10は、以下の測定方法によって測定される150℃環境でのシール強度が、好ましくは30N/15mm以上、より好ましくは50N/15mm以上である。なお、当該シール強度の上限は、例えば150N/15mm以下、好ましくは120N/15mm以下である。当該シール強度の好ましい範囲としては、30~150N/15mm程度、30~120N/15mm程度、50~150N/15mm程度、50~120N/15mm程度が挙げられる。
【0028】
<シール強度(-30℃、23℃、120℃、または150℃環境)の測定>
JIS K7127:1999の規定に準拠して、-30℃、23℃、120℃、または150℃の各測定温度における外装材のシール強度を次のようにして測定する。外装材から、TDの方向の幅が15mmの短冊状に裁断した試験サンプルを準備する。具体的には、
図9に示すように、まず、各外装材を60mm(TDの方向)×200mm(MDの方向)に裁断する(
図9a)。次に、熱融着性樹脂層同士が対向するようにして、外装材を折り目P(MDの方向の中間)の位置でMDの方向に2つ折りにする(
図9b)。折り目Pから10mm程度MDの方向に内側において、シール幅7mm、温度240℃、面圧とシール時間を熱融着樹脂層の厚みがシール前に対して80±5%の厚みとなる条件で熱融着性樹脂層同士をヒートシールする(
図9c)。
図9cにおいて、斜線部Sがヒートシールされている部分である。次に、TDの方向の幅が15mmとなるようにして、MDの方向に裁断(
図9dの二点鎖線の位置で裁断)して試験片13を得る(
図9e)。次に、試験片13を各測定温度で2分間放置し、各測定温度環境において、引張り試験機で熱融着部の熱融着性樹脂層を300mm/分の速度で剥離させる(
図10)。剥離時の最大強度をシール強度(N/15mm)とする。チャック間距離は、50mmである。
【0029】
2.蓄電デバイス用外装材を形成する各層
[基材層1]
本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
【0030】
基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。
【0031】
基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂フィルムにより形成することができる。基材層1を樹脂フィルムにより形成する場合、基材層1をバリア層3などと積層して本開示の蓄電デバイス用外装材10を製造する際に、予め形成された樹脂フィルムを基材層1として用いてもよい。また、基材層1を形成する樹脂を、押出成形や塗布などによってバリア層3などの表面上でフィルム化して、樹脂フィルムにより形成された基材層1としてもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。
【0032】
基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
【0033】
基材層1は、これらの樹脂を主成分として含んでいることが好ましく、ポリエステル又はポリアミドを主成分として含んでいることがより好ましい。ここで、主成分とは、基材層1に含まれる樹脂成分のうち、含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上の樹脂成分であることを意味する。例えば、基材層1がポリエステル又はポリアミドを主成分として含むとは、基材層1に含まれる樹脂成分のうち、ポリエステル又はポリアミドの含有率が、それぞれ、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味する。
【0034】
基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられ、より好ましくはポリエステル(特に好ましくはポリエチレンテレフタレート)が挙げられる。
【0035】
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0036】
また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4'-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
【0037】
基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。
【0038】
基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
【0039】
基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。
【0040】
基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。
【0041】
また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0042】
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N'-ジステアリルアジピン酸アミド、N,N'-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'-ジオレイルアジピン酸アミド、N,N'-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N'-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。
【0043】
基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。
【0044】
基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
【0045】
基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。
【0046】
[接着剤層2]
本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
【0047】
接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
【0048】
接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
【0049】
ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタン接着剤が挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。
【0050】
また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0051】
顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
【0052】
着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。
【0053】
顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
【0054】
接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。
【0055】
接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上である。また、接着剤層2の厚みは、例えば、約10μm以下、約5μm以下である。また、接着剤層2の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。
【0056】
[着色層]
着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
【0057】
着色層は、例えば、着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0058】
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
【0059】
[バリア層3]
蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
【0060】
バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。
【0061】
アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。
【0062】
また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。
【0063】
ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
【0064】
バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下である。また、バリア層3の厚みは、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上である。また、バリア層3の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられる。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、バリア層3がアルミニウム合金箔により構成されている場合において、蓄電デバイス用外装材10に高成形性及び高剛性を付与する観点からは、バリア層3の厚みは、好ましくは約45μm以上、さらに好ましくは約50μm以上、より好ましくは約55μm以上であり、好ましくは約85μm以下、より好ましくは75μm以下、さらに好ましくは70μm以下であり、好ましい範囲としては、45~85μm程度、45~75μm程度、45~70μm程度、50~85μm程度、50~75μm程度、50~70μm程度、55~85μm程度、55~75μm程度、55~70μm程度である。蓄電デバイス用外装材10が高成形性を備えることにより、深絞り成形が容易となり、蓄電デバイスの高容量化に寄与し得る。また、蓄電デバイスが高容量化されると、蓄電デバイスの重量が増加するが、蓄電デバイス用外装材10の剛性が高められることにより、蓄電デバイスの高い密封性に寄与できる。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みは、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、ステンレス鋼箔の厚みは、好ましくは約10μm以上、より好ましくは約15μm以上である。また、ステンレス鋼箔の厚みの好ましい範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。
【0065】
また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。
【0066】
耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。
【0067】
化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
【0068】
【0069】
【0070】
【0071】
【0072】
一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R1R2NH)を用いて官能基(-CH2NR1R2)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。
【0073】
耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。
【0074】
耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。
【0075】
耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。
【0076】
なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。
【0077】
化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。
【0078】
耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4
+、CePO4
-などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2
+、CrPO4
-などの少なくとも1種)に由来するピークが検出される。
【0079】
化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。
【0080】
[熱融着性樹脂層4]
本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。熱融着性樹脂層4は、フィルムを含む。当該フィルムは、熱融着性樹脂層4において、シーラントフィルムとして機能し得る。
【0081】
本開示において、フィルムは、3種類以上の構成単位を含む樹脂により形成されており、かつ、融解ピーク温度が170℃以上である。ここで、樹脂の構成単位とは、樹脂を構成する構造単位を意味しており、例えば樹脂が共重合体であれば、少なくとも2種類のモノマー単位が樹脂の構成単位(重合によって樹脂中に2種以上導入される構造の単位)となる。例えば、後述の通り、本開示において、フィルムを形成する樹脂は、ポリエステル構造Aを含むことが好ましい。ポリエステル構造Aは、多価カルボン酸(モノマー)とポリオール(モノマー)とが脱水縮合してエステル結合を形成した構造であり、多価カルボン酸に由来する構造(モノマー単位(繰り返し単位ともいう))とポリオールに由来する構造(モノマー単位(繰り返し単位ともいう))の2種類の構成単位(モノマー単位)を含む。なお、フィルムを形成する樹脂について、構成単位の種類の上限は特にないが、例えば6種類程度である。フィルムが3種類以上の構成単位を含むことは、例えば、NMR、GCMSなどの手法を用いて確認することができる。
【0082】
本開示においては、熱融着性樹脂層4に融解ピーク温度が170℃以上のフィルムを用いることにより、蓄電デバイス用外装材10に対して高温環境において引張等の負荷がかかった際の変形が抑制される。さらに、当該フィルムが3種類以上の構成単位(典型的には、モノマー単位)を含むことにより、フィルムの柔軟性が高められ、低温環境でのフィルムの脆化が抑制される。これらの結果、本開示の蓄電デバイス用外装材は、低温から高温の幅広い温度環境において高いシール強度を発揮できていると考えることができる。
【0083】
本開示において、樹脂の構成単位は、典型的には、共重合体に含まれるモノマー単位である。ただし、樹脂の構成単位は、共重合体の主鎖を形成しているモノマー単位に限定されず、側鎖を形成しているモノマー単位(例えば、グラフト重合などで導入されるモノマー単位など)や、主鎖間の架橋構造を構成するモノマー単位(架橋性モノマーに由来する単位)も含む概念である。
【0084】
前述の通り、従来、有機溶媒を含む電解液リチウムイオン電池において、外装材の熱融着性樹脂層に使用されているフィルムは、ポリプロピレンフィルムなどによって形成されており、100℃以上の高温環境では耐久性(シール強度)が著しく低下する。例えばポリプロピレンフィルムは、一般に、構成単位としてプロピレンとエチレンの共重合体により形成されており、融解ピーク温度も170℃を下回る。
【0085】
本開示の発明の効果をより好適に発揮する観点から、フィルムを形成する樹脂は、ポリエステル構造Aを含むことが好ましい。ポリエステル構造Aは酸成分とポリオール成分を縮合重合させることによって得られる。酸成分としては、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸等から選ばれる。また、ポリオール成分としてエチレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ポリテトラメチレングリコール、シクロヘキサンジメタノール、プロパンジオール等から選ばれる。前記ポリエステル構造Aは、ポリブチレンテレフタレート構造であることがより好ましい。ポリブチレンテレフタレート構造は、テレフタル酸と1,4-ブタンジオールを重合させることで形成される構造であり、テレフタル酸に由来する構造と1,4-ブタンジオールに由来する構造の2種類の構成単位を含んでいる。
【0086】
さらに、本開示の発明の効果をより好適に発揮する観点から、フィルムを形成する樹脂は、ポリエステル構造Aに加えて、さらに、ポリエーテル構造及びポリエステル構造Bからなる群より選択される少なくとも1種を含むことがより好ましい。ポリエステル構造Bは、ポリエステル構造Aとは異なるポリエステル構造である。
【0087】
ポリエーテル構造は、ポリエステル構造Aの多価カルボン酸(例えばポリブチレンテレフタレート構造であればテレフタル酸)とポリエーテル構造を有する化合物(モノマー)とを重縮合反応させることで、樹脂に導入することができる。ポリエーテル構造は、フィルム中の樹脂のソフトセグメントを構成することが望ましく、ポリエステル構造Aの多価カルボン酸と重縮合反応してこのようなソフトセグメントを構成する化合物(モノマー)としては、ポリテトラメチレンエーテルグリコール、ネオペンチルグリコールなどの伸縮性を発現し得るジオールが挙げられる。ポリエーテル構造は、ポリテトラメチレンエーテルグリコール及びネオペンチルグリコールからなる群より選択される少なくとも1種に由来するポリエーテル構造であることが好ましい。ポリテトラメチレンエーテルグリコール、ネオペンチルグリコールなどが、樹脂のポリエーテル構造中において構成単位を形成する。ソフトセグメントとしてポリエーテル構造を樹脂に導入することで、樹脂のゴム弾性が高まり、樹脂が破断し難くなることで、低温から高温の幅広い温度環境において高いシール強度が好適に発揮される。
【0088】
また、ポリエステル構造Bは、ポリエステル構造Aで用いられたエチレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ポリテトラメチレングリコール、シクロヘキサンジメタノール、プロパンジオール等のポリオールと重縮合反応してポリエステル構造を形成する化合物(モノマー)を用いることで樹脂に導入することができる。ポリエステル構造Bは、フィルム中の樹脂のソフトセグメントを構成することが望ましく、ポリエステル構造Aのポリオールと重縮合反応してこのようなソフトセグメントを構成する化合物(モノマー)としては、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸や、アジピン酸、セバシン酸、ドデカンジオン酸、シクロヘキサンジカルボン酸など脂肪族ジカルボン酸(炭素数が4~20の脂肪族ジカルボン酸が好ましい)などのジカルボン酸が挙げられる。芳香族ジカルボン酸や脂肪族ジカルボン酸などが、樹脂のポリエステル構造B中において構成単位を形成する。ポリエステル構造Bは、ポリオールと、イソフタル酸、セバシン酸及びドデカンジオン酸からなる群より選択される少なくとも1種のジカルボン酸との重縮合によるポリエステル構造であることが特に好ましい。ソフトセグメントとしてポリエステル構造Bを樹脂に導入することで、樹脂のゴム弾性が高まり、樹脂が破断し難くなることで、低温から高温の幅広い温度環境において高いシール強度が好適に発揮される。
【0089】
本開示の発明の効果をより好適に発揮する観点から、フィルムを形成する樹脂は、ポリブチレンテレフタレート構造に加えて、さらに、ポリエーテル構造を含み、当該ポリエーテル構造が、ポリテトラメチレンエーテルグリコール及びネオペンチルグリコールの少なくとも一方とポリブチレンテレフタレート構造のテレフタル酸との重縮合構造を備えていることが特に好ましい。また、フィルムを形成する樹脂は、ポリブチレンテレフタレート構造に加えて、さらに、ポリエステル構造Bを含み、当該ポリエステル構造Bが、イソフタル酸、ドデカンジオン酸、及びセバシン酸からなる群より選択される少なくとも1種と、ポリブチレンテレフタレート構造の1,4-ブタンジオールとの重縮合構造を備えていることが特に好ましい。
【0090】
また、本開示の発明の効果をより好適に発揮する観点から、フィルムを形成する樹脂は、ポリエステル構造Aが主成分であることが好ましく、ポリブチレンテレフタレート構造が主成分であることがより好ましい。なお、主成分とは、樹脂を構成する全成分100モル%に対する割合が50モル%以上、好ましくは60モル%以上、より好ましくは70モル%以上、さらに好ましくは80モル%以上であることを意味している。また、シーラントフィルムを形成する樹脂は、ポリエーテル構造及びジカルボン酸構造の少なくとも一方の割合が、樹脂を構成する全成分(全モノマー単位)100モル%に対して、好ましくは2~30モル%程度、より好ましくは3~25モル%程度、さらに好ましくは3~20モル%程度である。
【0091】
本開示において、フィルムは、融解ピーク温度が170℃以上である。本開示の発明の効果をより好適に発揮する観点から、当該融解ピーク温度は、好ましくは190℃以上、より好ましくは200℃以上であり、また、好ましくは350℃以下、より好ましくは300℃以下、さらに好ましくは270℃以下、さらに好ましくは217℃以下であり、好ましい範囲としては170~350℃程度、170~300℃程度、170~270℃程度、170~217℃程度、190~350℃程度、190~300℃程度、190~270℃程度、190~217℃程度、200~350℃程度、200~300℃程度、200~270℃程度、200~217℃程度などが挙げられる。当該融解ピーク温度の測定方法は、以下の通りである。
【0092】
<融解ピーク温度の測定>
フィルムを形成している樹脂について、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の規定に準拠して融解ピーク温度を測定する。測定は、示差走査熱量計(DSC、ティー・エイ・インスツルメント製の示差走査熱量計Q200)を用いて行う。測定サンプルを、-50℃で15分間保持した後、10℃/分の昇温速度で-50℃から300℃まで昇温させて、1回目の融解ピーク温度P(℃)を測定した後、300℃にて2分間保持する。次に、10℃/分の降温速度で300℃から-50℃まで降温させて15分間保持する。さらに、10℃/分の昇温速度で-50℃から300℃まで昇温させて2回目の融解ピーク温度Q(℃)を測定する。なお、窒素ガスの流量は50ml/分とする。以上の手順によって、1回目に測定される融解ピーク温度P(℃)と、2回目に測定される融解ピーク温度Q(℃)を求め、1回目に測定された融解ピーク温度を融解ピーク温度とする。
【0093】
また、本開示の発明の効果をより好適に発揮する観点から、フィルムは、ガラス転移温度(Tg)が、好ましくは67℃以下、より好ましくは60℃以下、さらに好ましくは50℃以下であり、また、好ましくは0℃以上、より好ましくは10℃以上、好ましい範囲としては0~67℃程度、0~60℃程度、0~50℃程度、10~67℃程度、10~60℃程度、10~50℃程度などが挙げられる。当該ガラス転移温度(Tg)の測定は、DMA(動的粘弾性測定)により測定された値である。具体的には、DMA(動的粘弾性測定)により、フィルムを形成している樹脂のガラス転移温度を測定する。測定は市販の装置を用いて行う。チャック間距離10mmとし幅5mm、長さ20mmに切り出したフィルムを設置、測定条件は、5℃/分の昇温速度で-30℃から250℃まで昇温させ、周波数:10Hz、静荷重70g、歪5μmとした際の、損失弾性率を貯蔵弾性率で割った損失正弦(tanδ)のピーク温度をガラス転移温度とする。なお、熱融着性樹脂層が異なる樹脂を含む複層により形成されている場合、バリア層と熱融着性樹脂層とを分離し、熱融着性樹脂層のガラス転移温度(Tg)を測定すると、樹脂毎にtanδのピーク値が取得される。熱融着性樹脂層に含まれる各層について、別途、赤外吸収スペクトル等から特定された各層に含まれる樹脂の種類と、そのガラス転移温度(Tg)とを紐付けることが可能である。
【0094】
フィルムのガラス転移温度(Tg)は、例えば、フィルムを構成する樹脂の共重合成分(特に、ポリエステル構造Aではない部分(ポリエステル構造B,ポリエーテル構造などのソフトセグメント))の割合を増やすことで低下させることができる。
【0095】
本開示の発明の効果をより好適に発揮する観点から、フィルムは、-30℃環境における引張破断伸度が、好ましくは5%以上、より好ましくは150%以上、さらに好ましくは200%以上であり、また、好ましくは2000%以下、より好ましくは1600%以下、さらに好ましくは500%以下であり、好ましい範囲は、5~2000%程度、5~1600%程度、5~500%程度、150~2000%程度、150~1600%程度、150~500%程度、200~2000%程度、200~1600%程度、200~500%程度などである。当該引張破断伸度の測定方法は、後述の通りである。
【0096】
本開示の発明の効果をより好適に発揮する観点から、フィルムは、23℃環境における引張破断伸度が、好ましくは5%以上、より好ましくは400%以上、さらに好ましくは500%以上であり、また、好ましくは2000%以下、より好ましくは1600%以下、さらに好ましくは、850%以下であり、好ましい範囲は、5~2000%程度、5~1600%程度、5~850%程度、400~2000%程度、400~1600%程度、400~850%程度、500~2000%程度、500~1600%程度、500~850%程度などである。当該引張破断伸度の測定方法は、後述の通りである。
【0097】
本開示の発明の効果をより好適に発揮する観点から、フィルムは、120℃環境における引張破断伸度が、好ましくは650%以上、より好ましくは700%以上、さらに好ましくは750%以上、より好ましくは800%以上、さらに好ましくは850%以上であり、また、好ましくは2000%以下、より好ましくは1600%以下であり、好ましい範囲は、650~2000%程度、650~1600%程度、700~2000%程度、700~1600%程度、750~2000%程度、750~1600%程度、800~2000%程度、800~1600%程度、850~2000%程度、850~1600%程度などである。当該引張破断伸度の測定方法は、後述の通りである。
【0098】
また、本開示の発明の効果をより好適に発揮する観点から、フィルムは、150℃環境における引張破断伸度が、好ましくは750%以上、より好ましくは850%以上、さらに好ましくは900%以上であり、また、好ましくは2000%以下、より好ましくは1700%以下、さらに好ましくは1600%以下であり、好ましい範囲は、750~2000%程度、750~1700%程度、750~1600%程度、850~2000%程度、850~1700%程度、850~1600%程度、900~2000%程度、900~1700%程度、900~1600%程度などである。当該引張破断伸度の測定方法は、以下の通りである。
【0099】
<フィルムの引張破断伸度(-30℃、23℃、120℃又は150℃)の測定>
引張破断伸度の測定は、JIS K7127:1999の規定に準拠した方法で引張り試験機を用いて測定する。試験サンプル幅はJIS-K 6251-7型のダンベル型、標線間距離は15mm、引張速度は50mm/分、試験環境は、それぞれ、-30℃、23℃、120℃及び150℃とする。測定を3回ずつ行い、3回測定した平均値を引張破断伸度とする。
【0100】
フィルムの引張破断伸度は、例えば、フィルムを構成する樹脂の共重合成分(特に、ポリエステル構造Aではない部分(ポリエステル構造B,ポリエーテル構造などのソフトセグメント))の割合を増やすことで高められる。
【0101】
本開示の発明の効果をより好適に発揮する観点から、外装材を構成する積層体の熱融着性樹脂層4側からの押込み弾性率(フィルムの押し込み弾性率)は、好ましくは約0.3GPa以上、より好ましくは約0.4GPa以上、さらに好ましくは約0.5GPa以上である。同様の観点から、フィルムの押し込み弾性率は、好ましくは約5GPa以下、より好ましくは約4GPa以下、さらに好ましくは約3GPa以下、さらに好ましくは約2GPa以下、さらに好ましくは約1.5GPa以下である。フィルムの押し込み弾性率の好ましい範囲としては、0.3~5GPa程度、0.3~4GPa程度、0.3~3GPa程度、0.3~2GPa程度、0.3~1.5GPa程度、0.4~5GPa程度、0.4~4GPa程度、0.4~3GPa程度、0.4~2GPa程度、0.4~1.5GPa程度、0.5~5GPa程度、0.5~4GPa程度、0.5~3GPa程度、0.5~2GPa程度、0.5~1.5GPa程度が挙げられる。当該押し込み弾性率の測定方法は、以下の通りである。
【0102】
[押し込み弾性率の測定]
押込み弾性率は、ISO 14577:2015に準拠し、積層体の熱融着樹脂層側の表面に対して、約23℃約60%RHの環境で、ビッカース圧子(対面角136°の正四角錐のダイヤモンド圧子)を装着させた超微小負荷硬さ試験機を用いて、押し込み弾性率を測定する方法を用いる。測定は、押し込み速度0.1μm/秒、押し込み深さ2μm、保持時間5秒間、引き抜き速度0.1μm/秒で行う。超微小負荷硬さ試験機は、ピコデンターHM500(フィッシャー・インストルメンツ社製)が好ましい。少なくとも5つのサンプルを測定し、それらの測定値の平均をその条件の押し込み弾性率の値とする。サンプルの固定は、吸着台か瞬間接着剤を使用することが望ましい。フィルム単体について押込み弾性率を測定する場合には、フィルムの主面の中央部について、測定を行う。
【0103】
熱融着性樹脂層4は、例えば
図5に示されるように、単層により構成されていてもよいし、例えば
図6及び
図7に示されるように2層以上により構成されていてもよい。
図6には、バリア層3側の第1層41及び最内層側の第2層42が積層された積層体により構成された熱融着性樹脂層4を示し、
図7には、バリア層側の第3層43、中間に位置する第1層41及び最内層側の第2層42がこの順に積層された積層体により構成された熱融着性樹脂層4を示している。
【0104】
熱融着性樹脂層4が2層以上により構成されている場合、2層以上の層のうち、少なくとも1層が本開示のフィルムである(すなわち、3種類以上の構成単位を含む樹脂により形成されてなり、かつ、融解ピーク温度が170℃以上である)ことが好ましい。熱融着性樹脂層4が2層以上により構成されている場合、熱融着性樹脂層4のバリア層3側とは反対側の表面(すなわち蓄電デバイス用外装材10の最内層表面)が本開示のフィルムによって形成されていることが好ましい。
図6及び
図7においては、少なくとも第2層42が本開示のフィルムであることが好ましい。熱融着性樹脂層4が2層以上により構成されている場合、全ての層が本開示のフィルムによって形成されていることも好ましい。なお、熱融着性樹脂層が異なる樹脂を含む複層により形成されている場合、各層を分離して、各々の層の融解ピーク温度を測定することができる。
【0105】
また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。
【0106】
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0107】
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、熱融着性樹脂層4の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N'-ジステアリルアジピン酸アミド、N,N'-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'-ジオレイルアジピン酸アミド、N,N'-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N'-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。
【0108】
熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約1mg/m2以上、より好ましくは約3mg/m2以上、さらに好ましくは約5mg/m2以上、さらに好ましくは約10mg/m2以上、さらに好ましくは約15mg/m2以上であり、また、好ましくは約50mg/m2以下、さらに好ましくは約40mg/m2以下であり、好ましい範囲としては、1~50mg/m2程度、1~40mg/m2程度、3~50mg/m2程度、3~40mg/m2程度、5~50mg/m2程度、5~40mg/m2程度、10~50mg/m2程度、10~40mg/m2程度、15~50mg/m2程度、15~40mg/m2程度が挙げられる。
【0109】
熱融着性樹脂層4の内部に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約100ppm以上、より好ましくは約300ppm以上、さらに好ましくは約500ppm以上であり、また、好ましくは約3000ppm以下、より好ましくは約2000ppm以下であり、好ましい範囲としては、100~3000ppm程度、100~2000ppm程度、300~3000ppm程度、300~2000ppm程度、500~3000ppm程度、500~2000ppm程度が挙げられる。熱融着性樹脂層4の内部に滑剤が2種類以上存在する場合、上記の滑剤量は合計滑剤量である。また、熱融着性樹脂層4の内部に滑剤が2種類以上存在する場合、1種類目の滑剤の存在量は、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約100ppm以上、より好ましくは約300ppm以上、さらに好ましくは約500ppm以上であり、また、好ましくは約3000ppm以下、より好ましくは約2000ppm以下であり、好ましい範囲としては、100~3000ppm程度、100~2000ppm程度、300~3000ppm程度、300~2000ppm程度、500~3000ppm程度、500~2000ppm程度が挙げられる。2種類目の滑剤の存在量は、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約50ppm以上、より好ましくは約100ppm以上、さらに好ましくは約200ppm以上であり、また、好ましくは約1500ppm以下、より好ましくは約1000ppm以下であり、好ましい範囲としては、50~1500ppm程度、50~1000ppm程度、100~1500ppm程度、100~1000ppm程度、200~1500ppm程度、200~1000ppm程度が挙げられる。
【0110】
熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。
【0111】
また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。
【0112】
(フィルムの製造方法)
熱融着性樹脂層4に含まれるフィルムの製造方法は、本開示のフィルムが得られれば特に限定されず、公知または慣用の製膜方法、積層方法を適用することができる。フィルムの製造は、例えば、押出法または共押出法、キャスト成形法、Tダイ法、切削法、インフレーション法等の、公知の製膜化法および/または積層法により行うことができる。熱融着性樹脂層4に含まれるフィルムが2層以上である場合には、例えば、予め作製された各層を構成するフィルムを、接着剤層を介して積層してもよく、予め作製された層上に溶融した樹脂組成物を押出または共押出法によって積層してもよく、複数層を同時に作製しながら溶融圧着によって積層してもよく、または、他の層上に、1種または2種以上の樹脂を、塗布及び乾燥してコーティングしてもよい。
【0113】
フィルムを含む熱融着性樹脂層4は、熱融着性樹脂層4に含まれる層を、押出しまたは共押出しで、エクストルージョンコート法で積層したり、インフレーション法やキャスト法により製膜後に接着層を介して積層したりすることもできる。エクストルージョンコート法の場合でも、必要に応じて接着層を介して、積層してもよい。または、予め製膜された吸水層(又は硫黄系ガス吸収層)用のフィルムを、エクストルージョンコート法、ドライラミネート法、ノンソルベントラミネート法等により積層された接着層を介して積層、接着してもよい。そして、必要に応じてエージング処理を行ってもよい。
【0114】
例えば、エクストルージョンコート法によりフィルムなどを積層する場合においては、まず、フィルムを形成する樹脂を加熱して溶融させて、Tダイスで必要な幅方向に拡大伸張させてカーテン状に(共)押出し、該溶融樹脂を被積層面上へ流下させて、ゴムロールと冷却した金属ロールとで挟持することで、該層の形成と、被積層面への積層および接着を同時に行うことができる。エクストルージョンコート法により積層する場合の各樹脂成分のメルトマスフローレート(MFR)は、0.2~50g/10分が好ましく、0.5~30g/10分がより好ましい。MFRが上記範囲よりも小さい、または大きいと加工適性が劣り易い。なお、本明細書において、MFRとはJIS K7210に準拠した手法から測定された値である。
【0115】
インフレーション法を用いる場合の樹脂成分のメルトマスフローレート(MFR)は、0.2~10g/10分が好ましく、0.2~9.5g/10分がより好ましい。MFRが上記範囲よりも小さいまたは大きいと、加工適性が劣り易い。
【0116】
また、熱融着性樹脂層4が2層以上により構成されている場合、フィルムを含む熱融着性樹脂層4を構成する各層間には、接着性を向上させるために、各層の表面に、必要に応じて、予め、所望の表面処理を施すことができる。例えば、コロナ放電処理、オゾン処理、酸素ガスまたは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いた酸化処理等の前処理を任意に施して、コロナ処理層、オゾン処理層、プラズマ処理層、酸化処理層等を形成して設けることができる。或いは、表面に、プライマーコート剤層、アンダーコート剤層、アンカーコート剤層、接着剤層、蒸着アンカーコート剤層等の各種コート剤層を任意に形成して、表面処理層とすることもできる。上記の各種コート剤層には、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレンもしくはポリプロピレン等のポリオレフィン系樹脂またはその共重合体ないし変性樹脂、セルロース系樹脂等をビヒクルの主成分とする樹脂組成物を用いることができる。
【0117】
熱融着性樹脂層4に含まれる層は、さらに、必要に応じて、テンター方式やチューブラー方式等を利用して、従来公知の方法によって、1軸延伸または2軸延伸することができる。
【0118】
[接着層5]
本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
【0119】
接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。
【0120】
また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
【0121】
イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビウレット体、イソシアヌレート体などが挙げられる。
【0122】
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
【0123】
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
【0124】
接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
【0125】
エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
【0126】
エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
【0127】
接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
【0128】
ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。
【0129】
接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。
【0130】
なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。
【0131】
接着層5には、カルボジイミド基を有する改質剤が含まれていてもよい。
【0132】
また、接着層5は、ポリエステル及びポリカーボネートの少なくとも一方と、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の少なくとも一方とを含む樹脂組成物の硬化物によって形成されることも好ましい。
【0133】
ポリエステルは、ポリエステルポリオールであることが好ましい。ポリエステルポリオールは、ポリマー主鎖にエステル結合を有し、かつ末端または側鎖に水酸基を複数有するものであれば特に制限されない。また、ポリカーボネートは、ポリカーボネートポリオールであることが好ましい。ポリエステルポリオールは、ポリマー主鎖にカーボーネート結合を有し、かつ末端または側鎖に水酸基を複数有するものであれば特に制限されない。接着層5を形成する樹脂組成物に含まれるポリエステル及びポリカーボネートは、それぞれ、1種類であってもよいし、2種類以上であってもよい。
【0134】
脂環式イソシアネート化合物は、脂環構造とイソシアネート基を有する化合物であれば特に制限されない。脂環式イソシアネート化合物は、2以上のイソシアネート基を有することが好ましい。脂環式イソシアネート化合物の具体例としては、イソホロンジイソシアネート(IPDI)など、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。接着層5を形成する樹脂組成物に含まれる脂環式イソシアネート化合物は、1種類であってもよいし、2種類以上であってもよい。
【0135】
また、芳香族イソシアネート化合物は、芳香環とイソシアネート基を有する化合物であれば特に制限されない。芳香族イソシアネート化合物は、2以上のイソシアネート基を有することが好ましい。芳香族イソシアネート化合物の具体例としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。接着層5を形成する樹脂組成物に含まれる芳香族イソシアネート化合物は、1種類であってもよいし、2種類以上であってもよい。
【0136】
接着層5を形成する樹脂組成物が、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の少なくとも一方を含む場合、例えば、脂環式イソシアネート化合物が含まれ、芳香族イソシアネート化合物が含まれなくてもよいし、例えば、芳香族イソシアネート化合物が含まれ、脂環式イソシアネート化合物が含まれなくてもよいし、例えば、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の両者が含まれていてもよい。
【0137】
接着層5における、脂環式イソシアネート化合物及び芳香族イソシアネート化合物の含有量としては、それぞれ、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。また、接着層5が脂環式イソシアネート化合物及び芳香族イソシアネート化合物の両者を含む場合には、これらの合計含有量が接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。
【0138】
接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層5の厚さは、好ましくは、約0.1μm以上、約0.5μm以上である。また、接着層5の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。
【0139】
[表面被覆層6]
本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも1つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
【0140】
表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。樹脂は、好ましくは硬化性樹脂である。すなわち、表面被覆層6は、硬化性樹脂を含む樹脂組成物の硬化物から構成されていることが好ましい。
【0141】
表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
【0142】
2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタンが挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。なお、脂肪族イソシアネート系化合物とは脂肪族基を有し芳香環を有さないイソシアネートを指し、脂環式イソシアネート系化合物とは脂環式炭化水素基を有するイソシアネートを指し、芳香族イソシアネート系化合物とは芳香環を有するイソシアネートを指す。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。
【0143】
表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
【0144】
添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。
【0145】
添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
【0146】
表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。
【0147】
表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。
【0148】
3.蓄電デバイス用外装材の製造方法
蓄電デバイス用外装材の製造方法については、本発明の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。
【0149】
本発明の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
【0150】
次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、接着層5と熱融着性樹脂層4は、例えば、(1)押出ラミネート法、(2)サーマルラミネート法、(3)サンドイッチラミネート法、(4)ドライラミネート法などにより積層することができる。(1)押出ラミネート法としては、例えば、積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出ラミネート法、タンデムラミネート法)などが挙げられる。また、(2)サーマルラミネート法としては、例えば、別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上に積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4と積層する方法などが挙げられる。また、(3)サンドイッチラミネート法としては、例えば、積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法などが挙げられる。また、(4)ドライラミネート法としては、例えば、積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。
【0151】
表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
【0152】
上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。
【0153】
蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。
【0154】
4.蓄電デバイス用外装材の用途
本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
【0155】
具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。2つの蓄電デバイス用外装材の熱融着性樹脂層同士を対向させて重ね合わせ、重ねられた蓄電デバイス用外装材の周縁部を熱融着して包装体を形成してもよく、また、
図8に示す例のように、1つの蓄電デバイス用外装材を折り返して重ね合わせ、周縁部を熱融着して包装体を形成してもよい。折り返して重ね合わせる場合は、
図8に示す例のように、折り返した辺以外の辺を熱融着して三方シールにより包装体を形成してもよいし、フランジ部が形成できるように折り返して四方シールしてもよいし、蓄電デバイス素子の周囲に蓄電デバイス用外装材を巻きつけ、熱融着性樹脂層同士をシールすることで熱融着部を形成し、両端の開口部をそれぞれ閉じるように蓋体などを配置してもよい。また、蓄電デバイス用外装材には、蓄電デバイス素子を収容するための凹部が、深絞り成形または張出成形によって形成されてもよい。
図8に示す例のように、一方の蓄電デバイス用外装材には凹部を設けて他方の蓄電デバイス用外装材には凹部を設けなくてもよいし、他方の蓄電デバイス用外装材にも凹部を設けてもよい。
【0156】
本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用される。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、半固体電池、擬固体電池、ポリマー電池、全樹脂電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池が挙げられ、特に全固体電池に好適に使用される。
【実施例0157】
以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。
【0158】
<フィルムの製造>
(実施例1~5及び比較例1~2)
実施例1,2の熱融着性樹脂層のフィルムの形成に用いた樹脂は、それぞれ、主成分であるポリブチレンテレフタレート構造を形成するテレフタル酸と1,4-ブタンジオールが2つの構成単位を構成しており、さらに、ポリブチレンテレフタレート構造に対し、副成分としてポリエーテル構造がブロック重合されたものである。ポリエーテル構造は、ポリテトラメチレンエーテルグリコールが3種類目の構成単位として、前記のテレフタル酸と共重合されることで樹脂に導入される構造である。したがって、フィルムを形成する樹脂は、ポリブチレンテレフタレート構造(モノマー単位としてのテレフタル酸と1,4-ブタンジオールが、2種類の構成単位となる)とポリエーテル構造(モノマー単位としてのポリテトラメチレンエーテルグリコールが、1種類の構成単位となる)とを含んでおり、合計3種類の構成単位が共重合された構造を備えている。実施例1,2の熱融着性樹脂層のフィルムを形成する樹脂には、それぞれ、モノマー単位として、テレフタル酸と1,4-ブタンジオールと、ポリテトラメチレングリコールとのモル比(テレフタル酸残基:1,4-ブタンジオール残基:ポリテトラメチレングリコール残基)が100:95:5の比率で含まれている。実施例1と実施例2との相違は、ポリテトラメチレンエーテルグリコールの比率違いであり実施例1のほうがより高い比率である。
【0159】
また、実施例3,4の熱融着性樹脂層のフィルムの形成に用いた樹脂は、それぞれ、実施例1,2におけるポリエーテル構造の代わりに、ポリエステル構造Bがポリブチレンテレフタレート構造にブロック重合されたものである。ポリエステル構造Bは、ドデカンジオン酸(ドデカン二酸)が3種類目の構成単位として、前記の1,4-ブタンジオールと共重合されることで樹脂に導入される構造である。したがって、フィルムを形成する樹脂は、ポリブチレンテレフタレート構造(モノマー単位としてのテレフタル酸と1,4-ブタンジオールが、2種類の構成単位となる)とポリエステル構造B(モノマー単位としてのドデカンジオン酸が、1種類の構成単位となる)とを含んでおり、合計3種類の構成単位が共重合された構造を備えている。実施例3と実施例4との相違は、実施例4は1種類の分子量の樹脂を用いた場合に対して、実施例3は2種類の分子量の樹脂を混合したものである。また、実施例3の熱融着性樹脂層のフィルムを形成する樹脂には、モノマー単位として、テレフタル酸と1,4-ブタンジオールと、ドデカン二酸とのモル比(テレフタル酸残基:1,4-ブタンジオール残基:ドデカン二酸残基)が100:112:13の比率で含まれている。実施例4の熱融着性樹脂層のフィルムを形成する樹脂には、モノマー単位として、テレフタル酸と1,4-ブタンジオールと、ドデカン二酸とのモル比(テレフタル酸残基:1,4-ブタンジオール残基:ドデカン二酸残基)が100:110:13の比率で含まれている。
【0160】
また、実施例5の樹脂は、実施例3,4におけるドデカンジオン酸の代わりに、ポリエステル構造Bとしてイソフタル酸がポリブチレンテレフタレート構造にブロック重合されたものである。したがって、実施例5の樹脂は、ポリブチレンテレフタレート構造(モノマー単位としてのテレフタル酸と1,4-ブタンジオールが、2種類の構成単位となる)とポリエステル構造B(モノマー単位としてのイソフタル酸が、1種類の構成単位となる)とを含んでおり、合計3種類の構成単位が共重合された構造を備えている。実施例5の熱融着性樹脂層のフィルムを形成する樹脂には、モノマー単位として、テレフタル酸と1,4-ブタンジオールと、イソフタル酸とのモル比(テレフタル酸残基:1,4-ブタンジオール残基:イソフタル酸残基)が100:110:11の比率で含まれている。
【0161】
比較例1では、樹脂としてポリブチレンテレフタレート(構成単位は、テレフタル酸と1,4-ブタンジオールの2種類である)を用意した。また、比較例2では、樹脂としてポリプロピレン(構成単位は、プロピレンとエチレンの2種類である)を用意した。
【0162】
次に、それぞれの樹脂を押出成形に供して、フィルム(実施例1~5及び比較例1は厚み50μm、比較例2は厚み80μm)を製造した。
【0163】
なお、熱融着性樹脂層のフィルムを形成する樹脂の組成は、次のようにして確認した。GCMSについては、前処理として誘導体化法を適用し、その後GCMS測定を行った。450℃同時誘導体化法は、サンプル約0.1mgをサンプルカップに入れ、TMAH1μlを滴下し下記条件にて測定し、樹脂中に含まれる構造について定性した。装置として、7890A/5975C(Agilent Technologies)及び熱分解炉AS-1020E(Frontier Lab)を用いた。カラムとして、InertCap 5MS/Silを用いた。昇温条件として、50℃で5分間の保持、10℃/minで昇温し、320℃で3分間の保持とした。スプリット比は1:50とした。次に、NMRについては、前処理としてサンプルをHFIPに約4wt%となるよう溶解し、CDCl3で2倍に希釈した。NMR測定として装置:AVANCEIIIHD(BRUKER)を用いて下記条件にて測定し、構造の同定を行った。核種は1H、溶媒は、CDCl3+HFIP(1:1)、室温、積算回数は64回とした。
【0164】
<外装材の製造>
基材層として、ポリエチレンテレフタレートフィルム(実施例1~5及び比較例1は厚み25μm)の貼り合わせ面側にコロナ処理を施したものを用意した。また、比較例2では、基材層として、ポリエチレンテレフタレートフィルム(厚み12μm)とナイロンフィルム(厚み15μm)とが2液硬化型ウレタン接着剤を用いて積層されたフィルムを用意した(ポリエチレンテレフタレートフィルムが外側になるようにして用いた)。また、バリア層として、アルミニウム合金箔(JIS H4160:1994 A8021H-O、厚さ40μm)を用意した。また、熱融着性樹脂層として、前記の各フィルムを用いた。次に、2液硬化型ウレタン接着剤(ポリエステルポリオールと脂環式イソシアネート化合物)を用い、ドライラミネート法により、基材層とバリア層とを接着し、基材層/接着剤層/バリア層が順に積層された積層体を作製した。
【0165】
次に、2液硬化型ウレタン接着剤(ポリエステルポリオールと脂環式イソシアネート化合物)を用い、ドライラミネート法により、得られた積層体のバリア層側と、フィルムとを接着し、バリア層の上に接着層(4μm)/熱融着性樹脂層(実施例1~5及び比較例1は厚み50μm、比較例2は厚み80μm)を積層させた。次に、得られた積層体をエージングし、加熱することにより、基材層/接着剤層/バリア層/接着層/熱融着性樹脂層(フィルム)がこの順に積層された積層体からなる蓄電デバイス用外装材を得た。
【0166】
<融解ピーク温度の測定>
フィルムを形成している樹脂について、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の規定に準拠して融解ピーク温度を測定した。測定は、示差走査熱量計(DSC、ティー・エイ・インスツルメント製の示差走査熱量計Q200)を用いて行った。測定サンプルを、-50℃で15分間保持した後、10℃/分の昇温速度で-50℃から300℃まで昇温させて、1回目の融解ピーク温度P(℃)を測定した後、300℃にて2分間保持した。次に、10℃/分の降温速度で300℃から-50℃まで降温させて15分間保持した。さらに、10℃/分の昇温速度で-50℃から300℃まで昇温させて2回目の融解ピーク温度Q(℃)を測定した。なお、窒素ガスの流量は50ml/分とした。以上の手順によって、1回目に測定される融解ピーク温度P(℃)と、2回目に測定される融解ピーク温度Q(℃)を求め、1回目に測定された融解ピーク温度を融解ピーク温度とした。
【0167】
<ガラス転移温度(Tg)の測定>
DMA(動的粘弾性測定)により、フィルムを形成している樹脂のガラス転移温度を測定した。測定はUBM社製Rheogel-E4000を用いて行った。チャック間距離10mmとし幅5mm、長さ20mmに切り出したフィルムを設置、測定条件は、5℃/分の昇温速度で-30℃から250℃まで昇温させ、周波数:10Hz、静荷重70g、歪5μmとした際の、損失弾性率を貯蔵弾性率で割った損失正弦(tanδ)のピーク温度をガラス転移温度とした。
【0168】
<フィルムの引張破断伸度(-30℃、23℃、120℃又は150℃)の測定>
各フィルムについて、引張破断伸度を測定した。測定は、JIS K7127の規定に準拠した方法で引張り試験機(島津製作所製、AG-Xplus(商品名))を用いて測定した。試験サンプル幅はJIS-K 6251-7型のダンベル型、標線間距離は15mm、引張速度は50mm/分、試験環境は、それぞれ、-30℃、23℃、120℃及び150℃とした。測定を3回ずつ行い、3回測定した平均値を引張破断伸度とした。結果を表1に示す。
【0169】
[押し込み弾性率の測定]
積層体を切り出し、熱融着樹脂層側から押し込み弾性率を測定した。押込み弾性率は、ISO 14577:2015に準拠し、サンプルの表面に対して、約23℃約60%RHの環境で、ビッカース圧子(対面角136°の正四角錐のダイヤモンド圧子)を装着させた超微小負荷硬さ試験機を用いて、押し込み弾性率を測定する方法を用いた。測定は、押し込み速度0.1μm/秒、押し込み深さ2μm、保持時間5秒間、引き抜き速度0.1μm/秒で行った。超微小負荷硬さ試験機は、ピコデンターHM500(フィッシャー・インストルメンツ社製)とした。少なくとも5つのサンプルを測定し、それらの測定値の平均をその条件の押し込み弾性率の値とした。サンプルの固定には、吸着台を使用した。結果を表1に示す。
【0170】
<シール強度(-30℃、23℃、120℃、または150℃環境)評価>
JIS K7127:1999の規定に準拠して、-30℃、23℃、120℃、または150℃の各測定温度における外装材のシール強度を次のようにして測定した。外装材から、TDの方向の幅が15mmの短冊状に裁断した試験サンプルを準備する。具体的には、
図9に示すように、まず、各外装材を60mm(TDの方向)×200mm(MDの方向)に裁断した(
図9a)。次に、熱融着性樹脂層同士が対向するようにして、外装材を折り目P(MDの方向の中間)の位置でMDの方向に2つ折りにした(
図9b)。折り目Pから10mm程度MDの方向に内側において、シール幅7mm、温度240℃、面圧とシール時間を熱融着樹脂層の厚みがシール前に対して80±5%の厚みとなる条件で熱融着性樹脂層同士をヒートシールした(
図9c)。
図9cにおいて、斜線部Sがヒートシールされている部分である。次に、TDの方向の幅が15mmとなるようにして、MDの方向に裁断(
図9dの二点鎖線の位置で裁断)して試験片13を得た(
図9e)。次に、試験片13を各測定温度で2分間放置し、各測定温度環境において、引張り試験機(島津製作所製、AG-Xplus(商品名))で熱融着部の熱融着性樹脂層を300mm/分の速度で剥離させた(
図10)。剥離時の最大強度をシール強度(N/15mm)とした。チャック間距離は、50mmとした。シール強度の評価基準は以下の通りであり、評価A及びBが合格である。結果を表1に示す。
(シール強度の評価基準)
A:測定温度が-30℃及び23℃の場合はシール強度が80N/15mm以上である。測定温度が120℃及び150℃の場合はシール強度が50N/15mm以上である。
B:測定温度が-30℃及び23℃の場合はシール強度が40N/15mm以上80N/15mm未満である。測定温度が120℃及び150℃の場合はシール強度が30N/15mm以上50N/15mm未満である。
C:測定温度が-30℃及び23℃の場合はシール強度が40N/15mm未満である。測定温度が120℃及び150℃の場合はシール強度が30N/15mm未満である。
【0171】
【0172】
表1において、「>1000」は、測定限界の1000%でも破断しなかったことを示す。また、比較例2の150℃での引張破断伸度は、ポリプロピレンの融点を超える温度での測定となり測定不可である。比較例1,2の-30℃及び23℃での引張破断伸度及び比較例2の押し込み弾性率は未測定である。
【0173】
以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
前記熱融着性樹脂層は、フィルムを含んでおり、
前記フィルムは、3種類以上の構成単位を含む樹脂により形成されてなり、
前記フィルムは、融解ピーク温度が170℃以上である、蓄電デバイス用外装材。
項2. 前記フィルムを形成する前記樹脂は、ポリエステル構造Aを含む、項1に記載の蓄電デバイス用外装材。
項3. 前記ポリエステル構造Aは、少なくともポリブチレンテレフタレート構造を有する、項2に記載の蓄電デバイス用外装材。
項4. 前記フィルムを形成する前記樹脂は、さらに、ポリエーテル構造及びポリエステル構造Bからなる群より選択される少なくとも1種を有する、項2または3に記載の蓄電デバイス用外装材。
項5. 前記ポリエステル構造Bは、前記ポリエステル構造Aを形成するポリオールと、イソフタル酸、セバシン酸及びドデカンジオン酸からなる群より選択される少なくとも1種のジカルボン酸との重縮合によるポリエステル構造である、項4に記載の蓄電デバイス用外装材。
項6. 前記ポリエーテル構造は、ポリテトラメチレンエーテルグリコール及びネオペンチルグリコールからなる群より選択される少なくとも1種に由来するポリエーテル構造である、項4又は5に記載の蓄電デバイス用外装材。
項7. 前記積層体の前記熱融着性樹脂層側からの押込み弾性率が、0.3GPa以上である、項1~6のいずれか1項に記載の蓄電デバイス用外装材。
項8. 全固体電池用、半固体電池用、擬固体電池用、ポリマー電池用、又は全樹脂電池用である、項1~7のいずれか1項に記載の蓄電デバイス用外装材。
項9. 3種類以上の構成単位を含む樹脂により形成されてなるフィルムであり、
融解ピーク温度が170℃以上である、フィルム。
項10. 前記フィルムを形成する前記樹脂は、ポリエステル構造Aを含む、項9に記載のフィルム。
項11. 前記ポリエステル構造Aは、少なくともポリブチレンテレフタレート構造を有する、項10に記載のフィルム。
項12. 前記フィルムを形成する前記樹脂は、さらに、ポリエーテル構造及びポリエステル構造Bからなる群より選択される少なくとも1種を有する、項10または11に記載のフィルム。
項13. 前記ポリエステル構造Bは、前記ポリエステル構造Aを形成するポリオールと、イソフタル酸、セバシン酸及びドデカンジオン酸からなる群より選択される少なくとも1種のジカルボン酸との重縮合によるポリエステル構造である、項12に記載のフィルム。
項14. 前記ポリエーテル構造は、ポリテトラメチレンエーテルグリコール及びネオペンチルグリコールからなる群より選択される少なくとも1種に由来するポリエーテル構造である、項12又は13に記載のフィルム。
項15. 前記フィルムの押込み弾性率が、0.3GPa以上である、項9~14のいずれか1項に記載のフィルム。
項16. 蓄電デバイス用外装材の熱融着性樹脂層に用いられる、項9~15のいずれか1項に記載のフィルム。
項17. 少なくとも、基材層と、バリア層と、熱融着性樹脂層とがこの順に積層された積層体を得る工程を備えており、
前記熱融着性樹脂層は、フィルムを含んでおり、
前記フィルムは、3種類以上の構成単位を含む樹脂により形成されてなり、
前記フィルムは、融解ピーク温度が170℃以上である、蓄電デバイス用外装材の製造方法。
項18. 前記蓄電デバイス用外装材は、全固体電池用、半固体電池用、擬固体電池用、ポリマー電池用、又は全樹脂電池用である、項17に記載の蓄電デバイス用外装材の製造方法。
項19. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~8のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。