IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 京セラ株式会社の特許一覧

特開2023-166009蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム
<>
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図1
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図2
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図3
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図4
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図5
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図6
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図7
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図8
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図9
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図10
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図11
  • 特開-蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023166009
(43)【公開日】2023-11-17
(54)【発明の名称】蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム
(51)【国際特許分類】
   H02J 3/32 20060101AFI20231110BHJP
   H02J 13/00 20060101ALI20231110BHJP
   H02J 3/46 20060101ALI20231110BHJP
【FI】
H02J3/32
H02J13/00 311R
H02J3/46
【審査請求】有
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2023171254
(22)【出願日】2023-10-02
(62)【分割の表示】P 2021573046の分割
【原出願日】2021-01-05
(31)【優先権主張番号】P 2020008539
(32)【優先日】2020-01-22
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000006633
【氏名又は名称】京セラ株式会社
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100132045
【弁理士】
【氏名又は名称】坪内 伸
(72)【発明者】
【氏名】上甲 信悟
(57)【要約】
【課題】デマンドレスポンス要請の対応時などに電力制御の精度を高めつつ、蓄電池の劣化を低減し得る蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラムを提供する。
【解決手段】蓄電池を制御する制御装置は、通信部と、制御部と、を備える。通信部は、蓄電池と有線又は無線で通信する。制御部は、蓄電池を第1モード又は第2モードで動作させる制御信号を蓄電池に送信するように通信部を制御する。第1モードは、蓄電池が負荷追従放電又は余剰電力充電されるモードである。第2モードは、蓄電池が指定電力充電又は指定電力放電されるモードである。通信部は、電力事業者から送信されるデマンドレスポンスの要請を受信する。制御部は、デマンドレスポンスの要請に基づいて、蓄電池を第1モード又は第2モードで動作させる制御信号を蓄電池に送信するように通信部を制御する。
【選択図】図1
【特許請求の範囲】
【請求項1】
蓄電池を制御する制御装置であって、
前記蓄電池と有線又は無線で通信する通信部と、
前記蓄電池を第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する制御部と、
を備え、
前記第1モードは、前記蓄電池が負荷追従放電又は余剰電力充電されるモードであり、
前記第2モードは、前記蓄電池が指定電力充電又は指定電力放電されるモードであり、
前記通信部は、電力事業者から送信されるデマンドレスポンスの要請を受信し、
前記制御部は、前記デマンドレスポンスの要請に基づいて、前記蓄電池を前記第1モード又は前記第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する、制御装置。
【請求項2】
前記第1モードは、前記蓄電池に接続される電力制御システムが売買電する電力の時間的な変化の幅が所定の範囲内に制御されるように、当該蓄電池の充放電が制御されるモードである、請求項1の記載の制御装置。
【請求項3】
前記第1モードは、前記蓄電池に接続される電力制御システムが売買電する電力が一定に制御されるモードである、請求項1又は2に記載の制御装置。
【請求項4】
前記第2モードは、前記蓄電池が充放電する電力が一定に制御されるモードである、請求項1から3のいずれかに記載の制御装置。
【請求項5】
前記制御部は、前記デマンドレスポンスの要請に基づく期間は前記蓄電池を前記第1モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御し、前記デマンドレスポンスの要請に基づく期間以外の期間は前記蓄電池を前記第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する、請求項1に記載の制御装置。
【請求項6】
前記制御部は、前記デマンドレスポンスの要請であって電力の需要を抑制する要請に基づいて前記蓄電池を前記第1モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御し、前記デマンドレスポンスの要請であって電力の需要を増やす要請に基づいて前記蓄電池を前記第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する、請求項1に記載の制御装置。
【請求項7】
前記制御部は、前記電力制御システムにおける電力の需要の時間的な変化の幅が所定の範囲を超える場合に前記蓄電池を前記第1モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御し、前記電力制御システムにおける電力の需要の時間的な変化の幅が所定の範囲を超えない場合に前記蓄電池を前記第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する、請求項1に記載の制御装置。
【請求項8】
前記制御部は、前記蓄電池の劣化状態を表す指標が所定値以下である場合に前記蓄電池を前記第1モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御し、前記蓄電池の劣化状態を表す指標が所定値以上である場合に前記蓄電池を前記第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する、請求項1から4に記載の制御装置。
【請求項9】
前記制御部は、前記通信部が前記蓄電池とOpen ADRに準拠したプロトコルを用いた通信を行うように前記通信部を制御する、請求項1から8のいずれかに記載の制御装置。
【請求項10】
複数の蓄電池を制御する制御装置であって、
前記複数の蓄電池と有線又は無線で通信する通信部と、
前記複数の蓄電池の少なくともいずれかを第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する制御部と、
を備え、
前記第1モードは、前記複数の蓄電池の少なくともいずれかのそれぞれが負荷追従放電又は余剰電力充電されるモードであり、
前記第2モードは、前記複数の蓄電池の少なくともいずれかのそれぞれが指定電力充電又は指定電力放電されるモードであり、
前記通信部は、電力事業者から送信されるデマンドレスポンスの要請を受信し、
前記制御部は、前記デマンドレスポンスの要請に基づいて、前記複数の蓄電池の少なくともいずれかのそれぞれを前記第1モード又は前記第2モードで動作させる制御信号を前記複数の蓄電池の少なくともいずれかのそれぞれに送信するように前記通信部を制御する、制御装置。
【請求項11】
蓄電池を制御する方法であって、
前記蓄電池と有線又は無線で通信する通信ステップと、
前記蓄電池を第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように制御する制御ステップと、
を含み、
前記第1モードは、前記蓄電池が負荷追従放電又は余剰電力充電されるモードであり、
前記第2モードは、前記蓄電池が指定電力充電又は指定電力放電されるモードであり、
電力事業者から送信されるデマンドレスポンスの要請を受信するステップと、
前記デマンドレスポンスの要請に基づいて、前記蓄電池を前記第1モード又は前記第2モードで動作させる制御信号を前記蓄電池に送信するように制御するステップと、
を含む、方法。
【請求項12】
蓄電池を制御するプログラムであって、
コンピュータに、
前記蓄電池と有線又は無線で通信する通信ステップと、
前記蓄電池を第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように制御する制御ステップと、
を実行させ、
前記第1モードは、前記蓄電池が負荷追従放電又は余剰電力充電されるモードであり、
前記第2モードは、前記蓄電池が指定電力充電又は指定電力放電されるモードであり、
電力事業者から送信されるデマンドレスポンスの要請を受信するステップと、
前記デマンドレスポンスの要請に基づいて、前記蓄電池を前記第1モード又は前記第2モードで動作させる制御信号を前記蓄電池に送信するように制御するステップと、
を実行させる、プログラム。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、2020年1月22日に日本国に特許出願された特願2020-8539の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
【技術分野】
【0002】
本開示は、蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラムに関する。
【背景技術】
【0003】
近年、電力系統の電力需給バランスを維持するために、需要家施設に電力を供給する電気事業者が、需要家施設の電力機器を制御する制御装置と通信を行って、需要家施設の電力消費を管理する技術が知られている。例えば、特許文献1には、需要家施設と通信を行って、電気事業者が需要家設備の電力消費を抑制するためのデマンドレスポンス要請を実施するサーバが開示されている。
【0004】
また、最近、需要家施設において、蓄電池の導入が進みつつある。蓄電池の充放電を制御する技術は、種々提案されている。例えば、特許文献2には、各需要家の制御装置に対して制御指令を送信するサーバを有するアグリゲーションシステムが開示されている。このシステムにおいて、各制御装置は、系統から入力する電力が制御指令において指定された割当て量以下となるように、又は当該割当て量以上の電力を系統に出力するように、対応する蓄電池の充放電を制御する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2017-27448号公報
【特許文献2】特開2018-33213号公報
【発明の概要】
【0006】
一実施形態に係る装置は、
蓄電池を制御する制御装置であって、
前記蓄電池と有線又は無線で通信する通信部と、
前記蓄電池を第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する制御部と、を備える。
前記第1モードは、前記蓄電池が負荷追従放電又は余剰電力充電されるモードである。
前記第2モードは、前記蓄電池が指定電力充電又は指定電力放電されるモードである。
前記通信部は、電力事業者から送信されるデマンドレスポンスの要請を受信する。
前記制御部は、前記デマンドレスポンスの要請に基づいて、前記蓄電池を前記第1モード又は前記第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する。
【0007】
一実施形態に係る装置は、
複数の蓄電池を制御する制御装置であって、
前記複数の蓄電池と有線又は無線で通信する通信部と、
前記複数の蓄電池の少なくともいずれかを第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように前記通信部を制御する制御部と、を備える。
前記第1モードは、前記複数の蓄電池の少なくともいずれかのそれぞれが負荷追従放電又は余剰電力充電されるモードである。
前記第2モードは、前記複数の蓄電池の少なくともいずれかのそれぞれが指定電力充電又は指定電力放電されるモードである。
前記通信部は、電力事業者から送信されるデマンドレスポンスの要請を受信する。
前記制御部は、前記デマンドレスポンスの要請に基づいて、前記複数の蓄電池の少なくともいずれかのそれぞれを前記第1モード又は前記第2モードで動作させる制御信号を前記複数の蓄電池の少なくともいずれかのそれぞれに送信するように前記通信部を制御する。
【0008】
一実施形態に係る方法は、
蓄電池を制御する方法であって、
前記蓄電池と有線又は無線で通信する通信ステップと、
前記蓄電池を第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように制御する制御ステップと、
電力事業者から送信されるデマンドレスポンスの要請を受信するステップと、
前記デマンドレスポンスの要請に基づいて、前記蓄電池を前記第1モード又は前記第2モードで動作させる制御信号を前記蓄電池に送信するように制御するステップと、
を含む。
前記第1モードは、前記蓄電池が負荷追従放電又は余剰電力充電されるモードである。
前記第2モードは、前記蓄電池が指定電力充電又は指定電力放電されるモードである。
【0009】
一実施形態に係るプログラムは、
蓄電池を制御するプログラムであって、
コンピュータに、
前記蓄電池と有線又は無線で通信する通信ステップと、
前記蓄電池を第1モード又は第2モードで動作させる制御信号を前記蓄電池に送信するように制御する制御ステップと、
電力事業者から送信されるデマンドレスポンスの要請を受信するステップと、
前記デマンドレスポンスの要請に基づいて、前記蓄電池を前記第1モード又は前記第2モードで動作させる制御信号を前記蓄電池に送信するように制御するステップと、
を実行させる。
前記第1モードは、前記蓄電池が負荷追従放電又は余剰電力充電されるモードである。
前記第2モードは、前記蓄電池が指定電力充電又は指定電力放電されるモードである。
【図面の簡単な説明】
【0010】
図1】一実施形態に係るシステムを示す概略構成図である。
図2】一実施形態に係る制御装置の構成を示すブロック図である。
図3】一実施形態に係る制御装置が送信する制御信号の一例を示す図である。
図4】一実施形態に係る制御装置が送信する制御信号の一例を示す図である。
図5】一実施形態に係る制御装置が送信する制御信号の一例を示す図である。
図6】一実施形態に係る制御装置が送信する制御信号の一例を示す図である。
図7】一実施形態に係る制御装置が送信する制御信号の一例を示す図である。
図8】一実施形態に係る制御装置が送信する制御信号の一例を示す図である。
図9】一実施形態に係る制御装置の処理の流れを示すフロー図である。
図10】一実施形態に係る制御装置の処理の流れを示すフロー図である。
図11】一実施形態に係る制御装置の処理の流れを示すフロー図である。
図12】一実施形態に係る制御装置の処理の流れを示すフロー図である。
【発明を実施するための形態】
【0011】
蓄電池を含む電力制御システムにおいて、デマンドレスポンス要請の対応時などにおいて行われる電力制御には、比較的高い精度が求められ得る。また、蓄電池において比較的高い精度で充放電を行うと、蓄電池の寿命に影響することも懸念される。デマンドレスポンス要請の対応時などにおける電力制御の精度を高めつつ、蓄電池の劣化を低減することができれば、非常に有益である。本開示の目的は、デマンドレスポンス要請の対応時などにおける電力制御の精度を高めつつ、蓄電池の劣化を低減し得る蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラムを提供することにある。一実施形態に係る蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラムによれば、デマンドレスポンス要請の対応時などにおける電力制御の精度を高めつつ、蓄電池の劣化を低減し得る。以下、一実施形態に係る蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラムについて、図面を参照して説明する。
【0012】
但し、図面は模式的なものであって、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。したがって、具体的な寸法などは以下の説明を参酌して判断されるべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれ得る。
【0013】
(システム)
以下、一実施形態に係るシステムについて説明する。
【0014】
図1は、一実施形態に係るシステムの一例を示す概略構成図である。図1において、システム1は、サーバ10と、電力制御システム100A及び電力制御システム100Bと、を含んでよい。
【0015】
サーバ10は、例えば、発電事業者、送配電事業者、小売事業者、又はアグリゲータ等の電気事業者によって管理される電力管理サーバとしてよい。サーバ10は、1つ又は互いに通信可能な複数のサーバ装置等の情報処理装置を含んで構成されてよい。一実施形態に係るサーバ10は、蓄電池を制御する制御装置(蓄電池の制御装置)として機能してよい。サーバ10については、さらに後述する。
【0016】
電力制御システム100Aは、例えば需要家施設Aにおける電力制御システムとしてよい。また、電力制御システム100Bは、例えば需要家施設Bにおける電力制御システムとしてよい。需要家施設A及び需要家施設Bは、例えば、それぞれ一般家庭としてもよいし、店舗又は工場などとしてもよい。需要家施設A及び需要家施設Bは、それぞれ電力制御の単位として解釈可能な任意の施設としてよい。以下、電力制御システム100A及び電力制御システム100Bのような複数の電力制御システムを特に区別しない場合、単に、電力制御システム100とも記す。図1に示すシステム1は、説明の簡便のために、電力制御システム100A及び電力制御システム100Bの2つの電力制御システムを含む例を示してある。しかしながら、一実施形態に係るシステム1は、1つ以上の任意の数の電力制御システム100を含んでよい。すなわち、図1に示すシステム1は、任意の数の需要家施設のそれぞれにおける電力制御システム100を含んでもよい。
【0017】
電力制御システム100は、例えば、需要家施設に設置されたホームエネルギーマネジメントシステム(Home Energy Management System:HEMS)を含む電力制御システムとしてよい。しかしながら、電力制御システム100は、HEMSを含む電力制御システムに限られず、需要家施設に設置された電力機器を制御する任意の情報処理装置を含む電力制御システムであってよい。
【0018】
図1において、各機能ブロックを結ぶ実線は、主として制御信号又は通信される情報を伝送する経路(以下、「通信経路」とも記す)を表す。また、図1において、各機能ブロックを結ぶ破線は、主として電力を伝送する経路(以下、「電力経路」とも記す)を表す。
【0019】
図1に示すように、システム1において、サーバ10、電力制御システム100A、及び電力制御システム100Bは、それぞれネットワークNに有線又は無線で通信可能に接続されてよい。すなわち、サーバ10、電力制御システム100A、及び電力制御システム100Bの間には、それぞれネットワークNを介して有線又は無線による通信経路が構築されてよい。
【0020】
また、システム1において、電力制御システム100A及び電力制御システム100Bは、電力系統Gに通電可能に接続されてよい。また、システム1において、電気事業者200も、電力系統Gに通電可能に接続されてよい。すなわち、電力制御システム100A及び電力制御システム100Bと、電気事業者200との間には、それぞれ電力経路が構築されてよい。これによって、電力制御システム100A及び電力制御システム100Bの各々は、電力系統Gから電力を供給され、或いは電力系統Gに電力を放出する。
【0021】
図1において、電力制御システム100のそれぞれは、同じ電気事業者200によって管理される1つの電力系統Gに接続される例を示している。しかしながら、電力制御システム100のそれぞれは、任意の電力系統に接続されてよい。例えば、複数の電力制御システム100のそれぞれは、異なる複数の電気事業者で管理される複数の電力系統のいずれかに接続されてもよい。
【0022】
需要家施設Aにおける電力制御システム100は、蓄電池20Aと、電力機器30Aとを含んでよい。また、需要家施設Bにおける電力制御システム100は、蓄電池20Bと、電力機器30Bと、コントローラ40とを含んでよい。以下、蓄電池20A及び蓄電池20Bのような複数の蓄電池を特に区別しない場合、単に、蓄電池20とも記す。また、電力機器30A及び電力機器30Bのような複数の電力機器を特に区別しない場合、単に、電力機器30とも記す。このように、電力制御システム100は、蓄電池20と、電力機器30とを含んでよい。また、電力制御システム100は、適宜、コントローラ40を含んでもよい。図1では説明の簡便のため、1つのサーバ10及び2つの電力制御システム100が示されている。しかしながら、一実施形態に係るシステム1は、任意の数のサーバ10及び電力制御システム100を含んでよい。
【0023】
蓄電池20は、電力の充電及び放電が可能な任意の蓄電池によって構成されてよい。例えば、蓄電池20は、リチウムイオン電池又はニッケル水素電池等の蓄電池から構成されてよい。蓄電池20は、充電された電力を放電することにより、電力を供給可能である。また、蓄電池20は、電力系統Gから供給される電力、太陽電池から供給される電力、燃料電池から供給される電力、及び他の電源などから供給される電力の少なくともいずれかを充電可能である。一実施形態において、蓄電池20は、電力を充電及び放電する機能を有するものであれば、任意の電源を採用してよい。また、蓄電池20は、例えば、車載充電装置を搭載した電気自動車(Electric Vehicle:EV)などとしてもよい。
【0024】
電力機器30は、電力制御システム100において電力を消費する電気製品などの各種の機器を含んで構成されてよい。この場合、電力機器30は、電力を消費する電力負荷であり、例えばビルなどの商工業施設で使用される空調機器及び照明器具などの機械又は設備等としてよい。また、電力機器30は、例えば家庭内で使用されるエアコン、電子レンジ、テレビ等の各種電気製品などとしてもよい。図1において、電力機器30は、1つの機能ブロックとして示してある。しかしながら、電力機器30は、1つの機器には限定されず、任意の個数の各種機器などとすることができる。
【0025】
また、電力機器30は、電力制御システム100において電力を生成する各種の発電機器を含んで構成されてよい。この場合、電力機器30は、例えば、太陽電池、及び/又は、燃料電池などの発電装置を含んでもよい。太陽電池は、シリコン系多結晶太陽電池、シリコン系単結晶太陽電池、又はCIGS等薄膜系太陽電池等、光電変換可能なものであればその種類は制限されない。一実施形態において、太陽電池は、電力を供給するために太陽光発電を行う機能を有するものであれば、任意の電源を採用してよい。また、燃料電池は、例えば、水素を用いて空気中の酸素との化学反応により直流の電力を発電するセルと、その他補機類とを備えてよい。燃料電池は、例えば、固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)、固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:PEFC)、リン酸形燃料電池(Phosphoric Acid Fuel Cell:PAFC)、又は溶融炭酸塩形燃料電池(Molten Carbonate Fuel Cell:MCFC)などのような燃料電池のセルスタックを含んで構成してもよい。
【0026】
さらに、電力機器30は、例えば、所定のガスなどを燃料とするガスエンジンで発電するガス発電機などとしてもよい。また、電力機器30は、発電又は放電などにより電力を供給することができる任意の電源としてもよい。
【0027】
図1に示すように、蓄電池20と電力機器30とは、電力経路によって接続される。したがって、電力制御システム100において、蓄電池20に充電された電力は、電力機器30に放電されて、電力機器30によって消費されてもよい。また、電力制御システム100において、電力機器30によって生成された電力は、蓄電池20に充電されてもよい。この場合、蓄電池20は、放電した電力を、電力制御システム100におけるインバータに供給してもよい。また、蓄電池20は、電力制御システム100におけるインバータから供給された電力を充電してもよい。
【0028】
コントローラ40は、例えば、需要家施設に設置されたHEMSとしてよい。しかしながら、コントローラ40は、HEMSに限られず、需要家施設に設置された電力機器を制御する任意の情報処理装置としてもよい。
【0029】
図1に示すように、電力制御システム100は、適宜、コントローラ40を含んでもよいし、含まなくてもよい。サーバ10から送信される制御信号によって蓄電池20の制御が可能な場合、電力制御システム100は、図1に示す電力制御システム100Aのように、コントローラ40を含まなくてもよい。一方、サーバ10から送信される制御信号によって蓄電池20の制御が可能でない場合、電力制御システム100は、図1に示す電力制御システム100Bのように、コントローラ40を含んでもよい。
【0030】
システム1において、サーバ10は、電力制御システム100とメッセージの送受信を行うことにより、需要家の電力消費を管理してよい。システム1は、例えば、電力系統Gの電力需給バランスを維持するために、電気事業者の要請に基づいて需要家の電力消費を管理する、いわゆるデマンドレスポンス(Demand Response:DR)に用いられてよい。この場合、サーバ10は、例えば、需要家施設に設置された電力制御システム100に対して、電力機器30の制御命令等を含むメッセージを送信する。一方、サーバ10は、需要家の電力消費状況を把握するために、電力制御システム100から、電力機器30の電力消費及び動作状態等の情報を含むメッセージを受信する。サーバ10は、需要家の電力消費を制御する精度を向上させるために、電力制御システム100から受信した情報に基づいて、電力制御システム100に送信する制御命令を修正する、いわゆるフィードバック制御を行ってよい。
【0031】
電力制御システム100は、例えば、正時ごと又は毎分00秒等の所定のタイミングで測定した情報を、サーバ10に送信してよい。サーバ10は、フィードバック制御の精度向上等のために、電力制御システム100において測定された情報を、測定から低遅延で受信することが求められ得る。
【0032】
(サーバの構成)
次に、システム1におけるサーバ10の構成について、説明する。上述のように、一実施形態に係るサーバ10は、蓄電池20の制御装置として機能してよい。すなわち、蓄電池20の制御装置であるサーバ10は、蓄電池20を制御する機能を有してよい。
【0033】
図2は、一実施形態に係るシステム1におけるサーバ10の構成を示すブロック図である。図2に示すように、サーバ10は、サーバ制御部12と、サーバ記憶部14と、サーバ通信部16と、を備える。このように、蓄電池20の制御装置として機能するサーバ10は、サーバ制御部12と、サーバ記憶部14と、サーバ通信部16との少なくともいずれかを含んで構成してよい。サーバ制御部12、サーバ記憶部14、及びサーバ通信部16は、有線又は無線で通信可能に接続されてよい。
【0034】
サーバ制御部12は、1つ以上のプロセッサを含む。サーバ制御部12は、制御手順を規定したプログラムを実行するCPU(Central Processing Unit)等のプロセッサ又は特定の処理に特化した専用のプロセッサで構成されてよい。サーバ制御部12は、上述したサーバ記憶部14及びサーバ通信部16など、サーバ10における各種の機能を実現させるために、各機能部をそれぞれ制御してよい。
【0035】
サーバ記憶部14は、1つ以上のメモリを含む。サーバ記憶部14に含まれる各メモリは、例えば主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してよい。サーバ記憶部14は、サーバ10の動作に用いられる任意の情報を記憶する。サーバ記憶部14は、揮発性の記憶装置であってもよく、不揮発性の記憶装置であってもよい。例えば、サーバ記憶部14は、システムプログラム、アプリケーションプログラム、及びデータベース等を記憶してよい。サーバ記憶部14に記憶された情報は、例えばサーバ通信部16を介してネットワークNから取得される情報で更新可能であってもよい。
【0036】
サーバ記憶部14は、例えば、電力制御システム100に関する情報を記憶してよい。電力制御システム100に関する情報には、電力制御システム100を構成する各装置の種別の情報、電気事業者の情報、及び制御対象の情報等が含まれてよい。各装置の種別の情報には、例えば、電力制御システム100を構成する各装置のメーカ、機種、又は型番等が含まれ得る。電気事業者の情報には、例えば、需要家が契約した電気事業者、又は需要家施設が含まれる電力管区等の、電力制御システム100が設置された需要家施設に電力を供給する、発電事業者、送配電事業者、小売事業者、又はアグリゲータ等の電気事業者に関する情報が含まれ得る。制御対象の情報には、例えば、電力制御システム100によって制御される電力機器30の種類、消費電力、又は個数等が含まれ得る。
【0037】
サーバ通信部16は、ネットワークNに接続可能な通信モジュールを含む。当該通信モジュールは、例えば有線LAN(Local Area Network)又は無線LAN等の通信規格に対応するが、これに限られず、任意の通信規格に対応してよい。本実施形態において、サーバ10は、サーバ通信部16を介して、インターネット又は専用線等のネットワークNに接続される。これによって、サーバ10は、電力制御システム100における例えば蓄電池20又はコントローラ40などと通信可能になる。このように、サーバ通信部16は、蓄電池20と有線又は無線で通信する機能を有してよい。
【0038】
サーバ10と電力制御システム100(及び蓄電池20)との間の通信は、任意のプロトコルに従って実現されてよい。当該プロトコルとして、例えば、Open ADRに準拠したプロトコルが用いられるが、これに限られず、ECHONET Lite(登録商標)、SEP(Smart Energy Profile)、又はKNX等の標準プロトコルに準拠したプロトコルが用いられてよい。また、当該プロトコルとして、独自の専用プロトコルが用いられてよい。サーバ通信部16が行う通信は、例えばサーバ制御部12によって制御されてよい。このように、サーバ制御部12は、サーバ通信部16が蓄電池20と例えばOpen ADRに準拠したプロトコルを用いた通信を行うように制御してもよい。例えば、サーバ制御部12は、サーバ通信部16が蓄電池20と例えばOpen ADRに準拠したプロトコルを用いた通信を行うように、サーバ通信部16を制御してもよい。
【0039】
(サーバの動作)
次に、一実施形態に係るシステム1におけるサーバ10の動作について説明する。サーバ10の動作は、サーバ制御部12における処理によってサーバ10の各機能を制御して実現されるものとしてよい。サーバ10は、通信可能に接続された電力制御システム100と通信する。サーバ10は、電力制御システム100に対して、メッセージの送信を要求するメッセージ要求を送信する。サーバ10から送信されるメッセージ要求には、任意の情報が含まれてよい。
【0040】
サーバ10は、電力制御システム100に対して、所定のイベントが実施される期間におけるメッセージの送信を要求するメッセージ要求を送信してよい。このメッセージ要求によって、サーバ10は、電力制御システム100に、所定のイベントが実施される期間において、メッセージを送信させることができる。所定のイベントが実施される期間は、例えば、上述したデマンドレスポンスが実施される、デマンドレスポンス期間であってよい。以下、所定のイベントは、デマンドレスポンスであるものとして説明するが、これに限られるものではない。また、デマンドレスポンスは、例えば、電力制御システム100等によって自動で電力機器30を制御する、自動デマンドレスポンス(Automated Demand Response:ADR)であってよく、或いは人間の操作を介して電力機器30を制御する、手動デマンドレスポンス(Manual Demand Response:MDR)であってよい。
【0041】
サーバ10は、メッセージ要求の送信先を、電力制御システム100ごとに指定してよい。或いは、サーバ10は、メッセージ要求の送信先を、所定の条件に基づいて判定した電力制御システム100のグループごとに指定してよい。
【0042】
例えば、所定の条件は、デマンドレスポンス期間におけるデマンドレスポンス要請の対象であるか否かの条件であってよい。かかる場合、サーバ10は、電力制御システム100がデマンドレスポンス要請の対象であるか否かを判定する。例えば、サーバ10は、デマンドレスポンスを要請する電気事業者200の情報処理装置から制御対象とする電力制御システム100の情報を受信することで、電力制御システム100がデマンドレスポンス要請の対象であるか否かを判定してよい。以下、デマンドレスポンス期間を「DR期間」とも記し、デマンドレスポンス要請を「DR要請」とも記す。
【0043】
サーバ10は、電力制御システム100がDR期間におけるDR要請の対象であると判定された場合、電力制御システム100に対して、DR期間におけるメッセージの送信を要求するメッセージ要求を送信してよい。また、サーバ10は、電力制御システム100がDR期間におけるDR要請の対象でないと判定された場合、電力制御システム100に対して、DR期間におけるメッセージの送信を要求するメッセージ要求を送信してよい。
【0044】
サーバ10は、上述した各装置の種別の情報、電気事業者の情報、及び制御対象の情報等を含む、電力制御システム100に関する情報に基づいて、電力制御システム100がDR要請の対象であるか否かを判定してよい。例えば、サーバ10は、各装置の種別の情報に基づいて、特定のメーカの、特定の型番の電力制御システム100をDR要請の対象であると判定してよい。サーバ10は、電気事業者の情報に基づいて、デマンドレスポンンスが実施される電力管区の電力制御システム100をDR要請の対象であると判定してよい。サーバ10は、制御対象の情報に基づいて、例えば、制御する電力機器30に蓄電池20が含まれる電力制御システム100をDR要請の対象であると判定してよい。或いは、サーバ10は、各装置の種別の情報及び電気事業者の情報に基づいて、デマンドレスポンスが実施される電力管区の電力制御システム100のうち、特定のメーカの電力制御システム100をDR要請の対象であると判定してよい。
【0045】
次に、サーバ10が電力制御システム100における蓄電池20を制御する動作について説明する。
【0046】
一実施形態に係るサーバ10は、電力制御システム100における蓄電池20に制御信号を送信することにより、蓄電池20を制御することができる。例えば、サーバ10は、蓄電池20をいくつかの異なる動作モードで動作させる制御信号を送信してよい。一実施形態に係るサーバ10は、以下説明するように、蓄電池20を第1モード又は第2モードで動作させる制御信号を送信してよい。この時、サーバ10のサーバ制御部12は、蓄電池20を第1モード又は第2モードで動作させる制御信号を、電力制御システム100の蓄電池20に送信するように、サーバ通信部16を制御してよい。サーバ制御部12は、例えば、予めサーバ記憶部14に記憶された情報に基づいて、蓄電池20を第1モード又は第2モードで動作させる制御信号を生成してよい。
【0047】
(蓄電池の動作モード)
次に、蓄電池20の動作におけるモードとして、第1モード及び第2モードについて説明する。
【0048】
(第1モード)
蓄電池20の動作における第1モードとは、蓄電池20が接続された電力制御システム100において電力系統Gから買電する電力又は電力系統Gに売電する電力が、所定以上に変動しないように制御されるモードとしてよい。ある需要家施設の電力制御システム100に蓄電池20が接続されている場合、当該蓄電池20を含む電力制御システム100が電力系統Gから買電する電力又は電力系統Gに売電する電力は、時々刻々と変化し得る。電力制御システム100が買電及び/又は売電する電力は、電力制御システム100が供給する電力及び電力制御システム100が消費する電力に応じて変化し得る。ここで、電力制御システム100が供給する電力とは、電力機器30(例えば発電装置)が供給する電力、及び/又は、蓄電池20が放電する電力としてよい。また、電力制御システム100が消費する電力とは、電力機器30(例えば負荷機器)が消費する電力、及び/又は、蓄電池20が充電する電力としてよい。
【0049】
電力制御システム100は、電力機器30が供給及び/又は消費する電力、並びに、蓄電池20が充電及び/又は放電する電力を制御することにより、電力系統Gから買電する電力又は電力系統Gに売電する電力を制御してよい。一実施形態に係るサーバ10は、電力制御システム100に制御信号を送信することにより、電力制御システム100が買電及び/又は売電する電力が所定以上に変動しないように制御してよい。
【0050】
電力制御システム100において、電力機器30のうち太陽電池及び燃料電池などが発電する電力の時間的な変化は、例えば過去の履歴などを参照することにより、ある程度予測することができる。また、電力制御システム100において、電力機器30のうち負荷機器が消費する電力の時間的な変化も、例えば過去の履歴などを参照することにより、ある程度予測することができる。そこで、電力制御システム100において、当該電力制御システム100に接続された蓄電池20に充放電する電力を制御することにより、電力制御システム100が買電及び/又は売電する電力が所定以上に変動しないように制御してもよい。この場合、一実施形態に係るサーバ10は、電力制御システム100に制御信号を送信することにより、前述のように蓄電池20の充放電が制御されるようにしてよい。
【0051】
上述したように、第1モードにおいて、蓄電池20は、電力制御システム100が買電及び/又は売電する電力が所定以上に変動しないように制御されてよい。ここで、電力制御システム100が買電及び/又は売電する電力が「所定以上に変動しない」制御とは、例えば、当該電力の時間的な変化の幅が所定の範囲内になるような制御としてよい。ここで、当該電力の時間的な変化の幅が所定の範囲内になるような制御とは、例えば、当該電力が一定になるような制御としてもよい。以下、第1モードは、「売買電電力一定モード」とも記す。しかしながら、第1モードにおいて、売買電される電力は必ずしも厳密に一定でなくてもよい。
【0052】
このように、蓄電池20の動作における第1モードは、蓄電池20に接続される電力制御システム100が売買電する電力の時間的な変化の幅が所定の範囲内に制御されるモードとしてよい。この場合、第1モードは、蓄電池20に接続される電力制御システム100が売買電する電力の時間的な変化の幅が所定の範囲内に制御されるように、蓄電池20の充放電が制御されるモードとしてもよい。また、第1モードは、蓄電池20に接続される電力制御システム100が売買電する電力が一定に制御されるモードとしてもよい。
【0053】
第1モードすなわち売買電電力一定モードの動作では、需要電力を(ある程度)一定に保つ制御を行い得る。しかしながら、需要電力を一定にする制御を行うために、比較的高い頻度の制御が求められ得る。このような制御に対応した機器のコストは比較的高くなり得る。また、このような制御の通信コストも比較的高くなり得る。また、例えば制御遅延などが生じると、制御の精度が低下し得る。また、第1モードすなわち売買電電力一定モードの動作では、蓄電池20に対しても比較的高い頻度の制御が求められ得る。蓄電池20に対して充放電の制御を高い頻度で行うと、蓄電池20にかかる負荷が高くなり、蓄電池20の劣化を早める原因になり得る。
【0054】
(第2モード)
蓄電池20の動作における第2モードとは、蓄電池20が放電する電力及び/又は蓄電池20に充電される電力が、所定以上に変動しないように制御されるモードとしてよい。一実施形態に係るサーバ10は、電力制御システム100又は電力制御システム100に接続された蓄電池20に制御信号を送信することにより、蓄電池20が充電及び/又は放電する電力が所定以上に変動しないように制御してよい。この場合、一実施形態に係るサーバ10は、蓄電池20の充放電を制御することにより、蓄電池20が充電及び/又は放電する電力が所定以上に変動しないように制御してよい。
【0055】
ここで、蓄電池20が充電及び/又は放電する電力が「所定以上に変動しない」制御とは、例えば、当該電力の時間的な変化の幅が所定の範囲内になるような制御としてよい。また、当該電力の時間的な変化の幅が所定の範囲内になるような制御とは、例えば、当該電力が一定になるような制御としてもよい。以下、第2モードは、「充放電電力一定モード」とも記す。しかしながら、第2モードにおいて、充放電される電力は必ずしも厳密に一定でなくてもよい。
【0056】
このように、蓄電池20の動作における第2モードは、蓄電池20が充放電する電力の時間的な変化の幅が所定の範囲内に制御されるモードとしてよい。この場合、第2モードは、蓄電池20が充放電する電力が一定に制御されるモードとしてもよい。
【0057】
第2モードすなわち充放電電力一定モードの動作では、蓄電池20の充放電電力を(ある程度)一定に保つ制御を行い得る。蓄電池20において、第2モードの動作を行うと、第1モードの動作に比べて、比較的高い頻度の制御が求められない。したがって、蓄電池20において、第2モードの動作を行うと、第1モードの動作に比べて、蓄電池20にかかる負荷が低くなり、蓄電池20の劣化は抑制され得る。
【0058】
(蓄電池の動作モードの切り替え)
上述のように、一実施形態に係るサーバ10は、蓄電池20を第1モード又は第2モードで動作させる制御信号を、電力制御システム100又は蓄電池20に送信する。したがって、サーバ10は、電力制御システム100(又は蓄電池20)に送信する制御信号に応じて、蓄電池20の動作を第1モード又は第2モードで開始させることができる。また、サーバ10は、電力制御システム100(又は蓄電池20)に送信する制御信号に応じて、蓄電池20の動作モードを切り替えることができる。例えば、サーバ10は、第1モードで動作している蓄電池20に第2モードで動作させる制御信号を送信することで、当該蓄電池20の動作を第2モードに切り替えることができる。一方、サーバ10は、第2モードで動作している蓄電池20に第1モードで動作させる制御信号を送信することで、当該蓄電池20の動作を第1モードに切り替えることができる。
【0059】
上述のような動作モードの切り替えは、蓄電池20がサーバ10から送信される制御信号によって制御可能な場合には、蓄電池20自らが動作モードを切り替えてよい。また、蓄電池20がサーバ10から送信される制御信号によって制御可能でない場合には、コントローラ40が当該制御信号を受信し、当該コントローラ40が蓄電池20の動作モードを切り替えるように制御してよい。
【0060】
以下、一例として、Open ADRに準拠したプロトコルを用いた通信において、蓄電池20を第1モード又は第2モードで動作させる制御信号について説明する。例えば、サーバ10は、電力制御システム100に「oadrDistributeEvent」を送信する場合に、図3乃至図8に示す「eiEventSignals」内における所定の内容を変更してもよい。
【0061】
図3は、「eiEventSignals」内において「signalName」の内容を変更することにより、蓄電池20の動作モードを第1モードに切り替える例を示す図である。図3に示すように、蓄電池20の動作モードを第1モードにする場合、例えば、図3に示すCa1のように、「signalName」の内容を「LOAD_CONTROL」と指定してよい。これにより、蓄電池20の動作モードを第1モードすなわち売買電電力一定モードとすることができる。この場合、例えば、図3に示すVa1のように、「payloadFloat」内の「value」の内容を指定することで、一定に制御される売買電電力を指定してもよい。図3に示すVa1は、一定に制御される売買電電力を19876kWと指定した例を示している。図3において指定される売買電電力は、例えば工場などの産業用蓄電池を想定する場合には、kW程度の単位としてよい。また、図3において指定される売買電電力は、例えば家庭用の蓄電池を想定する場合には、W程度の単位としてよい。以下、図5及び図7においても同様とする。
【0062】
図4は、「eiEventSignals」内において「signalName」の内容を変更することにより、蓄電池20の動作モードを第2モードに切り替える例を示す図である。図4に示すように、蓄電池20の動作モードを第2モードにする場合、例えば、図4に示すCa2のように、「signalName」の内容を「LOAD_DISPATCH」と指定してよい。これにより、蓄電池20の動作モードを第2モードすなわち充放電電力一定モードとすることができる。この場合、例えば、図4に示すVa2のように、「payloadFloat」内の「value」の内容を指定することで、一定に制御される充放電電力を指定してもよい。図4に示すVa2は、一定に制御される充放電電力を200kWと指定した例を示している。図4において指定される充放電電力は、例えば工場などの産業用蓄電池を想定する場合には、kW程度の単位としてよい。また、図4において指定される充放電電力は、例えば家庭用の蓄電池を想定する場合には、W程度の単位としてよい。以下、図6及び図7においても同様とする。
【0063】
図5は、「eiEventSignals」内において「signalType」の内容を変更することにより、蓄電池20の動作モードを第1モードに切り替える例を示す図である。図5に示すように、蓄電池20の動作モードを第1モードにする場合、例えば、図5に示すCb1のように、「signalType」の内容を「x-LoadControlSetpoint」と指定してよい。これにより、蓄電池20の動作モードを第1モードすなわち売買電電力一定モードとすることができる。この場合、例えば、図5に示すVb1のように、「payloadFloat」内の「value」の内容を指定することで、一定に制御される売買電電力を指定してもよい。図5に示すVb1は、一定に制御される売買電電力を19876kWと指定した例を示している。
【0064】
図6は、「eiEventSignals」内において「signalType」の内容を変更することにより、蓄電池20の動作モードを第2モードに切り替える例を示す図である。図6に示すように、蓄電池20の動作モードを第2モードにする場合、例えば、図6に示すCb2のように、「signalType」の内容を「setpoint」と指定してよい。これにより、蓄電池20の動作モードを第2モードすなわち充放電電力一定モードとすることができる。この場合、例えば、図6に示すVb2のように、「payloadFloat」内の「value」の内容を指定することで、一定に制御される充放電電力を指定してもよい。図6に示すVb2は、一定に制御される充放電電力を200kWと指定した例を示している。
【0065】
図7は、「eiEventSignals」内において「signalID」の内容を変更することにより、蓄電池20の動作モードを第1モードに切り替える例を示す図である。蓄電池20の動作モードを第1モードにする場合、「eiEventSignals」内における「signalID」の内容を、例えばabcdefのように任意に指定してよい。例えば、蓄電池20の動作モードを第1モードにする場合、図7に示すCc1のように、「signalID」の内容を、buysellのように任意に指定してよい。これにより、蓄電池20の動作モードを第1モードすなわち売買電電力一定モードとすることができる。この場合、例えば、図7に示すVc1のように、「payloadFloat」内の「value」の内容を指定することで、一定に制御される売買電電力を指定してもよい。図7に示すVc1は、一定に制御される売買電電力を19876kWと指定した例を示している。
【0066】
図8は、「eiEventSignals」内において「signalID」の内容を変更することにより、蓄電池20の動作モードを第2モードに切り替える例を示す図である。蓄電池20の動作モードを第2モードにする場合、「eiEventSignals」内における「signalID」の内容を、例えばvwxyzのように、第1モードの場合と異なるように任意に指定してよい。例えば、蓄電池20の動作モードを第2モードにする場合、図8に示すCc2のように、「signalID」の内容を、chargedischargeのように任意に指定してよい。これにより、蓄電池20の動作モードを第2モードすなわち充放電電力一定モードとすることができる。この場合、例えば、図8に示すVc2のように、「payloadFloat」内の「value」の内容を指定することで、一定に制御される充放電電力を指定してもよい。図8に示すVc2は、一定に制御される充放電電力を200kWと指定した例を示している。
【0067】
(蓄電池の制御例)
次に、システム1において、蓄電池20を制御する例について、代表的なものをいくつか説明する。
【0068】
図9乃至図12は、システム1におけるサーバ10が、電力制御システム100の蓄電池20を制御するための制御信号を送信する動作を例示するフローチャートである。図9乃至図12において、サーバ10の動作は、サーバ10のサーバ制御部12による処理に基づく動作としてよい。また、サーバ10が「送信」又は「受信」する動作は、サーバ10のサーバ通信部16が行う「送信」又は「受信」の動作としてよい。さらに、サーバ10が所定の情報を記憶したり読み出したりする動作は、サーバ制御部12がサーバ記憶部14に記憶させたりサーバ記憶部14から読み出したりする動作としてよい。
【0069】
(制御例1)
図9は、DR期間か否かに応じて、蓄電池20の第1モードと第2モードとを切り替える例を示すフローチャートである。図9に示す動作が開始する時点において、サーバ10は、例えばDR要請を受信していないものとしてよい。
【0070】
図9に示す動作が開始すると、サーバ10は、電気事業者200の情報処理装置からDR要請を受信したか否かを判定する(ステップS11)。ステップS11においてDR要請を受信していない場合、サーバ10は、DR要請の受信を待機してもよい。
【0071】
ステップS11においてDR要請を受信したら、サーバ10は、第1モードの動作を指示する(ステップS12)。ステップS12において、サーバ10は、蓄電池20を第1モードで動作させる制御信号を、当該蓄電池20又は当該蓄電池20が接続された電力制御システム100に送信する。また、ステップS12において、サーバ10は、第1モードすなわち売買電電力が一定に制御される電力値を、当該蓄電池20に送信してもよい。ステップS12においてサーバ10から制御信号が送信されると、当該制御信号を受信する蓄電池20は、(指定された電力値において)第1モードで動作してよい。この場合、蓄電池20は、DR要請において指定されたタイミングでDR期間を開始して、当該DR期間において第1モードで動作してよい。
【0072】
ステップS12において第1モードの動作が指示されたら、サーバ10は、DR期間が終了したか否かを判定する(ステップS13)。ステップS13においてDR期間が終了していない場合、サーバ10は、DR期間の終了を待機してもよい。この場合、蓄電池20は、第1モードの動作を継続してもよい。
【0073】
ステップS13においてDR期間が終了したと判定されたら、サーバ10は、第2モードの動作を指示する(ステップS14)。ステップS14において、サーバ10は、蓄電池20を第2モードで動作させる制御信号を、当該蓄電池20又は当該蓄電池20が接続された電力制御システム100に送信する。また、ステップS14において、サーバ10は、第2モードすなわち充放電電力が一定に制御される電力値を、当該蓄電池20に送信してもよい。ステップS14においてサーバ10から制御信号が送信されると、当該制御信号を受信する蓄電池20は、(指定された電力値において)第2モードで動作してよい。この場合、蓄電池20は、DR期間が終了するタイミングで第2モードの動作を開始して、次のDR要請を受信するまで当該動作を継続してもよい。
【0074】
このように、サーバ10のサーバ通信部16は、電気事業者200の情報処理装置から送信されるデマンドレスポンスの要請を受信してもよい。この場合、サーバ制御部12は、デマンドレスポンスの要請に基づいて、蓄電池20を第1モード又は第2モードで動作させる制御信号を、蓄電池20に送信するように、サーバ通信部16を制御してもよい。また、サーバ制御部12は、デマンドレスポンスの要請に基づく期間、蓄電池20を第1モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。さらに、サーバ制御部12は、デマンドレスポンスの要請に基づく期間以外の期間、蓄電池20を第2モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。
【0075】
一実施形態に係る蓄電池20の制御装置(サーバ10)によれば、DR期間中は蓄電池20が売買電電力一定の第1モードで動作し、DR期間中以外は蓄電池20が充放電電力一定の第2モードで動作する。このため、DR期間において、蓄電池20の売買電電力一定のモードが使用されることにより、電力制御の精度を高めることができる。また、DR期間以外の期間において、蓄電池20の充放電電力一定のモードが使用されることにより、蓄電池20の劣化を抑えることができる。したがって、一実施形態に係る蓄電池20の制御装置によれば、デマンドレスポンス要請の対応時などにおける電力制御の精度を高めつつ、蓄電池の劣化を低減し得る。
【0076】
また、一実施形態に係る蓄電池20の制御装置によれば、蓄電池20が常に売買電電力一定のモードで動作することは回避される。したがって、一実施形態に係る蓄電池20の制御装置によれば、蓄電池20の制御指示を出すサーバ10のコストは低減し得る。また、一実施形態に係る蓄電池20の制御装置によれば、蓄電池20の制御指示を出すサーバ10の通信コストも低減し得る。さらに、一実施形態に係る蓄電池20の制御は、Open ADRの標準プロトコルをそのまま適用可能である。したがって、実施が容易のみならず、実施のコストも低減し得る。
【0077】
(制御例2)
図10は、DR要請が電力の需要の抑制を要請する、いわゆる下げDRか否かに応じて、蓄電池20の第1モードと第2モードとを切り替える例を示すフローチャートである。図10に示す動作が開始する時点において、サーバ10は、例えばDR要請を受信していないものとしてよい。
【0078】
図10に示す動作が開始すると、サーバ10は、電気事業者200の情報処理装置からDR要請を受信したか否かを判定する(ステップS21)。ステップS21においてDR要請を受信していない場合、サーバ10は、DR要請の受信を待機してもよい。
【0079】
ステップS21においてDR要請を受信したら、サーバ10は、受信したDR要請が電力の需要の抑制を要請する、いわゆる下げDRであるか否かを判定する(ステップS22)。ステップS22において下げDRであると判定されたら、サーバ10は、第1モードの動作を指示する(ステップS23)。ステップS23において、サーバ10は、蓄電池20を第1モードで動作させる制御信号を、当該蓄電池20又は当該蓄電池20が接続された電力制御システム100に送信する。また、ステップS23において、サーバ10は、第1モードすなわち売買電電力が一定に制御される電力値を、当該蓄電池20に送信してもよい。ステップS23においてサーバ10から制御信号が送信されると、当該制御信号を受信する蓄電池20は、(指定された電力値において)第1モードで動作してよい。この場合、蓄電池20は、DR要請において指定されたタイミングでDR期間を開始して、当該DR期間において第1モードで動作してよい。
【0080】
ステップS22において下げDRでない(例えば電力の増大を要請する、いわゆる上げDR)と判定されたら、サーバ10は、第2モードすなわち充放電電力が一定に制御される電力値を、当該蓄電池20に送信してもよい(ステップS24)。
【0081】
ステップS23において第1モードの動作が指示されたら、サーバ10は、DR期間が終了したか否かを判定する(ステップS25)。また、サーバ10は、ステップS24の後においても、ステップS25の動作を行ってよい。ステップS25においてDR期間が終了していない場合、サーバ10は、DR期間の終了を待機してもよい。この場合、蓄電池20は、第1モードの動作を継続してもよい。
【0082】
ステップS25においてDR期間が終了したと判定されたら、サーバ10は、第2モードの動作を指示する(ステップS26)。ステップS26において、サーバ10は、蓄電池20を第2モードで動作させる制御信号を、当該蓄電池20又は当該蓄電池20が接続された電力制御システム100に送信する。また、サーバ10は、(ステップS24ではなく)ステップS26において、第2モードすなわち充放電電力が一定に制御される電力値を、当該蓄電池20に送信してもよい。ステップS26においてサーバ10から制御信号が送信されると、当該制御信号を受信する蓄電池20は、(指定された電力値において)第2モードで動作してよい。この場合、蓄電池20は、DR期間が終了するタイミングで第2モードの動作を開始して、次のDR要請を受信するまで当該動作を継続してもよい。
【0083】
このように、サーバ制御部12は、デマンドレスポンスの要請であって電力の需要を抑制する要請に基づいて、蓄電池20を第1モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。また、サーバ制御部12は、デマンドレスポンスの要請であって電力の需要を増やす要請に基づいて、蓄電池20を第2モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。
【0084】
一実施形態に係る蓄電池20の制御装置(サーバ10)によれば、DR要請が下げDRであるか否かに応じて、蓄電池20の動作が第1モードと第2モードとで切り替わる。したがって、一実施形態に係る蓄電池20の制御装置(サーバ10)によれば、上述した制御例1と同様の効果を享受することができる。
【0085】
(制御例3)
図11は、電力制御システム100において電力の需要の変動が比較的大きいか否かに応じて、需要家施設の電力制御システム100ごとに、蓄電池20の第1モードと第2モードとを切り替える例を示すフローチャートである。
【0086】
図11に示す動作においては、図10に示したステップS22の動作に代えて、ステップS31の動作を行う。
【0087】
すなわち、図10に示す動作では、ステップS21においてDR要請を受信すると、ステップS22においてDR要請が下げDRであるか否かを判定した。ステップS22においてDR要請が下げDRである場合、ステップS23において蓄電池20に第1モードの動作を指示した。また、図10に示す動作では、ステップS22においてDR要請が下げDRでない場合、ステップS24において蓄電池20に第2モードの動作に関する情報を送信した。
【0088】
これに対し、図11に示す動作では、ステップS21においてDR要請を受信すると、DR要請を受信した電力制御システム100を有する需要家施設の電力需要の変動が所定値よりも大きいか否かを判定する(ステップS31)。ステップS31において、電力需要の変動の大きさを判定する所定値は、需要家施設ごとに異なる値としてもよいし、需要家施設の少なくともいくつかにおいて同じ値としてもよい。
【0089】
図11に示す動作では、ステップS31において電力需要の変動が所定値よりも大きい場合、ステップS23において蓄電池20に第1モードの動作を指示する。また、図11に示す動作では、ステップS31において電力需要の変動が所定値よりも大きくない場合、ステップS24において蓄電池20に第2モードの動作に関する情報を送信してよい。
【0090】
このように、サーバ制御部12は、電力制御システム100における電力の需要の時間的な変化の幅が所定の範囲を超える場合、蓄電池20を第1モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。また、サーバ制御部12は、電力制御システム100における電力の需要の時間的な変化の幅が所定の範囲を超えない場合、蓄電池20を第2モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。
【0091】
一実施形態に係る蓄電池20の制御装置(サーバ10)によれば、需要家の電力需要の変化が比較的大きいか否かに応じて、蓄電池20の動作が第1モードと第2モードとで切り替わる。したがって、一実施形態に係る蓄電池20の制御装置(サーバ10)によれば、上述した制御例1と同様の効果を享受することができる。
【0092】
(制御例4)
図12は、電力制御システム100において蓄電池20の劣化の度合いが比較的小さいか否かに応じて、需要家施設の電力制御システム100ごとに、蓄電池20の第1モードと第2モードとを切り替える例を示すフローチャートである。
【0093】
図12に示す動作においては、図10に示したステップS22の動作に代えて、ステップS41の動作を行う。
【0094】
すなわち、図12に示す動作では、ステップS21においてDR要請を受信すると、DR要請を受信した電力制御システム100における蓄電池20の劣化度が所定値よりも小さいか否かを判定する(ステップS41)。ステップS41において、蓄電池20の「劣化度が所定値よりも小さい」又は「劣化度が所定以下」とは、蓄電池20の劣化度が比較的小さい状態、例えば蓄電池20があまり(少ししか)劣化していない状態であるとしてよい。一方、蓄電池20の「劣化度が所定値よりも大きい」又は「劣化度が所定以上」とは、蓄電池20の劣化度が比較的大きい状態、例えば蓄電池20が相当程度(ある程度)劣化している状態であるとしてもよい。ステップS41において、蓄電池20の劣化度の小ささを判定する所定値は、例えば蓄電池20を有する需要家施設ごとに異なる値としてもよいし、蓄電池20を有する需要家施設の少なくともいくつかにおいて同じ値としてもよい。また、ステップS41において、蓄電池20の劣化度の小ささを判定するための値は、例えば蓄電池20の健康状態を表す劣化状態(States Of Health:SOH)を示す値としてもよいし、他の指標としてもよい。
【0095】
図12に示す動作では、ステップS41において蓄電池20の劣化度が所定以下である場合、ステップS23において蓄電池20に第1モードの動作を指示する。また、図12に示す動作では、ステップS41において蓄電池20の劣化度が所定以下でない場合(例えば蓄電池20の劣化度が所定以上である場合)、ステップS24において蓄電池20に第2モードの動作に関する情報を送信してよい。
【0096】
このように、サーバ制御部12は、蓄電池20の劣化状態を表す指標が所定値以下である場合、すなわち蓄電池20の劣化度が所定以下である場合、蓄電池20を第1モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。また、サーバ制御部12は、蓄電池20の劣化状態を表す指標が所定値以上である場合、すなわち蓄電池20の劣化度が所定以上である場合、蓄電池20を第2モードで動作させる制御信号を蓄電池20に送信するように、サーバ通信部16を制御してもよい。
【0097】
一実施形態に係る蓄電池20の制御装置(サーバ10)によれば、蓄電池20の劣化度が比較的小さいか否かに応じて、蓄電池20の動作が第1モードと第2モードとで切り替わる。したがって、一実施形態に係る蓄電池20の制御装置(サーバ10)によれば、上述した制御例1と同様の効果を享受することができる。
【0098】
前述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。従って、本開示は、前述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形又は変更が可能である。例えば、各手段又は各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段又はステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
【0099】
例えば、上述の実施形態では、サーバ10が制御する蓄電池20は1つ以上の任意の数とすることができる。すなわち、一実施形態に係る蓄電池20の制御装置は、複数の蓄電池20を制御するものであってよい。この場合、制御装置の通信部は、複数の蓄電池20と有線又は無線で通信してよい。また、制御装置の制御部は、複数の蓄電池20の少なくともいずれかを第1モード又は第2モードで動作させる制御信号を通信部が送信するように制御してよい。この場合、第1モードは、複数の蓄電池20の少なくともいずれかのそれぞれに接続される電力制御システム100がそれぞれ売買電する電力の時間的な変化の幅がそれぞれ所定の範囲内に制御されるモードとしてよい。また、第2モードは、複数の蓄電池20の少なくともいずれかのそれぞれが充放電する電力の時間的な変化の幅がそれぞれ所定の範囲内に制御されるモードとしてよい。
【0100】
また、例えば、上述した実施形態では、電力制御システム100はHEMSであるものとして説明したが、この限りではない。電力制御システム100は、需要家施設に設置された電力機器30を制御する任意の制御装置であってよい。例えば、電力制御システム100は、ビル等に設置された電力機器30を制御するビルディングエネルギーマネジメントシステム(Building Energy Management System:BEMS)であってよい。或いは、電力制御システム100は、電力機器30として蓄電装置を制御するバッテリーマネジメントシステム(Battery Management System:BMS)であってよい。更に、電力制御システム100は、負荷及び分散電源等の電力機器30に組み込まれた制御装置であってよい。
【0101】
また、例えば、上述した実施形態では、所定のイベントが実施される期間は、デマンドレスポンスが実施される、デマンドレスポンス期間であるものとして説明したが、この限りではない。所定のイベントが実施される期間は、電力制御システム100からサーバ10へのメッセージ送信を伴う、任意のイベントが実施される期間であってよい。かかる場合、上述した説明において、デマンドレスポンスは、任意のイベントとして読み替えてもよい。
【0102】
また、例えば、上述した実施形態では、電力制御システム100は、需要家施設に設置された情報処理装置で構成されるものとして説明したが、この限りではない。電力制御システム100は、例えば、クラウドサーバ又はブロックチェーン等のように、複数の情報処理装置で構成される情報処理装置群によってネットワークNを介して処理及び機能の全部又は一部が提供される構成としてよい。同様に、サーバ10は、情報処理装置群によってネットワークNを介して処理及び機能の全部又は一部が提供される構成としてよい。かかる場合、電力制御システム100及びサーバ10に、クラウドサーバ又はブロックチェーン等の情報処理装置群が含まれると考えてよい。
【0103】
上述した実施形態は、システム1としての実施のみに限定されるものではない。例えば、上述した実施形態は、システム1に含まれる制御装置(サーバ10)の制御方法として実施してもよい。さらに、例えば、上述した実施形態は、システム1に含まれる制御装置(サーバ10)が実行するプログラムとして実施してもよい。
【0104】
2015年9月の国連サミットにおいて採択された17の国際目標として、「持続可能な開発目標(Sustainable Development Goals:SDGs)」がある。一実施形態に係る蓄電池20の制御装置などは、このSDGsの17の目標のうち、例えば「7.エネルギーをみんなに そしてクリーンに」、「9.産業と技術革新の基盤をつくろう」、及び「11.「住み続けられるまちづくりを」の目標などの達成に貢献し得る。
【符号の説明】
【0105】
1 システム
10 サーバ
12 サーバ制御部
14 サーバ記憶部
16 サーバ通信部
20 蓄電池
30 電力機器
40 コントローラ
100 電力制御システム
200 電気事業者

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12