(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023166507
(43)【公開日】2023-11-21
(54)【発明の名称】発光素子、発光装置、電子機器、及び照明装置
(51)【国際特許分類】
H10K 50/15 20230101AFI20231114BHJP
H10K 50/10 20230101ALI20231114BHJP
H10K 50/17 20230101ALI20231114BHJP
H10K 59/10 20230101ALI20231114BHJP
H10K 59/12 20230101ALI20231114BHJP
H10K 59/17 20230101ALI20231114BHJP
H10K 85/60 20230101ALI20231114BHJP
H10K 50/85 20230101ALI20231114BHJP
【FI】
H10K50/15
H10K50/10
H10K50/17
H10K59/10
H10K59/12
H10K59/17
H10K85/60
H10K50/85
【審査請求】有
【請求項の数】21
【出願形態】OL
(21)【出願番号】P 2023143644
(22)【出願日】2023-09-05
(62)【分割の表示】P 2020519207の分割
【原出願日】2019-05-09
(31)【優先権主張番号】P 2018095707
(32)【優先日】2018-05-17
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】久保田 朋広
(72)【発明者】
【氏名】渡部 剛吉
(72)【発明者】
【氏名】瀬尾 哲史
(72)【発明者】
【氏名】大澤 信晴
(57)【要約】
【課題】新規有機化合物を提供する。キャリア輸送性を有する新規な有機化合物を提供する。正孔輸送性を有する新規有機化合物を提供する。屈折率の小さい有機化合物を提供する。屈折率が小さく且つキャリア輸送性を有する有機化合物を提供する。屈折率が小さく且つ正孔輸送性を有する有機化合物を提供する。
【解決手段】下記一般式(G1)で表される有機化合物を提供する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
下記一般式(G1)で表される有機化合物を有する、発光素子。
【化1】
(但し、上記一般式(G1)において、Ar
1乃至Ar
4はそれぞれ独立に、置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニルジイル基および置換もしくは無置換のトリフェニルジイル基のいずれかを表す。R
1乃至R
4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換もしくは無置換の炭素数5乃至12の環式飽和炭化水素基を表す。m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。)
【請求項2】
請求項1において、
Ar1およびAr4がそれぞれ独立に、置換もしくは無置換のフェニレン基である、発光素子。
【請求項3】
請求項1または請求項2において、
Ar2およびAr3がそれぞれ独立に、置換もしくは無置換のビフェニルジイル基である、発光素子。
【請求項4】
請求項1において、
Ar1乃至Ar4がそれぞれ独立に、置換もしくは無置換のフェニレン基である、発光素子。
【請求項5】
下記一般式(G2)で表される有機化合物を有する、発光素子。
【化2】
(但し、上記一般式(G2)において、R
1乃至R
4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換もしくは無置換の炭素数5乃至12の環式飽和炭化水素基を表す。m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。)
【請求項6】
下記一般式(G4)で表される有機化合物を有する、発光素子。
【化3】
(但し、上記一般式(G4)において、R
1乃至R
4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換もしくは無置換の炭素数5乃至12の環式飽和炭化水素基を表す。m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。)
【請求項7】
下記一般式(G5)で表される有機化合物を有する、発光素子。
【化4】
(但し、上記一般式(G5)において、R
1乃至R
4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換もしくは無置換の炭素数5乃至12の環式飽和炭化水素基を表す。m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。)
【請求項8】
請求項1乃至請求項7のいずれか一項において、
m、n、pおよびsはそれぞれ独立に1乃至3の整数を表す、発光素子。
【請求項9】
請求項1乃至請求項8のいずれか一項において、
m、n、pおよびsが1である、発光素子。
【請求項10】
下記一般式(G3)で表される有機化合物を有する、発光素子。
【化5】
(但し、上記一般式(G3)において、R
1乃至R
4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換もしくは無置換の炭素数5乃至12の環式飽和炭化水素基を表す。)
【請求項11】
下記一般式(G6)で表される有機化合物を有する、発光素子。
【化6】
(但し、上記一般式(G6)において、R
1乃至R
4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換もしくは無置換の炭素数5乃至12の環式飽和炭化水素基を表す。)
【請求項12】
請求項1乃至請求項5のいずれか一項において、
R1乃至R4がそれぞれ独立にシクロヘキシル基である、発光素子。
【請求項13】
下記構造式で表される有機化合物を有する、発光素子。
【化7】
【請求項14】
下記構造式で表される有機化合物を有する、発光素子。
【化8】
【請求項15】
一対の電極間に、請求項1乃至請求項14のいずれか一項に記載の有機化合物を含む、発光素子。
【請求項16】
一対の電極間に、少なくとも発光層と正孔輸送層とを有し、
前記正孔輸送層が、請求項1乃至請求項14のいずれか一項に記載の有機化合物を含む、発光素子。
【請求項17】
一対の電極間に、少なくとも発光層と正孔注入層とを有し、
前記正孔注入層が、請求項1乃至請求項14のいずれか一項に記載の有機化合物を含む、発光素子。
【請求項18】
一対の電極間に、少なくとも発光層と正孔輸送層と正孔注入層とを有し、
前記正孔輸送層および前記正孔注入層に、請求項1乃至請求項14のいずれか一項に記載の有機化合物を含む、発光素子。
【請求項19】
請求項15乃至請求項18のいずれか一項に記載の発光素子と、トランジスタ、または、基板と、を有する発光装置。
【請求項20】
請求項19に記載の発光装置と、センサ、操作ボタン、スピーカ、または、マイクと、
を有する電子機器。
【請求項21】
請求項19に記載の発光装置と、筐体と、を有する照明装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一態様は、有機化合物、発光素子、ディスプレイモジュール、照明モジュール、表示装置、発光装置、電子機器、照明装置および電子デバイスに関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
【背景技術】
【0002】
有機化合物を用いたエレクトロルミネッセンス(EL:Electroluminescence)を利用する発光素子(有機EL素子)の実用化が進んでいる。これら発光素子の基本的な構成は、一対の電極間に発光材料を含む有機化合物層(EL層)を挟んだものである。この素子に電圧を印加して、キャリアを注入し、当該キャリアの再結合エネルギーを利用することにより、発光材料からの発光を得ることができる。
【0003】
このような発光素子は自発光型であるためディスプレイの画素として用いると、液晶に比べ、視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイ素子として好適である。また、このような発光素子を用いたディスプレイは、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。
【0004】
また、これらの発光素子は発光層を二次元に連続して形成することが可能であるため、面状に発光を得ることができる。これは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、照明等に応用できる面光源としての利用価値も高い。
【0005】
このように発光素子を用いたディスプレイや照明装置はさまざまな電子機器に適用好適であるが、より良好な特性を有する発光素子を求めて研究開発が進められている。
【0006】
有機EL素子が語られる際にしばしば問題となるものの一つに、光取出し効率の低さがある。特に、隣接する層の屈折率の違いから起こる反射による減衰は、素子の効率を下げる大きな要因となっている。この影響を低減させるために、EL層内部に低屈折率材料からなる層を形成する構成が提案されている(例えば、非特許文献1参照)。
【0007】
この構成を備えた発光素子は、従来の構成を有する発光素子よりも光取出し効率、ひいては外部量子効率の高い発光素子とすることが可能であるが、このような低屈折率の層を、その他の発光素子における重要な特性に悪影響を与えずにEL層内部に形成するのは容易なことではない。なぜならば、低い屈折率と、高いキャリア輸送性または発光素子に用いた場合の信頼性はトレードオフの関係にあるからである。この問題は、有機化合物におけるキャリア輸送性や信頼性は不飽和結合の存在に由来するところが大きく、不飽和結合を多く有する有機化合物は、屈折率が高い傾向があることに原因がある。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平11-282181号公報
【特許文献2】特開2009-91304号公報
【特許文献3】米国特許出願公開第2010/104969
【非特許文献1】Jaeho Lee、他12名,「Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes」,nature COMMUNICATIONS,平成28年6月2日,DOI:10.1038/ncomms11791
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の一態様では、新規有機化合物を提供することを目的とする。または、本発明の一態様では、キャリア輸送性を有する新規な有機化合物を提供することを目的とする。または、本発明の一態様では、正孔輸送性を有する新規有機化合物を提供することを目的とする。本発明の一態様では、屈折率の小さい有機化合物を提供することを目的とする。または、本発明の一態様では、屈折率が小さく且つキャリア輸送性を有する有機化合物を提供することを目的とする。または、本発明の一態様では、屈折率が小さく且つ正孔輸送性を有する有機化合物を提供することを目的とする。
【0010】
または、本発明の他の一態様では、発光効率の高い発光素子を提供することを目的とする。または、本発明の一態様では、消費電力の小さい発光素子、発光装置、電子機器、表示装置および電子デバイスを各々提供することを目的とする。
【0011】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
【0012】
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
【課題を解決するための手段】
【0013】
本発明の一態様は、下記一般式(G1)で表される有機化合物である。
【0014】
【0015】
但し、上記一般式(G1)において、Ar1乃至Ar4は、それぞれ独立に、置換または無置換のフェニレン基、置換または無置換のビフェニルジイル基および置換または無置換のトリフェニルジイル基のいずれかを表す。また、R1乃至R4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。また、m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。
【0016】
または、本発明の他の一態様は、上記構成において、前記Ar1およびAr4が置換または無置換のフェニレン基である有機化合物である。
【0017】
または、本発明の他の一態様は、上記構成において、前記Ar2およびAr3が置換または無置換のビフェニルジイル基である有機化合物である。
【0018】
または、本発明の他の一態様は、上記構成において、前記Ar1乃至Ar4が置換または無置換のフェニレン基である有機化合物である。
【0019】
または、本発明の他の一態様は、上記いずれかの構成において、前記m、n、pおよびsが1である有機化合物である。
【0020】
または、本発明の他の一態様は、下記一般式(G2)で表される有機化合物である。
【0021】
【0022】
但し、上記一般式(G2)において、R1乃至R4は少なくとも一が炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表し、残りがそれぞれ独立に水素、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。また、m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。
【0023】
または、本発明の他の一態様は、下記一般式(G4)で表される有機化合物である。
【0024】
【0025】
但し、上記一般式(G4)において、R1乃至R4は少なくとも一が炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表し、残りがそれぞれ独立に水素、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。また、m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。
【0026】
または、本発明の他の一態様は、下記一般式(G5)で表される有機化合物である。
【0027】
【0028】
但し、上記一般式(G5)において、R1乃至R4は少なくとも一が炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表し、残りがそれぞれ独立に水素、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。また、m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表す。
【0029】
または、本発明の他の一態様は、下記一般式(G3)で表される有機化合物である。
【0030】
【0031】
但し、上記一般式(G3)において、R1乃至R4はそれぞれ独立に水素、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。
【0032】
または、本発明の他の一態様は、下記一般式(G6)で表される有機化合物である。
【0033】
【0034】
但し、上記一般式(G6)において、R1乃至R4はそれぞれ独立に水素、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。
【0035】
または、本発明の他の一態様は、上記構成のいずれかにおいて、前記R1乃至R4がシクロヘキシル基である有機化合物である。
【0036】
または、本発明の他の一態様は、下記構造式で表される有機化合物である。
【0037】
【0038】
または、本発明の他の一態様は、下記構造式で表される有機化合物である。
【0039】
【0040】
または、本発明の他の一態様は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に位置するEL層と、を有し、前記EL層が、上記いずれかに記載の有機化合物を含む発光素子である。
【0041】
または、本発明の他の一態様は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に位置するEL層と、を有し、前記EL層は、少なくとも発光層と正孔輸送層とを有し、前記正孔輸送層が、上記いずれかに記載の有機化合物を含む発光素子である。
【0042】
または、本発明の他の一態様は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に位置するEL層と、を有し、前記EL層は、少なくとも発光層と正孔注入層とを有し、前記正孔注入層が、上記いずれかに記載の有機化合物を含む発光素子である。
【0043】
または本発明の他の一態様は、第1の電極と、第2の電極と、前記第1の電極および前記第2の電極の間に位置するEL層と、を有し、前記EL層は、発光層、正孔輸送層および正孔注入層を有し、前記正孔輸送層および前記正孔注入層に、上記いずれかに記載の有機化合物を含む発光素子である。
【0044】
または、本発明の他の一態様は、上記いずれかに記載の発光素子と、トランジスタ、または、基板と、を有する発光装置である。
【0045】
または、本発明の他の一態様は、上記発光装置と、センサ、操作ボタン、スピーカ、または、マイクと、
を有する電子機器である。
【0046】
または、本発明の他の一態様は、上記発光装置と、筐体と、を有する照明装置である。
【0047】
または、本発明の他の一態様は、上記いずれかに記載の有機化合物を含む電子デバイスである。
【0048】
なお、本明細書中における発光装置とは、発光素子を用いた画像表示デバイスを含む。また、発光素子にコネクター、例えば異方導電性フィルム又はTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、又は発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも発光(表示)装置に含む場合がある。さらに、照明器具等は、発光装置を有する場合がある。
【発明の効果】
【0049】
本発明の一態様では、新規有機化合物を提供することができる。または、本発明の一態様では、キャリア輸送性を有する新規な有機化合物を提供することができる。または、本発明の一態様では、正孔輸送性を有する新規有機化合物を提供することができる。本発明の一態様では、屈折率の小さい有機化合物を提供することができる。または、本発明の一態様では、屈折率が小さく且つキャリア輸送性を有する有機化合物を提供することができる。または、本発明の一態様では、屈折率が小さく且つ正孔輸送性を有する有機化合物を提供することができる。
【0050】
または、本発明の他の一態様では、発光効率の高い発光素子を提供することができる。または、本発明の一態様では、消費電力の小さい発光素子、発光装置、電子機器、表示装置および電子デバイスを各々提供することができる。
【0051】
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
【図面の簡単な説明】
【0052】
【
図15】TAPC-02のトルエン溶液における吸収スペクトルと発光スペクトル。
【
図16】TAPC-02の薄膜状態での吸収スペクトルと発光スペクトル。
【
図18】4,4’-(1,1-シクロヘキサン-ジイル)ビス{N-(4-シクロヘキシルフェニル)アミノベンゼン}の
1H NMRチャート。
【
図20】発光素子1および比較発光素子1の輝度-電流密度特性。
【
図21】発光素子1および比較発光素子1の電流効率-輝度特性。
【
図22】発光素子1および比較発光素子1の輝度-電圧特性。
【
図23】発光素子1および比較発光素子1の電流-電圧特性。
【
図24】発光素子1および比較発光素子1の外部量子効率-輝度特性。
【
図25】発光素子1および比較発光素子1の発光スペクトル。
【
図38】TAPCおよびTAPC-02の波長に対する屈折率。
【発明を実施するための形態】
【0053】
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
【0054】
(実施の形態1)
有機EL素子に用いることが可能なキャリア輸送性を有する有機化合物の中でも、屈折率が小さい材料の一つとして1,1-ビス-(4-ビス(4-メチル-フェニル)-アミノ-フェニル)-シクロヘキサン(略称:TAPC)が知られている。屈折率の小さな材料をEL層に用いることで、高い外部量子効率を示す発光素子を得ることが可能であるため、TAPCを用いることで良好な外部量子効率を有する発光素子が得られることが期待される。しかし一方で、TAPCには耐熱性が低く、信頼性的に不利であるという問題があった。
【0055】
耐熱性が高く、信頼性の良好な正孔輸送材料を得るための一つの方法として、不飽和炭化水素基、特に環式不飽和炭化水素基を分子内に導入することが考えられる。
【0056】
一方、屈折率が低い材料を得るためには、分子内に分子屈折が低い置換基を導入することが好ましい。当該置換基としては飽和炭化水素基や環式飽和炭化水素基等を挙げることができる。
【0057】
また、有機EL素子のキャリア輸送材料として用いる材料は、キャリア輸送性が高い骨格を有することが好ましく、中でも芳香族アミン骨格を有することが好ましい。
【0058】
以上の知見を元に本発明者らは、これらの置換基や骨格を以下のように結合させることで、屈折率が小さく、且つ有機EL素子の正孔輸送材料として好適に用いることが可能な有機化合物を見出した。
【0059】
すなわち、本発明の一態様の有機化合物は、下記一般式(G1)で表される有機化合物である。
【0060】
【0061】
但し、上記一般式(G1)において、Ar1乃至Ar4はそれぞれ独立に、置換または無置換のフェニレン基、置換または無置換のビフェニルジイル基および置換または無置換のトリフェニルジイル基のいずれかを表す。
【0062】
なお、Ar1およびAr4は置換または無置換のフェニレン基が好ましく、無置換のフェニレン基が合成コストを考えるとさらに好ましい。
【0063】
また、Ar2およびAr3は置換または無置換のフェニレン基または、置換または無置換のビフェニルジイル基が好ましく、置換または無置換のフェニレン基が昇華性を向上させるためより好ましい。また、合成コストを考慮すると無置換のフェニレン基がさらに好ましい。
【0064】
Ar1乃至Ar4のいずれかが置換基を有するフェニレン基、置換基を有するビフェニルジイル基および置換基を有するトリフェニルジイル基である場合、当該置換基としては、炭素数1乃至4のアルキル基を挙げることができる。当該炭素数1乃至4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基を挙げることができる。
【0065】
なお、上述の通り、Ar1乃至Ar4は、無置換のフェニレン基であることが好ましいが、当該有機化合物は、下記一般式(G2)として表すことができる。
【0066】
【0067】
また、上記一般式(G1)において、上述のように、Ar2およびAr3は無置換のビフェニルジイル基であり、Ar1およびAr4は無置換のフェニレン基であることが好ましい。そのような有機化合物は下記一般式(G4)のように表すことができる。
【0068】
【0069】
また、上記一般式(G1)において、Ar2およびAr3は無置換のビフェニルジイル基であり、Ar1およびAr4は無置換のフェニレン基であることが好ましいが、Ar2およびAr3は無置換の4,4’-ビフェニルジイル基であることがさらに好ましい。そのような有機化合物は下記一般式(G5)のように表すことができる。
【0070】
【0071】
なお、上記一般式(G1)、(G2)、(G4)、(G5)で表される有機化合物において、m、n、pおよびsはそれぞれ独立に0乃至3の整数を表すが、m、n、pおよびsのいずれか二以上はそれぞれ独立に1乃至3の整数を表すものとする。
【0072】
また、合成の簡便さおよび安定性の観点からm、n、pおよびsは1であることが好ましいが、上記一般式(G4)、(G5)で表される有機化合物のうち、そのような有機化合物は下記一般式(G3)および(G6)として表すことができる。
【0073】
【0074】
【0075】
なお、上記一般式(G1)乃至(G6)において、R1乃至R4はそれぞれ独立に炭素数5乃至12の飽和炭化水素基または置換もしくは無置換の炭素数5乃至12の環式飽和炭化水素基を表す。
【0076】
炭素数5乃至12の飽和炭化水素基としては、ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、ネオヘキシル基、3-メチルペンチル基、2-メチルペンチル基、2-エチルブチル基、1,2-ジメチルブチル基、2,3-ジメチルブチル基、オクチル基、イソオクチル基、2,6-ジメチルヘキシル基、tert-オクチル基、デカン基、2,6-ジメチルオクチル基、3,3-ジメチルオクチル基、2-メチルノニル基、3-メチルノニル基、ウンデシル基、ドデシル基等が挙げられる。また、炭素数5乃至12の環式飽和炭化水素基としては、シクロペンチル基、シクロヘキシル基、1-メチルシクロペンチル基、2-メチルシクロペンチル基、シクロヘプチル基、ビシクロ[2,2,1]ヘプチル基、シクロオクチル基、ビシクロ[2,2,2]オクチル基、シクロノニル基、ビシクロ[3,2,2]ノニル基、ビシクロ[3,3,1]ノニル基、シクロデシル基、シクロウンデシル基、ビシクロ[5,4,0]ウンデシル基、シクロドデシル基等を挙げることができる。
【0077】
また、R1乃至R4のいずれかが置換基を有する炭素数5乃至12の環式炭化水素基である場合、当該置換基としては炭素数1乃至4のアルキル基を挙げることができる。当該炭素数1乃至4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基を挙げることができる。
【0078】
なお、R1乃至R4は、原子屈折あるいは分子屈折の観点から同じ炭素数を有する置換基であれば屈折率をより大きく低下させるために環式構造を有する置換基であることが有効であり、6員環以上の通常員環および中員環置換基がさらに好ましい。しかし、大員環置換基を導入すると分子量が大きくなることで昇華性を低下させてしまう可能性が生じ、ひいてはこれが分解の原因に繋がり得ることも考えられることからシクロヘキシル基であることが好ましい。
【0079】
以上のような構成を有する有機化合物は、屈折率が小さく、且つ正孔輸送性を有する有機化合物である。このことから、当該有機化合物を用いた発光素子は、外部量子効率の良好な発光素子とすることができる。
【0080】
上記構成を有する有機化合物の具体的な例を以下に示す。
【0081】
【0082】
【0083】
【0084】
【0085】
【0086】
【0087】
【0088】
【0089】
【0090】
続いて、本発明の一態様であり、下記一般式(G1)で表される有機化合物の合成方法の一例について説明する。
【0091】
【0092】
上記一般式(G1)において、Ar1乃至Ar4は、それぞれ独立に、置換または無置換のフェニレン基、置換または無置換のビフェニルジイル基および置換または無置換のトリフェニルジイル基のいずれかを表す。また、R1乃至R4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。また、m、n、pおよびsはそれぞれ独立に1乃至3の整数を表す。
【0093】
上記一般式(G1)で表される有機化合物は、下記合成スキームに示すように、1,1-ビス(4-アミノフェニル)シクロヘキサンと、有機ハロゲン化物とを、塩基存在下で金属触媒、金属、または金属化合物によりカップリングさせることにより合成することができる。
【0094】
【0095】
上記合成スキームにおいて、Ar1乃至Ar4はそれぞれ独立に、置換または無置換のフェニレン基、置換または無置換のビフェニルジイル基および置換または無置換のトリフェニルジイル基のいずれかを表す。また、R1乃至R4はそれぞれ独立に、炭素数5乃至12の飽和炭化水素基または置換または無置換の炭素数5乃至12の環式飽和炭化水素基を表す。また、m、n、pおよびsはそれぞれ独立に1乃至3の整数を表す。
【0096】
上記合成スキームをバックワルド・ハートウィグ反応として行う場合、Xはハロゲン又はトリフラート基を表す。ハロゲンとしては、ヨウ素、臭素、または塩素が好ましい。当該反応では、ビス(ジベンジリデンアセトン)パラジウム(0)、アリル塩化パラジウム二量体(II)等のパラジウム錯体または化合物と、それに配位するトリ(tert-ブチル)ホスフィンや、ジtertブチル(1-メチル-2,2-ジフェニルシクロプロピル)ホスフィンや、トリシクロヘキシルホスフィン等の配位子を用いるパラジウム触媒を利用する。塩基としては、ナトリウムtert-ブトキシド等の有機塩基や、炭酸カリウム等の無機塩基等が挙げられる。また、溶媒を使用する場合、トルエン、キシレン、1,3,5-トリメチルベンゼンベンゼン等を用いることができる。
【0097】
また、上記合成スキームをウルマン反応として行う場合、Xはハロゲンを表す。ハロゲンとしては、ヨウ素、臭素、または塩素が好ましい。触媒としては、銅または銅化合物を用いる。なお、ヨウ化銅(I)、または酢酸銅(II)を用いることが好ましい。用いる塩基としては、炭酸カリウム等の無機塩基が挙げられる。また、溶媒は、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)ピリミジノン(DMPU)、N-メチル-2-ピロリドン(NMP)、トルエン、キシレン、1,3,5-トリメチルベンゼン等を用いる。ただし、上記溶媒はこれらに限られるものでは無い。ウルマン反応では、反応温度が100℃以上の方がより短時間かつ高収率で目的物が得られるため、沸点の高いDMPU、NMP、1,3,5-トリメチルベンゼンを用いることが好ましい。また、反応温度は150℃以上のより高い温度が更に好ましいため、より好ましくはDMPUを用いることとする。
【0098】
以上のように、一般式(G1)で表される有機化合物を合成することができる。
【0099】
(実施の形態2)
図1に、本発明の一態様の発光素子を表す図を示す。本発明の一態様の発光素子は、第1の電極101と、第2の電極102、EL層103を有し、当該EL層に実施の形態1で示した有機化合物を用いている。
【0100】
EL層103は、発光層113を有しており、正孔注入層111および/または正孔輸送層112を有していても良い。発光層113には発光材料が含まれており、本発明の一態様の発光素子は、当該発光材料から発光を得る。発光層113には、ホスト材料や、その他の材料が含まれていても良い。実施の形態1で示した本発明の一態様の有機化合物は、発光層113に含まれていても、正孔輸送層112に含まれていても、正孔注入層111に含まれていても、そのいずれに含まれていても構わない。
【0101】
なお、
図1にはこれらに加えて電子輸送層114、電子注入層115が図示されているが、発光素子の構成はこれらに限られることはない。
【0102】
当該有機化合物は、良好な正孔輸送性を有するため正孔輸送層112に用いることが有効である。また、本発明の一態様の有機化合物は、当該有機化合物とアクセプタ物質を混合した膜を用いて正孔注入層111として用いることが可能である。
【0103】
また、さらに本発明の一態様の有機化合物は、ホスト材料として用いることもできる。また、さらに電子輸送材料と共蒸着することによって、当該電子輸送材料と正孔輸送材料による励起錯体を形成する構成であっても良い。適切な発光波長を有する励起錯体を形成することによって、発光材料への有効なエネルギー移動を実現し、高い効率、良好な寿命を有する発光素子を提供することが可能となる。
【0104】
本発明の一態様の有機化合物は屈折率が低い有機化合物であることから、それをEL層内部に用いることによって、外部量子効率の良好な発光素子を得ることができる。
【0105】
続いて、上述の発光素子の詳細な構造や材料の例について説明する。本発明の一態様の発光素子は、上述のように第1の電極101と第2の電極102の一対の電極間に複数の層からなるEL層103を有しており、当該EL層103のいずれかの部分に、実施の形態1で開示した有機化合物が含まれている。
【0106】
第1の電極101は、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法により成膜されるが、ゾル-ゲル法などを応用して作製しても構わない。作製方法の例としては、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いてスパッタリング法により形成することもできる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。グラフェンも用いることができる。なお、後述する複合材料をEL層103における第1の電極101と接する層に用いることで、仕事関数に関わらず、電極材料を選択することができるようになる。
【0107】
EL層103は積層構造を有していることが好ましいが、当該積層構造については特に限定はなく、正孔注入層、正孔輸送層、電子輸送層、電子注入層、キャリアブロック層、励起子ブロック層、電荷発生層など、様々な層構造を適用することができる。本実施の形態では、
図1(A)に示すように、正孔注入層111、正孔輸送層112、発光層113に加えて、電子輸送層114及び電子注入層115を有する構成、及び
図1(B)に示すように、正孔注入層111、正孔輸送層112、発光層113に加えて、電子輸送層114及び電子注入層115、電荷発生層116を有する構成の2種類の構成について説明する。各層を構成する材料について以下に具体的に示す。
【0108】
正孔注入層111は、アクセプタ性を有する物質を含む層である。アクセプタ性を有する物質としては、有機化合物と無機化合物のいずれも用いることが可能である。
【0109】
アクセプタ性を有する物質としては、電子吸引基(ハロゲン基やシアノ基)を有する化合物を用いることができ、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F4-TCNQ)、3,6-ジフルオロ-2,5,7,7,8,8-ヘキサシアノキノジメタン、クロラニル、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称:HAT-CN)、1,3,4,5,7,8-ヘキサフルオロテトラシアノ-ナフトキノジメタン(略称:F6-TCNNQ)等の電子吸引基を有する化合物等を用いることができる。アクセプタ性を有する有機化合物としては、HAT-CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’-1,2,3-シクロプロパントリイリデントリス[4-シアノ-2,3,5,6-テトラフルオロベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,6-ジクロロー3,5-ジフルオロ-4-(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,3,4,5,6-ペンタフルオロベンゼンアセトニトリル]などが挙げられる。アクセプタ性を有する物質としては以上で述べた有機化合物以外にも、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。この他、フタロシアニン(略称:H2Pc)や銅フタロシアニン(CuPC)等のフタロシアニン系の錯体化合物、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)等の芳香族アミン化合物、或いはポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)等の高分子等によっても正孔注入層111を形成することができる。アクセプタ性を有する物質は、隣接する正孔輸送層(あるいは正孔輸送材料)から、電界の印加により電子を引き抜くことができる。
【0110】
また、正孔注入層111として、正孔輸送性を有する物質にアクセプタ性物質を含有させた複合材料を用いることもできる。なお、正孔輸送性の物質にアクセプタ性物質を含有させた複合材料を用いることにより、仕事関数に依らず電極を形成する材料を選ぶことができる。つまり、第1の電極101として仕事関数の大きい材料だけでなく、仕事関数の小さい材料も用いることができるようになる。当該アクセプタ性物質としては、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F4-TCNQ)、クロラニル、1,3,4,5,7,8-ヘキサフルオロテトラシアノ-ナフトキノジメタン(略称:F6-TCNNQ)等のアクセプタ性を有する有機化合物や、遷移金属酸化物を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物も用いることができる。元素周期表における第4族乃至第8族に属する金属の酸化物としては、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが電子受容性の高さから好ましい。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。
【0111】
複合材料に用いる正孔輸送性の物質としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の有機化合物を用いることができる。なお、複合材料に用いる正孔輸送性の物質としては、10-6cm2/Vs以上の正孔移動度を有する物質であることが好ましい。以下では、複合材料における正孔輸送性の物質として用いることのできる有機化合物を具体的に列挙する。
【0112】
複合材料に用いることのできる芳香族アミン化合物としては、N,N’-ジ(p-トリル)-N,N’-ジフェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)、1,1-ビス-(4-ビス(4-メチル-フェニル)-アミノ-フェニル)-シクロヘキサン(略称:TAPC)等を挙げることができる。カルバゾール誘導体としては、具体的には、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニルアントラセン-9-イル)フェニル]-9H-カルバゾール(略称:CzPA)、1,4-ビス[4-(N-カルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等を用いることができる。芳香族炭化水素としては、例えば、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、2-tert-ブチル-9,10-ジ(1-ナフチル)アントラセン、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、2-tert-ブチル-9,10-ビス(4-フェニルフェニル)アントラセン(略称:t-BuDBA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラセン(略称:DPAnth)、2-tert-ブチルアントラセン(略称:t-BuAnth)、9,10-ビス(4-メチル-1-ナフチル)アントラセン(略称:DMNA)、2-tert-ブチル-9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、2,3,6,7-テトラメチル-9,10-ジ(1-ナフチル)アントラセン、2,3,6,7-テトラメチル-9,10-ジ(2-ナフチル)アントラセン、9,9’-ビアントリル、10,10’-ジフェニル-9,9’-ビアントリル、10,10’-ビス(2-フェニルフェニル)-9,9’-ビアントリル、10,10’-ビス[(2,3,4,5,6-ペンタフェニル)フェニル]-9,9’-ビアントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン等が挙げられる。また、この他、ペンタセン、コロネン等も用いることができる。ビニル骨格を有していてもよい。ビニル基を有している芳香族炭化水素としては、例えば、4,4’-ビス(2,2-ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10-ビス[4-(2,2-ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。なお、本発明の一態様の有機化合物も用いることができる。なお、この場合、アクセプタ性物質としては、F6-TCNNQを用いることが好ましい。
【0113】
また、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物を用いることもできる。
【0114】
なお、実施の形態1で開示した本発明の一態様の有機化合物も正孔輸送性を有する材料であり、当該複合材料に用いる正孔輸送性の物質として好適に用いることができる。本発明の一態様の有機化合物を用いることによってEL層103内部に屈折率の低い層を形成することができ、発光素子の外部量子効率の向上させることができる。
【0115】
なお、上記複合材料にさらにアルカリ金属又はアルカリ土類金属のフッ化物を混合(好ましくは当該層中のフッ素原子の原子比率が20%以上)することによって、当該層の屈折率を低下させることができる。これによっても、EL層103内部に屈折率の低い層を形成することができ、発光素子の外部量子効率の向上させることができる。
【0116】
正孔注入層111を形成することによって、正孔の注入性が良好となり、駆動電圧の小さい発光素子を得ることができる。また、アクセプタ性を有する有機化合物は蒸着が容易で成膜がしやすいため、用いやすい材料である。
【0117】
正孔輸送層112は、正孔輸送性を有する材料を含んで形成される。正孔輸送性を有する材料としては、1×10-6cm2/Vs以上の正孔移動度を有していることが好ましい。正孔輸送層112には本発明の一態様の有機化合物を含んでいることが好ましい。実施の形態1に記載の有機化合物を正孔輸送層112に含むことによって、EL層103内部に屈折率の低い層を形成することができ、発光素子の外部量子効率の向上させることが可能となる。
【0118】
上記正孔輸送性を有する材料としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)-トリフェニルアミン(略称:PCBANB)、4、4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-スピロ-9,9’-ビフルオレン-2-アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。なお、正孔注入層111の複合材料に用いられる正孔輸送性を有する材料として挙げた物質も正孔輸送層112を構成する材料として好適に用いることができる。
【0119】
発光層113は、ホスト材料と発光材料を含む層である。発光材料は蛍光発光物質であっても、りん光発光物質であっても、熱活性化遅延蛍光(TADF)を示す物質であっても、その他の発光材料であっても構わない。また、単層であっても、異なる発光材料が含まれる複数の層からなっていても良い。
【0120】
発光層113において、蛍光発光物質として用いることが可能な材料としては、例えば以下のようなものが挙げられる。また、これ以外の蛍光発光物質も用いることができる。
【0121】
5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリジン(略称:PAP2BPy)、5,6-ビス[4’-(10-フェニル-9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(略称:PAPP2BPy)、N,N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6FLPAPrn)、N,N’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]-ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、ペリレン、2,5,8,11-テトラ-tert-ブチルペリレン(略称:TBP)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン](略称:DPABPA)、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:2PCAPPA)、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン(略称:DBC1)、クマリン30、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、9,10-ビス(1,1’-ビフェニル-2-イル)-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)、クマリン545T、N,N’-ジフェニルキナクリドン(略称:DPQd)、ルブレン、5,12-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェニルテトラセン(略称:BPT)、2-(2-{2-[4-(ジメチルアミノ)フェニル]エテニル}-6-メチル-4H-ピラン-4-イリデン)プロパンジニトリル(略称:DCM1)、2-{2-メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)、2-{2-イソプロピル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTI)、2-{2-tert-ブチル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTB)、2-(2,6-ビス{2-[4-(ジメチルアミノ)フェニル]エテニル}-4H-ピラン-4-イリデン)プロパンジニトリル(略称:BisDCM)、2-{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:BisDCJTM)、N,N’-ジフェニル-N,N’-(1,6-ピレン-ジイル)ビス[(6-フェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン](略称:1,6BnfAPrn-03)などが挙げられる。特に、1,6FLPAPrnや1,6mMemFLPAPrn、1,6BnfAPrn-03のようなピレンジアミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効率や信頼性に優れているため好ましい。
【0122】
発光層113において、りん光発光物質として用いることが可能な材料としては、例えば以下のようなものが挙げられる。
【0123】
トリス{2-[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル)-4H-1,2,4-トリアゾール-3-イル-κN2]フェニル-κC}イリジウム(III)(略称:[Ir(mpptz-dmp)3])、トリス(5-メチル-3,4-ジフェニル-4H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)3])、トリス[4-(3-ビフェニル)-5-イソプロピル-3-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz-3b)3])のような4H-トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3-メチル-1-(2-メチルフェニル)-5-フェニル-1H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1-mp)3])、トリス(1-メチル-5-フェニル-3-プロピル-1H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1-Me)3])のような1H-トリアゾール骨格を有する有機金属イリジウム錯体や、fac-トリス[(1-2,6-ジイソプロピルフェニル)-2-フェニル-1H-イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)3])、トリス[3-(2,6-ジメチルフェニル)-7-メチルイミダゾ[1,2-f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt-Me)3])のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2-[3’,5’-ビス(トリフルオロメチル)フェニル]ピリジナト-N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CF3ppy)2(pic)])、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。これらは青色のりん光発光を示す化合物であり、440nmから520nmに発光のピークを有する化合物である。
【0124】
また、トリス(4-メチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)3])、トリス(4-t-ブチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)3])、(アセチルアセトナト)ビス(6-メチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)2(acac)])、(アセチルアセトナト)ビス(6-tert-ブチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)2(acac)])、(アセチルアセトナト)ビス[6-(2-ノルボルニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)2(acac)])、(アセチルアセトナト)ビス[5-メチル-6-(2-メチルフェニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)2(acac)])、(アセチルアセトナト)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)2(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-Me)2(acac)])、(アセチルアセトナト)ビス(5-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-iPr)2(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:[Ir(ppy)3])、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)2(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)2(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)3])、トリス(2-フェニルキノリナト-N,C2’)イリジウム(III)(略称:[Ir(pq)3])、ビス(2-フェニルキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)2(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)3(Phen)])のような希土類金属錯体が挙げられる。これらは主に緑色のりん光発光を示す化合物であり、500nmから600nmに発光のピークを有する。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。
【0125】
また、(ジイソブチリルメタナト)ビス[4,6-ビス(3-メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)2(dibm)])、ビス[4,6-ビス(3-メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)2(dpm)])、ビス[4,6-ジ(ナフタレン-1-イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(d1npm)2(dpm)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)2(acac)])、ビス(2,3,5-トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)2(dpm])])、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)2(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)(略称:[Ir(piq)3])、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)2(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)3(Phen)])、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)3(Phen)])のような希土類金属錯体が挙げられる。これらは、赤色のりん光発光を示す化合物であり、600nmから700nmに発光のピークを有する。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
【0126】
また、以上で述べたりん光性化合物の他、公知のりん光性発光材料を選択し、用いてもよい。
【0127】
TADF材料としてはフラーレン及びその誘導体、アクリジン及びその誘導体、エオシン誘導体等を用いることができる。またマグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンとしては、例えば、以下の構造式に示されるプロトポルフィリン-フッ化スズ錯体(SnF2(Proto IX))、メソポルフィリン-フッ化スズ錯体(SnF2(Meso IX))、ヘマトポルフィリン-フッ化スズ錯体(SnF2(Hemato IX))、コプロポルフィリンテトラメチルエステル-フッ化スズ錯体(SnF2(Copro III-4Me))、オクタエチルポルフィリン-フッ化スズ錯体(SnF2(OEP))、エチオポルフィリン-フッ化スズ錯体(SnF2(Etio I))、オクタエチルポルフィリン-塩化白金錯体(PtCl2OEP)等も挙げられる。
【0128】
【0129】
また、以下の構造式に示される2-(ビフェニル-4-イル)-4,6-ビス(12-フェニルインドロ[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(略称:PIC-TRZ)や、9-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:PCCzTzn)、9-[4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:PCCzPTzn)、2-[4-(10H-フェノキサジン-10-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:PXZ-TRZ)、3-[4-(5-フェニル-5,10-ジヒドロフェナジン-10-イル)フェニル]-4,5-ジフェニル-1,2,4-トリアゾール(略称:PPZ-3TPT)、3-(9,9-ジメチル-9H-アクリジン-10-イル)-9H-キサンテン-9-オン(略称:ACRXTN)、ビス[4-(9,9-ジメチル-9,10-ジヒドロアクリジン)フェニル]スルホン(略称:DMAC-DPS)、10-フェニル-10H,10’H-スピロ[アクリジン-9,9’-アントラセン]-10’-オン(略称:ACRSA)、等のπ電子過剰型複素芳香環とπ電子不足型複素芳香環の両方を有する複素環化合物も用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が共に高く、好ましい。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプタ性が共に強くなり、S1準位とT1準位のエネルギー差が小さくなるため、熱活性化遅延蛍光を効率よく得られることから特に好ましい。なお、π電子不足型複素芳香環の代わりに、シアノ基のような電子吸引基が結合した芳香環を用いても良い。
【0130】
【0131】
発光層のホスト材料としては、電子輸送性を有する材料や正孔輸送性を有する材料など様々なキャリア輸送材料を用いることができる。
【0132】
正孔輸送性を有する材料としては、上記正孔輸送層112に含まれる正孔輸送性を有する材料として挙げた物質を好適に用いることができる。
【0133】
電子輸送性を有する材料としては、例えば、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール(略称:CO11)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(略称:mDBTBIm-II)などのポリアゾール骨格を有する複素環化合物や、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、4,6-ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6-ビス〔3-(4-ジベンゾチエニル)フェニル〕ピリミジン(略称:4,6mDBTP2Pm-II)などのジアジン骨格を有する複素環化合物や、3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5-トリ[3-(3-ピリジル)-フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
【0134】
蛍光発光物質を発光材料として用いる場合、ホスト材料としては、アントラセン骨格を有する材料が好適である。アントラセン骨格を有する物質を蛍光発光物質のホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現することが可能である。アントラセン骨格を有する材料はHOMO準位が深い材料が多い為、本発明の一態様を好適に適用することができる。ホスト材料として用いるアントラセン骨格を有する物質としては、ジフェニルアントラセン骨格、特に9,10-ジフェニルアントラセン骨格を有する物質が化学的に安定であるため好ましい。また、ホスト材料がカルバゾール骨格を有する場合、正孔の注入・輸送性が高まるため好ましいが、カルバゾールにベンゼン環がさらに縮合したベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなるためより好ましい。特に、ホスト材料がジベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなる上に、正孔輸送性にも優れ、耐熱性も高くなるため好適である。したがって、さらにホスト材料として好ましいのは、9,10-ジフェニルアントラセン骨格およびカルバゾール骨格(あるいはベンゾカルバゾール骨格やジベンゾカルバゾール骨格)を同時に有する物質である。なお、上記の正孔注入・輸送性の観点から、カルバゾール骨格に換えて、ベンゾフルオレン骨格やジベンゾフルオレン骨格を用いてもよい。このような物質の例としては、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)、3-[4-(1-ナフチル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPN)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)ビフェニル-4’-イル}アントラセン(略称:FLPPA)等が挙げられる。特に、CzPA、cgDBCzPA、2mBnfPPA、PCzPAは非常に良好な特性を示すため、好ましい選択である。
【0135】
なお、ホスト材料は複数種の物質を混合した材料であっても良く、混合したホスト材料を用いる場合は、電子輸送性を有する材料と、正孔輸送性を有する材料とを混合することが好ましい。電子輸送性を有する材料と、正孔輸送性を有する材料を混合することによって、発光層113の輸送性を容易に調整することができ、再結合領域の制御も簡便に行うことができる。正孔輸送性を有する材料と電子輸送性を有する材料の含有量の比は、正孔輸送性を有する材料:電子輸送性を有する材料=1:9~9:1とすればよい。
【0136】
また、これら混合された材料同士で励起錯体を形成しても良い。当該励起錯体は発光材料の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光が得られるため好ましい。また、当該構成を用いることで駆動電圧も低下するため好ましい。
【0137】
電子輸送層114は、電子輸送性を有する物質を含む層である。電子輸送性を有する物質としては、上記ホスト材料に用いることが可能な電子輸送性を有する物質として挙げたものを用いることができる。
【0138】
電子輸送層114と第2の電極102との間に、電子注入層115として、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属又はアルカリ土類金属又はそれらの化合物を含む層を設けても良い。電子注入層115は、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させたものや、エレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。
【0139】
なお、電子注入層115として、電子輸送性を有する物質(好ましくはビピリジン骨格を有する有機化合物)に上記アルカリ金属又はアルカリ土類金属のフッ化物を微結晶状態となる濃度以上(50wt%以上)含ませた層を用いることも可能である。当該層は、屈折率の低い層であることから、より外部量子効率の良好な発光素子を提供することが可能となる。
【0140】
また、電子注入層115の代わりに電荷発生層116を設けても良い(
図1(B))。電荷発生層116は、電位をかけることによって当該層の陰極側に接する層に正孔を、陽極側に接する層に電子を注入することができる層のことである。電荷発生層116には、少なくともP型層117が含まれる。P型層117は、上述の正孔注入層111を構成することができる材料として挙げた複合材料を用いて形成することが好ましい。またP型層117は、複合材料を構成する材料として上述したアクセプタ材料を含む膜と正孔輸送材料を含む膜とを積層して構成しても良い。P型層117に電位をかけることによって、電子輸送層114に電子が、陰極である第2の電極102に正孔が注入され、発光素子が動作する。また、本発明の一態様の有機化合物は屈折率が低い有機化合物であることから、P型層117に用いることによって、外部量子効率の良好な発光素子を得ることができる。
【0141】
なお、電荷発生層116はP型層117の他に電子リレー層118及び電子注入バッファ層119のいずれか一又は両方がもうけられていることが好ましい。
【0142】
電子リレー層118は少なくとも電子輸送性を有する物質を含み、電子注入バッファ層119とP型層117との相互作用を防いで電子をスムーズに受け渡す機能を有する。電子リレー層118に含まれる電子輸送性を有する物質のLUMO準位は、P型層117におけるアクセプタ性物質のLUMO準位と、電子輸送層114における電荷発生層116に接する層に含まれる物質のLUMO準位との間であることが好ましい。電子リレー層118に用いられる電子輸送性を有する物質におけるLUMO準位の具体的なエネルギー準位は-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下とするとよい。なお、電子リレー層118に用いられる電子輸送性を有する物質としてはフタロシアニン系の材料又は金属-酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
【0143】
電子注入バッファ層119には、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))等の電子注入性の高い物質を用いることが可能である。
【0144】
また、電子注入バッファ層119が、電子輸送性を有する物質とドナー性物質を含んで形成される場合には、ドナー性物質として、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもできる。なお、電子輸送性を有する物質としては、先に説明した電子輸送層114を構成する材料と同様の材料を用いて形成することができる。
【0145】
第2の電極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、第2の電極102と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ等様々な導電性材料を第2の電極102として用いることができる。これら導電性材料は、真空蒸着法やスパッタリング法などの乾式法、インクジェット法、スピンコート法等を用いて成膜することが可能である。また、ゾル-ゲル法を用いて湿式法で形成しても良いし、金属材料のペーストを用いて湿式法で形成してもよい。
【0146】
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用いることができる。例えば、真空蒸着法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット法またはスピンコート法など用いても構わない。
【0147】
また上述した各電極または各層を異なる成膜方法を用いて形成しても構わない。
【0148】
なお、第1の電極101と第2の電極102との間に設けられる層の構成は、上記のものには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属とが近接することによって生じる消光が抑制されるように、第1の電極101および第2の電極102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好ましい。
【0149】
また、発光層113に接する正孔輸送層や電子輸送層、特に発光層113における再結合領域に近いキャリア輸送層は、発光層で生成した励起子からのエネルギー移動を抑制するため、そのバンドギャップが発光層を構成する発光材料もしくは、発光層に含まれる発光材料が有するバンドギャップより大きいバンドギャップを有する物質で構成することが好ましい。
【0150】
続いて、複数の発光ユニットを積層した構成の発光素子(積層型素子、タンデム型素子ともいう)の態様について、
図1(C)を参照して説明する。この発光素子は、陽極と陰極との間に、複数の発光ユニットを有する発光素子である。一つの発光ユニットは、
図1(A)で示したEL層103とほぼ同様な構成を有する。つまり、
図1(C)で示す発光素子は複数の発光ユニットを有する発光素子であり、
図1(A)又は
図1(B)で示した発光素子は、1つの発光ユニットを有する発光素子であるということができる。
【0151】
図1(C)において、陽極501と陰極502との間には、第1の発光ユニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511と第2の発光ユニット512との間には電荷発生層513が設けられている。陽極501と陰極502はそれぞれ
図1(A)における第1の電極101と第2の電極102に相当し、
図1(A)の説明で述べたものと同じものを適用することができる。また、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異なる構成であってもよい。
【0152】
電荷発生層513は、陽極501と陰極502に電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入する機能を有する。すなわち、
図1(C)において、陽極の電位の方が陰極の電位よりも高くなるように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を注入し、第2の発光ユニット512に正孔を注入するものであればよい。
【0153】
電荷発生層513は、
図1(B)にて説明した電荷発生層116と同様の構成で形成することが好ましい。有機化合物と金属酸化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。なお、発光ユニットの陽極側の面が電荷発生層513に接している場合は、電荷発生層513が発光ユニットの正孔注入層の役割も担うことができるため、発光ユニットは正孔注入層を設けなくとも良い。
【0154】
また、電荷発生層513に電子注入バッファ層119を設ける場合、当該電子注入バッファ層119が陽極側の発光ユニットにおける電子注入層の役割を担うため、陽極側の発光ユニットには必ずしも電子注入層を形成する必要はない。
【0155】
図1(C)では、2つの発光ユニットを有する発光素子について説明したが、3つ以上の発光ユニットを積層した発光素子についても、同様に適用することが可能である。本実施の形態に係る発光素子のように、一対の電極間に複数の発光ユニットを電荷発生層513で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
【0156】
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光素子全体として、所望の色の発光を得ることができる。例えば、2つの発光ユニットを有する発光素子において、第1の発光ユニットで赤と緑の発光色、第2の発光ユニットで青の発光色を得ることで、発光素子全体として白色発光する発光素子を得ることも可能である。
【0157】
また、上述のEL層103や第1の発光ユニット511、第2の発光ユニット512及び電荷発生層などの各層や電極は、例えば、蒸着法(真空蒸着法を含む)、液滴吐出法(インクジェット法ともいう)、塗布法、グラビア印刷法等の方法を用いて形成することができる。また、それらは低分子材料、中分子材料(オリゴマー、デンドリマーを含む)、または高分子材料を含んでも良い。
【0158】
(実施の形態3)
本実施の形態では、実施の形態2に記載の発光素子を用いた発光装置について説明する。
【0159】
本実施の形態では、実施の形態2に記載の発光素子を用いて作製された発光装置について
図2を用いて説明する。なお、
図2(A)は、発光装置を示す上面図、
図2(B)は
図2(A)をA-BおよびC-Dで切断した断面図である。この発光装置は、発光素子の発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
【0160】
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
【0161】
次に、断面構造について
図2(B)を用いて説明する。素子基板610上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601と、画素部602中の一つの画素が示されている。
【0162】
素子基板610はガラス、石英、有機樹脂、金属、合金、半導体などからなる基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いて作製すればよい。
【0163】
画素や駆動回路に用いられるトランジスタの構造は特に限定されない。例えば、逆スタガ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよい。また、トップゲート型のトランジスタでもボトムゲート型トランジスタでもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、シリコン、ゲルマニウム、炭化シリコン、窒化ガリウム等を用いることができる。または、In-Ga-Zn系金属酸化物などの、インジウム、ガリウム、亜鉛のうち少なくとも一つを含む酸化物半導体を用いてもよい。
【0164】
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
【0165】
ここで、上記画素や駆動回路に設けられるトランジスタの他、後述するタッチセンサ等に用いられるトランジスタなどの半導体装置には、酸化物半導体を適用することが好ましい。特にシリコンよりもバンドギャップの広い酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップの広い酸化物半導体を用いることで、トランジスタのオフ状態における電流を低減できる。
【0166】
上記酸化物半導体は、少なくともインジウム(In)又は亜鉛(Zn)を含むことが好ましい。また、In-M-Zn系酸化物(MはAl、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)で表記される酸化物を含む酸化物半導体であることがより好ましい。
【0167】
特に、半導体層として、複数の結晶部を有し、当該結晶部はc軸が半導体層の被形成面、または半導体層の上面に対し垂直に配向し、且つ隣接する結晶部間には粒界を有さない酸化物半導体膜を用いることが好ましい。
【0168】
半導体層としてこのような材料を用いることで、電気特性の変動が抑制され、信頼性の高いトランジスタを実現できる。
【0169】
また、上述の半導体層を有するトランジスタはその低いオフ電流により、トランジスタを介して容量に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、各表示領域に表示した画像の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された電子機器を実現できる。
【0170】
トランジスタの特性安定化等のため、下地膜を設けることが好ましい。下地膜としては、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜などの無機絶縁膜を用い、単層で又は積層して作製することができる。下地膜はスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法、印刷法等を用いて形成できる。なお、下地膜は、必要で無ければ設けなくてもよい。
【0171】
なお、FET623は駆動回路部601に形成されるトランジスタの一つを示すものである。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成すれば良い。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる。
【0172】
また、画素部602はスイッチング用FET611と、電流制御用FET612とそのドレインに電気的に接続された第1の電極613とを含む複数の画素により形成されているが、これに限定されず、3つ以上のFETと、容量素子とを組み合わせた画素部としてもよい。
【0173】
なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ型の感光性アクリル樹脂膜を用いることにより形成することができる。
【0174】
また、後に形成するEL層等の被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アクリル樹脂を用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm~3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用することができる。
【0175】
第1の電極613上には、EL層616、および第2の電極617がそれぞれ形成されている。ここで、陽極として機能する第1の電極613に用いる材料としては、仕事関数の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したインジウム錫酸化物膜、2~20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタン膜とアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。
【0176】
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。EL層616は、実施の形態2で説明したような構成を含んでいる。また、EL層616を構成する他の材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
【0177】
さらに、EL層616上に形成され、陰極として機能する第2の電極617に用いる材料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化合物(MgAg、MgIn、AlLi等)等)を用いることが好ましい。なお、EL層616で生じた光が第2の電極617を透過させる場合には、第2の電極617として、膜厚を薄くした金属薄膜と、透明導電膜(ITO、2~20wt%の酸化亜鉛を含む酸化インジウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いるのが良い。
【0178】
なお、第1の電極613、EL層616、第2の電極617でもって、発光素子が形成されている。当該発光素子は実施の形態2に記載の発光素子である。なお、画素部は複数の発光素子が形成されてなっているが、本実施の形態における発光装置では、実施の形態2に記載の発光素子と、それ以外の構成を有する発光素子の両方が混在していても良い。
【0179】
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素子618が備えられた構造になっている。なお、空間607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材で充填される場合もある。封止基板には凹部を形成し、そこに乾燥材を設けことで水分の影響による劣化を抑制することができ、好ましい構成である。
【0180】
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。
【0181】
図2には示されていないが、第2の電極上に保護膜を設けても良い。保護膜は有機樹脂膜や無機絶縁膜で形成すればよい。また、シール材605の露出した部分を覆うように、保護膜が形成されていても良い。また、保護膜は、一対の基板の表面及び側面、封止層、絶縁層、等の露出した側面を覆って設けることができる。
【0182】
保護膜には、水などの不純物を透過しにくい材料を用いることができる。したがって、水などの不純物が外部から内部に拡散することを効果的に抑制することができる。
【0183】
保護膜を構成する材料としては、酸化物、窒化物、フッ化物、硫化物、三元化合物、金属またはポリマー等を用いることができ、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、酸化ランタン、酸化珪素、チタン酸ストロンチウム、酸化タンタル、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化スカンジウム、酸化エルビウム、酸化バナジウムまたは酸化インジウム等を含む材料や、窒化アルミニウム、窒化ハフニウム、窒化珪素、窒化タンタル、窒化チタン、窒化ニオブ、窒化モリブデン、窒化ジルコニウムまたは窒化ガリウム等を含む材料、チタンおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む酸化物、アルミニウムおよび亜鉛を含む酸化物、マンガンおよび亜鉛を含む硫化物、セリウムおよびストロンチウムを含む硫化物、エルビウムおよびアルミニウムを含む酸化物、イットリウムおよびジルコニウムを含む酸化物等を含む材料を用いることができる。
【0184】
保護膜は、段差被覆性(ステップカバレッジ)の良好な成膜方法を用いて形成することが好ましい。このような手法の一つに、原子層堆積(ALD:Atomic Layer Deposition)法がある。ALD法を用いて形成することができる材料を、保護膜に用いることが好ましい。ALD法を用いることで緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える保護膜を形成することができる。また、保護膜を形成する際に加工部材に与える損傷を、低減することができる。
【0185】
例えばALD法を用いて保護膜を形成することで、複雑な凹凸形状を有する表面や、タッチパネルの上面、側面及び裏面にまで均一で欠陥の少ない保護膜を形成することができる。
【0186】
以上のようにして、実施の形態2に記載の発光素子を用いて作製された発光装置を得ることができる。
【0187】
本実施の形態における発光装置は、実施の形態2に記載の発光素子を用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態2に記載の発光素子は発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
【0188】
図3には白色発光を呈する発光素子を形成し、着色層(カラーフィルタ)等を設けることによってフルカラー化した発光装置の例を示す。
図3(A)には基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光素子の第1の電極1024W、1024R、1024G、1024B、隔壁1025、EL層1028、発光素子の第2の電極1029、封止基板1031、シール材1032などが図示されている。
【0189】
また、
図3(A)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)は透明な基材1033に設けている。また、ブラックマトリクス1035をさらに設けても良い。着色層及びブラックマトリクスが設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、着色層、及びブラックマトリクス1035は、オーバーコート層1036で覆われている。また、
図3(A)においては、光が着色層を透過せずに外部へと出る発光層と、各色の着色層を透過して外部に光が出る発光層とがあり、着色層を透過しない光は白、着色層を透過する光は赤、緑、青となることから、4色の画素で映像を表現することができる。
【0190】
図3(B)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示した。このように、着色層は基板1001と封止基板1031の間に設けられていても良い。
【0191】
また、以上に説明した発光装置では、FETが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型の発光装置の断面図を
図4に示す。この場合、基板1001は光を通さない基板を用いることができる。FETと発光素子の陽極とを接続する接続電極を作製するまでは、ボトムエミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極1022を覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の公知の材料を用いて形成することができる。
【0192】
発光素子の第1の電極1024W、1024R、1024G、1024Bはここでは陽極とするが、陰極であっても構わない。また、
図4のようなトップエミッション型の発光装置である場合、第1の電極を反射電極とすることが好ましい。EL層1028の構成は、実施の形態2においてEL層103として説明したような構成とし、且つ、白色の発光が得られるような素子構造とする。
【0193】
図4のようなトップエミッションの構造では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するようにブラックマトリクス1035を設けても良い。着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)やブラックマトリックスはオーバーコート層によって覆われていても良い。なお封止基板1031は透光性を有する基板を用いることとする。また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定されず、赤、黄、緑、青の4色や赤、緑、青の3色でフルカラー表示を行ってもよい。
【0194】
トップエミッション型の発光装置では、マイクロキャビティ構造の適用が好適に行える。マイクロキャビティ構造を有する発光素子は、第1の電極を反射電極、第2の電極を半透過・半反射電極とすることにより得られる。反射電極と半透過・半反射電極との間には少なくともEL層を有し、少なくとも発光領域となる発光層を有している。
【0195】
なお、反射電極は、可視光の反射率が40%乃至100%、好ましくは70%乃至100%であり、かつその抵抗率が1×10-2Ωcm以下の膜であるとする。また、半透過・半反射電極は、可視光の反射率が20%乃至80%、好ましくは40%乃至70%であり、かつその抵抗率が1×10-2Ωcm以下の膜であるとする。
【0196】
EL層に含まれる発光層から射出される発光は、反射電極と半透過・半反射電極とによって反射され、共振する。
【0197】
当該発光素子は、透明導電膜や上述の複合材料、キャリア輸送材料などの厚みを変えることで反射電極と半透過・半反射電極の間の光学的距離を変えることができる。これにより、反射電極と半透過・半反射電極との間において、共振する波長の光を強め、共振しない波長の光を減衰させることができる。
【0198】
なお、反射電極によって反射されて戻ってきた光(第1の反射光)は、発光層から半透過・半反射電極に直接入射する光(第1の入射光)と大きな干渉を起こすため、反射電極と発光層の光学的距離を(2n-1)λ/4(ただし、nは1以上の自然数、λは増幅したい発光の波長)に調節することが好ましい。当該光学的距離を調節することにより、第1の反射光と第1の入射光との位相を合わせ発光層からの発光をより増幅させることができる。
【0199】
なお、上記構成においてEL層は、複数の発光層を有する構造であっても、単一の発光層を有する構造であっても良く、例えば、上述のタンデム型発光素子の構成と組み合わせて、一つの発光素子に電荷発生層を挟んで複数のEL層を設け、それぞれのEL層に単数もしくは複数の発光層を形成する構成に適用してもよい。
【0200】
マイクロキャビティ構造を有することで、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。なお、赤、黄、緑、青の4色の副画素で映像を表示する発光装置の場合、黄色発光による輝度向上効果のうえ、全副画素において各色の波長に合わせたマイクロキャビティ構造を適用できるため良好な特性の発光装置とすることができる。
【0201】
本実施の形態における発光装置は、実施の形態2に記載の発光素子を用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態2に記載の発光素子は発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
【0202】
ここまでは、アクティブマトリクス型の発光装置について説明したが、以下からはパッシブマトリクス型の発光装置について説明する。
図5には本発明を適用して作製したパッシブマトリクス型の発光装置を示す。なお、
図5(A)は、発光装置を示す斜視図、
図5(B)は
図5(A)をX-Yで切断した断面図である。
図5において、基板951上には、電極952と電極956との間にEL層955が設けられている。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光素子の不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置においても、実施の形態2に記載の発光素子を用いており、信頼性の良好な発光装置、又は消費電力の小さい発光装置とすることができる。
【0203】
以上、説明した発光装置は、マトリクス状に配置された多数の微小な発光素子をそれぞれ制御することが可能であるため、画像の表現を行う表示装置として好適に利用できる発光装置である。
【0204】
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0205】
(実施の形態4)
本実施の形態では、実施の形態2に記載の発光素子を照明装置として用いる例を
図6を参照しながら説明する。
図6(B)は照明装置の上面図、
図6(A)は
図6(B)におけるe-f断面図である。
【0206】
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、第1の電極401が形成されている。第1の電極401は実施の形態2における第1の電極101に相当する。第1の電極401側から発光を取り出す場合、第1の電極401は透光性を有する材料により形成する。
【0207】
第2の電極404に電圧を供給するためのパッド412が基板400上に形成される。
【0208】
第1の電極401上にはEL層403が形成されている。EL層403は実施の形態2におけるEL層103の構成、又は発光ユニット511、512及び電荷発生層513を合わせた構成などに相当する。なお、これらの構成については当該記載を参照されたい。
【0209】
EL層403を覆って第2の電極404を形成する。第2の電極404は実施の形態2における第2の電極102に相当する。発光を第1の電極401側から取り出す場合、第2の電極404は反射率の高い材料によって形成される。第2の電極404はパッド412と接続することによって、電圧が供給される。
【0210】
以上、第1の電極401、EL層403、及び第2の電極404を有する発光素子を本実施の形態で示す照明装置は有している。当該発光素子は発光効率の高い発光素子であるため、本実施の形態における照明装置は消費電力の小さい照明装置とすることができる。
【0211】
以上の構成を有する発光素子が形成された基板400と、封止基板407とをシール材405、406を用いて固着し、封止することによって照明装置が完成する。シール材405、406はどちらか一方でもかまわない。また、内側のシール材406(
図6(B)では図示せず)には乾燥剤を混ぜることもでき、これにより、水分を吸着することができ、信頼性の向上につながる。
【0212】
また、パッド412と第1の電極401の一部をシール材405、406の外に伸張して設けることによって、外部入力端子とすることができる。また、その上にコンバーターなどを搭載したICチップ420などを設けても良い。
【0213】
以上、本実施の形態に記載の照明装置は、EL素子に実施の形態2に記載の発光素子を用いており、消費電力の小さい発光装置とすることができる。
【0214】
(実施の形態5)
本実施の形態では、実施の形態2に記載の発光素子をその一部に含む電子機器の例について説明する。実施の形態2に記載の発光素子は発光効率が良好であり、消費電力の小さい発光素子である。その結果、本実施の形態に記載の電子機器は、消費電力が小さい発光部を有する電子機器とすることが可能である。
【0215】
上記発光素子を適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。これらの電子機器の具体例を以下に示す。
【0216】
図7(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体7101に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体7101を支持した構成を示している。表示部7103により、映像を表示することが可能であり、表示部7103は、実施の形態2に記載の発光素子をマトリクス状に配列して構成されている。
【0217】
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7110により行うことができる。リモコン操作機7110が備える操作キー7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110から出力する情報を表示する表示部7107を設ける構成としてもよい。
【0218】
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0219】
図7(B1)はコンピュータであり、本体7201、筐体7202、表示部7203、キーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。なお、このコンピュータは、実施の形態2に記載の発光素子をマトリクス状に配列して表示部7203に用いることにより作製される。
図7(B1)のコンピュータは、
図7(B2)のような形態であっても良い。
図7(B2)のコンピュータは、キーボード7204、ポインティングデバイス7206の代わりに第2の表示部7210が設けられている。第2の表示部7210はタッチパネル式となっており、第2の表示部7210に表示された入力用の表示を指や専用のペンで操作することによって入力を行うことができる。また、第2の表示部7210は入力用表示だけでなく、その他の画像を表示することも可能である。また表示部7203もタッチパネルであっても良い。二つの画面がヒンジで接続されていることによって、収納や運搬をする際に画面を傷つける、破損するなどのトラブルの発生も防止することができる。
【0220】
図7(C)は、携帯端末の一例である携帯電話機を示している。携帯電話機は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機は、実施の形態2に記載の発光素子をマトリクス状に配列して作製された表示部7402を有している。
【0221】
図7(C)に示す携帯端末は、表示部7402を指などで触れることで、情報を入力することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
【0222】
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
【0223】
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
【0224】
また、携帯端末内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯端末の向き(縦か横か)を判断して、表示部7402の画面表示を自動的に切り替えるようにすることができる。
【0225】
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
【0226】
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
【0227】
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
【0228】
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態4に示した構成を適宜組み合わせて用いることができる。
【0229】
以上の様に実施の形態2に記載の発光素子を備えた発光装置の適用範囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。実施の形態2に記載の発光素子を用いることにより消費電力の小さい電子機器を得ることができる。
【0230】
図8(A)は、掃除ロボットの一例を示す模式図である。
【0231】
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
【0232】
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
【0233】
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
【0234】
ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
【0235】
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。また、ディスプレイ5101の表示をスマートフォンなどの携帯電子機器で確認することもできる。
【0236】
本発明の一態様の発光装置はディスプレイ5101に用いることができる。
【0237】
図8(B)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
【0238】
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
【0239】
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。また、ディスプレイ2105は取り外しのできる情報端末であっても良く、ロボット2100の定位置に設置することで、充電およびデータの受け渡しを可能とする。
【0240】
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。本発明の一態様の発光装置はディスプレイ2105に用いることができる。
【0241】
図8(C)はゴーグル型ディスプレイの一例を表す図である。ゴーグル型ディスプレイは、例えば、筐体5000、表示部5001、スピーカ5003、LEDランプ5004、接続端子5006、センサ5007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン5008、表示部5002、支持部5012、イヤホン5013等を有する。
【0242】
本発明の一態様の発光装置は表示部5001および表示部5002に用いることができる。
【0243】
図9は、実施の形態2に記載の発光素子を、照明装置である電気スタンドに用いた例である。
図9に示す電気スタンドは、筐体2001と、光源2002を有し、光源2002としては、実施の形態4に記載の照明装置を用いても良い。
【0244】
図10は、実施の形態2に記載の発光素子を、室内の照明装置3001として用いた例である。実施の形態2に記載の発光素子は発光効率の高い発光素子であるため、消費電力の小さい照明装置とすることができる。また、実施の形態2に記載の発光素子は大面積化が可能であるため、大面積の照明装置として用いることができる。また、実施の形態2に記載の発光素子は、薄型であるため、薄型化した照明装置として用いることが可能となる。
【0245】
実施の形態2に記載の発光素子は、自動車のフロントガラスやダッシュボードにも搭載することができる。
図11に実施の形態2に記載の発光素子を自動車のフロントガラスやダッシュボードに用いる一態様を示す。表示領域5200乃至表示領域5203は実施の形態2に記載の発光素子を用いて設けられた表示である。
【0246】
表示領域5200と表示領域5201は自動車のフロントガラスに設けられた実施の形態2に記載の発光素子を搭載した表示装置である。実施の形態2に記載の発光素子は、第1の電極と第2の電極を透光性を有する電極で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても、視界の妨げになることなく設置することができる。なお、駆動のためのトランジスタなどを設ける場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いると良い。
【0247】
表示領域5202はピラー部分に設けられた実施の形態2に記載の発光素子を搭載した表示装置である。表示領域5202には、車体に設けられた撮像手段からの映像を映し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に、ダッシュボード部分に設けられた表示領域5203は車体によって遮られた視界を、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。見えない部分を補完するように映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
【0248】
表示領域5203はまたナビゲーション情報、速度計や回転計、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更することができる。なお、これら情報は表示領域5200乃至表示領域5202にも設けることができる。また、表示領域5200乃至表示領域5203は照明装置として用いることも可能である。
【0249】
また、
図12(A)、(B)に、折りたたみ可能な携帯情報端末5150を示す。折りたたみ可能な携帯情報端末5150は筐体5151、表示領域5152および屈曲部5153を有している。
図12(A)に展開した状態の携帯情報端末5150を示す。
図12(B)に折りたたんだ状態の携帯情報端末を示す。携帯情報端末5150は、大きな表示領域5152を有するにも関わらず、折りたためばコンパクトで可搬性に優れる。
【0250】
表示領域5152は屈曲部5153により半分に折りたたむことができる。屈曲部5153は伸縮可能な部材と複数の支持部材とで構成されており、折りたたむ場合は、伸縮可能な部材が伸び、屈曲部5153は2mm以上、好ましくは3mm以上の曲率半径を有して折りたたまれる。
【0251】
なお、表示領域5152は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。本発明の一態様の発光装置を表示領域5152に用いることができる。
【0252】
また、
図13(A)~(C)に、折りたたみ可能な携帯情報端末9310を示す。
図13(A)に展開した状態の携帯情報端末9310を示す。
図13(B)に展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。
図13(C)に折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
【0253】
表示パネル9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示パネル9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示パネル9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示パネル9311に用いることができる。
【実施例0254】
≪合成例1≫
本実施例では、本発明の一態様である有機化合物、4,4’-(1,1-シクロヘキサン-ジイル)ビス[N,N-ビス(4-シクロヘキシルベンゼン-1-イル)アミノベンゼン](略称:TAPC-02)の合成方法について説明する。なお、TAPC-02の構造を以下に示す。
【0255】
【0256】
<ステップ1:4,4’-(1,1-シクロヘキサン-ジイル)ビス[N,N-ビス(4-シクロヘキシルベンゼン-1-イル)アミノベンゼン]の合成>
三口フラスコに1,1-ビス(4-アミノフェニル)シクロヘキサン5.3g(20mmol)、4-シクロヘキシル-1-ブロモベンゼン21.0g(88mmol)、ナトリウム tert-ブトキシド25.4g(264mmol)、キシレン混合物400mLを入れ、減圧下で脱気処理をした後、フラスコ内を窒素置換した。この混合物を約50℃まで加熱撹拌した。ここで、アリル塩化パラジウム二量体(II)(略称:(AllylPdCl)2)293mg(0.8mmol)、ジ-tert-ブチル(1-メチル-2,2-ジフェニルシクロプロピル)ホスフィン(商品名:cBRIDP(登録商標))1128mg(3.2mmol)を加え、この混合物を、6時間加熱還流させた。その後、フラスコの温度を約60℃に戻し、水約4mLを加え、析出した固体をろ別し、トルエンで洗浄した。ろ液を濃縮し、得られたキシレン溶液をシリカゲルカラムクロマトグラフィーで精製した。得られた溶液を濃縮し、濃厚なトルエン溶液を得た。このトルエン溶液をエタノールに滴下し、再沈殿した。約0℃にて析出物をろ過し、得られた固体を約75℃で減圧乾燥させ、目的物である白色固体を16.5g、収率92%で得た。また、ステップ1の合成スキームを以下に示す。
【0257】
【0258】
なお、上記ステップ1で得られた白色固体の核磁気共鳴分光法(
1H-NMR)による分析結果を下記および
図14に示す。このことから、ステップ1において、4,4’-(1,1-シクロヘキサン-ジイル)ビス[N,N-ビス(4-シクロヘキシルベンゼン-1-イル)アミノベンゼン]が合成できたことがわかった。
【0259】
1H-NMR.δ(CDCl3):7.02-7.11(m,12H),6.91-7.00(m,12H),2.39-2.47(brm,4H),2.16-2.21(brm,4H),1.78-1.91(brm,16H),1.69-1.76(brm,4H),1.51-1.57(brm,4H),1.45-1.51(brm,2H),1.31-1.42(brm,16H),1.17-1.28(brm,4H).
【0260】
次に、得られた固体6.0gをトレインサブリメーション法により昇華精製した。昇華精製としては、圧力3.0Pa、アルゴン流量12.3mL/minの条件で、355℃で加熱して行った。昇華精製後、微黄白色固体を4.5g、回収率74%で得た。
【0261】
次に、TAPC-02のトルエン溶液および固体薄膜の吸収スペクトル及び発光スペクトルを測定した。固体薄膜は石英基板上に真空蒸着法にて作製した。吸収スペクトルの測定には、紫外可視分光光度計(溶液:日本分光株式会社製、V-550、薄膜:(株)日立ハイテクノロジーズ製、U-4100)を用いた。なお溶液の吸収スペクトルは、石英セルにトルエンのみを入れて測定した吸収スペクトルを差し引いて算出し、薄膜の吸収スペクトルは、基板を含めた透過率と反射率から求めた吸光度(-log10 [%T/(100-%R)]より算出した。なお%Tは透過率、%Rは反射率を表す。また、発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。
【0262】
得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を
図15に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を
図16に示す。
【0263】
次に、有機化合物、TAPC-02を液体クロマトグラフ質量分析(Liquid Chromatography Mass Spectrometry(略称:LC/MS分析))によって質量(MS)分析した。
【0264】
LC/MS分析は、LC(液体クロマトグラフィー)分離をウォーターズ社製Acquity UPLC(登録商標)により、MS分析(質量分析)をウォーターズ社製Xevo G2 Tof MSにより行った。LC分離で用いたカラムはAcquity UPLC BEH C4 (2.1×100mm 1.7μm)、カラム温度は40℃とした。移動相は移動相Aをアセトニトリル、移動相Bを0.1%ギ酸水溶液とした。また、サンプルは任意の濃度のTAPC-02をトルエンに溶解し、アセトニトリルで希釈して調整し、注入量は5.0μLとした。
【0265】
LC分離は、測定開始後0分から10分における移動相Aと移動相Bとの比が移動相A:移動相B=95:5となるようにした。
【0266】
MS分析では、エレクトロスプレーイオン化法(ElectroSpray Ionization(略称:ESI))によるイオン化を行った。この時のキャピラリー電圧は3.0kV、サンプルコーン電圧は30Vとし、検出はポジティブモードで行った。以上の条件でイオン化されたm/z=899の成分を衝突室(コリジョンセル)内でアルゴンガスに衝突させてプロダクトイオンに解離させた。アルゴンに衝突させる際のエネルギー(コリジョンエネルギー)は70eVとした。なお、測定する質量範囲はm/z(質量電荷の比)=100~1000とした。
図17に解離させたプロダクトイオンを飛行時間(TOF)型MSで検出した結果を示す。
【0267】
図17の結果から、TAPC-02は、主としてm/z=899付近にプロダクトイオンが検出されることがわかった。なお、
図17に示す結果は、TAPC-02に由来する特徴的な結果を示すものであることから、混合物中に含まれるTAPC-02を同定する上での重要なデータであるといえる。
【0268】
なお、コリジョンエネルギー70eVで測定した際に観測されたm/z=566のフラグメントイオンは、TAPC-02のC-N結合が切断されて生成した、4,4’-(1,1-シクロヘキサン-ジイル)[N-ビス(4-シクロヘキシルベンゼン-1-イル)アミノベンゼン][N´-(4-シクロヘキシルベンゼン-1-イル)アミノベンゼン]と推定され、TAPC-02の特徴の1つである。
【0269】
合成したTAPC-02の屈折率と、屈折率の小さい有機化合物として知られている1,1-ビス-(4-ビス(4-メチル-フェニル)-アミノ-フェニル)-シクロヘキサン(略称:TAPC)と、の屈折率を
図38に示す。なお、屈折率nには、常光線の屈折率であるn Ordinaryと異常光線の屈折率であるn Extra-ordinaryと、両者の平均値であるn averageがある。本明細書で単に「屈折率」と記載した場合、異方性解析を行わなかった場合はn averageを、n Ordinaryと読み替えても構わない。尚、n Ordinaryの値を2倍した値と、n Extra-ordinaryの値の和を3で割った値がn averageである。
【0270】
図38のように、本発明の一態様の有機化合物であるTAPC-02は、非常に屈折率の低い有機化合物であることがわかった。
【0271】
次に、TAPC-02、及びTAPCのガラス転移温度(Tg)について、示差走査熱量分析装置(DSC)で測定した。測定の結果、TAPC-02のTgは119℃、TAPCのTgは85℃であった。このことより、TAPC-02は、良好な耐熱性を示すことがわかった。
<ステップ2:4,4’-(1,1-シクロヘキサン-ジイル)ビス{N-(4-シクロヘキシルフェニル)N-[(4’-シクロヘキシル)-1,1’-ビフェニル-4-イル]アミノベンゼン}(略称:TAPC-03)の合成>
三口フラスコに4,4’-(1,1-シクロヘキサン-ジイル)ビス{N-(4-シクロヘキシルフェニル)アミノベンゼン}5.8g(10mmol)、4’-シクロヘキシル-(1,1’-ビフェニル)-4-クロロベンゼン5.4g(20mmol)、ナトリウム tert-ブトキシド5.8g(60mmol)、キシレン混合物70mLを入れ、減圧下で脱気処理をした後、フラスコ内を窒素置換した。この混合物を約50℃まで加熱撹拌した。ここで、アリル塩化パラジウム二量体(II)(略称:(AllylPdCl)2)73mg(0.2mmol)、ジ-tert-ブチル(1-メチル-2,2-ジフェニルシクロプロピル)ホスフィン(略称:cBRIDP)280mg(0.8mmol)を加え、この混合物を、8時間加熱還流させた。その後、フラスコの温度を約60℃に戻し、水約2mLを加え、析出した固体をろ別し、トルエンで洗浄した。ろ液を濃縮し、得られたキシレン溶液をシリカゲルカラムクロマトグラフィーで精製した。得られた溶液を濃縮し、濃厚なトルエン溶液を得た。このトルエン溶液をエタノールに滴下し、再沈殿した。約0℃にて析出物をろ過し、得られた固体を約75℃で減圧乾燥させ、目的物である白色固体を5.8g、収率約100%で得た。また、ステップ2の合成スキームを以下に示す。