IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シャープ株式会社の特許一覧

<>
  • 特開-端末装置および基地局装置 図1
  • 特開-端末装置および基地局装置 図2
  • 特開-端末装置および基地局装置 図3
  • 特開-端末装置および基地局装置 図4
  • 特開-端末装置および基地局装置 図5
  • 特開-端末装置および基地局装置 図6
  • 特開-端末装置および基地局装置 図7
  • 特開-端末装置および基地局装置 図8
  • 特開-端末装置および基地局装置 図9
  • 特開-端末装置および基地局装置 図10
  • 特開-端末装置および基地局装置 図11
  • 特開-端末装置および基地局装置 図12
  • 特開-端末装置および基地局装置 図13
  • 特開-端末装置および基地局装置 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023166647
(43)【公開日】2023-11-22
(54)【発明の名称】端末装置および基地局装置
(51)【国際特許分類】
   H04L 27/26 20060101AFI20231115BHJP
   H04W 72/044 20230101ALI20231115BHJP
   H04W 72/1268 20230101ALI20231115BHJP
   H04W 72/0446 20230101ALI20231115BHJP
   H04B 1/713 20110101ALI20231115BHJP
【FI】
H04L27/26 114
H04W72/04 134
H04W72/12 150
H04W72/04 131
H04B1/713
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2020174911
(22)【出願日】2020-10-16
(71)【出願人】
【識別番号】000005049
【氏名又は名称】シャープ株式会社
(74)【代理人】
【識別番号】100160783
【弁理士】
【氏名又は名称】堅田 裕之
(72)【発明者】
【氏名】中村 理
【テーマコード(参考)】
5K067
【Fターム(参考)】
5K067AA22
5K067EE02
5K067EE10
5K067EE61
(57)【要約】
【課題】繰り返し送信において、効率的な参照信号の伝送を行うこと。
【解決手段】
基地局装置宛に繰り返し送信によって送信を行う端末装置であって、前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
【選択図】図6
【特許請求の範囲】
【請求項1】
基地局装置宛に繰り返し送信によって送信を行う端末装置であって、
前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、
前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、
前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する端末装置。
【請求項2】
前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される請求項1記載の端末装置。
【請求項3】
前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる請求項1記載の端末装置。
【請求項4】
前記周波数ホッピングは、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する端末装置請求項1から3に記載の端末装置。
【請求項5】
端末装置宛に繰り返し送信によって送信を行う基地局装置であって、
前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、
前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、
前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する基地局装置。
【請求項6】
前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される請求項1記載の基地局装置。
【請求項7】
前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる請求項5記載の基地局装置。
【請求項8】
前記周波数ホッピングは、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する端末装置請求項5から7に記載の基地局装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、端末装置および基地局装置に関する。
【背景技術】
【0002】
3GPP(Third Generation Partnership Project)で仕様化されたNR(New Radio)の通信システムでは、複数のOFDMシンボルから構成されるスロット内に、1または複数のDMRS(Demodulation Reference Signal)が含まれるOFDMシンボルを挿入する仕様になっている。送信されたスロットを受信した受信機は、スロット内のDMRSを用いてチャネル推定を行い、スロット内のデータ信号を復調する。
【0003】
また、NRリリース15では、通信信頼性向上およびカバレッジ拡大のため、スロット間繰り返し送信が仕様化されている。スロット間繰り返しでは、複数のスロットで同一のデータを繰り返し送信することができる。ただし、繰り返し送信を行うのに複数のスロットが必要となるため、遅延性の面で問題があった。そこでNRリリース16では、スロット内繰り返し送信が仕様化された。スロット内繰り返し送信では、スロット内に繰り返し単位を複数回設定し送信を行うことができる。
【0004】
Rel-16までの仕様では、チャネル推定に用いることができるDMRSは、繰り返し単位内、あるいはスロット内に限られていたが、異なる繰り返し単位、あるいは異なるスロットに含まれるDMRSを使用することでチャネル推定精度を大幅に改善することができる。そこでNRリリース17では、異なる繰り返し単位、あるいは異なるスロットに含まれるDMRSを使用することを可能とするDMRSバンドリング(DMRSシェアリング)の検討が行われている。(非特許文献1)
【0005】
NRの仕様では、繰り返し送信毎に使用する周波数を変更する周波数ホッピングが採用されている。周波数を変更することで、チャネルの状況が送信側で未知な場合において、周波数ダイバーシチ効果により良好な特性を得ることができる。ただし、スロット間周波数ホッピング等によって周波数を変更した場合、上記のDMRSバンドリングを用いたチャネル推定精度の改善を見込むことができない。そこでスロット単位で周波数を変更するのではなく、複数のスロット単位で周波数ホッピングを適用する方法が提案されている。(非特許文献2)これにより周波数ホッピングを適用しつつ、DMRSバンドリングによる高精度なチャネル推定を行うことが可能となる。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】Qualcomm, “Potential techniques for coverage enhancements,” 3GPP TSG-RAN WG1 Meeting #101, R1-2004499, May 2020.
【非特許文献2】Intel, “Discussion on potential techniques for PUSCH coverage enhancement,” 3GPP TSG-RAN WG1 Meeting #102-e, R1-2005889, August 2020.
【発明の概要】
【発明が解決しようとする課題】
【0007】
非特許文献2において、複数スロット毎に周波数ホッピングを適用し、該複数スロットにDMRSバンドリングを適用することで、高いチャネル推定精度を獲得しつつ、周波数ホッピングによる周波数ダイバーシチも獲得する方法が提案されてはいるが、実際に適用するにはどのように制御し、どのような制御情報をやり取りするかを検討する必要がある
【0008】
本発明はこのような事情を鑑みてなされたものであり、その目的は、DMRSバンドリングを効果的に適用できるようにすることで、効率的にカバレッジ拡大を行うことにある。
【課題を解決するための手段】
【0009】
上述した課題を解決するために本発明に係る基地局装置、端末装置および通信方法の構成は、次の通りである。
【0010】
(1)本発明の一態様は、基地局装置宛に繰り返し送信によって送信を行う端末装置であって、
前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
(2)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される。
(3)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる。
(4)本発明の一態様は、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
(5)本発明の一態様は、端末装置宛に繰り返し送信によって送信を行う基地局装置であって、
前記繰り返し送信における名目上の繰り返し数と繰り返し送信において送信周波数を変更するための周波数ホッピング法を設定する上位層処理部と、前記名目上の繰り返し数に基づいて実際の繰り返し数を決定し、該実際の繰り返し数の送信を行う送信部を備え、前記送信部は、DMRSバンドリングを適用する繰り返し数と前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
(6)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、前記上位層処理部によって設定される。
(7)本発明の一態様は、前記DMRSバンドリングを適用する繰り返し数は、上位層処理部で設定されるリダンダンシーバージョン系列と関連付けられる。
(8)本発明の一態様は、前記周波数ホッピングは、前記周波数ホッピング法が所定の方法を示すときに適用され、前記所定の方法以外を示す場合、前記送信部は、前記名目上の繰り返し数に基づいて周波数ホッピングを適用する。
【発明の効果】
【0011】
本発明の一又は複数の態様によれば、通信信頼性を向上させたり、通信のカバレッジを拡大したりすることができる。
【図面の簡単な説明】
【0012】
図1】本実施形態に係る通信システム1の構成例を示す図である。
図2】本実施形態に係る基地局装置の構成例を示す図である。
図3】本実施形態に係る端末装置の構成例を示す図である。
図4】第一の実施形態に係る周波数ホッピングの一例を示す図である。
図5】第一の実施形態に係る名目上の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。
図6】第一の実施形態に係る実際の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。
図7】第一の実施形態に係る、無効なシンボルおよび実際の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。
図8】第一の実施形態に係る、無効なシンボルを複数含む場合の実際の繰り返しインデックスに基づく周波数ホッピングの一例を示す図である。
図9】第二の実施形態に係る、実際の繰り返しインデックスに基づく周波数ホッピングを適用した場合のRVの一例を示す図である。
図10】第二の実施形態に係るRVに基づいた周波数ホッピングの一例を示す図である。
図11】第三の実施形態に係る名目上の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。
図12】第三の実施形態に係る実際の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。
図13】第三の実施形態に係る、無効なシンボルを含む場合の名目上の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。
図14】第三の実施形態に係る、複数の無効なシンボルを含む場合の名目上の繰り返しインデックスに基づいた周波数ホッピングの一例を示す図である。
【発明を実施するための形態】
【0013】
本実施形態に係る通信システムは、基地局装置(セル、スモールセル、サービングセル、コンポーネントキャリア、eNodeB、Home eNodeB、gNodeB)および端末装置(端末、移動端末、UE:User Equipment)を備える。該通信システムにおいて、下りリンクの場合、基地局装置は送信装置(送信点、送信アンテナ群、送信アンテナポート群、TRP(Tx/Rx Point))となり、端末装置は受信装置(受信点、受信端末、受信アンテナ群、受信アンテナポート群)となる。上りリンクの場合、基地局装置は受信装置となり、端末装置は送信装置となる。前記通信システムは、D2D(Device-to-Device、sidelink)通信にも適用可能である。その場合、送信装置も受信装置も共に端末装置になる。
【0014】
前記通信システムは、人間が介入する端末装置と基地局装置間のデータ通信に限定されるものに限定されない。つまり、MTC(Machine Type Communication)、M2M通信(Machine-to-Machine Communication)、IoT(Internet of Things)用通信、NB-IoT(Narrow Band-IoT)等(以下、MTCと呼ぶ)の人間の介入を必要としないデータ通信の形態にも、適用することができる。この場合、端末装置がMTC端末となる。前記通信システムは、上りリンク及び下りリンクにおいて、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)等のマルチキャリア伝送方式を用いることができる。前記通信システムは、上りリンクにおいて、Transform precoderに関する上位層パラメータが設定された場合、Transform precodingを適用、つまりDFTを適用するDFTS-OFDM(Discrete Fourier Transform Spread - Orthogonal Frequency
Division Multiplexing、SC-FDMAとも称される)等の伝送方式を用いる。なお、以下では、上りリンク及び下りリンクにおいて、OFDM伝送方式を用いた場合で説明するが、これに限らず、他の伝送方式を適用することができる。
【0015】
本実施形態における基地局装置及び端末装置は、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンド、及び/又は、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドで通信する
ことができる。
【0016】
本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
【0017】
(第1の実施形態)
図1は、本実施形態に係る通信システム1の構成例を示す図である。本実施形態における通信システム1は、基地局装置10、端末装置20を備える。カバレッジ10aは、基地局装置10が端末装置20と接続(通信)可能な範囲(通信エリア)である(セルとも呼ぶ)。なお、基地局装置10は、カバレッジ10aにおいて、複数の端末装置20を収容することができる。
【0018】
図1において、上りリンク無線通信r30は、少なくとも以下の上りリンク物理チャネルを含む。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理上りリンク制御チャネル(PUCCH)
・物理上りリンク共有チャネル(PUSCH)
・物理ランダムアクセスチャネル(PRACH)
【0019】
PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクデータに対する肯定応答(positive acknowledgement: ACK)/否定応答(Negative acknowledgement:
NACK)を含む。ここで下りリンクデータとは、Downlink transport block、 Medium Access Control Protocol Data Unit: MAC PDU、 Downlink-Shared Channel: DL-SCH、 Physical Downlink Shared Channel: PDSCH等を示す。ACK/NACKは、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)、HARQフィードバック、HARQ応答、または、HARQ制御情報、送達確認を示す信号とも称される。
【0020】
NRは、少なくともPUCCHフォーマット0、PUCCHフォーマット1、PUCCHフォーマット2、PUCCHフォーマット3、PUCCHフォーマット4という5つのフォーマットをサポートする。PUCCHフォーマット0およびPUCCHフォーマット2は、1または2のOFDMシンボルから構成され、それ以外のPUCCHは4~14のOFDMシンボルから構成される。またPUCCHフォーマット0およびPUCCHフォーマット1の帯域幅12サブキャリアから構成される。また、PUCCHフォーマット0では、12サブキャリアかつ1OFDMシンボル(あるいは2OFDMシンボル)のリソースエレメントで1ビット(あるいは2ビット)のACK/NACKが送信される。
【0021】
上りリンク制御情報は、初期送信のためのPUSCH(Uplink-Shared Channel: UL-SCH)リソースを要求するために用いられるスケジューリングリクエスト(Scheduling Request: SR)を含む。スケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求することを示す。
【0022】
上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information:
CSI)を含む。前記下りリンクのチャネル状態情報は、好適な空間多重数(レイヤ数)を示すランク指標(Rank Indicator: RI)、好適なプレコーダを示すプレコーディング行列指標(Precoding Matrix Indicator: PMI)、好適な伝送レートを指定するチャネル品質指標(Channel Quality Indicator: CQI)などを含む。前記PMIは、端末装置によって決定されるコードブックを示す。該コードブックは、物理下りリンク共有チャネルのプレコーディングに関連する。
【0023】
NRでは、上位層パラメータRI制限を設定することができる。RI制限には複数の設定パラメータが存在し、1つはタイプ1シングルパネルRI制限であり、8ビットで構成される。ビットマップパラメータであるタイプ1シングルパネルRI制限は、ビット系列r、…r、rを形成する。ここでr、はMSB(Most Significant Bit)であり、r、はLSB(Least Significant Bit)である。riがゼロの時(iは0、1、…7)、i+1レイヤに関連付いたプリコーダに対応するPMIとRIレポーティングは許容されない。RI制限にはタイプ1シングルパネルRI制限の他にタイプ1マルチパネルRI制限があり、4ビットで構成される。ビットマップパラメータであるタイプ1マルチパネルRI制限は、ビット系列r、r、r、rを形成する。ここでr、はMSBであり、r、はLSBである。riがゼロの時(iは0、1、2、3)、i+1レイヤに関連付いたプリコーダに対応するPMIとRIレポーティングは許容されない。
【0024】
前記CQIは、所定の帯域における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMAMなど)、符号化率(coding rate)、および周波数利用効率を指し示すインデックス(CQIインデックス)を用いることができる。端末装置は、PDSCHのトランスポートブロックがブロック誤り確率(BLER)=0.1を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。ただし上位層シグナリングによって所定のCQIテーブルが設定された場合には、BLER=0.00001を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。
【0025】
PUSCHは、上りリンクデータ(Uplink Transport Block、Uplink-Shared Channel:
UL-SCH)を送信するために用いられる物理チャネルであり、伝送方式としては、CP-OFDM、もしくはDFT-S-OFDMが適用される。PUSCHは、前記上りリンクデータと共に、下りリンクデータに対するHARQ-ACKおよび/またはチャネル状態情報等の制御情報を送信するために用いられてもよい。PUSCHは、チャネル状態情報のみを送信するために用いられてもよい。PUSCHはHARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。
【0026】
PUSCHは、無線リソース制御(Radio Resource Control: RRC)シグナリングを送信するために用いられる。RRCシグナリングは、RRCメッセージ/RRC層の情報/RRC層の信号/RRC層のパラメータ/RRC情報要素とも称される。RRCシグナリングは、無線リソース制御層において処理される情報/信号である。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のシグナリングを用いて送信される。RRCメッセージは、端末装置のUE Capabilityを含めることができる。UE Capabilityは、該端末装置がサポートする機能を示す情報である。
【0027】
PUSCHは、MAC CE(Medium Access Control Element)を送信するために用いられる。MAC CEは、媒体アクセス制御層(Medium Access Control layer)において処理(送信)される情報/信号である。例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されてもよい。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられる。RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。RRCシグナリング、および/または、MAC CEは、トランスポートブロックに含まれる。
【0028】
PRACHは、ランダムアクセスに用いるプリアンブルを送信するために用いられる。PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられる。
【0029】
上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク参照信号には、復調用参照信号(Demodulation Reference Signal: DMRS)、サウンディング参照信号(Sounding Reference Signal: SRS)、位相追従信号(Phase Tracking Reference Signal: PTRS)等が含まれる。DMRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。例えば、基地局装置10は、物理上りリンク共有チャネル/物理上りリンク制御チャネルを復調するとき、伝搬路推定/伝搬路補正を行うために復調用参照信号を使用する。
【0030】
SRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連しない。基地局装置10は、上りリンクのチャネル状態を測定(CSI Measurement)するためにSRSを使用する。
【0031】
PTRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。基地局装置10は、位相追従のためにPTRSを使用する。
【0032】
図1において、下りリンクr31の無線通信では、少なくとも以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理報知チャネル(PBCH)
・物理下りリンク制御チャネル(PDCCH)
・物理下りリンク共有チャネル(PDSCH)
【0033】
PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB、 Broadcast Channel: BCH)を報知するために用いられる。MIBはシステム情報の1つである。例えば、MIBは、下りリンク送信帯域幅設定、システムフレーム番号(SFN:System Frame number)を含む。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。
【0034】
PDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報は、用途に基づいた複数のフォーマット(DCIフォーマットとも称する)が定義される。1つのDCIフォーマットを構成するDCIの種類やビット数に基づいて、DCIフォーマットは定義されてもよい。各フォーマットは、用途に応じて使われる。下りリンク制御情報は、下りリンクデータ送信のための制御情報と上りリンクデータ送信のための制御情報を含む。下りリンクデータ送信のためのDCIフォーマットは、下りリンクアサインメント(または、下りリンクグラント)とも称する。上りリンクデータ送信のためのDCIフォーマットは、上りリンクグラント(または、上りリンクアサインメント)とも称する。
【0035】
1つの下りリンクアサインメントは、1つのサービングセル内の1つのPDSCHのスケジューリングに用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと同じスロット内のPDSCHのスケジューリングのために少なくとも用いら
れてもよい。下りリンクアサインメントには、PDSCHのための周波数領域リソース割り当て、時間領域リソース割り当て、PDSCHに対するMCS(Modulation and Coding Scheme)、初期送信または再送信を指示するNDI(New Data Indicator)、下りリンクにおけるHARQプロセス番号を示す情報、誤り訂正符号化時にコードワードに加えられた冗長性の量を示すRedudancy versionなどの下りリンク制御情報が含まれる。コードワードは、誤り訂正符号化後のデータである。下りリンクアサインメントはPUCCHに対する送信電力制御(TPC:Transmission Power Control)コマンド、PUSCHに対するTPCコマンドを含めてもよい。上りリンクグラントは、PUSCHを繰り返し送信する回数を示すアグリゲーションレベル(送信繰り返し回数)を含めてもよい。なお、各下りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。
【0036】
1つの上りリンクグラントは、1つのサービングセル内の1つのPUSCHのスケジューリングを端末装置に通知するために用いられる。上りリンクグラントは、PUSCHを送信するためのリソースブロック割り当てに関する情報(リソースブロック割り当ておよびホッピングリソース割り当て)、時間領域リソース割り当て、PUSCHのMCSに関する情報(MCS/Redundancy version)、DMRSポートに関する情報、PUSCHの再送に関する情報、PUSCHに対するTPCコマンド、下りリンクのチャネル状態情報(Channel State Information: CSI)要求(CSI request)、など上りリンク制御情報を含む。上りリンクグラントは、上りリンクにおけるHARQプロセス番号を示す情報、リダンダンシーバージョンを示す情報、PUCCHに対する送信電力制御(TPC:Transmission Power Control)コマンド、PUSCHに対するTPCコマンドを含めてもよい。なお、各上りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。
【0037】
DMRSシンボルを送信するOFDMシンボル番号(ポジション)は、イントラ周波数ホッピングが適用されず、PUSCHマッピングタイプAの場合、スロットの初めのOFDMシンボルとそのスロットでスケジュールされたPUSCHリソースの最後のOFDMシンボルの間のシグナリングされた期間によって与えられる。イントラ周波数ホッピングが適用されず、PUSCHマッピングタイプBの場合、DMRSシンボルを送信するOFDMシンボル番号(ポジション)は、スケジュールされたPUSCHリソース期間によって与えられる。イントラ周波数ホッピングが適用される場合、ホップあたりの期間で与えられる。PUSCHマッピングタイプAに関して、先頭のDMRSのポジションを示す上位層パラメータが2である場合のみ、追加のDMRS数を示す上位層パラメータが3の場合がサポートされる。またPUSCHマッピングタイプAに関して、4シンボル期間は、先頭のDMRSのポジションを示す上位層パラメータが2である場合のみ適用可能である。
【0038】
PDCCHは、下りリンク制御情報に巡回冗長検査(Cyclic Redundancy Check: CRC)を付加して生成される。PDCCHにおいて、CRCパリティビットは、所定の識別子を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ)される。パリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、CS(Configured Scheduling)-RNTI、Temporary C-RNTI、P(Paging)-RNTI、SI(System Information)-RNTI、またはRA(Random Access)-RNTI、SP-CSI(Semi-Persistent Channel State-Information)-RNTI、MCS-C-RNTIでスクランブルされる。C-RNTIおよびCS-RNTIは、セル内において端末装置を識別するための識別子である。Temporary C-RNTIは、コンテンションベースランダムアクセス手順(contention based random access procedure)中に、ランダムアクセスプリアンブルを送信した端末装置を識別するための識別子である。C-RNTIおよびTemporary C-RNTIは、単一のサブフレームにおけるPD
SCH送信またはPUSCH送信を制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。ここでCS-RNTIでスクランブリングされたPDCCH(DCIフォーマット)は、CSタイプ2をアクティベートあるいはディアクティベートするために用いられる。一方、CSタイプ1ではCS-RNTIでスクランブリングされたPDCCHに含まれる制御情報(MCSや無線リソース割当等)は、CSに関する上位層パラメータに含め、該上位層パラメータによってCSのアクティベート(設定)を行う。P-RNTIは、ページングメッセージ(Paging Channel: PCH)を送信するために用いられる。SI-RNTIは、SIBを送信するために用いられる。RA-RNTIは、ランダムアクセスレスポンス(ランダムアクセスプロシジャーにおけるメッセージ2)を送信するために用いられる。SP-CSI-RNTIは、準静的なCSIレポーティングのために用いられる。MCS-C-RNTIは、低いスペクトル効率のMCSテーブルを選択する際に用いられる。
【0039】
PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。PDSCHは、システムインフォメーションメッセージ(System Information Block: SIBとも称する。)を送信するために用いられる。SIBの一部又は全部は、RRCメッセージに含めることができる。
【0040】
PDSCHは、RRCシグナリングを送信するために用いられる。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通(セル固有)であってもよい。すなわち、そのセル内のユーザ装置共通な情報は、セル固有のRRCシグナリングを使用して送信される。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のメッセージ(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。
【0041】
PDSCHは、MAC CEを送信するために用いられる。RRCシグナリングおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。
【0042】
図1の下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。
【0043】
同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路推定/伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、PBCH、PDSCH、PDCCHを復調するために用いられる。下りリンク参照信号は、端末装置が、下りリンクのチャネル状態の測定(CSI measurement)するために用いることもできる。
【0044】
下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。
【0045】
BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。MAC層で用いられるト
ランスポートチャネルの単位を、トランスポートブロック(TB:Transport Block)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。
【0046】
図2は、本実施形態に係る基地局装置10の構成の概略ブロック図である。基地局装置10は、上位層処理部(上位層処理ステップ)102、制御部(制御ステップ)104、送信部(送信ステップ)106、送信アンテナ108、受信アンテナ110、受信部(受信ステップ)112を含んで構成される。送信部106は、上位層処理部102から入力される論理チャネルに応じて、物理下りリンクチャネルを生成する。送信部106は、符号化部(符号化ステップ)1060、変調部(変調ステップ)1062、下りリンク制御信号生成部(下りリンク制御信号生成ステップ)1064、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1066、多重部(多重ステップ)1068、および無線送信部(無線送信ステップ)1070を含んで構成される。受信部112は、物理上りリンクチャネルを検出し(復調、復号など)、その内容を上位層処理部102に入力する。受信部112は、無線受信部(無線受信ステップ)1120、伝搬路推定部(伝搬路推定ステップ)1122、多重分離部(多重分離ステップ)1124、等化部(等化ステップ)1126、復調部(復調ステップ)1128、復号部(復号ステップ)1130を含んで構成される。
【0047】
上位層処理部102は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。上位層処理部102は、送信部106および受信部112の制御を行なうために必要な情報を生成し、制御部104に出力する。上位層処理部102は、下りリンクデータ(DL-SCHなど)、システム情報(MIB、 SIB)などを送信部106に出力する。なお、DMRS構成情報はRRC等の上位レイヤによる通知ではなく、システム情報(MIBあるいはSIB)によって端末装置に通知してもよい。
【0048】
上位層処理部102は、ブロードキャストするシステム情報(MIB、又はSIBの一部)を生成、又は上位ノードから取得する。上位層処理部102は、BCH/DL-SCHとして、前記ブロードキャストするシステム情報を送信部106に出力する。前記MIBは、送信部106において、PBCHに配置される。前記SIBは、送信部106において、PDSCHに配置される。上位層処理部102は、端末装置固有のシステム情報(SIB)を生成し、又は上位の―度から取得する。該SIBは、送信部106において、PDSCHに配置される。
【0049】
上位層処理部102は、各端末装置のための各種RNTIを設定する。前記RNTIは、PDCCH、PDSCHなどの暗号化(スクランブリング)に用いられる。上位層処理部102は、前記RNTIを、制御部104/送信部106/受信部112に出力する。
【0050】
上位層処理部102は、PDSCHに配置される下りリンクデータ(トランスポートブロック、DL-SCH)、端末装置固有のシステムインフォメーション(System Information Block: SIB)、RRCメッセージ、MAC CE、DMRS構成情報がSIBやMIBのようなシステム情報や、DCIで通知されない場合はDMRS構成情報などを生成、又は上位ノードから取得し、送信部106に出力する。上位層処理部102は、端末装置20の各種設定情報の管理をする。なお、無線リソース制御の機能の一部は、MACレイヤや物理レイヤで行われてもよい。
【0051】
上位層処理部102は、端末装置がサポートする機能(UE capability)等、端末装置に関する情報を端末装置20(受信部112を介して)から受信する。端末装置20は、自身の機能を基地局装置10に上位層の信号(RRCシグナリング)で送信する。端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。
【0052】
端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しないようにしてよい。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。
【0053】
上位層処理部102は、受信部112から復号後の上りリンクデータ(CRCも含む)からDL-SCHを取得する。上位層処理部102は、端末装置が送信した前記上りリンクデータに対して誤り検出を行う。例えば、該誤り検出はMAC層で行われる。
【0054】
制御部104は、上位層処理部102/受信部112から入力された各種設定情報に基づいて、送信部106および受信部112の制御を行なう。制御部104は、上位層処理部102/受信部112から入力された設定情報に基づいて、下りリンク制御情報(DCI)を生成し、送信部106に出力する。例えば制御部104は、上位層処理部102/受信部112から入力されたDMRSに関する設定情報(DMRS構成1であるかDMRS構成2であるか)を考慮して、DMRSの周波数配置(DMRS構成1の場合は偶数サブキャリアあるいは奇数サブキャリア、DMRS構成2の場合は第0~第2のセットのいずれか)を設定し、DCIを生成する。
【0055】
制御部104は、伝搬路推定部1122で測定されたチャネル品質情報(CSI Measurement結果)を考慮して、PUSCHのMCSを決定する。制御部104は、前記PUSCHのMCSに対応するMCSインデックスを決定する。制御部104は、決定したMCSインデックスをアップリンクグラントに含める。
【0056】
送信部106は、上位層処理部102/制御部104から入力された信号に従って、PBCH、PDCCH、PDSCHおよび下りリンク参照信号などを生成する。符号化部1060は、上位層処理部102から入力されたBCH、DL-SCHなどを、予め定められた/上位層処理部102が決定した符号化方式を用いて、ブロック符号、畳み込み符号、ターボ符号、ポーラ符号化、LDPC符号などによる符号化(リピティションを含む)を行なう。符号化部1060は、制御部104から入力された符号化率に基づいて、符号化ビットをパンクチャリングする。変調部1062は、符号化部1060から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた/制御部104から入力された変調方式(変調オーダー)でデータ変調する。該変調オーダーは、制御部104で選択された前記MCSインデックスに基づく。
【0057】
下りリンク制御信号生成部1064は、制御部104から入力されたDCIに対してCRCを付加する。下りリンク制御信号生成部1064は、前記CRCに対して、RNTIを用いて暗号化(スクランブリング)を行う。さらに、下りリンク制御信号生成部1064は、前記CRCが付加されたDCIに対してQPSK変調を行い、PDCCHを生成する。下りリンク参照信号生成部1066は、端末装置が既知の系列を下りリンク参照信号
として生成する。前記既知の系列は、基地局装置10を識別するための物理セル識別子などの基に予め定められた規則で求まる。
【0058】
多重部1068は、PDCCH/下りリンク参照信号/変調部1062から入力される各チャネルの変調シンボルを多重する。つまり、多重部1068は、PDCCH/下りリンク参照信号を各チャネルの変調シンボルをリソースエレメントにマッピングする。マッピングするリソースエレメントは、前記制御部104から入力される下りリンクスケジューリングによって制御される。リソースエレメントは、1つのOFDMシンボルと1つのサブキャリアからなる物理リソースの最小単位である。なお、複数のリソースエレメントによってリソースブロック(RB)が構成され、RBを最小単位としてスケジューリングが適用される。なお、MIMO伝送を行う場合、送信部106は符号化部1060および変調部1062をレイヤ数具備する。この場合、上位層処理部102は、各レイヤのトランスポートブロック毎にMCSを設定する。
【0059】
無線送信部1070は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成する。無線送信部1070は、前記OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成する。さらに、無線送信部1070は、前記ディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送信アンテナ108に出力して送信する。
【0060】
受信部112は、制御部104の指示に従って、受信アンテナ110を介して端末装置20からの受信信号を検出(分離、復調、復号)し、復号したデータを上位層処理部102/制御部104に入力する。無線受信部1120は、受信アンテナ110を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1120は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1120は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。前記周波数領域の信号は、多重分離部1124に出力される。
【0061】
多重分離部1124は、制御部104から入力される上りリンクのスケジューリングの情報(上りリンクデータチャネル割当て情報など)に基づいて、無線受信部1120から入力された信号をPUSCH、PUCCH及上りリンク参照信号などの信号に分離する。前記分離された上りリンク参照信号は、伝搬路推定部1122に入力される。前記分離されたPUSCH、PUCCHは、等化部1126に出力する。
【0062】
伝搬路推定部1122は、上りリンク参照信号を用いて、周波数応答(または遅延プロファイル)を推定する。復調用に伝搬路推定された周波数応答結果は、等化部1126へ入力される。伝搬路推定部1122は、上りリンク参照信号を用いて、上りリンクのチャネル状況の測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)の測定)を行う。上りリンクのチャネル状況の測定は、PUSCHのためのMCSの決定などに用いられる。
【0063】
等化部1126は、伝搬路推定部1122より入力された周波数応答より伝搬路での影響を補償する処理を行う。補償の方法としては、MMSE重みやMRC重みを乗算する方法や、MLDを適用する方法等、既存のいかなる伝搬路補償も適用することができる。復調部1128は、予め決められている/制御部104から指示される変調方式の情報に基
づき、復調処理を行う。
【0064】
復号部1130は、予め決められている符号化率/制御部104から指示される符号化率の情報に基づいて、前記復調部の出力信号に対して復号処理を行う。復号部1130は、復号後のデータ(UL-SCHなど)を上位層処理部102に入力する。
【0065】
図3は、本実施形態における端末装置20の構成を示す概略ブロック図である。端末装置20は、上位層処理部(上位層処理ステップ)202、制御部(制御ステップ)204、送信部(送信ステップ)206、送信アンテナ208、受信アンテナ210および受信部(受信ステップ)212を含んで構成される。
【0066】
上位層処理部202は、媒体アクセス制御(MAC)層、パケットデータ統合プロトコル(PDCP)層、無線リンク制御(RLC)層、無線リソース制御(RRC)層の処理を行なう。上位層処理部202は、自端末装置の各種設定情報の管理をする。上位層処理部202は、自端末装置がサポートしている端末装置の機能を示す情報(UE Capability)を、送信部206を介して、基地局装置10へ通知する。上位層処理部202は、UE CapabilityをRRCシグナリングで通知する。
【0067】
上位層処理部202は、DL-SCH、BCHなどの復号後のデータを受信部212から取得する。上位層処理部202は、前記DL-SCHの誤り検出結果から、HARQ-ACKを生成する。上位層処理部202は、SRを生成する。上位層処理部202は、HARQ-ACK/SR/CSI(CQIレポートを含む)を含むUCIを生成する。また上位層処理部202は、DMRS構成情報が上位レイヤによって通知されている場合、DMRS構成に関する情報を制御部204に入力する。上位層処理部202は、前記UCIやUL-SCHを送信部206に入力する。なお、上位層処理部202の機能の一部は、制御部204に含めてもよい。
【0068】
制御部204は、受信部212を介して受信した下りリンク制御情報(DCI)を解釈する。制御部204は、上りリンク送信のためのDCIから取得したPUSCHのスケジューリング/MCSインデックス/TPC(Transmission Power Control)などに従って、送信部206を制御する。制御部204は、下りリンク送信のためのDCIから取得したPDSCHのスケジューリング/MCSインデックスなどに従って、受信部212を制御する。さらに制御部204は、下りリンク送信のためのDCIに含まれるDMRSの周波数配置(ポート番号)に関する情報と、上位層処理部202から入力されるDMRS構成情報にしたがって、DMRSの周波数配置を特定する。
【0069】
送信部206は、符号化部(符号化ステップ)2060、変調部(変調ステップ)2062、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2064、上りリンク制御信号生成部(上りリンク制御信号生成ステップ)2066、多重部(多重ステップ)2068、無線送信部(無線送信ステップ)2070を含んで構成される。
【0070】
符号化部2060は、制御部204の制御に従って(MCSインデックスに基づいて算出される符号化率に従って)、上位層処理部202から入力された上りリンクデータ(UL-SCH)を畳み込み符号化、LDPC符号化、ポーラ符号化、ターボ符号化等の符号化を行う。
【0071】
変調部2062は、BPSK、QPSK、16QAM、64QAM、256QAM等の制御部204から指示された変調方式/チャネル毎に予め定められた変調方式で、符号化部2060から入力された符号化ビットを変調する(PUSCHのための変調シンボルを生成する)。
【0072】
上りリンク参照信号生成部2064は、制御部204の指示に従って、基地局装置10を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、サイクリックシフト、DMRSシーケンスの生成に対するパラメータの値、さらに周波数配置などを基に、予め定められた規則(式)で求まる系列を生成する。
【0073】
上りリンク制御信号生成部2066は、制御部204の指示に従って、UCIを符号化、BPSK/QPSK変調を行い、PUCCHのための変調シンボルを生成する。
【0074】
Rel-15の周波数ホッピングに関する上位層パラメータ(frequencyHopping)が設定されている場合において、その値としてはモード1あるいはモード2が設定可能である。モード2はスロット間ホッピングであり、複数のスロットを用いて送信する場合において、スロットごとに周波数を変えて送信するモードである。一方、モード1はスロット内ホッピングであり、1つまたは複数のスロットを用いて送信する場合において、スロットを前半と後半に分割し、前半と後半で周波数を変えて送信するモードである。周波数ホッピングにおける周波数割り当てとしては、DCIやRRCによって通知された周波数領域の無線リソース割り当ては第1のホップに適用し、第2のホップの周波数割り当ては、第1のホップで用いる無線リソースに対して、周波数ホッピング量に関する上位層パラメータ(frequencyHoppingOffset)で設定される値だけシフトした無線リソースを割り当てる。
【0075】
多重部2068は、制御部204からの上りリンクスケジューリング情報(RRCメッセージに含まれる上りリンクのためのCS(Configured Scheduling)における送信間隔、DCIに含まれる周波数領域および時間領域リソース割り当てなど)に従って、PUSCHのための変調シンボル、PUCCHのための変調シンボル、上りリンク参照信号を送信アンテナポート(DMRSポート)毎に多重する(つまり、各信号はリソースエレメントにマップされる)。
【0076】
ここで、CS(configured scheduling、コンフィギュアドグラントスケジューリング)に関する説明を行う。ダイナミックグラントなしの伝送には2種類ある。1つは、RRCによって与えられ、configured grantとして保存されるconfigured grantタイプ1であり、1つは、PDCCHによって与えられ、configured grantアクティベーションあるいはデアクティベーションを示すL1シグナリングに基づいたconfigured grantとして保存およびクリアされるconfigured grantタイプ2である。タイプ1とタイプ2はサービングセル毎かつBWP毎にRRCで設定される。複数の設定は、異なるサービングセルにおいてのみ同時にアクティブになり得る。タイプ2に関して、アクティベーションとデアクティベーションは、サービングセル間で独立である。同じサービングセルに関して、MACエンティティはタイプ1あるいはタイプ2のどちらかで設定される。タイプ1が設定された時、RRCは次のパラメータを設定する。
・cs-RNTI: 再送のためのCS-RNTI
・periodicity: configured grantタイプ1の周期
・timeDomainOffset: 時間領域におけるSFN=0に関するリソースのオフセット
・timeDomainAllocation: パラメータstartSymbolAndLengthを含む、時間領域におけるconfigured grantの配置
・nrofHARQ-Processes: HARQプロセスの数
また、タイプ2が設定された時、RRCは次のパラメータを設定する。
・cs-RNTI: アクティベーション、デアクティベーション、再送のためのCS-RNTI
・periodicity: configured grantタイプ2の周期
・nrofHARQ-Processes: HARQプロセスの数
つまりConfiguredGrantConfigは、2つの方式にしたがって、ダイナミックグラントなしでアップリンク伝送を設定するために用いられる。実際のアップリンクグラントは、Configured Grantタイプ1では、RRC経由で設定され、Configured Grantタイプ2では、CS-RNTIで処理されたPDCCH経由で与えられる。
【0077】
上位層で設定されるパラメータrepKは、送信されたトランスポートブロックに適用される繰り返し数が定義される。上位層で設定されるパラメータrepK-RVは、繰り返しに適用されるリダンダンシーバージョンパターンを示す。repK-RVが設定されない(与えられない)場合、コンフィギュアドグラントにおける各実際の繰り返しのリダンダンシーバージョンは、0にセットされる。それ以外の場合、K回の名目上の繰り返し中のすべての実際の繰り返し(省略される実際の繰り返しを含む)の中のn番目の送信機会について、設定されるRV系列(リダンダンシーバージョンパターン)の中の(mod(n-1、4)+1)番目の値に関連付けられた伝送が行われる。また一つのトランスポートブロックの初送は、設定されるRV系列が{0、2、3、1}の場合、K回繰り返しの最初の送信機会で開始される。設定されるRV系列が{0、3、0、3}の場合、RV=0と関連付けられたK回繰り返しのいずれかの送信機会で開始される。設定されるRV系列が{0、0、0、0}の場合、K=8の時の最後の送信機会を除く、K回繰り返しのいずれかの送信機会で開始される。いずれのRV系列に関しても、繰り返しはK回繰り返し送信後、あるいは周期P内のK回繰り返し中の最後の送信機会、あるいは周期P内に同じトランスポートブロックをスケジューリングするためのアップリンクグラントを受信した時のいずれかに初めに達した場合に終端される。Rel-15において端末装置は、周期Pによって算出される時間期間よりも長いK回繰り返し送信に関する時間期間が設定されることを期待しない。コンフィギュアドグラントによるタイプ1およびタイプ2PUSCH送信両方について、端末装置がrepK>1と設定された時、端末装置はそのトランスポートブロックをrepKの連続するスロットに渡って繰り返す。この時、端末装置は各スロットで同じシンボル配置を適用する。もしスロット構成の決定に関する端末装置のプロシージャが、配置されたスロットのシンボルをダウンリンクシンボルとして判断(決定)する場合、そのスロットにおける送信は複数スロットのPUSCH送信に関し省略される。repKが設定された場合、値として1回、2回、4回、8回のいずれかを設定可能である。ただし、RRCパラメータ自体が存在しない場合、繰り返し数は1として送信を行う。またrepK-RVは、{0、2、3、1}、{0、3、0、3}、{0、0、0、0}のいずれかが設定され得る。なお、同一のトランスポートブロックから生成される異なるリダンダンシーバージョンの信号は、同一のトランスポートブロック(情報ビット系列)から構成される信号であるが、構成される符号化ビットの少なくとも一部が異なる。
【0078】
NRリリース16で、PUSCHリピティションタイプBが仕様化された。トランスポートブロックを伴わないCSIレポートを送信するPUSCHを除き、名目上の繰り返し数は上位レイヤパラメータであるnumberofrepetitionsで与えられる。PUSCH送信がスタートするスロットをK、スロット毎のシンボル数をNsymb、スロットの先頭に対するスタートシンボルをS、PUSCHとして割り当てられるシンボルSから数えて連続するシンボル数をLとした場合、名目上の繰り返しが開始されるスロットは、K+ceil((S+n・L)/Nsymb)、スロットの先頭に対するスタートシンボルはmod(S+n・L、Nsymb)で与えられる。また、名目上の繰り返しが終了するスロットは、K+ceil((S+(n+1)・L-1)/Nsymb)、スロットの先頭に対するエンドシンボルはmod(S+(n+1)・L-1、Nsymb)で与えられる。
【0079】
PUSCHリピティションタイプBに関して、K回の名目上の繰り返しのそれぞれに関して、TDDのコンフィグレーションやダウンリンク制御情報の受信による無効なシンボルを決定した後、残ったシンボルがPUSCHリピティションタイプB送信に関する、潜
在的に有効なシンボルと考慮される。もし、ある名目上の繰り返しにおけるPUSCHリピティションタイプB送信に関する潜在的に有効なシンボルの数がゼロより大きい場合、その名目上の繰り返しは1または複数の実際の繰り返しを構成する。ここで、各実際の繰り返しは、スロット内のPUSCHリピティションタイプB送信に用いられる連続する有効なシンボルのセットを構成する。1つのシンボルによる実際の繰り返しは、L=1の場合を除き省略される。実際の繰り返しは、その他の条件に基づいて省略される。リダンダンシーバージョンは実際の繰り返し数に基づいて適用される。
【0080】
PUSCHリピティションタイプBにおける繰り返し間周波数ホッピングについて説明を行う。n番目の名目上の繰り返し内の実際の繰り返しにおけるスタートRBは、mod(n、2)=0の時アップリンクBWP内のスタートRBで決定し、mod(n、2)=1の時、アップリンクBWP内のスタートRBとRRCシグナリングで通知される周波数ホッピング時のオフセット、およびアップリンクBWPの帯域幅で決定される。一方、スロット間周波数ホッピングにおいては、あるスロット番号に基づいてスタートRBが決定される。
【0081】
非特許文献2が開示しているように、複数のスロット毎の周波数ホッピングを適用するには、そのスロット数が問題となる。例えば、RRCシグナリングによって基地局から端末にスロット数を通知することで、制御することが可能となる。図4に2スロット毎に周波数ホッピングを適用した場合の例を示す。図4は、スロットの一部のOFDMシンボルが使用される場合を示しており、斜線で示しているのはDMRSシンボル、ドットで示しているのはデータOFDMシンボルである。図4の場合、同一の周波数で送信される2スロット間で同一の周波数を用いて伝送を行うため、該2スロット間でDMRSを共有したチャネル推定を行うことができる。つまり、1スロットに含まれるDMRSのみによってチャネル推定を行う場合よりも多くのDMRSを用いてチャネル推定を行うことができるため、チャネル推定精度を向上させることができる。あるいは、同一の周波数で送信される複数のスロットのすべて、あるいは一部のスロットに含まれるDMRSを削減することで、DMRSによるオーバヘッドを削減することで、同じ情報量を低いMCSで、あるいは同じMCSで多くの情報を送信することができる。なお、RRCシグナリングの通知方法としては、スロット間周波数ホッピング、繰り返し間周波数ホッピング、複数スロット毎の周波数ホッピングから選択できるようにしてもよいし、さらに同一のパラメータで複数繰り返し毎の周波数ホッピングを選択できるようにしてもよい。
【0082】
上記は複数のスロット毎の周波数ホッピングを行う際のスロット数(以降、FHスロット数)をRRCシグナリングによって通知するとしたがこれに限定されず、例えば名目上の繰り返しインデックスnと名目上の繰り返し数Kと所定の値Aの値によって決定してもよい。例えばn<ceil(K/A)であるかn≧ceil(K/A)であるかによって周波数ポジションを決定してもよい。ここで天井関数(ceil)は床関数(floor)としてもよい。
【0083】
RRCシグナリングによって、複数のスロット毎の周波数ホッピングを行う際のスロット数(以降、FHスロット数)を通知する際、FHスロット数としては繰り返し送信数と同じか少ない数が設定されるべきだが、FHスロット数が繰り返し送信数よりも大きな値が設定されてもよい。この場合、FHスロット数は、繰り返し送信数と同一と解釈し、送信及び受信処理を端末装置および基地局装置は行う。これにより、繰り返し送信回数がDCIによってダイナミックに通知され、FHスロット数がRRCで準静的に通知される場合においても、端末装置および基地局装置は複数のスロット毎の周波数ホッピングを行うことができる。
【0084】
PUSCHとして連続したスロット、あるいはOFDMシンボルを確保できる場合には
図4のように2スロットずつホップさせることができるが、必ずしも確保できるとは限らない。そこで名目上の繰り返しの中で、無効なOFDMシンボル(スロット)が含まれる場合の動作について説明を行う。名目上の繰り返しの中で、無効なOFDMシンボル(スロット)が含まれる場合を示す例を図5に示す。図5のように名目上の繰り返し送信に無効なOFDMシンボル(スロット)が含まれた場合、NRリリース16の仕様をそのまま適用すると、名目上の繰り返しに基づいて周波数ホッピングが適用されるため、4回目の繰り返しは3回目の繰り返しとは異なる周波数(ホップ)で送信されることになる。この場合、3回目と4回目の送信が同一の周波数リソースで送信されないため、異なる繰り返しにおけるDMRSを共有してチャネル推定精度を向上させることができなくなるという問題がある。そこで、名目上の繰り返し数(インデックス)に基づいて周波数ホッピングを行うのではなく、図6のように、実際の繰り返し数に基づいて周波数ホッピングを適用する。これにより、リソースが2連続となる場合は、同一の周波数リソースを用いた伝送を行うことができるようになる。これにより、DMRSバンドリングによりチャネル推定精度を向上させることができる。ところで、例えば実際の繰り返しインデックスに基づいて周波数ホッピングを決定する場合、無効なシンボルで分断されるにもかかわらず、同一の周波数リソースで送信される可能性がある。無線リソースが時間的に分断された場合にDMRSバンドリングを適用すると、チャネルが変動しているため、チャネル推定精度を上げることができない可能性がある。そこで、図7に示すように、無効なシンボル等により無線リソースが分断された場合、FHスロットインデックスをリセットすることで、時間的に連続する無線リソースを用いた周波数ホッピングを適用することができる。つまり、時間的に非連続となるリソースを用いて伝送する場合、周波数をホップさせるとしてもよい。ただしこの場合、無効ンシンボルの状況次第では、いずれかの周波数リソースが多く用いられた伝送となる可能性があり、周波数ダイバーシチ効果を最大化できないという懸念がある。そこで図8に示すように、実際の繰り返しインデックスのみによって周波数ホッピングを行うタイミングを制御してもよい。
【0085】
上記ではスロット間繰り返しを想定して説明を行ったが、スロット間繰り返しに限定されず、スロット内繰り返しに適用してもよい。この場合、RRCシグナリングまたはDCIによるシグナリングよるDMRSバンドリングに関する設定は、スロットではなく繰り返し単位、つまりスロット内での繰り返し数が基準となる。またさらに、QCLとするのはスロット内繰り返しの1スロット内に限定され、スロット外の繰り返しについてはQCLとみなさないとしてもよい。
【0086】
DMRSバンドリングが行える場合、他のスロットに含まれるDMRSを用いてチャネル補償を行うことができるため、必ずしもスロット内にDMRSを挿入する必要がない。DMRSを挿入しない場合、多くの情報ビット、あるいはパリティビットを送信することができるようになるため、通信の誤り率を下げることができるため、品質向上あるいはカバレッジ向上につなげることができる。例えば、RRCシグナリング等の制御情報によってDMRSの削減に関する設定が行われた場合、初回繰り返しのみにDMRSを挿入し、2回目以降の繰り返しにおいてはDMRSを挿入しない構成とすることで、多くの情報ビット、あるいはパリティビットを送信できるようになる。ただし、基地局装置が指定する繰り返しの内、2回目から送信を開始した場合、DMRSを送信しないことになってしまう。RVが0のスロット(繰り返し)のみにDMRSを配置し、RVが0以外のスロット(繰り返し)についてはDMRSを配置しない構成とする。上記を図6を用いて説明する。図6の上部は繰り返し送信におけるRVパターンが{0、0、0、0}の場合を示している。図は4スロット繰り返しを示しており、スロット内のDMRSシンボルを斜線で示し、データOFDMシンボルを点で模様を付けている。RVパターンが{0、0、0、0}の場合、全てのスロットにおいてDMRSを送信する。次に、RVパターンが{0、3、0、3}の場合、第1および第3スロットにおいてDMRSを送信し、第2および第4スロットではDMRSを含まない構成とする。RVパターンが{0、2、3、1}の場合
、第1スロットにおいてのみDMRSを送信し、第2、第3および第4スロットではDMRSを含まない構成とする。つまり、NRではRVが0以外のスロット(繰り返し)から繰り返し送信を開始することは仕様化されていないため、必ずRV=0のスロットから送信を開始することになる。これにより、DMRSが含まれない伝送のみを行うことを回避することができる。ここで、RVが0以外のスロットではDMRSを含まない構成としたが、完全に含まない構成とするのではなく、削減するとしてもよい。例えばフロントローデッドDMRSのみを送信し、RRCで設定されるアディショナルDMRSについてはすべてあるいは一部を削減するとしてもよい。削減基準に関する情報はRRCシグナリングによって通知されるとしてもよい。ただし、スロット内周波数ホッピング/スロット間周波数ホッピング/繰り返し間周波数ホッピングが適用された場合に上記の送信を行うと、オフセットのかかったホップにおいてDMRSが送信されなくなる問題がある。そこで上記の周波数ホッピングのいずれかが適用された場合は、RRCによるDMRSバンドリングに関する設定がおこなれ、DMRSバンドリングが有効となっている場合においても、DMRSを繰り返し(スロット)毎に送信する構成としてもよい。なお、DMRS削減についてもRRCシグナリングまたはDCIによるシグナリングよって、前記DMRSの時間領域スロットに関する情報が通知され、設定されたスロット(繰り返し)毎に適用し、設定されたスロット外ではDMRSを送信する構成としてもよい。
【0087】
無線送信部2070は、多重された信号をIFFT(Inverse Fast Fourier Transform)して、OFDMシンボルを生成する。無線送信部2070は、前記OFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成する。さらに、無線送信部2070は、前記ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送信アンテナ208を介して基地局装置10に送信する。
【0088】
受信部212は、無線受信部(無線受信ステップ)2120、多重分離部(多重分離ステップ)2122、伝搬路推定部(伝搬路推定ステップ)2144、等化部(等化ステップ)2126、復調部(復調ステップ)2128、復号部(復号ステップ)2130を含んで構成される。
【0089】
無線受信部2120は、受信アンテナ210を介して受信した下りリンク信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2120は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対してFFTを行い、周波数領域の信号を抽出する。
【0090】
多重分離部2122は、前記抽出した周波数領域の信号を下りリンク参照信号、PDCCH、PDSCH、PBCHに分離する。伝搬路推定部2124は、下りリンク参照信号(DM-RSなど)を用いて、周波数応答(または遅延プロファイル)を推定する。復調用に伝搬路推定された周波数応答結果は、等化部1126へ入力される。伝搬路推定部2124は、下りリンク参照信号(CSI-RSなど)を用いて、上りリンクのチャネル状況の測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)、SINR(Signal to Interference plus Noise power Ratio)の測定)を行う。下りリンクのチャネル状況の測定は、PUSCHのためのMCSの決定などに用いられる。下りリンクのチャネル状況の測定結果は、CQIインデックスの決定などに用いられる。
【0091】
等化部2126は、伝搬路推定部2124より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。等化部2126は、多重分離部2122からの入力信号(
PUCCH、PDSCH、PBCHなど)に該等化重みを乗算する。復調部2128は、予め決められている/制御部204から指示される変調オーダーの情報に基づき、復調処理を行う。
【0092】
復号部2130は、予め決められている符号化率/制御部204から指示される符号化率の情報に基づいて、前記復調部2128の出力信号に対して復号処理を行う。復号部2130は、復号後のデータ(DL-SCHなど)を上位層処理部202に入力する。
(第2の実施形態)
【0093】
第1の実施形態では、周波数ホッピングを行うまでの繰り返し数(スロット数)がRRCシグナリングで通知されることによって、ホップ変更する方法について説明を行った。本実施形態では、追加のRRCシグナリングを通知することなく、周波数をホップさせる方法について説明を行う。
【0094】
NRリリース16までの仕様では、RVとして0,1,2,3のいずれかが指定され、送信を行う。コンギュアドグラントスケジューリングの場合、RV系列(RVパターン)としては{0,0,0,0}、{0,3,0,3}、{0,2,3,1}のいずれかのパターンによって、繰り返し送信における決定される。例えば{0,3,0,3}の場合、1回目の送信と3回目の送信で同じ周波数によって送信を行うよりも、異なる周波数によって送信した方が周波数ダイバーシチ効果により良好な特性を得ることができる。そこで、図9に示すように、RVが0となる送信を行う場合、周波数ホッピングにより周波数をホップさせて伝送を行う。この結果、実際の繰り返しを2回行う毎に周波数を変更した伝送を行うことができるようになり、一部の周波数リソースに送信が偏ることがなくなる。{0,2,3,1}の場合、図10のように、実際の繰り返しを4回行う毎に周波数を変更した伝送を行う。ここで、RV系列(RVパターン)はRRCシグナリングによって基地局装置から端末装置に通知される。なお、RV系列は上記の3パターンに限らず、どのようなものであってもよく、同一のRVによる送信を行う場合に周波数をホッピングさせればどのような系列であっても適用することができる。RV系列によって周波数ホッピングを行う繰り返し数を決定するか否かはRRCシグナリングによって決定されてもよい。(第3の実施形態)
【0095】
第2の実施形態では、周波数ホッピングを行うまでの繰り返し数(スロット数)をRV系列と関連付ける方法について説明を行った。本実施形態では、DMRSバンドリングに関する情報と関連づける方法について説明を行う。
【0096】
RRCシグナリングまたはDCIによるシグナリングよって、DMRSバンドリングに関する設定が送信され、端末においてDMRSバンドリングに関する設定が行われた場合、RRCシグナリングまたはDCIによるシグナリングよって、DMRSの時間領域スロットに関する情報が端末装置に通知される。端末装置は初送のスロットから該時間領域スロットに関する情報によって決まるスロット数の間は、受信機である基地局装置によってDMRSバンドリングが適用できるように、送信を行う。言い換えると、QCL(Quasi-Colocation)とみなせるように送信を行う。つまりは、スロット間で伝搬路の振幅や位相が変更しないように(非連続とならないように)送信を行う。また時間領域スロットに関する情報によって指定されるスロットは連続ではなく、非連続なスロットがQCLとなるように送信されてもよい。なお、割り当てられた繰り返しの初回以外からの送信を可能とするか不可とするかは、RRCシグナリングによって設定されてもよい。
【0097】
周波数ホッピングを適用するタイミングは、上述のDMRSバンドリングと同期させてもよい。つまり、DMRSを共有する異なるスロット間では周波数ホッピングを適用せず、以前に送信したスロットとDMRSを共有しないスロットを送信する際に周波数をホッ
ピングさせる構成としてもよい。これにより、複数スロットによる周波数ホッピングと、DMRSバンドリングで別々にRRCシグナリングによる設定が不要となり、制御情報を削減することができる。図11は、RRCシグナリング等の制御情報により、DMRSバンドリング数として3が通知された場合の周波数ホッピングの一例を示している。図にしめすように、実際の繰り返し数に応じて、繰り返し1から3についてはオフセットの無い周波数で送信を行い、4から6についてはオフセットが反映された周波数で送信を行うことになる。なおDMRSバンドリング数は、所定の値以下のどのような自然数を取るとしてもよいし、1,2,4,8といった2のべき乗を取るとしてもよいし、2のべき乗に1または複数の所定の値(例えば12)を加えたものの中からRRCシグナリングによって指定(通知)されてもよい。
【0098】
図12にDMRSバンドリング数が3の場合において、無効なシンボルが含まれる場合の例を示す。実際の繰り返し数に基づいて周波数ホッピングを適用する場合、図のように実際の繰り返し数に基づいて制御を行うと、繰り返しが時間的に分断されることがある。そこで、DMRSバンドリングおよびそれに伴う周波数ホッピングについては、図13のように名目上の繰り返し数に基づいて行うとしてもよい。これにより、実際には無効なシンボルが多く存在して、連続なリソースが確保できない場合において、時間的にコヒーレントなスロットにおいてDMRSバンドリングを適用することができる。例えば図13において、名目上の繰り返しインデックス5に相当するスロットが送信できない場合を図14に示す。この場合、実際の繰り返しインデックス3と実際の繰り返しインデックス4は時間的に連続しないスロットとなるが、名目上の繰り返しインデックス3から名目上の繰り返しインデックス5に含まれており、DMRSバンドリングを適用することができるため、チャネル推定精度を向上させることができる。なお、実際の繰り返しインデックスに基づいてDMRSバンドリングおよび/あるいは周波数ホッピングを適用するか、名目上の繰り返しインデックスに基づいて決定するかをRRCシグナリング等の制御情報に基づいて決定するとしてもよい。
【0099】
本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
【0100】
なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。
【0101】
さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラム
との組み合わせで実現できるものであっても良い。
【0102】
また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
【0103】
なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。
【0104】
以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
【産業上の利用可能性】
【0105】
本発明は、基地局装置、端末装置および通信方法に用いて好適である。
【符号の説明】
【0106】
10 基地局装置
20 端末装置
10a 基地局装置10が端末装置と接続可能な範囲
102 上位層処理部
104 制御部
106 送信部
108 送信アンテナ
110 受信アンテナ
112 受信部
1060 符号化部
1062 変調部
1064 下りリンク制御信号生成部
1066 下りリンク参照信号生成部
1068 多重部
1070 無線送信部
1120 無線受信部
1122 伝搬路推定部
1124 多重分離部
1126 等化部
1128 復調部
1130 復号部
202 上位層処理部
204 制御部
206 送信部
208 送信アンテナ
210 受信アンテナ
212 受信部
2060 符号化部
2062 変調部
2064 上りリンク参照信号生成部
2066 上りリンク制御信号生成部
2068 多重部
2070 無線送信部
2120 無線受信部
2122 多重分離部
2124 伝搬路推定部
2126 等化部
2128 復調部
2130 復号部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14