IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立GEニュークリア・エナジー株式会社の特許一覧

<>
  • 特開-超音波検査装置及び方法 図1
  • 特開-超音波検査装置及び方法 図2
  • 特開-超音波検査装置及び方法 図3
  • 特開-超音波検査装置及び方法 図4
  • 特開-超音波検査装置及び方法 図5
  • 特開-超音波検査装置及び方法 図6
  • 特開-超音波検査装置及び方法 図7
  • 特開-超音波検査装置及び方法 図8
  • 特開-超音波検査装置及び方法 図9
  • 特開-超音波検査装置及び方法 図10
  • 特開-超音波検査装置及び方法 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023166653
(43)【公開日】2023-11-22
(54)【発明の名称】超音波検査装置及び方法
(51)【国際特許分類】
   G01N 29/265 20060101AFI20231115BHJP
【FI】
G01N29/265
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022077285
(22)【出願日】2022-05-10
(71)【出願人】
【識別番号】507250427
【氏名又は名称】日立GEニュークリア・エナジー株式会社
(74)【代理人】
【識別番号】110001829
【氏名又は名称】弁理士法人開知
(72)【発明者】
【氏名】小西 孝明
(72)【発明者】
【氏名】三木 将裕
(72)【発明者】
【氏名】永島 良昭
(72)【発明者】
【氏名】中田 理公
【テーマコード(参考)】
2G047
【Fターム(参考)】
2G047AA05
2G047AB01
2G047BA03
2G047BB02
2G047BC09
2G047CA01
2G047GA06
2G047GG47
2G047GH19
(57)【要約】
【課題】検査漏れを回避しつつ、検査効率を高めることができる超音波検査装置及び方法を提供する。
【解決手段】超音波検査装置は、超音波プローブ10と、超音波プローブ10を配管1の表面に沿って移動させる走査装置11と、超音波プローブ10による超音波の送受信を制御する送受信制御装置14と、超音波プローブ10の位置毎に超音波プローブ10の位置及び姿勢と配管1の形状データとに基づいて配管1の超音波伝播範囲を演算し、演算された複数の超音波伝播範囲が互いに重なるかどうかによって検査漏れが生じていないかどうかを判定し、その判定結果に基づいて自動走査の有効範囲及び無効範囲を取得する計算装置15と、自動走査の有効範囲と自動走査の無効範を含む手動走査の範囲とを表示する表示装置17とを備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
超音波プローブと、
前記超音波プローブを被検体の表面に沿って移動させる走査装置と、
前記超音波プローブによる超音波の送受信を制御する送受信制御装置とを備えた超音波検査装置において、
前記超音波プローブの位置毎に前記超音波プローブの位置及び姿勢と前記被検体の形状データとに基づいて前記被検体の超音波伝播範囲を演算し、演算された複数の超音波伝播範囲が互いに重なるかどうかによって検査漏れが生じていないかどうかを判定し、その判定結果に基づいて自動走査の有効範囲及び無効範囲を取得する計算装置と、
前記自動走査の有効範囲と前記自動走査の無効範囲を含む手動走査の範囲とを表示する表示装置とを備えたことを特徴とする超音波検査装置。
【請求項2】
請求項1に記載の超音波検査装置において、
前記超音波プローブの位置及び姿勢を検出する検出器を備え、
前記計算装置は、前記検出器で検出された前記超音波プローブの位置及び姿勢に基づき、前記被検体の超音波伝播範囲を演算することを特徴とする超音波検査装置。
【請求項3】
請求項1に記載の超音波検査装置において、
前記計算装置は、
前記走査装置の制御情報に基づき、前記超音波プローブの位置を演算し、
演算された前記超音波プローブの位置と前記被検体の形状データに基づき、前記超音波プローブの姿勢を演算し、
演算された前記超音波プローブの位置と演算された前記超音波の姿勢に基づき、前記被検体の超音波伝播範囲を演算することを特徴とする超音波検査装置。
【請求項4】
請求項1に記載の超音波検査装置において、
前記超音波プローブは、超音波の伝播方向が互いに異なる複数の探触子を有し、
前記計算装置は、
前記走査装置の制御情報に基づき、前記超音波プローブの位置を演算し、
前記複数の探触子でそれぞれ受信された複数の超音波の波形データと前記被検体の形状データに基づき、前記超音波プローブの姿勢を演算し、
演算された前記超音波プローブの位置と演算された前記超音波の姿勢に基づき、前記被検体の超音波伝播範囲を演算することを特徴とする超音波検査装置。
【請求項5】
走査装置で超音波プローブを被検体の表面に沿って移動させる超音波検査方法において、
計算装置により、前記超音波プローブの位置毎に前記超音波プローブの位置及び姿勢と前記被検体の形状データとに基づいて前記被検体の超音波伝播範囲を演算し、演算された複数の超音波伝播範囲が互いに重なるかどうかによって検査漏れが生じていないかどうかを判定し、その判定結果に基づいて自動走査の有効範囲及び無効範囲を取得し、
前記自動走査の有効範囲と前記自動走査の無効範囲を含む手動走査の範囲とを表示装置で表示することを特徴とする超音波検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波検査装置及び方法に関する。
【背景技術】
【0002】
発電プラントの配管や容器等の被検体に対する探傷検査又は厚み検査において、超音波検査が用いられている。超音波検査には、検査者が超音波プローブを被検体の表面に沿って移動させる手動走査と、走査装置で超音波プローブを被検体の表面に沿って移動させる自動走査がある。特に、被検体の表面における走査範囲が広い場合は、検査効率の観点から、自動走査を採用することが好ましい。
【0003】
特許文献1は、超音波プローブを配管の表面に沿って移動させる走査装置を開示する。この走査装置は、配管に取付けられて配管の周方向に延在する第1のガイドレールと、第1のガイドレールに沿って台車を移動させる第1の移動機構(詳細にはモータ等で構成されたもの)と、台車に取付けられて配管の軸方向に延在する第2のガイドレールと、第2のガイドレールに沿ってプローブ支持体を移動させる第2の移動機構(詳細にはモータ等で構成されたもの)とを備える。
【0004】
プローブ支持体は、例えば、超音波プローブを配管の軸方向及び周方向に傾斜可能に支持するジンバル機構や、超音波プローブを配管の表面に押付けるバネを有する。これにより、超音波プローブの底面(言い換えれば、配管との接触面)が配管の表面に倣うようになっている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2015-132517号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
配管の表面は、一般的に円筒形状であるものの、例えば他の配管を接続する接続部の近傍で形状が大きく変化する。配管の接続部の近傍にて自動走査を行えば、超音波プローブの姿勢が大きく変化して、検査漏れが発生する可能性がある。そのため、配管の接続部から離れた範囲では、自動走査を行い、配管の接続部の近傍の範囲では、手動走査を行うことが考えられる。
【0007】
自動走査の範囲と手動走査の範囲は、例えば配管の形状データ等を利用して設定される。この場合、前述した検査漏れを回避するため、自動走査の範囲を理論的なものより小さくすることが好ましい。しかし、自動走査の範囲を小さくすれば、手動走査の範囲がその分だけ大きくなるため、検査効率が低下する。
【0008】
本発明は、上記事柄に鑑みてなされたものであり、その目的は、検査漏れを回避しつつ、検査効率を高めることができる超音波検査装置及び方法を提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するために、代表的な本発明は、超音波プローブと、前記超音波プローブを被検体の表面に沿って移動させる走査装置と、前記超音波プローブによる超音波の送受信を制御する送受信制御装置とを備えた超音波検査装置において、前記超音波プローブの位置毎に前記超音波プローブの位置及び姿勢と前記被検体の形状データとに基づいて前記被検体の超音波伝播範囲を演算し、演算された複数の超音波伝播範囲が互いに重なるかどうかによって検査漏れが生じていないかどうかを判定し、その判定結果に基づいて自動走査の有効範囲及び無効範囲を取得する計算装置と、前記自動走査の有効範囲と前記自動走査の無効範囲を含む手動走査の範囲とを表示する表示装置とを備える。
【発明の効果】
【0010】
本発明によれば、検査漏れを回避しつつ、検査効率を高めることができる。
【図面の簡単な説明】
【0011】
図1】本発明の第1の実施形態における超音波検査装置の構成を、被検体である配管と共に表す概略図である。
図2】本発明の第1の実施形態における走査装置の構成を表す概略図である。
図3】本発明の第1の実施形態における計算装置の処理内容を表すフローチャートである。
図4】本発明の第1の実施形態における計算装置で演算された配管の超音波伝播範囲の具体例を表す図である。
図5】本発明の第1の実施形態における表示装置の超音波伝播範囲表示画面を表す図である。
図6】本発明の第1の実施形態における計算装置の検査漏れ判定を説明するための図であり、検査漏れが生じていない場合を示す。
図7】本発明の第1の実施形態における計算装置の検査漏れ判定を説明するための図であり、検査漏れが生じている場合を示す。
図8】本発明の第1の実施形態における表示装置の走査範囲表示画面を表す図である。
図9】本発明の第2の実施形態における超音波検査装置の構成を、被検体である配管と共に表す概略図である。
図10】本発明の第3の実施形態における超音波プローブを構成する複数の探触子を表す概略図である。
図11】本発明の第3の実施形態における複数の探触子でそれぞれ受信された複数の超音波の波形データを表す図である。
【発明を実施するための形態】
【0012】
本発明の第1の実施形態を、図面を参照しつつ説明する。
【0013】
図1は、本実施形態における超音波検査装置の構成を、被検体である配管と共に表す概略図である。図2は、本実施形態における走査装置の構成を表す概略図である。
【0014】
本実施形態の被検体である配管1は、他の配管2を接続する接続部3を有する。配管1の表面は、概ね円筒形状であるものの、接続部3の近傍で形状が変化する。本実施形態の超音波検査装置は、配管1に対する探傷検査を行うものである。
【0015】
本実施形態の超音波検査装置は、超音波プローブ10と、超音波プローブ10を配管1の表面(外面)に沿って移動させる走査装置11と、走査装置11を制御する走査制御装置12と、超音波プローブ10の位置及び姿勢を検出する検出器13と、超音波プローブ10による超音波の送受信を制御する送受信制御装置14とを備える。
【0016】
また、本実施形態の超音波検査装置は、走査制御装置12及び送受信制御装置14に配線を介して接続された計算装置15と、計算装置15に配線を介し接続された記憶装置16と、計算装置15に配線を介し接続された表示装置17と、計算装置15に配線を介し接続された入力装置(図示せず)とを備える。計算装置15は、プログラムに従って処理を実行するプロセッサと、プログラムやデータを記憶するメモリ等を有するものである。記憶装置16は、ハードディスク等で構成され、配管1の形状データ等を記憶する。表示装置17は、ディスプレイ等で構成されている。入力装置は、キーボードやマウス等で構成されている。
【0017】
走査装置11は、配管1に取付けられて配管1の周方向に延在する第1のガイドレール18と、第1のガイドレール18に沿って台車19を移動させる第1の移動機構(詳細にはモータ等で構成されたもの)と、台車19に取付けられて配管1の軸方向に延在する第2のガイドレール20と、第2のガイドレール20に沿ってプローブ支持体21を移動させる第2の移動機構(詳細にはモータ等で構成されたもの)とを備える。
【0018】
プローブ支持体21は、例えば、超音波プローブ10を配管1の軸方向及び周方向に傾斜可能に支持するジンバル機構や、超音波プローブ10を配管1の表面に押付けるバネを有する。これにより、超音波プローブ10の底面(言い換えれば、配管1との接触面)が配管1の表面に倣うようになっている。
【0019】
走査制御装置12は、計算装置15からの指令に応じて第1及び第2の移動機構を制御する制御回路を有しており、超音波プローブ10の位置を制御する。図2で示すように、超音波プローブ10の位置として、配管1の表面上の位置(周方向の座標X、軸方向の座標Y)を用い、超音波プローブ10の移動手順の具体例を説明する。
【0020】
超音波プローブ10は、まず、移動開始位置(X0,Y0)から、軸方向(X軸の正方向)にピッチΔYずつ移動を繰り返し、位置(X0,Yn)に到達する。次に、周方向(Y軸の正方向)にピッチΔXだけ移動して、位置(X0+ΔX,Yn)に到達する。その後、軸方向(X軸の負方向)にΔYずつ移動を繰り返し、位置(X0+ΔX、Y0)に到達する。これを、移動終了位置(Xn,Yn)に到達するまで繰り返す。なお、超音波プローブ10の移動手順は、この具体例に限られない。
【0021】
検出器13は、例えば、超音波プローブ10と分離されて、撮像素子及び画像処理プロセッサで構成されている。画像処理プロセッサは、撮像素子で撮像した超音波プローブ10の画像を処理することにより、超音波プローブ10の位置及び姿勢を検出する。
【0022】
超音波プローブ10は、1つの探触子22を有する(後述の図4参照)。探触子22は、例えば、圧電素子23及びシュー24からなる斜角探触子(詳細には、配管1の表面の法線方向に対して斜め方向に超音波を入射する探触子)である。
【0023】
送受信制御装置14は、図示しないものの、パルサ及びレシーバを有する。パルサは、計算装置15からの指令に応じて圧電素子23にパルス信号を印加して、圧電素子23からシュー24を介し超音波を送信させる。圧電素子23は、配管1の内部に欠陥が存在する場合に欠陥で反射された超音波を受信し、波形信号に変換して出力する。レシーバは、圧電素子23から入力された波形信号に対し、アナログ信号からデジタル信号への変換処理等を行って波形データを取得し、計算装置15に出力する。
【0024】
計算装置15は、機能的構成として、範囲設定部25、収録制御部26、位置姿勢取得部27、超音波伝播解析部28、判定処理部29、及び表示制御部30を有する。
【0025】
計算装置15の範囲設定部25は、例えば入力装置の入力に応じて、表示装置17で表示された配管の画像上の範囲を指定することにより、配管1の表面における自動走査の範囲や、配管1の内部における検査範囲を設定し、記憶装置16に記憶させる。また、例えば入力装置の入力に応じて、表示装置17で表示された配管の画像上の範囲を指定することにより、配管1の表面における手動走査の範囲(初期値)を設定し、記憶装置16に記憶させる。
【0026】
計算装置15の収録制御部26は、記憶装置16で記憶された自動走査の範囲に基づき、走査制御装置12を介し走査装置11を制御すると共に、送受信制御装置14を介し超音波プローブ10を制御する。計算装置15の位置姿勢取得部27は、検出器13で検出された超音波プローブ10の位置及び姿勢を取得する。
【0027】
次に、本実施形態の計算装置15の処理内容について説明する。図3は、本実施形態における計算装置15の処理内容を表すフローチャートである。
【0028】
ステップS1にて、計算装置15の収録制御部26は、走査制御装置12を介し走査装置11を制御して、超音波プローブ10をピッチΔY又はΔXだけ移動させる。その後、ステップS2に進み、収録制御部26は、送受信制御装置14を介し超音波プローブ10を制御して、波形データを取得する。
【0029】
その後、ステップS3に進み、計算装置15の超音波伝播解析部28は、位置姿勢取得部27で取得された超音波プローブ10の位置及び姿勢と、記憶装置16で記憶された配管1の形状データとに基づき、配管1の超音波伝播範囲を演算する。
【0030】
詳しく説明すると、超音波伝播解析部28は、まず、超音波プローブ10の位置及び姿勢と配管1の形状データに基づき、配管1の超音波伝播経路31(図4参照)を演算する。なお、本実施形態では、配管1の超音波伝播経路31は、超音波が配管1の内面に到達するまでの経路のみである場合を例にとっているが、これに限られず、超音波が配管1の内面で反射された後の経路を含んでもよい。
【0031】
超音波伝播解析部28は、予め設定された超音波ビームモデルを用いて、配管1の超音波伝播経路31から超音波伝播範囲32’(言い換えれば、超音波伝播経路に有効ビーム幅を持たせたもの)を演算する。なお、本実施形態では、有効ビーム幅が一定である超音波ビームモデルを用いる場合を例にとっているが、これに限られず、有効ビーム幅が変化する超音波ビームモデルを用いてもよい。また、本実施形態では、範囲設定部25で配管1の内部における検査範囲33(図4参照)が設定されているから、超音波伝播解析部28は、前述した超音波伝播範囲32’のうち、検査範囲33と重なる超音波伝播範囲32(図4参照)を抽出し、後述のステップS6にて記憶装置16に記憶させる。
【0032】
ステップS3の後、ステップS4に進み、計算装置15の表示制御部30は、記憶装置16で記憶された配管1の形状データや検査範囲33、超音波伝播解析部28で演算された現在の超音波伝播範囲32、及び記憶装置16で記憶された過去の超音波伝播範囲32に基づき、超音波伝播範囲表示画面34を表示装置17に表示させる。
【0033】
例えば図5で示すように、超音波伝播範囲表示画面34は、配管の画像上に、超音波プローブのマーカ35、検査範囲のマーカ36、現在の超音波伝播範囲のマーカ37、及び過去の超音波伝播範囲のマーカ38を識別可能に表示する。超音波伝播範囲表示画面34は、入力装置の入力に応じて、任意の視点で表示したり、任意の寸法に拡大及び縮小したりして表示することが可能である。マーカ35~38は、入力装置の入力に応じて、表示色や透明度を変更することが可能である。
【0034】
ステップS4の後、ステップS5に進み、計算装置15の判定処理部29は、超音波伝播解析部28で取得された今回の超音波伝播範囲32Aと、記憶装置16で記憶された前回の超音波伝播範囲32Bとが互いに重なっているかどうかにより、検査漏れが生じていないかどうかを判定する。超音波プローブ10が配管1の軸方向(Y軸の正方向)に移動する場合を例にとり、図6(a)、図6(b)、図7(a)、及び図7(b)を用いて具体的に説明する。
【0035】
計算装置15の判定処理部29は、今回(言い換えれば、超音波プローブ10がピッチΔYだけ移動した後)の超音波伝播範囲32Aの前面における4つの頂点A1,A2,A3,A4のY座標と、前回(言い換えれば、超音波プローブ10がピッチΔYだけ移動する前)の超音波伝播範囲32Bの後面における4つの頂点B1,B2,B3,B4のY座標とを抽出する。そして、頂点A1のY座標が頂点B1のY座標より小さいであるかの第1の判定と、頂点A2のY座標が頂点B1のY座標より小さいであるかの第2の判定と、頂点A3のY座標が頂点B3のY座標より小さいであるかの第3の判定と、頂点A4のY座標が頂点B4のY座標より小さいであるかの第4の判定とを行う。
【0036】
計算装置15の判定処理部29は、上述した第1~第4の判定の全てが肯定的である場合、検査漏れが生じていないと判定する。例えば図6(a)及び図6(b)で示すように、頂点A1のY座標が頂点B1のY座標より小さく、かつ、頂点A2のY座標が頂点B1のY座標より小さく、かつ、頂点A3のY座標が頂点B3のY座標より小さく、かつ、頂点A4のY座標が頂点B4のY座標より小さい場合、検査漏れが生じていないと判定する。この場合、ステップS6に移る。
【0037】
ステップS6にて、計算装置15の判定処理部29は、今回の超音波伝播範囲32Aを記憶装置16に記憶させる。また、計算装置15の収録制御部26は、位置姿勢取得部27で取得された超音波プローブ10の位置と関連付けて、送受信制御装置14で取得された波形データを記憶装置16に記憶させる。
【0038】
その後、ステップS7に進み、計算装置15の判定処理部29は、位置姿勢取得部27で取得された超音波プローブ10の位置を含むように、自動走査の有効範囲を更新し、記憶装置16に記憶させる。
【0039】
ステップS4にて、計算装置15の判定処理部29は、上述した第1~第4の判定のうちの少なくとも1つが否定的である場合、検査漏れが生じていると判定する。例えば図7(a)及び図7(b)で示すように、頂点A1のY座標が頂点B1のY座標より大きく、かつ、頂点A2のY座標が頂点B1のY座標より大きく、かつ、頂点A3のY座標が頂点B3のY座標より大きく、かつ、頂点A4のY座標が頂点B4のY座標より大きい場合、検査漏れが生じていると判定する。この場合、ステップS6を実行しないで、ステップS8に移る。
【0040】
すなわち、計算装置15の判定処理部29は、今回の超音波伝播範囲32Aを記憶装置16に記憶させない。また、計算装置15の収録制御部26は、送受信制御装置14で取得された波形データを記憶装置16に記憶させない。
【0041】
ステップS8にて、計算装置15の判定処理部29は、位置姿勢取得部27で取得された超音波プローブ10の位置を含むように、自動走査の無効範囲を更新し、記憶装置16に記憶させる。また、自動走査の無効範囲を含むように、手動走査の範囲を更新し、記憶装置16に記憶させる。
【0042】
ステップS7又はS8の後、ステップS9に進み、計算装置15の収録制御部26は、例えば位置姿勢取得部27で取得された超音波プローブ10の位置に基づき、超音波プローブ10の自動走査が完了したかどうかを判定する。超音波プローブ10の自動走査が完了しない場合は、上述のステップS1に戻り、上述した処理を繰り返す。
【0043】
一方、超音波プローブ10の自動走査が完了した場合は、ステップS10に移る。ステップS10にて、計算装置15の表示制御部30は、記憶装置16で記憶された走査範囲の有効範囲及び手動走査の範囲に基づき、走査範囲表示画面39を表示装置17に表示させる。
【0044】
例えば図8で示すように、走査範囲表示画面39は、配管の画像上に、自動走査の有効範囲のマーカ40及び手動走査の範囲のマーカ41を識別可能に表示する。
【0045】
以上のように本実施形態においては、走査装置11で超音波プローブ10を配管1の表面に沿って移動させる自動走査にて、配管1の検査漏れが生じていないかどうかを判定する。そのため、検査漏れを回避することができる。また、配管1の検査漏れが生じていないかどうかの判定結果に基づき、自動走査の有効範囲及び無効範囲を取得し、自動走査の有効範囲と自動走査の無効範囲を含む手動走査の範囲とを表示装置17で表示する。これにより、手動走査の範囲を適正化し、検査効率を高めることができる。
【0046】
なお、第1の実施形態において、超音波検査装置は、超音波プローブ10の位置及び姿勢を検出する検出器13を備えた場合を例にとって説明したが、これに限られない。超音波検査装置は、超音波プローブ10の位置を検出する位置検出器と、超音波プローブ10の姿勢を検出する姿勢検出器とを備えてもよい。位置検出器は、例えば走査装置11のモータの回転数を検出するエンコーダで構成されてもよい。姿勢検出器は、例えば超音波プローブ10と一体化されたジャイロセンサで構成されてもよい。
【0047】
本発明の第2の実施形態を、図面を参照しつつ説明する。なお、本実施形態において、第1の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。
【0048】
図11は、本実施形態における超音波検査装置の構成を、被検体である配管と共に表す概略図である。
【0049】
本実施形態の超音波検査装置は、上述した検出器13を備えない。計算装置15は、上述した位置姿勢取得部27の代わりに、位置姿勢演算部42を有する。
【0050】
計算装置15の位置姿勢演算部42は、走査制御装置12の制御情報に基づき、超音波プローブ10の位置を演算する。位置姿勢演算部42は、演算された超音波プローブ10の位置と記憶装置16で記憶された配管1の形状データに基づき、超音波プローブ10の姿勢を演算する。詳細には、超音波プローブ10の底面の法線ベクトルとして、超音波プローブ10の位置における配管1の表面の法線ベクトルを演算し、これに基づいて超音波プローブ10の姿勢を演算する。
【0051】
以上のように構成された本実施形態においても、第1の実施形態と同様、検査漏れを回避しつつ、検査効率を高めることができる。
【0052】
なお、第1及び第2の実施形態において、超音波プローブ10を構成する探触子22は、圧電素子23及びシュー24からなる斜角探触子である場合を例にとって説明したが、これに限らない。探触子は、1つの圧電素子からなる垂直探触子、又は複数の圧電素子が配列されたアレイ型探触子としてもよい。
【0053】
本発明の第3の実施形態を、図面を参照しつつ説明する。なお、本実施形態において、第1及び第2の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。
【0054】
図12は、本実施形態における超音波プローブを構成する複数の探触子を表す概略図である。図13は、本実施形態における複数の探触子でそれぞれ受信された複数の超音波の波形データを表す図である。
【0055】
本実施形態の超音波検査装置は、第2の実施形態と同様、上述した検出器13を備えない。計算装置15は、第2の実施形態と同様、位置姿勢演算部42を有する。位置姿勢演算部42は、第2の実施形態と同様、走査制御装置12の制御情報に基づき、超音波プローブ10の位置を演算する。
【0056】
超音波プローブ10は、超音波の伝播方向が互いに異なる複数の探触子22A,22B,22Cを備える。探触子22Aは、例えば圧電素子23A及びシュー24Aからなる斜角探触子である。探触子22Bは、例えば圧電素子23B及びシュー24Bからなる斜角探触子である。探触子22Cは、例えば垂直探触子である。送受信制御装置14は、複数の探触子22A,22B,22Cによる超音波の送受信を順次制御して、複数の探触子22A,22B,22Cでそれぞれ受信された複数の超音波の波形データを取得する。
【0057】
計算装置15の位置姿勢演算部42は、探触子22Aで受信された超音波の波形データにより、配管1の内面で反射された超音波の伝播時間taを取得し、これに基づき、探触子22Aの超音波の伝播方向における探触子22Aと配管1の内面の間の距離を演算する。また、探触子22Bで受信された超音波の波形データにより、配管1の内面で反射された超音波の伝播時間tbを取得し、これに基づき、探触子22Bの超音波の伝播方向における探触子22Bと配管1の内面の間の距離を演算する。また、探触子22Cで受信された超音波の波形データにより、配管1の内面で反射された超音波の伝播時間tcを取得し、これに基づき、探触子22Cの超音波の伝播方向における探触子22Cと配管1の内面の間の距離を演算する。そして、前述した探触子22Aと配管1の内面の間の距離、探触子22Bと配管1の内面の間の距離、及び探触子22Cと配管1の内面の間の距離と、記憶装置16で記憶された配管1の形状データとに基づき、超音波プローブ10の姿勢を演算する。
【0058】
以上のように構成された本実施形態においても、第1及び第2の実施形態と同様、検査漏れを回避しつつ、検査効率を高めることができる。
【0059】
なお、第3の実施形態において、超音波プローブ10を構成する複数の探触子は、2つの斜角探触子と1つの垂直探触子である場合を例にとって説明したが、これに限らない。探触子の総数は、2つ、又は4つ以上であってもよい。また、複数の探触子は、垂直探触子を含まなくてもよい。
【0060】
また、第1~第3の実施形態において、計算装置15は、配管1の内部における検査範囲33を設定し、超音波伝播範囲32’のうち、検査範囲33と重なる超音波伝播範囲32を抽出する場合を例にとって説明したが、これに限られない。すなわち、計算装置15は、配管1の内部における検査範囲33を設定しなくともよい。計算装置15は、超音波伝播範囲32’を記憶装置16に記憶させる。そして、今回の超音波伝播範囲32’と、記憶装置16で記憶された前回の超音波伝播範囲32’とが互いに重なっているかどうかにより、検査漏れが生じていないかどうかを判定する。このような場合も、上記同様の効果を得ることができる。
【0061】
なお、以上において、被検体は、接続部3を有する配管1である場合を例にとって説明したが、これに限られないことは言うまでもない。
【符号の説明】
【0062】
1 配管
10 超音波プローブ
11 走査装置
13 検出器
14 送受信制御装置
15 計算装置
17 表示装置
22,22A,22B,22C 探触子
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11