(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023170079
(43)【公開日】2023-12-01
(54)【発明の名称】表示装置の製造方法
(51)【国際特許分類】
G09F 9/00 20060101AFI20231124BHJP
G09F 9/33 20060101ALI20231124BHJP
G09F 9/30 20060101ALI20231124BHJP
H01L 33/48 20100101ALI20231124BHJP
【FI】
G09F9/00 338
G09F9/33
G09F9/30 338
H01L33/48
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022081549
(22)【出願日】2022-05-18
(71)【出願人】
【識別番号】502356528
【氏名又は名称】株式会社ジャパンディスプレイ
(74)【代理人】
【識別番号】110002066
【氏名又は名称】弁理士法人筒井国際特許事務所
(72)【発明者】
【氏名】浅田 圭介
【テーマコード(参考)】
5C094
5F142
5G435
【Fターム(参考)】
5C094AA43
5C094BA23
5C094CA19
5F142CA11
5F142CA13
5F142CB07
5F142CB14
5F142CB23
5F142CD02
5F142FA32
5F142GA01
5G435AA17
5G435BB04
5G435KK05
(57)【要約】
【課題】表示装置の性能を向上させる
【解決手段】表示装置の製造方法は、複数のLED素子20が行列状に配列された基板SS1(第1基板)と、ガラス基材であって、かつ、粘着樹脂層50が形成された面TRtを備える転写用基板(第2基板)TR1と、の位置合わせを行う工程を含んでいる。転写用基板TR1の面TRt上には、粘着樹脂層50を介して視認可能な複数のメタルパターンMPが形成されている。位置合わせ工程では、複数のメタルパターンMPの位置情報に基づいて基板SS1と転写用基板TR1との位置合わせを行う。
【選択図】
図11
【特許請求の範囲】
【請求項1】
(a)第1面を備え、前記第1面上に複数の第1無機発光素子が行列状に配列された第1基板と、ガラス基材であって、かつ、粘着樹脂層が形成された第2面を備える第2基板と、を準備する工程、
(b)前記第1基板と、前記第2基板との位置合わせを行う工程、
(c)前記(b)工程の後、前記複数の第1無機発光素子のそれぞれを前記第2基板上の前記粘着樹脂層に貼り付ける工程、
(d)前記(c)工程の後、前記第1基板と前記第2基板との距離を遠ざけることにより、前記複数の第1無機発光素子のそれぞれを前記第1基板から剥離させる工程、
を含み、
前記第2基板の前記第2面と前記粘着樹脂層との間には、前記粘着樹脂層を介して視認可能な複数のメタルパターンが形成され、
前記(b)工程では、前記複数のメタルパターンの位置情報に基づいて前記第1基板と前記第2基板との位置合わせを行う、表示装置の製造方法。
【請求項2】
請求項1において、
前記第1基板の前記第1面上には、アライメントマークが形成され、
前記(b)工程では、前記複数のメタルパターンの位置情報および前記第1基板のアライメントマークの位置情報に基づいて前記第1基板と前記第2基板との位置合わせを行う、表示装置の製造方法。
【請求項3】
請求項2において、
前記第2基板上に形成された前記複数のメタルパターンと、前記第1基板上に形成された前記アライメントマークとは、互いに異なる形状を備えている、表示装置の製造方法。
【請求項4】
請求項1において、
(e)第3面を備え、前記第3面上に複数の第2無機発光素子が行列状に配列された第3基板、を準備する工程、
(f)前記(d)工程の後、前記第3基板と、前記複数の第1無機発光素子が貼り付けられた状態の前記第2基板との位置合わせを行う工程、
(g)前記(f)工程の後、前記複数の第2無機発光素子のそれぞれを前記第2基板上の前記粘着樹脂層に貼り付ける工程、
(h)前記(g)工程の後、前記第3基板と前記第2基板との距離を遠ざけることにより、前記複数の第2無機発光素子のそれぞれを前記第3基板から剥離させる工程、
を更に含み、
前記(f)工程では、前記複数のメタルパターンの位置情報に基づいて前記第3基板と前記第2基板との位置合わせを行う、表示装置の製造方法。
【請求項5】
請求項4において、
前記第3基板の前記第3面上には、アライメントマークが形成され、
前記(f)工程では、前記複数のメタルパターンの位置情報および前記第3基板のアライメントマークの位置情報に基づいて前記第3基板と前記第2基板との位置合わせを行う、表示装置の製造方法。
【請求項6】
請求項4において、
(j)第4面を備え、前記第4面上に複数の第3無機発光素子が行列状に配列された第4基板、を準備する工程、
(k)前記(h)工程の後、前記第4基板と、前記複数の第1無機発光素子および前記複数の第2無機発光素子が貼り付けられた状態の前記第2基板との位置合わせを行う工程、
(m)前記(k)工程の後、前記複数の第3無機発光素子のそれぞれを前記第2基板上の前記粘着樹脂層に貼り付ける工程、
(n)前記(m)工程の後、前記第4基板と前記第2基板との距離を遠ざけることにより、前記複数の第3無機発光素子のそれぞれを前記第4基板から剥離させる工程、
を更に含み、
前記(k)工程では、前記複数のメタルパターンの位置情報に基づいて前記第4基板と前記第2基板との位置合わせを行う、表示装置の製造方法。
【請求項7】
請求項6において、
前記第4基板の前記第4面上には、アライメントマークが形成され、
前記(k)工程では、前記複数のメタルパターンの位置情報および前記第4基板のアライメントマークの位置情報に基づいて前記第4基板と前記第2基板との位置合わせを行う、表示装置の製造方法。
【請求項8】
請求項1において、前記複数のメタルパターンは、第1メタルパターンと、前記第1メタルパターンとは異なる平面形状を備えた第2メタルパターンと、を含んでいる、表示装置の製造方法。
【請求項9】
請求項1~8のいずれか1項において、
平面視において前記第2基板は、
前記複数の第1無機発光素子が貼り付けられる素子配置領域と、
前記素子配置領域の周囲にある周辺領域と、
を有し、
前記複数のメタルパターンは、前記周辺領域に配置されている、表示装置の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表示装置の製造技術に関する。
【背景技術】
【0002】
表示装置として、基板上に、自発光素子である発光ダイオード素子が行列上に配列されたLED(Light Emitting Diode)表示装置がある。例えば、米国特許出願公開第2019/0096774号明細書(特許文献1)には、複数のマイクロデバイス(LED)をテンプレートからレシーバ基板に転写する際に、テンプレートにアライメントマークが形成されていることが記載されている。特表2019-511838号公報(特許文献2)には、3種類のLED素子を成長基板からターゲット基板に移送する方法が記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許出願公開第2019/0096774号明細書
【特許文献2】特表2019-511838号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
LED表示装置の場合、アレイ基板上に多数のLED素子が実装される。LED素子が形成されるサファイア基板からアレイ基板(バックプレーンと呼ぶ場合もある)に実装される工程において、サファイア基板から転写用基板にLED素子を転写した後、転写用基板からアレイ基板に再転写する方法が考えられる。また、アレイ基板に実装する際にLED素子の電極とアレイ基板とを対向させるため、サファイア基板から第1転写用基板、第2転写用基板の順にLED素子を転写した後、第2転写用基板からアレイ基板に再転写する方法が考えられる。このように、複数のLED素子を転写する場合、転写元の基板と転写先の基板との位置合わせが必要になる。特に、複数種類のLED素子を高密度で実装する場合には、位置合わせの精度を向上させる技術が必要になる。
【0005】
本発明の目的は、表示装置の性能を向上させる技術を提供することにある。
【課題を解決するための手段】
【0006】
本発明の一態様である表示装置の製造方法は、(a)第1面を備え、前記第1面上に複数の第1無機発光素子が行列状に配列された第1基板と、ガラス基材であって、かつ、粘着樹脂層が形成された第2面を備える第2基板と、を準備する工程と、(b)前記第1基板と、前記第2基板との位置合わせを行う工程と、(c)前記(b)工程の後、前記複数の第1無機発光素子のそれぞれを前記第2基板上の前記粘着樹脂層に貼り付ける工程と、(d)前記(c)工程の後、前記第1基板と前記第2基板との距離を遠ざけることにより、前記複数の第1無機発光素子のそれぞれを前記第1基板から剥離させる工程と、を含んでいる。前記第2基板の前記第2面と前記粘着樹脂層との間には、前記粘着樹脂層を介して視認可能な複数のメタルパターンが形成されている。前記(b)工程では、前記複数のメタルパターンの位置情報に基づいて前記第1基板と前記第2基板との位置合わせを行う。
【図面の簡単な説明】
【0007】
【
図1】一実施形態である表示装置の構成例を示す平面図である。
【
図2】
図1に示す画素周辺の回路の構成例を示す回路図である。
【
図3】
図1に示す表示装置の複数の画素のそれぞれに配置されるLED素子の周辺構造の一例を示す拡大断面図である。
【
図4】
図3に示すLED素子に対する変形例を示す拡大断面図である。
【
図5】
図1に示す表示装置の製造工程のフローを示す説明図である。
【
図6】
図5に示すLED保持基板準備工程において準備する基板の概要を示す平面図である。
【
図7】
図6に示す複数の基板のそれぞれの拡大断面図である。
【
図8】
図5に示す第1転写工程および第2転写工程で利用する転写用基板の一例を示す平面図である。
【
図10】
図5に示すアレイ基板準備工程で準備するアレイ基板の概要を示す断面図である。
【
図11】
図5に示す第1位置合わせ工程を模式的に示す断面図である。
【
図12】
図5に示す第1貼り付け工程を模式的に示す断面図である。
【
図13】
図5に示す第1保持基板剥離工程において、複数の第1無機発光素子にレーザを照射した状態を模式的に示す断面図である。
【
図14】
図5に示す第1保持基板剥離工程において、複数の第1無機発光素子から保持基板を剥離した状態を模式的に示す断面図である。
【
図15】
図5に示す第2位置合わせ工程を模式的に示す断面図である。
【
図16】
図5に示す第2貼り付け工程を模式的に示す断面図である。
【
図17】
図5に示す第2保持基板剥離工程において、複数の第2無機発光素子から保持基板を剥離した状態を模式的に示す断面図である。
【
図18】
図5に示す第3位置合わせ工程を模式的に示す断面図である。
【
図19】
図5に示す第3貼り付け工程を模式的に示す断面図である。
【
図20】
図5に示す第3保持基板剥離工程において、複数の第3無機発光素子から保持基板を剥離した状態を模式的に示す断面図である。
【
図21】
図5に示す第2転写工程に含まれる位置合わせ工程を示す断面図である。
【
図22】
図5に示す第2転写工程に含まれる貼り付け工程を示す断面図である。
【
図23】
図5に示す第2転写工程に含まれる基板剥離工程を示す断面図である。
【
図24】
図5に示すアレイ基板実装工程に含まれる位置合わせ工程を示す断面図である。
【
図25】
図5に示すアレイ基板実装工程に含まれる接合工程を示す断面図である。
【
図26】
図5に示すアレイ基板実装工程に含まれる基板剥離工程を示す断面図である。
【
図27】
図6に示す基板の変形例を示す平面図である。
【
図29】
図27に示す基板に形成されたアライメントマークと
図8に示す転写用基板に形成されたメタルパターンとの形状が異なっている場合の位置合わせ工程におけるイメージを模式的に示す拡大平面図である。
【発明を実施するための形態】
【0008】
以下に、本発明の各実施の形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一または関連する符号を付して、詳細な説明を適宜省略することがある。
【0009】
以下の実施の形態では、複数の無機発光素子を用いた表示装置の例として、複数のマイクロLED素子を備えるマイクロLED表示装置を取り上げて説明する。マイクロLED素子は、一般的なLED素子と比較して素子のサイズ(外径寸法)が小さいので、高精細な画像を表示できるというメリットがある。
【0010】
なお、自発光素子である発光ダイオード素子として、有機発光ダイオード素子(OLED:Organic Light-Emitting Diode)がある。以下の実施の形態で説明する無機発光ダイオード素子(マイクロLED素子)は、有機発光ダイオード素子とは区別される。
【0011】
<表示装置>
まず、本実施の形態の表示装置であるマイクロLED表示装置の構成例について説明する。
図1は、一実施形態である表示装置の構成例を示す平面図である。
図1では、表示領域DAと周辺領域PFAとの境界、制御回路5、駆動回路6、および複数の画素PIXのそれぞれを二点鎖線で示している。
図2は、
図1に示す画素周辺の回路の構成例を示す回路図である。
【0012】
図1に示すように、本実施の形態の表示装置DSP1は、表示領域DAと、表示領域DAの周囲を枠状に囲む周辺領域PFAと、表示領域DA内に行列上に配列された複数の画素PIXと、を有している。また、表示装置DSP1は、基板10と、基板10上に形成された制御回路5と、基板10上に形成された駆動回路6と、を有している。
【0013】
制御回路5は、表示装置DSP1の表示機能の駆動を制御する制御回路である。例えば、制御回路5は、基板10上に実装されたドライバIC(Integrated Circuit)である。
図1に示す例では、制御回路5は、基板10が備える4辺のうち、一つの短辺に沿って配置されている。また、本実施の形態の例では、制御回路5は、複数の画素PIXに接続される映像信号線VL(
図2参照)を駆動する信号線駆動回路を含んでいる。ただし、制御回路5の位置および構成例は、
図1に示す例には限定されず、種々の変形例がある。例えば、
図1において、制御回路5として示す位置に、フレキシブル基板などの回路基板が接続され、上記したドライバICは、回路基板上に搭載されている場合がある。また例えば、映像信号線VLを駆動する信号線駆動回路は、制御回路5とは別に形成されている場合がある。
【0014】
駆動回路6は、複数の画素PIXのうち、走査信号線GLを駆動する回路である。駆動回路6は、制御回路5からの制御信号に基づいて、複数の走査信号線GLを駆動する。
図1に示す例では、駆動回路6は、基板10が備える4辺のうち、二つの長辺のそれぞれに沿って配置されている。ただし、駆動回路6の位置および構成例は、
図1に示す例には限定されず、種々の変形例がある。例えば、
図1において、制御回路5として示す位置に、フレキシブル基板などの回路基板が接続され、上記した駆動回路6が回路基板上に搭載されている場合がある。
【0015】
次に、
図2を用いて画素PIXの回路構成例について説明する。なお、
図2では、一つの画素PIXを代表的に取り上げて図示しているが、
図1に示す複数の画素PIXのそれぞれが、
図2に示す画素PIXと同様の回路を備えている。以下では、画素PIXが備えるスイッチ、キャパシタ、およびLED素子20を含む回路について、画素回路と呼称する場合がある。画素回路は、制御回路5(
図1参照)から供給される映像信号Vsgに応じてLED素子20の発光状態を制御する電圧信号方式の回路である。
【0016】
図2に示すように、画素PIXは、LED素子20を備えている。LED素子20は、上記したマイクロ発光ダイオードである。LED素子20はアノード電極20EA(後述する
図3参照)およびカソード電極20EK(後述する
図3参照)を有している。LED素子20のアノード電極20EAおよびカソード電極20EKのそれぞれは、画素PIXの端子30に電気的に接続されている。
図2に示す例では、LED素子20のカソード電極20EKは、端子30Lに接続され、LED素子20のアノード電極20EAは、端子30Hに接続されている。端子30Lには相対的に低い固定電位(低電位)である電位PVSが供給され、端子30Hには、端子30Lに供給される電位よりも高い固定電位(高電位)である電位PVDが供給される。
【0017】
画素PIXは、出力スイッチBCT、駆動トランジスタDRT、および画素スイッチSSTを備えている。出力スイッチBCTは、駆動回路6から供給される制御信号Gsbに応答して、LED素子20の発光時間を制御するトランジスタである。駆動トランジスタDRTは、映像信号Vsgに応じてLED素子20のアノード電極に供給される駆動電流の電流量を制御するトランジスタである。画素スイッチSSTは、制御信号Gssに応答して画素回路と映像信号線VLとの接続状態(オンまたはオフの状態)を制御するトランジスタである。また、駆動回路6は、リセット電位の入力を制御するリセットスイッチRSTを備えている。出力スイッチBCT、駆動トランジスタDRT、画素スイッチSST、およびリセットスイッチRSTのそれぞれは、例えば薄膜トランジスタである。画素スイッチSSTがオン状態の時、画素回路には、映像信号線VLから映像信号Vsgが入力される。
【0018】
駆動回路6は、図示しないシフトレジスタ回路、出力バッファ回路等を含んでいる。駆動回路6は、制御回路5(
図1参照)から伝送される水平走査スタートパルスに基づいてパルスを出力し、制御信号Gss、制御信号Gsb、および制御信号Gsrを出力する。
【0019】
複数の走査信号線GLは、走査信号線GLA、GLB、およびリセット配線GLRを含んでいる。複数の走査信号線GLのそれぞれは、X方向に延びている。走査信号線GLAは、出力スイッチBCTのゲート電極に接続されている。走査信号線GLAに制御信号Gsbが供給されると、出力スイッチBCTがオン状態となる。走査信号線GLBは、画素スイッチSSTのゲート電極に接続されている。走査信号線GLBに制御信号Gssが供給されると、画素スイッチSSTがオン状態となる。リセット配線GLRは、出力スイッチBCTと駆動トランジスタDRTとの間、およびリセットスイッチRSTのドレイン電極に接続されている。リセットスイッチRSTのゲート電極にリセット信号である制御信号Gsrが供給されると、リセット配線GLRには、リセット電位が供給される。
【0020】
画素PIXは、保持容量Csおよび補助容量Cadを有している。保持容量Csおよび補助容量Cadは、それぞれキャパシタである。保持容量Csは、駆動トランジスタDRTのゲート電極と、端子30Hとの間に接続されている。補助容量Cadは、出力スイッチBCTのソース電極と端子30Hとの間に接続されている。補助容量Cadは、発光電流量を調整するための容量素子であり、変形例としては、補助容量Cadが配置されない場合もある。
【0021】
<LED素子の周辺構造>
次に、
図1に示す画素PIXに配置されるLED素子の周辺構造について説明する。
図3は、
図1に示す表示装置の複数の画素のそれぞれに配置されるLED素子の周辺構造の一例を示す拡大断面図である。
図4は、
図3に示すLED素子に対する変形例を示す拡大断面図である。
【0022】
図3に示す表示装置DSP1のアレイ基板SUB1は、基板10と、基板10上に積層された複数の絶縁層とを含む基板である。アレイ基板SUB1が有する複数の絶縁層は、無機絶縁層11、有機絶縁層12、および有機絶縁層13を含む。また、アレイ基板SUB1は、
図2を用いて説明した画素PIXが備える各種の回路を含む。基板10は、面10fおよび面10fの反対側の面10bを有する。無機絶縁層11、有機絶縁層12、および有機絶縁層13のそれぞれは、基板10の面10f上に積層されている。
【0023】
無機絶縁層11、有機絶縁層12、および有機絶縁層13のそれぞれは、積層された複数の絶縁膜から成る積層膜である場合がある。例えば、
図2に示す出力スイッチBCT、駆動トランジスタDRT、および画素スイッチSSTを構成する薄膜トランジスタの半導体層は、無機絶縁層11内に形成されている。無機絶縁層11を構成する複数の無機絶縁膜のうちの一部は、薄膜トランジスタを形成するための下地層として用いられ、他の一部は、薄膜トランジスタのゲート絶縁膜として用いられる。
【0024】
図3に示すように、アレイ基板SUB1には、LED素子20が搭載されている。LED素子20は、面20fおよび面20fの反対側の面20bを備える。また、LED素子20は、面20fに配列された複数の(
図3では2個の)電極20Eを備えている。複数の電極20Eは、アノード電極20EAおよびカソード電極20EKを含む。アノード電極20EAは、導電性接合材40を介して端子30Hと接続されている。カソード電極20EKは、導電性接合材40を介して端子30Lと接続されている。導電性接合材40は、例えば、半田から成る。
図3では、1個のLED素子を例示しているが、アレイ基板SUB1には、複数のLED素子が行列状に搭載されている。表示装置DSP1は、アレイ基板SUB1上に搭載された複数のLED素子20を駆動することにより、画像を表示する。LED素子20から出射される光は、例えば面20b側から出射される。
【0025】
なお、
図3ではLED素子20の一例として、面20fにアノード電極20EAおよびカソード電極20EKの両方が配置される例を示した。ただし、LED素子20の構造には種々の変形例がある。例えば、
図4に示すLED素子20M1の場合、面20bにカソード電極20EKが設けられ、面20fにアノード電極20EAが設けられている。
図3に示すLED素子20を、
図4に示すLED素子20M1に置き換える場合、カソード電極20EKに接続される端子30L(
図3参照)は、LED素子20M1の面20b上に設けられる。
【0026】
<表示装置の製造方法>
次に、
図1に示す表示装置DSP1の製造方法について説明する。
図5は、
図1に示す表示装置の製造工程のフローを示す説明図である。
図5に例示するフローでは、例えば赤色用、緑色用、および青色用の3種類のLED素子を第1転写用基板に順に転写した後、第2転写用基板を介してアレイ基板に搭載する方法を取り上げて説明する。
図5に示すように、本実施の形態の表示装置の製造方法は、LED保持基板準備工程、第1転写用基板準備工程、第2転写用基板準備工程、アレイ基板準備工程、第1転写工程、第2転写工程、およびアレイ基板実装工程を含んでいる。以下、各工程の詳細について説明する。
【0027】
<LED保持基板準備工程、第1転写用基板準備工程、第2転写用基板準備工程、およびアレイ基板準備工程>
図5に示すLED保持基板準備工程では、
図6に示す基板SS1、基板SS2、および基板SS3を準備する。
図6は、
図5に示すLED保持基板準備工程において準備する基板の概要を示す平面図である。基板SS1、基板SS2、および基板SS3のそれぞれは、上面および下面を備えている。また、LED保持基板である基板SS1、基板SS2、および基板SS3のそれぞれは、上面および下面のうちのいずれか一方(
図6に示す例では、上面上)に複数のLED素子が行列状に配列されている。
【0028】
詳しくは、基板SS1、基板SS2、および基板SS3には、それぞれ異なる色の光を発光するLED素子が配列されている。言い換えれば、基板SS1、基板SS2、および基板SS3のそれぞれは、複数のLED素子を保持するLED保持基板である。例えば、基板SS1の面(素子保持面)SS1tには、赤色用LED素子、緑色用LED素子、および青色用LED素子のうちの一つである第1無機発光素子21が配列されている。基板SS2の面(素子保持面)SS2tには、赤色用LED素子、緑色用LED素子、および青色用LED素子のうち、第1無機発光素子21とは異なるLED素子である第2無機発光素子22が配列されている。基板SS3の面(素子保持面)SS3tには、赤色用LED素子、緑色用LED素子、および青色用LED素子のうち、第1無機発光素子21および第2無機発光素子22とは異なるLED素子である第3無機発光素子23が配列されている。
【0029】
基板SS1の面SS1t上には、複数の第1無機発光素子21が行列上に配列されている。基板SS1の面SS1t上には、第2無機発光素子22および第3無機発光素子23は配置されていない。基板SS2の面SS2t上には、複数の第2無機発光素子22が行列上に配列されている。基板SS2の面SS2t上には、第1無機発光素子21および第3無機発光素子23は配置されていない。基板SS3の面SS3t上には、複数の第3無機発光素子23が行列上に配列されている。基板SS3の面SS3t上には、第1無機発光素子21および第2無機発光素子22は配置されていない。基板SS1、基板SS2、および基板SS3のそれぞれは、例えば、サファイア基板である。第1無機発光素子21、第2無機発光素子22、および第3無機発光素子23のそれぞれは、例えば、サファイア基板上に金属膜、絶縁膜、および半導体膜等を積層することにより形成されている。言い換えれば、基板SS1、基板SS2、および基板SS3のそれぞれは、LED製造用の基板(LEDウエハ)である。
【0030】
なお、
図6では、基板SS1、基板SS2、および基板SS3の平面形状を円形として図示しているが、基板SS1、基板SS2、および基板SS3の平面形状は円形に限定されず、例えば四角形など、種々の変形例がある。
【0031】
図7は、
図6に示す複数の基板のそれぞれの拡大断面図である。なお、基板SS1、基板SS2、および基板SS3の断面構造は同様なので、代表的に1図を示し、基板SS1、基板SS2、および基板SS3に共通する構造を説明している。以下では代表例として、複数の第1無機発光素子21を備える基板SS1について説明する。ただし、以下の説明において、第1無機発光素子21を第2無機発光素子22、あるいは第3無機発光素子23に置き換え、基板SS1を基板SS2あるいは基板SS3に置き換え、面SS1tを面SS2tあるいは面SS3tに置き換えることができる。
【0032】
図7に示す基板SS1の面SS1t上に配置された複数の第1無機発光素子21のそれぞれは、N型半導体層24と、N型半導体層24上に積層される活性層25と、活性層25上に積層されるP型半導体層26と、を備える。N型半導体層24は、アノード電極20EAおよびカソード電極20EKに共通の下地層として形成され、アノード電極20EA側に活性層25およびP型半導体層26が積層されている。アノード電極20EA側では、P型半導体層26上に透明電極層27aが形成されている。アノード電極20EA側の透明電極層27aおよびカソード電極20EK側のN型半導体層24は、無機絶縁膜であるパッシベーション膜28に覆われている。パッシベーション膜28には、アノード電極20EAおよびカソード電極20EKを形成する箇所に開口部が形成されている。各開口部にはシード層27bを介して金属電極層27cが積層されている。アノード電極20EAは、透明電極層27a、シード層27bおよび金属電極層27cの積層体である。一方、カソード電極20EKは、N型半導体層24上に積層されるシード層27bおよび金属電極層27cの積層体である。N型半導体層24と基板SS1との間には、窒化ガリウムから成るバッファ層29が形成されている。
【0033】
図7に示す例では、例えば第1無機発光素子21の電極20Eには、
図3に示す導電性接合材40が接合されていない。ただし、変形例として、
図3に示す導電性接合材40が電極20Eに予め接合されている場合がある。
【0034】
基板SS1、基板SS2、および基板SS3のそれぞれは、例えば
図5に示す第1転写工程の前に準備される。ただし、変形例としては、第1転写工程(詳しくは第1転写工程の第1位置合わせ工程)の前に、基板SS1、基板SS2、および基板SS3の全てが予め準備されていない場合もある。例えば、基板SS2は、少なくとも
図5に示す第1転写工程の第2位置合わせ工程の前に準備されていればよい。また、基板SS3は、少なくとも第1転写工程の第3位置合わせ工程の前に準備されていれば足りる。
【0035】
図5に示す第1転写用基板準備工程および第2転写用基板準備工程では、
図8および
図9に示す転写用基板TR1およびTR2を準備する。
図8は、
図5に示す第1転写工程および第2転写工程で利用する転写用基板の一例を示す平面図である。
図9は、
図8のA-A線に沿った断面図である。転写用基板TR1および転写用基板TR2は、同じ構造とすることができるので、
図8および
図9では代表的に1図を示し、転写用基板TR1および転写用基板TR2に共通する構造を説明している。以下では代表例として、
図5に示す第1転写工程に利用される転写用基板TR1について説明する。ただし、以下の説明において、転写用基板TR1と記載されている部分を転写用基板TR2と置き換えることができる。
【0036】
図8に示すように、転写用基板TR1は、平面視において四角形を成す。転写用基板TR1は、X方向に延びる辺TRs1と、X方向に交差するY方向において辺TRs1の反対側にある辺TRs2と、Y方向に延びる辺TRs3と、X方向において辺TRs3の反対側にある辺TRs4と、を有する。また、転写用基板TR1は、
図6に示す第1無機発光素子21、第2無機発光素子22、および第3無機発光素子23を貼り付ける予定領域である素子配置領域R1と、素子配置領域R1の周囲にある周辺領域R2と、を有している。また、転写用基板TR1は、複数(
図8では2個)のメタルパターンMPを有している。
【0037】
図9に示すように、転写用基板TR1は、粘着樹脂層50が形成された面TRtと、面TRtの反対側に位置する面TRbと、を備えたガラス基材である。言い換えれば、転写用基板TR1は、粘着樹脂層50を支持するベース基板であって、本実施の形態の場合、ガラス材料から成る。複数のメタルパターンMPのそれぞれは、ガラス基材である転写用基板TR1の面TRt上に形成され、かつ、粘着樹脂層50に覆われている。複数のメタルパターンMPは、金属材料から成るパターンであって、
図5に示す第1位置合わせ工程、第2位置合わせ工程、および第3位置合わせ工程のそれぞれにおいて、アライメントマークとして利用される。メタルパターンMPを構成する金属材料の種類は特に限定されないが、例えば銅、チタン、アルミニウムなどを例示することができる。また、メタルパターンMPは、複数のLED素子20を転写する工程において邪魔にならないような位置に配置されていることが好ましい。
図1に示す例では、複数のメタルパターンMPのそれぞれは、素子配置領域R1の周囲にある周辺領域R2に形成されている。
図8に示す例では、平面視において、複数のメタルパターンMPのそれぞれは、転写用基板TR1の各辺(辺TRs1,TRs2,TRs3,およびTRs4)が交差する角部と、素子配置領域の角部との間に配置されている。この場合、後述する位置合わせ工程において、遠く離れた2箇所以上のメタルパターンMPの位置情報を取得することになるので、位置合わせ精度を向上させることができる。
【0038】
粘着樹脂層50は、転写用基板TR1の面TRtと対向する面50bおよび面50bの反対側にある面50tを有している。面50tは粘着性を有し、
図5に示す第1貼り付け工程、第2貼り付け工程、および第3貼り付け工程のそれぞれにおいて、その粘着性によりLED素子(
図6に示す第1無機発光素子21、第2無機発光素子22、および第3無機発光素子23)を保持することが可能である。また、
図5に示す第1位置合わせ工程、第2位置合わせ工程、および第3位置合わせ工程では、粘着樹脂層50を介してメタルパターンMPを視認する必要がある。このため、粘着樹脂層50には、透明性(可視光透過性)が要求される。
図9に示すように、粘着樹脂層50は、面TRtの全体を覆うように形成されている。粘着樹脂層50を構成する材料として例えばシリコーン系、ポリイミド系、アクリル系、エポキシ系等を例示することができる。
【0039】
本実施の形態のように、アライメントマークとして利用されるパターンを、金属製のパターンとすることで、アライメントマークであるメタルパターンMPの強度を向上させることができる。例えば、樹脂などの有機材料でアライメントマークを形成した場合には、転写用基板TR1を用いた製造プロセスにおいて熱が印加された場合に、マークの形状が変形する場合がある。一方、本実施の形態のように金属性のパターンをアライメントマークとして用いれば、仮に熱が印加された場合でもマーク形状の変形を防止できる。
【0040】
また、メタルパターンMPの視認性の観点からは、粘着樹脂層50からメタルパターンMPが露出していることが好ましい。粘着樹脂層50からメタルパターンMPを露出させる方法として、メタルパターンMPを避けて粘着樹脂層50を形成する方法、あるいは粘着樹脂層50上にメタルパターンMPを形成する方法が考えられる。
【0041】
しかし、メタルパターンMPを粘着樹脂層50から露出させようとすれば、以下の点で課題がある。例えば、メタルパターンMPを形成した後、粘着樹脂層50を形成する場合、例えば、キャスティング法、スリットコート法、スピンコート法などを用いて、面TRt上に粘着樹脂層50を形成する。この時、メタルパターンMPを粘着樹脂層50から露出させようとすれば、メタルパターンMPを露出させるための処理(例えば、メタルパターンMPを覆うマスクを形成する処理およびマスクを除去する処理)が必要になり、製造工程が煩雑になる。また、メタルパターンMPが粘着樹脂層50上に形成される場合、粘着樹脂層50の変形に伴ってメタルパターンMPの位置がずれる可能性がある。
【0042】
本実施の形態の場合には、メタルパターンMPが粘着樹脂層50に覆われている。このため、メタルパターンMPを露出させるための処理(例えば、メタルパターンMPを覆うマスクを形成する処理やこのマスクを除去する処理)を施す必要がないので、製造工程を効率化することができる。また、本実施の形態の場合、メタルパターンMPは転写用基板TR1の面TRt上に直接的に形成することができるので、仮に粘着樹脂層50が変形した場合でもメタルパターンMPの位置がずれることを防止できる。また、メタルパターンMPを構成する金属材料として、視認性が高く、かつ決められたパターン形状に加工することが容易な材料を用いることが好ましい。このような材料として、アルミニウム、銅、あるいはチタニウムを例示することができる。また、メタルパターンMPを構成する材料は単一の元素には限定されず、上記した金属材料を含む合金である場合もある。
【0043】
また、転写用基板TR1,TR2のベース基材としてガラス基材を用いることで以降に示す第1転写工程及び第2転写工程におけるハンドリング性を向上させることもでき、金属材料を用いたアライメントマークはガラス基板上に任意な位置及び形状に精度よく成膜及びエッチング加工によって形成することができる。
【0044】
また、アレイ基板準備工程では、
図10に示す転写用基板TR1を準備する。
図10は、
図5に示すアレイ基板準備工程で準備するアレイ基板の概要を示す断面図である。アレイ基板SUB1の表示領域DAには、多数の端子30が行列上に配列されているが、
図10では、その一部を代表的に示している。
【0045】
図10に示すように、転写用基板TR1は、面SUBtと、面SUBtの反対側の面SUBbとを備えている。面SUBtは、
図6に示す複数のLED素子20が実装される予定の実装面である。転写用基板TR1は、複数の端子30を有している。複数の端子30は、第1無機発光素子21(
図6参照)と電気的に接続される予定の端子(第1端子)31を含む。複数の端子30は、第2無機発光素子22(
図6参照)と電気的に接続される予定の端子(第2端子)32を含む。また、複数の端子30は、第3無機発光素子23(
図6参照)と電気的に接続される予定の端子(第3端子)33を含む。端子31、端子32、および端子33のそれぞれは、
図1に示す画素PIXの位置に対応して、行列状に配列されている。
【0046】
図10に示す例では、複数の端子30のそれぞれの上には突起電極としての導電性接合材40が予め形成されている。ただし、変形例として、導電性接合材40が端子30に予め接合されていない場合もある。
【0047】
<第1転写工程>
次に、
図5に示す第1転写程について説明する。
図5に示す例では、第1転写工程は、第1位置合わせ工程、第1貼り付け工程、第1保持基板剥離工程、第2位置合わせ工程、第2貼り付け工程、第2保持基板剥離工程、第3位置合わせ工程、第3貼り付け工程、および第3保持基板剥離工程を含んでいる。第1転写工程では、
図6に示す基板SS1上の複数の第1無機発光素子21、基板SS2上の複数の第2無機発光素子22、および基板SS3上の複数の第3無機発光素子23のそれぞれを、予め設定された配置間隔に位置合わせをした上で、転写用基板TR1の素子配置領域R1に転写する。以下、第1転写工程の詳細について順に説明する。
【0048】
<第1位置合わせ工程>
図11は、
図5に示す第1位置合わせ工程を模式的に示す断面図である。
図5に示す第1位置合わせ工程では、
図11に示すように、基板SS1の面SS1tと、転写用基板TR1の面TRtとの位置合わせを行う。
図11に示す例では、ステージ61に保持された基板SS1と、ステージ62に保持された転写用基板TR1とが互いに対向した状態で、イメージセンサ71によりアライメントマークを撮影し、このアライメントマークの位置情報に基づいて基板SS1と転写用基板TR1との位置合わせを行う。詳しくは、基板SS1の面SS1t上に形成された複数の第1無機発光素子21のそれぞれの位置と、転写用基板TR1の面TRt上に形成された粘着樹脂層50上における素子配置領域R1の位置との関係を調整する。
【0049】
ステージ61は、基板SS1を保持することが可能な部材である。基板SS1の裏面SS1bは、ステージ61の保持面61hに保持される。ステージ62は、転写用基板TR1を保持することが可能な部材である。ガラス基材である転写用基板TR1の面TRbは、ステージ62の保持面62hに保持される。ステージ61が基板SS1を保持する方法、およびステージ62が転写用基板TR1を保持する方法としては、例えば吸着保持する方法、あるいは、基板SS1または転写用基板TR1の周縁部を図示しない固定治具(チャック)で固定する方法、などを例示することができる。また、ステージ61およびステージ62のそれぞれは、制御装置72に接続され、制御装置から出力されるコマンド信号に基づいて、互いに独立して平面方向(X-Y平面方向)に移動させることが可能な機構を備えている。
【0050】
イメージセンサ71は、基板SS1と転写用基板TR1との間に配置され、制御装置72とイメージセンサ71とは、電気的に接続されている。イメージセンサ71は、基板SS1側のアライメントマークとして、例えば複数の第1無機発光素子21のうちの一つ以上を撮像し、画像データを制御装置72に出力する。また、イメージセンサ71は、転写用基板TR1側のアライメントマークとして複数のメタルパターンMPを撮像し、画像データを制御装置72に出力する。なお、
図8で例示したように転写用基板TR1に4つのメタルパターンMPが存在する場合において、少なくとも2個以上のメタルパターンMPが撮像される。イメージセンサ71のスコープによって、2個以上のメタルパターンMPを一括して撮像する場合と、2個以上のメタルパターンMPを順次撮像する場合とがある。
【0051】
イメージセンサ71から画像データを取得した制御装置72は、イメージセンサ71がメタルパターンMPの撮像を行った時のステージ62の位置情報とメタルパターンMPの画像データの解析結果からメタルパターンMPの位置を算出する。同様に、制御装置72は、イメージセンサ71が第1無機発光素子21の撮像を行った時のステージ61の位置情報と第1無機発光素子21の画像データの解析結果から第1無機発光素子21の位置を算出する。そして、メタルパターンMPの位置情報および第1無機発光素子21の位置情報に基づいて、ステージ61およびステージ62の少なくとも一方をX-Y平面に沿って動作させて、予め設定された転写位置上に複数の第1無機発光素子21のそれぞれが位置するように調整する。
【0052】
<第1貼り付け工程>
図12は、
図5に示す第1貼り付け工程を模式的に示す断面図である。第1貼り付け工程では、
図12に示すように、複数の第1無機発光素子21のそれぞれを転写用基板TR1上の粘着樹脂層50に貼り付ける。
【0053】
上記した第1位置合わせ工程において、X-Y平面に沿った方向での位置合わせを行った後の状態で、ステージ61とステージ62との距離を近づけると、基板SS1の面SS1t上に配置された複数の第1無機発光素子21のそれぞれが、転写用基板TR1に近づく。基板SS1と転写用基板TR1との距離をさらに近づけると、複数の第1無機発光素子21のそれぞれの一部分が粘着樹脂層50に接着される。この時、LED素子20のうち、
図7に示す電極20Eの部分(または
図3に示す導電性接合材40の部分)が粘着樹脂層に接着される。
【0054】
<第1保持基板剥離工程>
次に、
図5に示す第1保持基板剥離工程について説明する。
図13は、
図5に示す第1保持基板剥離工程において、複数の第1無機発光素子にレーザを照射した状態を模式的に示す断面図である。
図14は、
図5に示す第1保持基板剥離工程において、複数の第1無機発光素子から保持基板を剥離した状態を模式的に示す断面図である。第1保持基板剥離工程では、
図14に示すように、第1保持基板押付工程の後、基板SS1と複数の第1無機発光素子21とを剥離させる。
【0055】
保持基板である基板SS1の面SS1tと複数の第1無機発光素子21との密着界面を剥離させる方法は、例えば、レーザリフトオフと呼ばれる技術を用いることができる。レーザリフトオフと呼ばれる技術を用いる場合、
図13に模式的に示すように、基板SS1の裏面SS1b側から基板SS1の面SS1tと複数の第1無機発光素子21との密着界面に向かって例えば紫外線レーザ光UVLを照射する。
図7に示すように、第1無機発光素子21のN型半導体層24と基板SS1の面SS1tとの間には窒化ガリウムから成るバッファ層29が形成されている。レーザ光がバッファ層29に照射されると、バッファ層29の表層(面SS1t側の一部分)が改質され、基板SS1と第1無機発光素子21とを剥離させることが可能になる。バッファ層29の改質が完了した後、
図14に示すように、基板SS1と転写用基板TR1との距離を離す。この時、複数の第1無機発光素子21のそれぞれは、粘着樹脂層50に貼り付けられている。このため、複数の第1無機発光素子21のそれぞれは基板SS1から剥離され、転写用基板TR1上に複数の第1無機発光素子21が貼り付けられた構造物が得られる。
【0056】
なお、
図13に示す例では、全ての第1無機発光素子21に一括して紫外線レーザ光UVLを照射する例を示しているが、変形例として、複数の第1無機発光素子21のうちの一部に選択的に紫外線レーザ光UVLを照射する場合がある。この場合、基板SS1上に形成された複数の第1無機発光素子21のうち、紫外線レーザ光UVLが照射された第1無機発光素子21を選択的に転写用基板TR1に転写させることができる。
【0057】
<第2位置合わせ工程>
図15は、
図5に示す第2位置合わせ工程を模式的に示す断面図である。
図5に示す第2位置合わせ工程では、
図15に示すように、基板SS2と、転写用基板TR1との位置合わせを行う。本工程の開始時点では、転写用基板TR1の粘着樹脂層50上に既に複数の第1無機発光素子21が貼り付けられている。
図15に示す例では、ステージ61に保持された基板SS2と、ステージ62に保持された転写用基板TR1とが互いに対向した状態で、イメージセンサ71によりアライメントマークを撮影し、このアライメントマークの位置情報に基づいて基板SS2と転写用基板TR1との位置合わせを行う。詳しくは、基板SS2の面SS2t上に形成された複数の第2無機発光素子22のそれぞれの位置と、転写用基板TR1の面TRt上に形成された粘着樹脂層50上における素子配置領域R1の位置(言い換えれば複数の第1無機発光素子21の位置)との関係を調整する。
【0058】
ステージ61、ステージ62、イメージセンサ71、および制御装置72の機能は既に説明したので、重複する説明は省略する。本工程では、イメージセンサ71は、基板SS2側のアライメントマークとして、例えば複数の第2無機発光素子22のうちの一つ以上を撮像し、画像データを制御装置72に出力する。また、イメージセンサ71は、転写用基板TR1側のアライメントマークとして複数のメタルパターンMPを撮像し、画像データを制御装置72に出力する。イメージセンサ71から画像データを取得した制御装置72は、イメージセンサ71がメタルパターンMPの撮像を行った時のステージ62の位置情報とメタルパターンMPの画像データの解析結果からメタルパターンMPの位置を算出する。同様に、制御装置72は、イメージセンサ71が第2無機発光素子22の撮像を行った時のステージ61の位置情報と第2無機発光素子22の画像データの解析結果から第2無機発光素子22の位置を算出する。そして、メタルパターンMPの位置情報および第2無機発光素子22の位置情報に基づいて、ステージ61およびステージ62の少なくとも一方をX-Y平面に沿って動作させて、予め設定された転写位置上に複数の第2無機発光素子22のそれぞれが位置するように調整する。
【0059】
本工程において、転写用基板TR1にアライメントマークとしてのメタルパターンMPが存在しない場合、第2位置合わせ工程では、粘着樹脂層50上に既に貼り付けられた複数の第1無機発光素子21のいずれかをアライメントマークとして用いることができる。しかしこの場合、第1無機発光素子21を貼り付ける工程における位置精度の影響を受けるため、第1位置合わせ工程と比較して位置合わせ精度が低下する。
【0060】
一方、本実施の形態の場合、第2位置合わせ工程でも複数のメタルパターンMPをアライメントマークとして利用するので、第1位置合わせ工程と同等の精度で第2位置合わせ工程を実施することができる。このように、本実施の形態によれば、複数種類のLED素子20をそれぞれ高精度で粘着樹脂層50に貼り付けることができるので、隣り合うLED素子20の離間距離が狭い、高密度実装に対応することができる。LED素子20を高密度実装することは、表示装置の解像度の向上、あるいは、表示装置の小型化に寄与する。
【0061】
<第2貼り付け工程>
図16は、
図5に示す第2貼り付け工程を模式的に示す断面図である。第2貼り付け工程では、
図16に示すように、複数の第2無機発光素子22のそれぞれを転写用基板TR1上の粘着樹脂層50に貼り付ける。
【0062】
上記した第2位置合わせ工程において、X-Y平面に沿った方向での位置合わせを行った後の状態で、ステージ61とステージ62との距離を近づけると、基板SS2の面SS2t上に配置された複数の第2無機発光素子22のそれぞれが、転写用基板TR1に近づく。基板SS2と転写用基板TR1との距離をさらに近づけると、複数の第2無機発光素子22のそれぞれの一部分が粘着樹脂層50に接着される。
【0063】
<第2保持基板剥離工程>
次に、
図5に示す第2保持基板剥離工程について説明する。
図17は、
図5に示す第2保持基板剥離工程において、複数の第2無機発光素子から保持基板を剥離した状態を模式的に示す断面図である。第2保持基板剥離工程では、
図17に示すように、第2保持基板押付工程の後、基板SS2と複数の第2無機発光素子22とを剥離させる。
【0064】
保持基板である基板SS2の面SS2tと複数の第2無機発光素子22との密着界面を剥離させる方法は、
図13を用いて説明した第1保持基板剥離工程と同様に、例えば、レーザリフトオフと呼ばれる技術を用いることができる。レーザリフトオフの詳細は既に説明したので、図示および重複する説明は省略する。本工程により、
図17に示すように、複数の第2無機発光素子22のそれぞれは基板SS2から剥離され、転写用基板TR1上に複数の第1無機発光素子21および複数の第2無機発光素子22が貼り付けられた構造物が得られる。
【0065】
<第3位置合わせ工程>
図18は、
図5に示す第3位置合わせ工程を模式的に示す断面図である。
図5に示す第3位置合わせ工程では、
図18に示すように、基板SS3と、転写用基板TR1との位置合わせを行う。本工程の開始時点では、転写用基板TR1の粘着樹脂層50上に既に複数の第1無機発光素子21および複数の第2無機発光素子22が貼り付けられている。
図18に示す例では、ステージ61に保持された基板SS3と、ステージ62に保持された転写用基板TR1とが互いに対向した状態で、イメージセンサ71によりアライメントマークを撮影し、このアライメントマークの位置情報に基づいて基板SS3と転写用基板TR1との位置合わせを行う。詳しくは、基板SS3の面SS3t上に形成された複数の第3無機発光素子23のそれぞれの位置と、転写用基板TR1の面TRt上に形成された粘着樹脂層50上における素子配置領域R1の位置(言い換えれば複数の第1無機発光素子21および複数の第2無機発光素子22の位置)との関係を調整する。
【0066】
ステージ61、ステージ62、イメージセンサ71、および制御装置72の機能は既に説明したので、重複する説明は省略する。本工程では、イメージセンサ71は、基板SS3側のアライメントマークとして、例えば複数の第3無機発光素子23のうちの一つ以上を撮像し、画像データを制御装置72に出力する。また、イメージセンサ71は、転写用基板TR1側のアライメントマークとして複数のメタルパターンMPを撮像し、画像データを制御装置72に出力する。イメージセンサ71から画像データを取得した制御装置72は、イメージセンサ71がメタルパターンMPの撮像を行った時のステージ62の位置情報とメタルパターンMPの画像データの解析結果からメタルパターンMPの位置を算出する。同様に、制御装置72は、イメージセンサ71が第3無機発光素子23の撮像を行った時のステージ61の位置情報と第3無機発光素子23の画像データの解析結果から第3無機発光素子23の位置を算出する。そして、メタルパターンMPの位置情報および第3無機発光素子23の位置情報に基づいて、ステージ61およびステージ62の少なくとも一方をX-Y平面に沿って動作させて、予め設定された転写位置上に複数の第3無機発光素子23のそれぞれが位置するように調整する。
【0067】
第2位置合わせ工程の説明でも述べたように、本実施の形態の場合、第3位置合わせ工程でも複数のメタルパターンMPをアライメントマークとして利用するので、第1位置合わせ工程と同等の精度で第3位置合わせ工程を実施することができる。本実施の形態によれば、複数種類のLED素子20をそれぞれ高精度で粘着樹脂層50に貼り付けることができるので、隣り合うLED素子20の離間距離が狭い、高密度実装に対応することができる。LED素子20を高密度実装することは、表示装置の解像度の向上、あるいは、表示装置の小型化に寄与する。
【0068】
<第3貼り付け工程>
図19は、
図5に示す第3貼り付け工程を模式的に示す断面図である。第3貼り付け工程では、
図19に示すように、複数の第3無機発光素子23のそれぞれを転写用基板TR1上の粘着樹脂層50に貼り付ける。
【0069】
上記した第3位置合わせ工程において、X-Y平面に沿った方向での位置合わせを行った後の状態で、ステージ61とステージ62との距離を近づけると、基板SS3の面SS3t上に配置された複数の第3無機発光素子23のそれぞれが、転写用基板TR1に近づく。基板SS3と転写用基板TR1との距離をさらに近づけると、複数の第3無機発光素子23のそれぞれの一部分が粘着樹脂層50に接着される。
【0070】
<第3保持基板剥離工程>
次に、
図5に示す第3保持基板剥離工程について説明する。
図20は、
図5に示す第3保持基板剥離工程において、複数の第3無機発光素子から保持基板を剥離した状態を模式的に示す断面図である。第3保持基板剥離工程では、
図20に示すように、第3保持基板押付工程の後、基板SS3と複数の第3無機発光素子23とを剥離させる。
【0071】
保持基板である基板SS3の面SS3tと複数の第3無機発光素子23との密着界面を剥離させる方法は、
図13を用いて説明した第1保持基板剥離工程と同様に、例えば、レーザリフトオフと呼ばれる技術を用いることができる。レーザリフトオフの詳細は既に説明したので、図示および重複する説明は省略する。本工程により、
図20に示すように、複数の第3無機発光素子23のそれぞれは基板SS3から剥離され、転写用基板TR1上に複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23が貼り付けられた構造物が得られる。
【0072】
<第2転写工程>
次に、
図5に示す第2転写程について説明する。
図21~
図23は、
図5に示す第2転写工程に含まれる各工程を示す断面図である。第2転写工程では、まず、
図21に示すように転写用基板TR1と転写用基板TR2との位置合わせを行う。
図21に示す転写用基板TR2は、粘着樹脂層51の粘着力が転写用基板TR1の粘着樹脂層50の粘着力よりも高い点を除き、転写用基板TR1と同じ構造である。例えば、
図21に示すメタルパターンMPとメタルパターンMP2とは同じ金属材料から成り、かつ同じ形状から成るパターンである。
【0073】
第2転写工程では、複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23のそれぞれを一括して転写用基板TR2に転写する。このため、既に第1転写工程において複数のLED素子20の位置合わせが高精度で行われている場合、第2転写工程では、高精度な位置合わせを行わなくても複数のLED素子20の位置関係は維持される。ただし、次のアレイ基板実装工程において、複数のLED素子20のそれぞれをアレイ基板の端子上に確実に実装するため、本工程においても、第1位置合わせ工程、第2位置合わせ工程、および第3位置合わせ工程と同様に高精度の位置合わせを行い、転写用基板TR2に貼り付けられた複数のLED素子20とアライメントマークとしての複数のメタルパターンMP2との位置関係を精度よく維持することが好ましい。
【0074】
このため、本実施の形態の場合、第2転写工程は、転写用基板TR1と転写用基板TR2との位置合わせを行う位置合わせ工程を含んでいる。
図21に示すように、位置合わせ工程では、イメージセンサ71は、ステージ61に保持された転写用基板TR1側のアライメントマークとして、複数のメタルパターンMPを撮像し、画像データを制御装置72に出力する。また、イメージセンサ71は、転写用基板TR2側のアライメントマークとして複数のメタルパターンMP2を撮像し、画像データを制御装置72に出力する。イメージセンサ71から画像データを取得した制御装置72は、イメージセンサ71がメタルパターンMP2の撮像を行った時のステージ62の位置情報とメタルパターンMP2の画像データの解析結果からメタルパターンMP2の位置を算出する。同様に、制御装置72は、イメージセンサ71がメタルパターンMPの撮像を行った時のステージ61の位置情報とメタルパターンMPの画像データの解析結果からメタルパターンMPの位置を算出する。そして、メタルパターンMPの位置情報および複数のLED素子20の位置情報に基づいて、ステージ61およびステージ62の少なくとも一方をX-Y平面に沿って動作させて、予め設定された転写位置上に複数のLED素子20のそれぞれが位置するように調整する。
【0075】
また、
図22に示すように第2転写工程は、位置合わせ工程の後、複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23のそれぞれの一部分(
図7を用いて説明したN型半導体層24または改質したバッファ層29)を転写用基板TR2の面TRt上に接着された粘着樹脂層51に貼り付ける貼り付け工程を含んでいる。また、
図23に示すように第2転写工程は、貼り付け工程の後、複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23のそれぞれを転写用基板TR1の粘着樹脂層50から剥離させる剥離工程を含んでいる。粘着樹脂層51の粘着力(言い換えれば接着強度)は粘着樹脂層50の粘着力よりも高い。このため、
図23に示すように、転写用基板TR1と転写用基板TR2との距離を離すと、相対的に粘着力が低い粘着樹脂層50からLED素子20が剥離する。本工程により、
図23に示すように、転写用基板TR2上に複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23が貼り付けられた構造物が得られる。転写用基板TR2に搭載された複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23は、第2転写工程の開始前に転写用基板TR1上に貼り付けられた複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23とは上下が反転されている。本実施の形態の場合、
図7に示すLED素子20の電極20Eが
図23に示す粘着樹脂層51との対向面の反対側に配置されている。
【0076】
<アレイ基板実装工程>
次に、
図5に示すアレイ基板実装工程について説明する。
図24~
図26は、
図5に示すアレイ基板実装工程に含まれる各工程を示す断面図である。アレイ基板実装工程では、まず、
図24に示すように転写用基板TR2とアレイ基板SUB1との位置合わせを行う。
【0077】
アレイ基板実装工程では、複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23のそれぞれを一括して
図10に示すアレイ基板SUB1に実装する。この時、
図7に示す複数の電極20Eと、
図10に示す複数の端子30とのそれぞれを確実に対向させる必要があるので、高精度の位置合わせを行う必要がある。そこで、本実施の形態でアレイ基板SUB1の面SUBt上には、メタルパターンMP3が形成されている。メタルパターンMP3は、アレイ基板実装工程においてアライメントマークとして利用されるパターンである。メタルパターンMP3は、例えば転写用基板TR2のメタルパターンMP2と同じ金属材料から成り、かつ同じ形状のパターンである。また、メタルパターンMP3は、例えば、以下で説明する位置合わせ工程において、メタルパターンMP2と対向する位置に配置されている。
【0078】
本実施の形態の場合アレイ基板実装工程は、転写用基板TR2とアレイ基板SUB1との位置合わせを行う位置合わせ工程を含んでいる。
図24に示すように、位置合わせ工程では、イメージセンサ71は、ステージ61に保持された転写用基板TR2側のアライメントマークとして、複数のメタルパターンMP2を撮像し、画像データを制御装置72に出力する。また、イメージセンサ71は、アレイ基板SUB1側のアライメントマークとして複数のメタルパターンMP3を撮像し、画像データを制御装置72に出力する。イメージセンサ71から画像データを取得した制御装置72は、イメージセンサ71がメタルパターンMP3の撮像を行った時のステージ62の位置情報とメタルパターンMP3の画像データの解析結果からメタルパターンMP3の位置を算出する。同様に、制御装置72は、イメージセンサ71がメタルパターンMP2の撮像を行った時のステージ61の位置情報とメタルパターンMP2の画像データの解析結果からメタルパターンMP2の位置を算出する。そして、メタルパターンMP2の位置情報および複数のLED素子20の位置情報に基づいて、ステージ61およびステージ62の少なくとも一方をX-Y平面に沿って動作させて、予め設定された転写位置上(複数の端子30と対向する位置)に複数のLED素子20のそれぞれが位置するように調整する。
【0079】
アレイ基板実装工程は、位置合わせ工程の後、
図25に示すように、転写用基板TR2とアレイ基板SUB1との距離を近づけて、LED素子20と、端子30とを、導電性接合材40を介して電気的に接続する接合工程を含んでいる。接合工程では、導電性接合材40を介してLED素子20の電極20E(
図7参照)と、アレイ基板SUB1の端子30とが導電性接合材40を介して電気的に接続される。本工程では、導電性接合材40に熱を印加することにより溶融させて、導電性接合材40を介して電極20Eと端子30とを接合する。導電性接合材40を加熱する熱源としては、例えばレーザ光を照射する方法を例示できる。このように、加熱プロセスを含む場合、樹脂製のアライメントマークは変形する懸念がある。一方、本実施の形態の場合、転写用基板TR2のメタルパターンMP2およびアレイ基板SUB1のメタルパターンMP3のそれぞれは金属製であり、樹脂に比べ熱変形の少ないガラス基材(ガラス基板)上に成膜形成されるメタルパターンMP2,MP3であるため、加熱プロセスを含んでいても変形を防止することができる。
【0080】
また、
図26に示すようにアレイ基板実装工程は、接合工程の後、複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23のそれぞれを転写用基板TR2の粘着樹脂層51から剥離させる剥離工程を含んでいる。本工程の開始時には複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23のそれぞれは、既にアレイ基板SUB1の端子30に接合されている。このため、
図26に示すように、転写用基板TR2とアレイ基板SUB1との距離を離すと、粘着樹脂層51からLED素子20が剥離する。本工程により、
図26に示すように、アレイ基板SUB1上に複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23が実装された構造物が得られる。
【0081】
なお、
図5に示す例では、3種類のLED素子を順番に実装する実施態様について説明したが、実装されるLED素子の種類は3種類には限定されない。例えば、1種類のLED素子を一括して実装すればよい場合には、
図5に示す第1転写工程および第2転写工程を省略し、LED保持基板から直接的にアレイ基板に実装することができる。また例えば、2種類のLED素子を実装するタイプの表示装置の製造方法の場合、
図5に示す第3位置合わせ工程から第3保持基板剥離工程までを省略することができる。また、4種類以上のLED素子を実装するタイプの表示装置の製造方法の場合、
図5に示す第3保持基板剥離工程の後、第1種類目~第3種類目のLED素子とは異なる種類のLED素子を実装する位置合わせ工程、貼り付け工程、および保持基板剥離工程を繰り返し実施することで得られる。
【0082】
<位置合わせの変形例>
次に、上記した位置合わせ工程の変形例について説明する。
図27は、
図6に示す基板の変形例を示す平面図である。
図11を用いて説明した第1位置合わせ工程、
図15を用いて説明した第2位置合わせ工程、および
図18を用いて説明した第3位置合わせ工程のそれぞれでは、基板SS1、基板SS2および基板SS3のそれぞれにアライメントマークが形成されず、複数のLED素子20のうちの一部をアライメントマークとして利用する方法について説明した。ただし、位置合わせ精度をさらに向上させる観点からは、基板SS1、基板SS2、および基板SS3のそれぞれにもアライメントマークが形成されていることが好ましい。
【0083】
図27に示す例では、基板SS1の面SS1t上には、アライメントマークAM1が形成されている。アライメントマークAM1は、複数のLED素子20が配置される領域の周囲に形成されている。
図27に示す例では、2個のアライメントマークAM1が形成された例を示しているが、アライメントマークAM1の数は2個には限定されず、1個の場合もある。ただし、好ましくは2個以上のアライメントマークAM1が形成されていることが好ましい。アライメントマークAM1は、例えば金属から成るメタルパターンである。同様に、基板SS2の面SS2t上には、アライメントマークAM2が形成されている。基板SS3の面SS3t上には、アライメントマークAM3が形成されている。アライメントマークAM2およびアライメントマークAM3の材料、形状、形成位置、および形成個数は、アライメントマークAM1と同様なので重複する説明は省略する。
【0084】
本変形例の場合、
図5に示す第1位置合わせ工程、第2位置合わせ工程、および第3位置合わせ工程が上記した実施態様と相違する。第1位置合わせ工程では、
図11に示す複数のメタルパターンMPの位置情報および
図27に示す基板SS1のアライメントマークAM1の位置情報に基づいて基板SS1と転写用基板TR1との位置合わせを行う。同様に、第2位置合わせ工程では、
図15に示す複数のメタルパターンMPの位置情報および
図27に示す基板SS2のアライメントマークAM2の位置情報に基づいて基板SS2と転写用基板TR1との位置合わせを行う。同様に、第3位置合わせ工程では、
図18に示す複数のメタルパターンMPの位置情報および
図27に示す基板SS3のアライメントマークAM3の位置情報に基づいて基板SS3と転写用基板TR1との位置合わせを行う。
【0085】
本変形例の場合、LED素子20とは別にアライメントマークを設けることにより、位置合わせ精度を向上させることができる。
【0086】
<アライメントマークの変形例>
次に、上記した位置合わせ工程においてアライメントマークとして利用するパターンの形状について説明する。
図28は、
図8に対する変形例を示す平面図である、
図28に示す変形例の場合、転写用基板TR1が平面形状の異なる2個以上のメタルパターンMPを備えている点で
図8に示す例と異なる。
【0087】
図28に示すように、複数のメタルパターンMPは、第1メタルパターンMPP1と、第1メタルパターンMPP1とは異なる平面形状を備えた第2メタルパターンMPP2と、を含んでいる。
図28に示す例では、第1メタルパターンMPP1は円形で、第2メタルパターンMPP2はL字型である。このように形状の異なる複数のメタルパターンMPを設けてある場合、位置合わせ工程において、複数のLED素子の電極の向きを認識することができる。例えば第1メタルパターンMPP1側にアノード電極、第2メタルパターンMPP2側にカソード電極が配置されるというルールが予め設定されていれば、位置合わせ工程において、複数のメタルパターンMPの画像データを取得することにより、例えば
図11に示す制御装置72は、電極の向きが正しい方向に向くように調整することができる。なお、
図6に示す基板SS1、基板SS2、および基板SS3のそれぞれに形成された状態での電極の向きは、オリエンタルフラット(OF)と呼ばれる方向識別部により識別が可能である。
【0088】
図29は、
図27に示す基板に形成されたアライメントマークと
図8に示す転写用基板に形成されたメタルパターンとの形状が異なっている場合の位置合わせ工程におけるイメージを模式的に示す拡大平面図である。
図29に示す変形例の場合、転写用基板TR1(
図8参照)上に形成された複数のメタルパターンMPと、基板SS1,SS2,SS3(
図27参照)上に形成されたアライメントマークAM1,AM2,AM3とは、互いに異なる形状を備えている。なお、「異なる形状」には、円形と四角形など、形状自体が異なっている場合の他、
図29に示すように、パターンのサイズが異なっている場合も含む。
【0089】
本変形例の場合、例えば
図11に示すイメージセンサ71により、メタルパターンMPの画像とアライメントマークAM1のマークを同じタイミングで撮像する。この時、メタルパターンMPとアライメントマークAM1とが
図29に示すように互いに重なる位置で位置合わせを行う。この変形例の場合、複数のメタルパターンMPを近い位置に配置した場合でも位置合わせを行うことができる。ただし、位置合わせ精度を向上させる観点からは、
図8や
図28に示す例のように、複数のメタルパターンMPが周辺領域R2の角部に配置されていることでメタルパターンMPの離間距離を大きくすることが好ましい。
【0090】
以上、実施の形態および代表的な変形例について説明したが、上記した技術は、例示した変形例以外の種々の変形例に適用可能である。例えば、上記した変形例同士を組み合わせてもよい。
【0091】
また例えば、
図5に示す製造工程では、サファイア基板から一つの転写用基板TR1に複数のLED素子を順に搭載する方法について説明した。ただし、サファイア基板上に形成されたLED素子20の配列ピッチと、アレイ基板に搭載された時のLED素子20の配列ピッチとが異なる場合、第1転写工程において、第1無機発光素子21、第2無機発光素子22、および第3無機発光素子23を、それぞれ独立した転写用基板に転写する場合がある。この変形例の場合、第2転写工程において、
図5に示す第1位置合わせ工程から第3保持基板剥離工程までの各工程を実施することにより、第2転写基板TR2上に複数の第1無機発光素子21、複数の第2無機発光素子22、および複数の第3無機発光素子23が貼り付けられた構造物が得られる。この変形例に用いられる転写用基板は、
図8および
図9に示す転写用基板と同様のものを利用できる。ただし、粘着樹脂層の粘着力は、
図9に示す粘着樹脂層50の粘着力よりも低いものとする必要がある。
【0092】
本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、または、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
【産業上の利用可能性】
【0093】
本発明は、表示装置や表示装置が組み込まれた電子機器に利用可能である。
【符号の説明】
【0094】
5 制御回路
6 駆動回路
10 基板
10b,10f 面
11 無機絶縁層
12,13 有機絶縁層
20,20M1 LED素子
20b,20f 面
20E 電極
20EA アノード電極
20EK カソード電極
21 第1無機発光素子
22 第2無機発光素子
23 第3無機発光素子
24 N型半導体層
25 活性層
26 P型半導体層
27a 透明電極層
27b シード層
27c 金属電極層
28 パッシベーション膜
29 バッファ層
30,30H,30L,31,32,33 端子
40 導電性接合材
50,51 粘着樹脂層
50b,50t 面
61,62 ステージ
61h,62h 保持面
71 イメージセンサ
72 制御装置
AM1,AM2,AM3 アライメントマーク
BCT 出力スイッチ
Cad 補助容量
Cs 保持容量
DA 表示領域
DRT 駆動トランジスタ
DSP1 表示装置
GL 走査信号線
GLA 走査信号線
GLB 走査信号線
GLR リセット配線
Gsb 制御信号
Gsr 制御信号
Gss 制御信号
MP,MP2,MP3 メタルパターン
MPP1 第1メタルパターン
MPP2 第2メタルパターン
OF オリエンタルフラット
PFA 周辺領域
PIX 画素
PVD 電位
PVS 電位
R1 素子配置領域
R2 周辺領域
RST リセットスイッチ
SS1,SS2,SS3 基板
SS1b 裏面
SS1t,SS2t,SS3t 面(素子保持面)
SST 画素スイッチ
SUB1 アレイ基板
SUBb,SUBt 面
TR1,TR2 転写用基板
TRb,TRt 面
TRs1,TRs2,TRs3,TRs4 辺
UVL 紫外線レーザ光
VL 映像信号線
Vsg 映像信号