(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023170492
(43)【公開日】2023-12-01
(54)【発明の名称】流体制御機器およびその製造方法
(51)【国際特許分類】
F16J 3/02 20060101AFI20231124BHJP
F16K 7/12 20060101ALI20231124BHJP
【FI】
F16J3/02 D
F16K7/12 A
F16K7/12 B
F16J3/02 A
【審査請求】未請求
【請求項の数】16
【出願形態】OL
(21)【出願番号】P 2022082302
(22)【出願日】2022-05-19
(71)【出願人】
【識別番号】000106760
【氏名又は名称】CKD株式会社
(74)【代理人】
【識別番号】110000291
【氏名又は名称】弁理士法人コスモス国際特許商標事務所
(72)【発明者】
【氏名】石川 信治
(72)【発明者】
【氏名】安江 博人
(72)【発明者】
【氏名】常塚 淳志
【テーマコード(参考)】
3J045
【Fターム(参考)】
3J045AA04
3J045AA20
3J045BA03
3J045CA08
3J045CA20
3J045DA10
(57)【要約】
【課題】ダイヤフラム部材の接液面への制御流体の成分の付着を防止することが可能な流体制御機器およびその製造方法を提供すること。
【解決手段】制御流体が入力される入力流路121aと、制御流体(例えば薬液)が出力される入力流路121aと連通した出力流路121bと、フッ素樹脂からなるダイヤフラム部材122と、を備え、ダイヤフラム部材122は可撓性を有する薄膜部124を備え、薄膜部124が弾性変形することにより制御流体を制御する流体制御機器において、薄膜部124は、制御流体と接触する接液面を備えること、接液面の、少なくとも一部が、金型転写面127であること。
【選択図】
図2
【特許請求の範囲】
【請求項1】
制御流体が入力される入力流路と、前記入力流路から入力された制御流体を出力するための出力流路と、フッ素樹脂からなるダイヤフラム部材と、を備え、前記ダイヤフラム部材は可撓性を有する薄膜部を備え、前記薄膜部が弾性変形することにより前記制御流体を制御する流体制御機器において、
前記薄膜部は、前記制御流体と接触する接液面を備えること、
前記接液面の、少なくとも一部が、金型転写面であること、
を特徴とする流体制御機器。
【請求項2】
請求項1に記載の流体制御機器において、
前記薄膜部の、前記接液面とは反対側の面は、切削加工面であること、
を特徴とする流体制御機器。
【請求項3】
請求項1または2に記載の流体制御機器において、
前記金型転写面の表面粗さは、Ra0.05μm以下であること、
を特徴とする流体制御機器。
【請求項4】
請求項1または2に記載の流体制御機器において、
前記フッ素樹脂は、メルトフローレートが2.2g/10min以上、2.8g/10min以下のパーフルオロアルコキシアルカンであること、
を特徴とする流体制御機器。
【請求項5】
請求項1または2に記載の流体制御機器において、
前記フッ素樹脂は、比重が2.08以上、2.16以下の範囲であること、
を特徴とする流体制御機器。
【請求項6】
請求項1または2に記載の流体制御機器において、
前記金型転写面は、圧縮成形またはトランスファー成形に用いられる金型の鏡面仕上げ面が転写されたものであること、
を特徴とする流体制御機器。
【請求項7】
請求項6に記載の流体制御機器において、
前記接液面は、湾曲した面であること、
を特徴とする流体制御機器。
【請求項8】
請求項1または2に記載の流体制御機器において、
前記ダイヤフラム部材は、前記制御流体が流れる流路を開閉する弁体を備えること、
流体制御機器は、前記弁体が当接離間する弁座を備えること、
前記弁体は、少なくとも前記弁座と当接する部分が、第2の金型転写面であること、
を特徴とする流体制御機器。
【請求項9】
制御流体が入力される入力流路と、前記入力流路から入力された制御流体を出力するための出力流路と、フッ素樹脂からなるダイヤフラム部材と、を備え、前記ダイヤフラム部材は可撓性を有する薄膜部を備え、前記薄膜部が弾性変形することにより前記制御流体を制御する流体制御機器を製造する流体制御機器の製造方法において、
前記薄膜部は、前記制御流体と接触する接液面を備えること、
前記接液面の、少なくとも一部が、金型転写面であること、
前記金型転写面を備えた前記ダイヤフラム部材の半製品を成形する第1工程と、
前記半製品を、前記金型転写面を残して切削加工することで、前記ダイヤフラム部材の形状を得る第2工程と、
を備えること、
を特徴とする流体制御機器の製造方法。
【請求項10】
請求項9に記載の流体制御機器の製造方法において、
前記薄膜部の、前記接液面とは反対側の面は、切削加工面であること、
を特徴とする流体制御機器の製造方法。
【請求項11】
請求項9または10に記載の流体制御機器の製造方法において、
前記金型転写面の表面粗さは、Ra0.05μm以下であること、
を特徴とする流体制御機器の製造方法。
【請求項12】
請求項9または10に記載の流体制御機器の製造方法において、
前記フッ素樹脂は、メルトフローレートが2.2g/10min以上、2.8g/10min以下のパーフルオロアルコキシアルカンであること、
を特徴とする流体制御機器の製造方法。
【請求項13】
請求項9または10に記載の流体制御機器の製造方法において、
前記フッ素樹脂は、比重が2.08以上、2.16以下の範囲であること、
を特徴とする流体制御機器の製造方法。
【請求項14】
請求項9または10に記載の流体制御機器の製造方法において、
前記金型転写面は、圧縮成形またはトランスファー成形に用いられる金型の鏡面仕上げ面が転写されたものであること、
を特徴とする流体制御機器の製造方法。
【請求項15】
請求項14に記載の流体制御機器の製造方法において、
前記接液面は、湾曲した面であること、
を特徴とする流体制御機器の製造方法。
【請求項16】
請求項9または10に記載の流体制御機器の製造方法において、
前記ダイヤフラム部材は、前記制御流体が流れる流路を開閉する弁体を備えること、
流体制御機器は、前記弁体が当接離間する弁座を備えること、
前記弁体は、少なくとも前記弁座と当接する部分が、第2の金型転写面であること、
前記第1工程により、前記第2の金型転写面を備える前記半製品を得ること、
前記第2工程により、前記半製品を、前記第2の金型転写面を残して切削加工することで、前記ダイヤフラム部材の形状を得ること、
を特徴とする流体制御機器の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、制御流体が入力される入力流路と、前記制御流体が出力される入力流路と連通した出力流路と、フッ素樹脂からなるダイヤフラム部材と、を備え、前記ダイヤフラム部材は可撓性を有する薄膜部を備え、前記薄膜部が弾性変形することにより制御流体を制御する流体制御機器およびその製造方法に関するものである。
【背景技術】
【0002】
従来、薬液等の制御流体の流れの制御(例えば流量制御や圧力制御等)を行うため、制御流体が入力される入力流路と、制御流体が出力される出力流路と、可撓性の薄膜部を備えるダイヤフラム部材と、を備える流体制御機器が用いられている。流体制御機器は、薄膜部が弾性変形をすることにより、入力流路,出力流路により入出力される制御流体の流れを制御する。
【0003】
ここで、流体制御機器としては、例えば、ダイヤフラム弁、サックバック弁、ニードル弁、レギュレータ、ダイヤフラムポンプ等が知られている。また、特にダイヤフラム弁に用いられるダイヤフラム部材としては、特許文献1に開示されるダイヤフラム15(符号は特許文献1による)が知られている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記のような流体制御機器に用いられるダイヤフラム部材は、薄膜部に制御流体と接触する接液面を備えている。接液面の表面粗さによっては、接液面において制御流体(例えば薬液)が滞留し、劣化した制御流体の成分が接液面に付着するおそれがある。そして、薄膜部が弾性変形を繰り返すうち、接液面に付着した制御流体の成分が脱落し、脱落した制御流体の成分がパーティクルとして制御流体に混入するおそれがある。
【0006】
制御流体の成分の付着を可能な限り防ぐためには、接液面の表面粗さを可能な限り低くする必要があるところ、特許文献1に記載のダイヤフラム15の薄膜部(膜部35b)は切削加工により形成されるとある(特許文献1の段落[0039]参照)。切削加工により接液面を形成することは、接液面に切削痕が残るなど、表面粗さの低減が困難であるため、薬液の成分の付着を防止する観点から好ましくない。
【0007】
本発明は、上記問題に鑑みてなされたものであり、ダイヤフラム部材の接液面への制御流体の成分の付着を防止することが可能な流体制御機器およびその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明の流体制御機器は、次のような構成を有している。
【0009】
(1)制御流体が入力される入力流路と、前記入力流路から入力された制御流体を出力するための出力流路と、フッ素樹脂からなるダイヤフラム部材と、を備え、前記ダイヤフラム部材は可撓性を有する薄膜部を備え、前記薄膜部が弾性変形することにより前記制御流体を制御する流体制御機器において、前記薄膜部は、前記制御流体と接触する接液面を備えること、前記接液面の、少なくとも一部が、金型転写面であること、を特徴とする。なお、流体制御機器とは、ダイヤフラム弁、サックバック弁、レギュレータ、ニードル弁、ダイヤフラムポンプ等の、薄膜部を備えるダイヤフラム部材を用いる機器を指す。また、金型転写面とは、射出成形用の金型のキャビティ表面、または圧縮成形用の金型のキャビティ表面、またはトランスファー成形用の金型のキャビティ表面を転写した面である。
【0010】
(1)に記載の流体制御機器によれば、薄膜部が備える接液面の、少なくとも一部が、金型転写面であるため、接液面を切削加工により形成するよりも、接液面の表面粗さを低くすることが可能である。よって、接液面における制御流体(例えば薬液)の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができる。制御流体の成分が付着するおそれが低減できれば、接液面から制御流体の成分が脱落して、脱落した制御流体の成分がパーティクルとして制御流体に混入するおそれも低減することができる。
【0011】
なお、薄膜部の接液面の一部を金型転写面とするか、薄膜部の接液面の全てを金型転写面とするかは問わない。薄膜部の接液面の一部を金型転写面とする場合には、例えば、薄膜部が弾性変形したときに、変形の大きい部分や応力の集中しやすい部分を金型転写面とすることが考えられる。変形の大きい部分や応力の集中しやすい部分は、制御流体の成分が付着した場合に、当該成分が脱落しやすいためであり、金型転写面とすることで制御流体の成分が付着を防止するのである。
【0012】
(2)(1)に記載の流体制御機器において、前記薄膜部の、前記接液面とは反対側の面は、切削加工面であること、を特徴とする。
【0013】
薄膜部の、前記接液面とは反対側の面は、制御流体と接触しないため、接液面ほど表面粗さを低くする必要がない。また、薄膜部は、厚みが約0.1~0.5mmであるため、金型による成形が困難である。そこで、薄膜部の、接液面とは反対側の面を、切削加工面とすることで、ダイヤフラム部材の接液面への制御流体の成分の付着を防止しつつ、製造コストを抑えることができる。
【0014】
(3)(1)または(2)に記載の流体制御機器において、前記金型転写面の表面粗さは、Ra0.05μm以下であること、を特徴とする。
【0015】
例えば、半導体製造装置に用いられる流体制御機器においては、半導体の歩留まり向上のため、制御流体へのパーティクル混入防止の要求が年々厳しくなっている。(3)に記載の流体制御機器によれば、金型転写面の表面粗さは、Ra0.05μm以下であるため、より確実に、接液面における制御流体(例えば薬液)の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができ、上記した年々厳しくなる要求に耐えうる。なお、上に、半導体製造装置に用いられる流体制御機器について言及しているが、本発明に係る流体制御機器が半導体製造装置に用いられるものであることを限定するものではない。
【0016】
(4)(1)乃至(3)のいずれか1つに記載の流体制御機器において、前記フッ素樹脂は、メルトフローレートが2.2g/10min以上、2.8g/10min以下のパーフルオロアルコキシアルカンであること、を特徴とする。
【0017】
(5)(1)乃至(4)のいずれか1つに記載の流体制御機器において、前記フッ素樹脂は、比重が2.08以上、2.16以下の範囲であること、を特徴とする。
【0018】
従来、薄膜部の弾性変形が繰り返されることにより、薄膜部に亀裂が発生することが懸念されていた。亀裂が発生すると、亀裂内に制御流体が滞留し、劣化した制御流体の成分が付着するおそれがある。そして、制御流体の成分の付着は、制御流体にパーティクルが混入する原因となる。
【0019】
(4)または(5)に記載の流体制御機器によれば、薄膜部の屈曲耐久性を向上させることができる。したがって、薄膜部に亀裂が発生することを防止することができ、制御流体の滞留、パーティクルの発生を防止することができる。なお、ここでいうメルトフローレート(MFR)とは、原材料であるフッ素樹脂の、成形後のMFRを意味する。成形後のMFRとは、原材料であるフッ素樹脂を溶融成形した後に、再び溶融させて測定したものであり、この測定は、ASTM D1238に準拠し、樹脂温度が摂氏372度、荷重5kg、オリフィスの内径2.1mm、オリフィスの高さが8.0mmの条件下で行われるものである。
【0020】
(6)(1)乃至(5)のいずれか1つに記載の流体制御機器において、前記金型転写面は、圧縮成形またはトランスファー成形に用いられる金型の鏡面仕上げ面が転写されたものであること、を特徴とする。
【0021】
射出成形によってダイヤフラム部材を成形するとした場合、成形時の樹脂の流動により、薄膜部の表面にフローマークが形成され、接液面(金型転写面)の表面粗さに悪影響を与えるおそれがある。しかし、(6)に記載の流体制御機器によれば、金型転写面は、圧縮成形またはトランスファー成形に用いられる金型の鏡面仕上げ面が転写されたものであるため、金型転写面の表面粗さを確実にRa0.05μm以下にすることが可能となる。圧縮成形またはトランスファー成形のように、金型内の溶融した樹脂に圧力をかければ、金型内の溶融した樹脂を金型のキャビティ表面に押し付けることが可能であり、これにより、金型転写面を平滑に形成することが可能であるからである。
【0022】
(7)(6)に記載の流体制御機器において、前記接液面は、湾曲した面であること、を特徴とする。
【0023】
特許文献1に記載のダイヤフラムのように薄膜部を切削加工により形成する場合、湾曲した面として形成することが困難であるため、平面により形成することが一般的である。そうすると、薄膜部が弾性変形をする際、応力集中が起こりやすいため、屈曲耐久性が低下することが懸念される。
【0024】
(7)に記載の流体制御機器によれば、圧縮成形またはトランスファー成形により、接液面を、金型転写面を有しかつ湾曲した面として形成することが可能である。よって、ダイヤフラム部材の接液面への制御流体の成分の付着を防止しつつ、応力集中の緩和による屈曲耐久性の向上を図ることができる。
【0025】
(8)(1)乃至(7)のいずれか1つに記載の流体制御機器において、前記ダイヤフラム部材は、前記制御流体が流れる流路を開閉する弁体を備えること、 流体制御機器は、前記弁体が当接離間する弁座を備えること、前記弁体は、少なくとも前記弁座と当接する部分が、第2の金型転写面であること、を特徴とする。
【0026】
(8)に記載の流体制御機器によれば、ダイヤフラム部材は、制御流体が流れる流路を開閉する弁体を備え、流体制御機器は、弁体が当接離間する弁座を備える。例えば、ダイヤフラム弁やニードル弁等がこれに該当する。この場合、弁体は、少なくとも弁座と当接する部分が、第2の金型転写面であることが望ましい。従来、弁体の弁座と当接する部分は、開閉動作を繰り返すうちに摩耗が発生しやすく、その摩耗により発生する摩耗粉がパーティクルとして制御流体に混入するおそれがあった。弁体の、弁座と当接する部分を金型転写面として、表面粗さを低くすることで、摩耗の発生を抑えることが可能となる。なお、「第2の金型転写面」とは、薄膜部の備える接液面の金型転写面と、連続した面であるか、別個の面であるかは問わない。
【0027】
さらに、上記課題を解決するために、本発明の流体制御機器の製造方法は、次のような構成を有している。
【0028】
(9)制御流体が入力される入力流路と、前記入力流路から入力された制御流体を出力するための出力流路と、フッ素樹脂からなるダイヤフラム部材と、を備え、前記ダイヤフラム部材は可撓性を有する薄膜部を備え、前記薄膜部が弾性変形することにより前記制御流体を制御する流体制御機器を製造する流体制御機器の製造方法において、前記薄膜部は、前記制御流体と接触する接液面を備えること、前記接液面の、少なくとも一部が、金型転写面であること、前記金型転写面を備えた前記ダイヤフラム部材の半製品を成形する第1工程と、前記半製品を、前記金型転写面を残して切削加工することで、前記ダイヤフラム部材の形状を得る第2工程と、を備えること、を特徴とする。なお、流体制御機器とは、ダイヤフラム弁、サックバック弁、レギュレータ、ニードル弁、ダイヤフラムポンプ等の、薄膜部を備えるダイヤフラム部材を用いる機器を指す。また、金型転写面とは、射出成形用の金型のキャビティ表面、または圧縮成形用の金型のキャビティ表面、またはトランスファー成形用の金型のキャビティ表面を転写した面である。
【0029】
(9)に記載の流体制御機器の製造方法によれば、薄膜部が備える接液面の、少なくとも一部が、金型転写面になるため、接液面を切削加工により形成するよりも、接液面の表面粗さを低くすることが可能である。よって、接液面における制御流体(例えば薬液)の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができる。制御流体の成分が付着するおそれが低減できれば、接液面から制御流体の成分が脱落して、脱落した制御流体の成分がパーティクルとして制御流体に混入するおそれも低減することができる。
【0030】
なお、薄膜部の接液面の一部を金型転写面とするか、薄膜部の接液面の全てを金型転写面とするかは問わない。接液面の一部を金型転写面とする場合には、例えば、薄膜部が弾性変形したときに、変形の大きい部分や応力の集中しやすい部分を金型転写面とすることが考えられる。変形の大きい部分や応力の集中しやすい部分は、制御流体の成分が付着した場合に、当該成分が脱落しやすいためであり、金型転写面とすることで制御流体の成分が付着を防止するのである。
【0031】
(10)(9)に記載の流体制御機器の製造方法において、前記薄膜部の、前記接液面とは反対側の面は、切削加工面であること、を特徴とする。
【0032】
薄膜部の、前記接液面とは反対側の面は、制御流体と接触しないため、接液面ほど表面粗さを低くする必要がない。また、薄膜部は、厚みが約0.1~0.5mmであるため、金型による成形が困難である。そこで、薄膜部の、接液面とは反対側の面を、切削加工面とすることで、ダイヤフラム部材の接液面への制御流体の成分の付着を防止しつつ、製造コストを抑えることができる。
【0033】
(11)(9)または(10)に記載の流体制御機器の製造方法において、前記金型転写面の表面粗さは、Ra0.05μm以下であること、を特徴とする。
【0034】
例えば、半導体製造装置に用いられる流体制御機器においては、半導体の歩留まり向上のため、制御流体へのパーティクル混入防止の要求が年々厳しくなっている。(11)に記載の流体制御機器の製造方法によれば、金型転写面の表面粗さは、Ra0.05μm以下であるため、より確実に、接液面における制御流体(例えば薬液)の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができ、上記した年々厳しくなる要求に耐えうる。なお、上に、半導体製造装置に用いられる流体制御機器について言及しているが、本発明に係る流体制御機器が半導体製造装置に用いられるものであることを限定するものではない。
【0035】
(12)(9)乃至(11)のいずれか1つに記載の流体制御機器の製造方法において、前記フッ素樹脂は、メルトフローレートが2.2g/10min以上、2.8g/10min以下のパーフルオロアルコキシアルカンであること、を特徴とする。
【0036】
(13)(9)乃至(12)のいずれか1つに記載の流体制御機器の製造方法において、前記フッ素樹脂は、比重が2.08以上、2.16以下の範囲であること、を特徴とする。
【0037】
従来、薄膜部の弾性変形が繰り返されることにより、薄膜部に亀裂が発生することが懸念されていた。亀裂が発生すると、亀裂内に制御流体が滞留し、劣化した制御流体の成分が付着するおそれがある。そして、制御流体の成分の付着は、制御流体にパーティクルが混入する原因となる。
【0038】
(12)または(13)に記載の流体制御機器の製造方法によれば、薄膜部の屈曲耐久性を向上させることができる。したがって、薄膜部に亀裂が発生することを防止することができ、制御流体の滞留、パーティクルの発生を防止することができる。なお、ここでいうメルトフローレート(MFR)とは、原材料であるフッ素樹脂の、成形後のMFRを意味する。成形後のMFRとは、原材料であるフッ素樹脂を溶融成形した後に、再び溶融させて測定したものであり、この測定は、ASTM D1238に準拠し、樹脂温度が摂氏372度、荷重5kg、オリフィスの内径2.1mm、オリフィスの高さが8.0mmの条件下で行われるものである。
【0039】
(14)(9)乃至(13)のいずれか1つに記載の流体制御機器の製造方法において、前記金型転写面は、圧縮成形またはトランスファー成形に用いられる金型の鏡面仕上げ面が転写されたものであること、を特徴とする。
【0040】
射出成形によってダイヤフラム部材を成形するとした場合、成形時の樹脂の流動により、薄膜部の表面にフローマークが形成され、接液面(金型転写面)の表面粗さに悪影響を与えるおそれがある。しかし、(14)に記載の流体制御機器の製造方法によれば、金型転写面は、圧縮成形またはトランスファー成形に用いられる金型の鏡面仕上げ面が転写されたものであるため、金型転写面の表面粗さを確実にRa0.05μm以下にすることが可能となる。圧縮成形またはトランスファー成形のように、金型内の溶融した樹脂に圧力をかければ、金型内の溶融した樹脂を金型のキャビティ表面に押し付けることが可能であり、これにより、金型転写面を平滑に形成することが可能であるからである。
【0041】
(15)(14)に記載の流体制御機器の製造方法において、前記接液面は、湾曲した面であること、を特徴とする。
【0042】
特許文献1に記載のダイヤフラム15のように薄膜部を切削加工により形成する場合、湾曲した面として形成することが困難であるため、平面により形成することが一般的である。そうすると、薄膜部が弾性変形をする際、応力集中が起こりやすいため、屈曲耐久性が低下することが懸念される。
【0043】
(15)に記載の流体制御機器の製造方法によれば、圧縮成形またはトランスファー成形により、接液面を、金型転写面を有しかつ湾曲した面として形成することが可能である。よって、ダイヤフラム部材の接液面への制御流体の成分の付着を防止しつつ、応力集中の緩和による屈曲耐久性の向上を図ることができる。
【0044】
(16)(9)乃至(15)のいずれか1つに記載の流体制御機器の製造方法において、前記ダイヤフラム部材は、前記制御流体が流れる流路を開閉する弁体を備えること、流体制御機器は、前記弁体が当接離間する弁座を備えること、前記弁体は、少なくとも前記弁座と当接する部分が、第2の金型転写面であること、前記第1工程により、前記第2の金型転写面を備える前記半製品を得ること、前記第2工程により、前記半製品を、前記第2の金型転写面を残して切削加工することで、前記ダイヤフラム部材の形状を得ること、を特徴とする。
【0045】
(16)に記載の流体制御機器の製造方法によれば、ダイヤフラム部材は、制御流体が流れる流路を開閉する弁体を備え、流体制御機器は、弁体が当接離間する弁座を備える。例えば、ダイヤフラム弁やニードル弁等が上記流体制御機器に該当する。この場合、弁体は、少なくとも弁座と当接する部分が、第2の金型転写面であることが望ましい。従来、弁体の弁座と当接する部分は、開閉動作を繰り返すうちに摩耗が発生しやすく、その摩耗により発生する摩耗粉がパーティクルとして制御流体に混入するおそれがあった。弁体の、弁座と当接する部分を金型転写面として、表面粗さを低くすることで、摩耗の発生を抑えることが可能となる。なお、第2の金型転写面とは、薄膜部の備える接液面の金型転写面と、連続した面であるか、別個の面であるかは問わない。
【発明の効果】
【0046】
本発明の流体制御機器およびその製造方法によれば、ダイヤフラム部材の接液面への制御流体の成分の付着を防止することが可能である。
【図面の簡単な説明】
【0047】
【
図3】流体制御機器の製造方法の第1工程を説明する図である。
【
図4】流体制御機器の製造方法の第1工程を説明する図である。
【
図5】流体制御機器の製造方法の第1工程を説明する図である。
【
図6】ダイヤフラム部材の半製品の部分断面図である。
【
図7】流体制御機器の製造方法の第2工程を説明する図である。
【
図8】流体制御機器の製造方法の第1工程に用いる雌型を示す図である。
【
図9】流体制御機器の製造方法の第2の形態における第1工程を説明する図である。
【
図10】ダイヤフラム部材の変形例を示す部分断面図である。
【
図11】
図10に示すダイヤフラム部材に対応する雌型を示す図である。
【発明を実施するための形態】
【0048】
本発明に係る流体制御機器の実施形態であるダイヤフラム弁1ついて、図面を参照しながら詳細に説明する。
図1は、ダイヤフラム弁1の断面図である。
図2は、ダイヤフラム部材122の部分断面図である。
【0049】
ダイヤフラム弁1は、例えば、半導体製造装置に用いられる薬液の流量制御を行う、エアオペレイト式の薬液弁である。ダイヤフラム弁1は、
図1に示すように、上下に積み重なる駆動部11と弁部12とからなる。
【0050】
駆動部11は、第1ハウジング111と、第2ハウジング112とが、
図1中の上下方向に積み重なるようにして形成されており、その内部にピストン113を備えている。
【0051】
第1ハウジング111は、第2ハウジング112とは反対側の端部(
図1中の上端部)が閉塞されている一方で、第2ハウジング112側の端部(
図1中の下端部)が開口された中空筒状をなしており、外周面には、第1給排気口111aが形成されている。そして、第1ハウジング111の開口された端部は、第2ハウジング112の
図1中の上端部に、Oリング115を介して気密的に嵌装されている。
【0052】
第2ハウジング112は、第1ハウジング111側の端部(
図1中の上端部)と、弁部12側の端部(
図1中の下端部)とが、ともに開口された中空筒状をなしており、外周面には第2給排気口112aが形成されている。
【0053】
第1ハウジング111と第2ハウジング112とは同軸上に並んでおり、第1ハウジング111の中空部と、第2ハウジング112の中空部によりピストン室116が形成されている。
【0054】
ピストン室116には、ピストン113が、
図1中の上下方向に摺動可能に装填されている。ここで、
図1中の上方向は、開弁方向であり、
図1中の下方向は、閉弁方向である。ピストン113は、円盤状のピストン部113aを備えており、該ピストン部113aにより、ピストン室116が、上室116aと、下室116bとに区画されている。ピストン部113aの外周面と、ピストン室116の内壁面の間にはOリング117が配置されており、上室116aと、下室116bとの間を気密に保っている。
【0055】
上室116aは、第1連通路111bによって、第1給排気口111aと連通しており、下室116bは、第2連通路112bによって、第2給排気口112aと連通している。また、上室116aには、コイルスプリング114が配設されており、コイルスプリング114の
図1中の下端部は、ピストン部113aの上端面に当接し、コイルスプリング114の
図1中の上端部は、上室116aの上面に当接している。そして、コイルスプリング114は、弾性力により、ピストン113を閉弁方向に付勢している。よって、第2給排気口112aから下室116bに操作エアが供給されると、下室116bの圧力が上昇することで、コイルスプリング114の弾性力に抗して、ピストン113が開弁方向に移動されるようになっている。この際、上室116a内の空気は、第1給排気口111aから排気される。そして、下室116bへの操作エアが停止されると、コイルスプリング114の弾性力により、ピストン113が閉弁方向に移動されるようになっている。
【0056】
また、ピストン113は、ピストン部113aの下端側に延伸するピストンロッド113cを備えている。このピストンロッド113cは、第2ハウジング112の下端面と下室116bとを貫通する貫通孔112cに挿通されている。ピストンロッド113cの外周面と、貫通孔112cの内周面との間にはOリング118が配設され、下室116bを気密に保っている。そして、ピストンロッド113cの先端部には、弁部12を構成するダイヤフラム部材122が螺合されている。
【0057】
弁部12は、駆動部11の
図1中の下側に連結されており、弁部本体121と、ダイヤフラム部材122と、台座126とから構成される。
【0058】
弁部本体121は、薬液等の制御流体を入力するための入力流路121aと、入力された制御流体を出力するための出力流路121bとを備える。また、弁部本体121の
図1中の上端面中央には、弁室121cが穿設されている。この弁室121cを介して、入力流路121aと出力流路121bとが連通している。そして、入力流路121aと出力流路121bとが連通することで、制御流体が流れる一連の流路が形成されている。また、弁室121cの底面には、ダイヤフラム部材122が当接離間する環状弁座121d(弁座の一例)が形成されている。
【0059】
ダイヤフラム部材122は、
図1および
図2に示されているように、弁体123と、薄膜部124と、支持部125とを備えている。
【0060】
弁体123は、
図2に示すように、同軸上に並ぶ細径部123aと太径部123cとを備えており、略円柱形状に形成されている。細径部123aのピストン113側の端部(
図1中の上端部)には、結合部123eが立設されている。この結合部123eがピストン113のピストンロッド113cの下端に連結されることで、
図1に示すように、ダイヤフラム部材122がピストン113に連結されている。これにより、ピストン113が上下方向に摺動するに伴って、弁体123が上下動することが可能となっている。また、細径部123aの結合部123eと反対側の端部には、細径部123aよりも直径の大きい太径部123cが接続されている。太径部123cの、環状弁座121dに対向する下面は、弁体123の上下動に伴って環状弁座121dに当接離間して制御流体を制御するためのシール面123dである。
【0061】
薄膜部124は、
図2に示すように、弁体123の、細径部123aと太径部123cとの境界近傍の外周面から、半径方向の斜め上方に延伸し、上方に膨出するように湾曲して形成されている。支持部125は、
図2に示すように、薄膜部124の外縁部に、肉厚に設けられている。支持部125が、
図1に示すように、駆動部11 と弁部12との間に挟持されることにより、ダイヤフラム部材122は、固定されており、弁室121c内において、薄膜部124が弁体123を支持した状態となっている。したがって、弁体123が上下動するに伴い、弁体123を支持する薄膜部124は屈曲を繰り返す。
【0062】
ダイヤフラム部材122の、薄膜部124の下面(
図1において、環状弁座121d側の面)と、太径部123cの外周面と、シール面123dは、制御流体と接触する接液面である。そして、薄膜部124の下面と、太径部123cの外周面と、シール面123dは、全て金型転写面127(
図2中、太い一点鎖線で示す範囲)である。つまり、ダイヤフラム部材122の接液面は全て金型転写面127により形成されている。この金型転写面127は、射出成形 圧縮成形、トランスファー成形のいずれで形成するものであるかは問わないが、圧縮成形またはトランスファー成形により形成することが最も望ましい。圧縮成形またはトランスファー成形についての詳細は後述する。
【0063】
接液面を形成する金型転写面127の表面粗さは、Ra0.1μm以下であることが望ましく、Ra0.05μm以下であることが更に望ましい。これは、接液面において制御流体(例えば薬液)が滞留し、劣化した制御流体の成分が接液面に付着することを防止するためである。
【0064】
なお、本実施形態におけるダイヤフラム部材122においては、接液面の全てを金型転写面127としているが、接液面の一部を金型転写面とすることとしても良い。例えば、薄膜部124の接液面のうち、薄膜部が弾性変形したときに変形の大きい部分や応力の集中しやすい部分を金型転写面とすることが考えられる。変形の大きい部分や応力の集中しやすい部分は、制御流体の成分が付着した場合に、当該成分が脱落しやすいためであり、金型転写面とすることで制御流体の成分が付着を防止するのである。これに加え、シール面123dのうち、環状弁座121dと当接する部分を金型転写面とすることが考えられる。環状弁座121dと当接する部分は、開閉動作を繰り返すうちに摩耗が発生しやすく、その摩耗により発生する摩耗粉がパーティクルとして制御流体に混入するおそれがある。シール面123dのうち、環状弁座121dと当接する部分を金型転写面として、表面粗さを低くすることで、摩耗の発生を抑えることが可能となる。
【0065】
また、ダイヤフラム部材122の、薄膜部124の上面(
図1において、環状弁座121d側とは反対側の面)と、細径部123aの外周面と、結合部123eの外周面は、切削加工により得られる切削加工面128(
図2中、太い二点鎖線で示す範囲)である。
【0066】
次に、ダイヤフラム部材122の材質について説明する。薄膜部124の屈曲の繰り返しによる薄膜部124の破壊を防止するため、薄膜部124には屈曲耐久性が求められる。そこで、ダイヤフラム部材122の材質として、比重が2.08以上、2.16以下の範囲であり、かつ、後述する第1工程により得られる半製品50(
図6参照)のメルトフローレート(MFR)が1.1g/10min以上、2.8g/10min以下になるPFA(パーフルオロアルコキシアルカン)を選択している。なお、PFAの物性のばらつきを考慮すれば、PFAのMFRは、1.1g/10min以上、2.8g/10min以下の範囲内において、1.5g/10min以上、2.6g/10min以下の範囲がより好ましく、2.2g/10min以上、2.6g/10min以下の範囲がさらに好ましい。なお、半製品50のMFRとは、原材料であるPFAの、成形後のMFRを意味する。成形後のMFRとは、原材料であるPFAを成形して得た半製品50を、再び溶融させて測定したものであり、この測定はASTM D1238に準拠し、樹脂温度が摂氏372度、荷重5kg、オリフィスの内径2.1mm、オリフィスの高さが8.0mmの条件下で行われるものである。成形後のMFRは、原材料のMFR(すなわち成形前のMFR)に比べて、約5~15%上昇する。これは成形時に加熱されることによって、材料の熱劣化が起こるためである。よって、半製品50のMFRが1.1g/10min以上、2.8g/10min以下になるようにするには、成形前のMFRが1g/10min以上、2.5g/10min以下のPFAを選択するのが良い。
【0067】
PFAは、一般的に用いられるPTFE(ポリテトラフルオロエチレン)と比較して、低発塵性に優れる分子構造を有している。したがって、PFAによりダイヤフラム部材122を形成すれば、弁体部と弁座との当接離間の繰り返しによる発塵を防ぐことができる。一方で、PFAは、一般的に、PTFEに比較して柔軟性が低く、屈曲耐久性に劣るという特性を有する。そのようなPFAによりダイヤフラム部材122を形成すると、薄膜部124の屈曲の繰り返しにより、破壊しやすくなるおそれがあった。そのような中、近年、例えば特開2017-119750 号公報に記載されているように、柔軟性が高い分子構造のPFAが開発され、流通するようになった。PFAは、結晶化度が低く、分子量が高いほど、屈強耐久性が高くなると期待されている。言い換えれば、分子量が高いものほど比重が低くなるため、PFAは、比重が低いほど、屈曲耐久性が高くなると期待されている。しかし、必ずしも比重が低いほど、屈曲耐久性が高くなるわけではないことを、発明者は試験により確認した。
【0068】
そこで発明者は、PFAのMFRに注目し、比重が約2.11かつ、MFRが2.5g/10minのPFAにより形成したダイヤフラム部材122と、比重が約2.17かつ、MFRが14g/10minのPFAにより形成したダイヤフラム部材122と同一形状のダイヤフラム部材(比較試料)とを用い、て、開閉動作の繰り返しによる屈曲耐久性試験を行った。試験条件は、以下の通りである。ダイヤフラム部材122を組み込んだダイヤフラム弁1と、比較資料を組み込んだダイヤフラム弁に対し、常温の雰囲気下で、常温の流体を、流体圧0.2~0.5MPaで封入し、ダイヤフラム部材を、0.5~2.5mmのストロークで、かつ、弁閉時間および弁開時間をそれぞれ0.5~10秒のサイクルで開閉する。この屈曲耐久性試験の結果、ダイヤフラム部材122の薄膜部124は100万回程度の開閉動作に耐久可能であるのに対し、比較試料の耐久可能な開閉動作は、10万回以下であった。
【0069】
なお、一般的に半導体製造装置に用いられる流体制御機器のダイヤフラム部材は、開閉頻度の少ないもので最低でも100万回の開閉動作に耐えうる屈曲耐久性を要するところ、MFRが2.8g/10minを超えると、ダイヤフラム部材の屈曲耐久性が低下し、上記100万回の開閉動作に耐えられなくなるおそれがある。また、MFRが1.1g/10min未満となると、より分子間の絡み合いが強くなり、屈曲耐久性が増すと考えられるが、成形が困難となるため、生産性の観点から好ましくない。
【0070】
(流体制御機器の製造方法の第1の形態)
次に、上記したダイヤフラム部材122を備えるダイヤフラム弁1を製造する流体制御機器の製造方法について、
図3-
図8を用いて説明する。
図3-5は、流体制御機器の製造方法の第1工程を説明する図である。
図6は、ダイヤフラム部材122の半製品50の部分断面図である。
図7は、流体制御機器の製造方法の第2工程を説明する図である。
図8は、流体制御機器の製造方法の第1工程に用いる雌型60を示す図である。
【0071】
(第1工程)
第1工程は、圧縮成形により、ダイヤフラム部材122の半製品50を成形するための工程である。圧縮成形は、雌型60と、雄型70と、焼成炉80を用いて行う。
【0072】
雌型60は、
図8に示すように、その内部に半製品50を成形するためのキャビティ60aを備える。キャビティ60aの底面は、半製品50(ダイヤフラム部材122)の金型転写面127を形成するために鏡面仕上げがなされた鏡面仕上げ面60bである。雄型70は、
図4および
図5に示すように、雌型60に嵌め合い可能となっており、雌型60に嵌め合うことで、キャビティ60a内に充填される材料に圧力を加えることが可能である。焼成炉80は、一般的な圧縮成形に用いられる焼成炉である。
【0073】
まず、
図3に示すように、圧縮成形用の雌型60のキャビティ60a内に、ダイヤフラム部材122の原材料であるPFAのペレット90を充填する。なお、ペレット90をキャビティ60a内に充填する方法は、手作業でも良いし、自動化されていても良い。
【0074】
次に、
図4に示すように、雌型60に雄型70を嵌め合わせ、雄型70により、キャビティ60a内に充填したペレット90を加圧する。これにより、充填したペレット90とキャビティ60aとの隙間を可能な限りなくす。この時の雄型70により加圧する圧力は約1~3MPaの間で設定される。
【0075】
次に、雄型70により加圧する圧力は定圧のまま、
図5に示すように、焼成炉80内で、雌型60を所定の温度まで加熱する。この所定の温度とは、特に限定されないが、少なくともPFAの融点以上(例えば、約300~400℃)に設定される。この加熱により、ペレット90を溶融させる(溶融後のペレットを溶融材料91とする)。
【0076】
そして、雌型60が所定の温度に達すると、溶融材料91を雄型70によりさらに加圧することで、溶融したペレットの粒を一体化するとともに、キャビティ60a内全体に溶融材料91を行き渡らせる。この時の雄型70により加圧する圧力は溶融したペレットの粒を一体化するために、より高圧であることが望ましいが、雄型70と雌型60との間のガス抜き用のクリアランスから樹脂漏れが発生するおそれがあるため、約5~15MPaの間で適宜設定される。また、雄型70により加圧する方向は、接液面としての金型転写面127を形成するための鏡面仕上げ面60bに対して略垂直方向であることが最も望ましい。これは、鏡面仕上げ面60bを、半製品50に対してより確実に転写し、金型転写面127の表面粗さを可能な限り低くするためである。
【0077】
加圧により、キャビティ60a内全体に溶融材料91を行き渡らせた後、加圧した状態のまま、焼成炉80の扉を開放し、外気により徐冷する。これにより、雌型60の温度を約80~200℃まで低下させ、溶融材料91が硬化させる。溶融材料91は、硬化することでダイヤフラム部材122の半製品50になる。半製品50を雌型60から取り出し、第1工程が完了する。
【0078】
第1工程により得られる半製品50は、
図6に示すように、略円柱形状に形成されており、半製品50の軸心A12は、ダイヤフラム部材122の軸心A11に同じである。また、ダイヤフラム部材122の金型転写面127すなわち、接液面たる薄膜部124の下面(
図1において、環状弁座121d側の面)と太径部123cの外周面とシール面123dとは、半製品50において形成されている。
【0079】
射出成形によってダイヤフラム部材122を成形するとした場合、成形時の樹脂の流動により、薄膜部124の表面にフローマークが形成され、金型転写面127の表面粗さに悪影響を与えるおそれがあるが、本実施形態によれば、金型転写面127は、雌型60の鏡面仕上げ面60bが転写されたものであるため、金型転写面127の表面粗さを確実にRa0.05μm以下にすることが可能となる(具体的には、約Ra0.02~0.03μm)。圧縮成形のように、雌型60内の溶融した樹脂に圧力をかければ、雌型60内の溶融した樹脂を金型の鏡面仕上げ面60bに押し付けることが可能であり、これにより、金型転写面127を平滑に形成することが可能であるからである。なお、上記の第1工程の説明では、雄型70による加圧を開始してから、焼成炉80で加熱することとしているが、焼成炉80で加熱を開始してから。雄型70による加圧を開始することとしても良い。
【0080】
(第2工程)
次に、半製品50を、切削加工することでダイヤフラム部材122の形状を得る。切削加工には、例えば旋盤を用いる。旋盤の回転軸A13が、半製品50の軸心(すなわちダイヤフラム部材122の軸心A11)と同軸になるように、半製品50を旋盤のチャック101に固定する。そして、回転軸A13を中心に半製品50を回転させ、切削刃100により、半製品50を金型転写面127とは反対側から切削していき、切削加工面128(
図2参照)を形成する。これにより、ダイヤフラム部材122が完成される。
【0081】
(流体制御機器の製造方法の第2の形態)
流体制御機器の製造方法の第2の形態について、
図9を用いて説明する。
図9は、流体制御機器(ダイヤフラム弁1)の製造方法の第2の形態における第1工程を説明する図である。
【0082】
流体制御機器(ダイヤフラム弁1)の製造方法の第2の形態においては、半製品50をトランスファー成形により成形する。トランスファー成形は、押出成形機102と、ポット103と、雌型104と、雄型105と、焼成炉106,107とを用いて行う。なお、雌型104は圧縮成形に用いる雌型60と同様の構成であり、雄型105は圧縮成形に用いる雄型70と同様の構成であるが、それぞれトランスファー成形用に設計されたものである。
【0083】
押出成形機102は、加熱シリンダ102aと、加熱シリンダ内に材料を投入可能なホッパー102bと、駆動機構102eにより回転されるスクリュー102cと、を備える。
【0084】
ホッパー102bから加熱シリンダ102a内に投入されたPFAのペレット90は、加熱シリンダ102a内で加熱されるとともに、スクリュー102cにより回転される。これにより、ペレット90は、スクリュー102c先端側に送られながら溶融される。なお、溶融されたペレット90を溶融材料92とする。
【0085】
溶融材料92は、回転するスクリュー102cにより、加熱シリンダ102aの先端に設けられた吐出口102dから、焼成炉106内に押し出される。 焼成炉106内には、雌型104とポット103とが積み上げられて配設されており、吐出口102dから押し出された溶融材料92は、まずポット103内に貯められる。そして、ポット103に貯められた溶融材料92は、ポット103の底部に設けられた湯口103aから、雌型104のキャビティ104aに充填される。このとき、ポット103および雌型104は、焼成炉106内にあるため、溶融材料92はキャビティ104a内で加熱された状態にある。加熱温度は特に限定されないが、融点以上(例えば約300~400℃)に加熱されている。
【0086】
溶融材料が充填された雌型104は、加圧工程に送られる。加圧工程は、
図5に示すように、焼成炉107内で行われる。雌型104に雄型105を嵌め合わせ、雄型105により、キャビティ104a内に充填した溶融材料92を加圧する。なお、溶融材料92を加圧するときの加圧速度や圧力値は、適宜調整される。この加圧により、キャビティ104a内全体に、溶融材料92を行き渡らせる。このとき、焼成炉107の温度は、特に限定されないが、溶融材料92の徐冷を行うために例えば約80~200℃に設定されている。この徐冷は、雄型105による加圧を行いながら行われる。徐冷を行うことにより、溶融材料91が硬化し、半製品50となる。半製品50を雌型104から取り出し、トランスファー成形による第1工程が完了する。トランスファー成形により得た半製品50からダイヤフラム部材122を得るための第2工程は、上記した第1の形態における第2工程と同一である。
【0087】
射出成形によってダイヤフラム部材122を成形するとした場合、成形時の樹脂の流動により、薄膜部124の表面にフローマークが形成され、金型転写面127の表面粗さに悪影響を与えるおそれがあるが、本実施形態によれば、金型転写面127は、雌型104の鏡面仕上げ面104bが転写されたものであるため、金型転写面127の表面粗さを確実にRa0.05μm以下にすることが可能となる。トランスファー成形のように、雌型60内の溶融した樹脂に圧力をかければ、雌型104内の溶融した樹脂を金型の鏡面仕上げ面104bに押し付けることが可能であり、これにより、金型転写面127を平滑に形成することが可能であるからである。
【0088】
(ダイヤフラム部材の変形例について)
上記した雌型60,104を用いて半製品の成形を行うほか、スライドコアを用いた雌型を用いて半製品の成形を行うことも考えられる。
【0089】
例えば、
図10に示すダイヤフラム部材222は、弁体223と、薄膜部224と、支持部225とを備えている。弁体223は、同軸上に並ぶ細径部223aと拡径部223bと太径部223cとを備えており、いわゆる釣り鐘状に形成されている。細径部細径部223aの
図10中の上端部には、結合部223eが立設されている。この結合部223eは、ダイヤフラム部材122同様に、ピストンに連結される。これにより、ダイヤフラム部材222がピストンに連結される。また、細径部223aの下端には、拡径部223bを介して細径部223aよりも直径の大きい太径部223cが接続されている。そして、太径部123cの下面は、環状弁座121dに当接離間して制御流体を制御するためのシール面223dである。
【0090】
薄膜部224は、弁体223の、細径部223aと拡径部223bとの境界近傍の外周面から、半径方向の斜め上方に延伸し、上方に膨出するように湾曲して形成されている。支持部225は、薄膜部224の外縁部に、肉厚に設けられている。支持部225は、ダイヤフラム部材122の支持部125と同様に、駆動部11 と弁部12との間に挟持され、これによりダイヤフラム部材222が固定される。
【0091】
ダイヤフラム部材222の、薄膜部224の下面と、拡径部223bの外周面と、太径部223cの外周面と、シール面223dは、制御流体と接触する接液面である。そして、薄膜部224の下面と、拡径部223bの外周面と、太径部223cの外周面と、シール面223dは、全て金型転写面227(
図10中、太い一点鎖線で示す範囲)である。つまり、ダイヤフラム部材222の接液面は全て金型転写面227により形成されている。この金型転写面227の表面粗さは、Ra0.1μm以下であることが望ましく、Ra0.05μm以下であることが更に望ましい。また、ダイヤフラム部材222の、
図10において太い二点鎖線で示す範囲は、切削加工により得られる切削加工面128である。
【0092】
以上のような構成を有するダイヤフラム部材222を成形しようとすると、拡径部223bの部分において、金型の型取りが逆テーパとなってしまい、離型ができない。そこで、
図11に示す雌型160のように、スライドコアを用いた金型を用いる。雌型160は、その内部にダイヤフラム部材222の半製品を成形するためのキャビティ160aを備える。キャビティ160aの一部は、雌型160が備えるスライドコア161,162が構成している。そして、雌型160の底面およびスライドコア161,162の表面が、ダイヤフラム部材222の金型転写面227を形成するための鏡面仕上げ面160b(
図11中、一点鎖線で示す範囲)とされている。なお、スライドコア161は筒状の部品であるため、
図11中では左右にそれぞれ位置しているように見えるが、これらは一体とされた1部品である。また、スライドコア162は、
図11中の左右に分割された2部品からなり、2部品が合わさることで、筒状に形成されるようになっている。離型の際には、まず、底部163が矢印Y11に示す方向に外され、次に、スライドコア161を矢印Y12に示す方向(矢印Y11と同一方向)に外される。そして、最後に、スライドコア162を左右に分割し、それぞれ矢印Y13に示すように、外方斜め下方向に外す。このように、スライドコア161,162を用いた雌型160を用いることで、逆テーパ状の拡径部223bを形成することが可能である。
【0093】
以上説明したように、本実施形態の流体制御機器(例えばダイヤフラム弁1)によれば、(1)制御流体(例えば薬液)が入力される入力流路121aと、入力流路121aから入力された制御流体を出力するための出力流路121bと、フッ素樹脂からなるダイヤフラム部材122と、を備え、ダイヤフラム部材122は可撓性を有する薄膜部124を備え、薄膜部124が弾性変形することにより制御流体を制御する流体制御機器において、薄膜部124は、制御流体と接触する接液面を備えること、接液面の、少なくとも一部が、金型転写面127であること、を特徴とする。なお、金型転写面127とは、射出成形用の金型のキャビティ表面、または圧縮成形用の金型のキャビティ表面、またはトランスファー成形用の金型のキャビティ表面を転写した面である。
【0094】
(1)に記載の流体制御機器(ダイヤフラム弁1)によれば、薄膜部124が備える接液面の、少なくとも一部が、金型転写面127であるため、接液面を切削加工により形成するよりも、接液面の表面粗さを低くすることが可能である。よって、接液面における制御流体の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができる。制御流体の成分が付着するおそれが低減できれば、接液面から制御流体の成分が脱落して、脱落した制御流体の成分がパーティクルとして制御流体に混入するおそれも低減することができる。
【0095】
なお、薄膜部124の接液面の一部を金型転写面とするか、薄膜部124の接液面の全てを金型転写面とするかは問わない。接液面の一部を金型転写面とする場合には、例えば、薄膜部124が弾性変形したときに、変形の大きい部分や応力の集中しやすい部分を金型転写面とすることが考えられる。変形の大きい部分や応力の集中しやすい部分は、制御流体の成分が付着した場合に、当該成分が脱落しやすいためであり、金型転写面とすることで制御流体の成分が付着を防止するのである。
【0096】
(2)(1)に記載の流体制御機器(ダイヤフラム弁1)において、薄膜部124の、接液面とは反対側の面は、切削加工面128であること、を特徴とする。
【0097】
薄膜部124の、接液面とは反対側の面は、制御流体と接触しないため、接液面ほど表面粗さを低くする必要がない。また、薄膜部124は、厚みが約0.1~0.5mmであるため、金型による成形が困難である。そこで、薄膜部の、接液面とは反対側の面を、切削加工面128とすることで、ダイヤフラム部材の接液面への制御流体の成分の付着を防止しつつ、製造コストを抑えることができる。
【0098】
(3)(1)または(2)に記載の流体制御機器(ダイヤフラム弁1)において、金型転写面127の表面粗さは、Ra0.05μm以下であること、を特徴とする。
【0099】
例えば、半導体製造装置に用いられる流体制御機器においては、半導体の歩留まり向上のため、制御流体へのパーティクル混入防止の要求が年々厳しくなっている。(3)に記載の流体制御機器(ダイヤフラム弁1)によれば、金型転写面127の表面粗さは、Ra0.05μm以下であるため、より確実に、接液面における制御流体の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができ、上記した年々厳しくなる要求に耐えうる。なお、上に、半導体製造装置に用いられる流体制御機器について言及しているが、本発明に係る流体制御機器が半導体製造装置に用いられるものであることを限定するものではない。
【0100】
(4)(1)乃至(3)のいずれか1つに記載の流体制御機器(ダイヤフラム弁1)において、フッ素樹脂は、メルトフローレートが2.2g/10min以上、2.8g/10min以下のパーフルオロアルコキシアルカンであること、を特徴とする。
【0101】
(5)(1)乃至(4)のいずれか1つに記載の流体制御機器(ダイヤフラム弁1)において、フッ素樹脂は、比重が2.08以上、2.16以下の範囲であること、を特徴とする。
【0102】
従来、薄膜部の弾性変形が繰り返されることにより、薄膜部に亀裂が発生することが懸念されていた。亀裂が発生すると、亀裂内に制御流体が滞留し、劣化した制御流体の成分が付着するおそれがある。そして、制御流体の成分の付着は、制御流体にパーティクルが混入する原因となる。
【0103】
(4)または(5)に記載の流体制御機器(ダイヤフラム弁1)によれば、薄膜部124の屈曲耐久性を向上させることができる。したがって、薄膜部124に亀裂が発生することを防止することができ、制御流体の滞留、パーティクルの発生を防止することができる。なお、ここでいうメルトフローレート(MFR)とは、原材料であるフッ素樹脂の、成形後のMFRを意味する。成形後のMFRとは、原材料であるフッ素樹脂を溶融成形した後に、再び溶融させて測定したものであり、この測定は、ASTM D1238に準拠し、樹脂温度が摂氏372度、荷重5kg、オリフィスの内径2.1mm、オリフィスの高さが8.0mmの条件下で行われるものである。
【0104】
(6)(1)乃至(5)のいずれか1つに記載の流体制御機器(ダイヤフラム弁1)において、金型転写面127は、圧縮成形またはトランスファー成形に用いられる金型(例えば雌型60,104)の鏡面仕上げ面60b,104bが転写されたものであること、を特徴とする。
【0105】
射出成形によってダイヤフラム部材122を成形するとした場合、成形時の樹脂の流動により、薄膜部124の表面にフローマークが形成され、接液面(金型転写面127)の表面粗さに悪影響を与えるおそれがある。しかし、(6)に記載の流体制御機器(ダイヤフラム弁1)によれば、金型転写面127は、圧縮成形またはトランスファー成形に用いられる金型(例えば雌型60,104)の鏡面仕上げ面60b,104bが転写されたものであるため、金型転写面127の表面粗さを確実にRa0.05μm以下にすることが可能となる。圧縮成形またはトランスファー成形のように、金型(雌型60,104)内の溶融した樹脂91,92に圧力をかければ、金型(雌型60,104)内の溶融した樹脂91,92を金型のキャビティ60a,104a表面(鏡面仕上げ面60b,104b)に押し付けることが可能であり、これにより、金型転写面127を平滑に形成することが可能であるからである。
【0106】
(7)(6)に記載の流体制御機器(ダイヤフラム弁1)において、接液面は、湾曲した面であること、を特徴とする。
【0107】
特許文献1に記載のダイヤフラムのように薄膜部を切削加工により形成する場合、湾曲した面として形成することが困難であるため、平面により形成することが一般的である。そうすると、薄膜部が弾性変形をする際、応力集中が起こりやすいため、屈曲耐久性が低下することが懸念される。
【0108】
(7)に記載の流体制御機器(ダイヤフラム弁1)によれば、圧縮成形またはトランスファー成形により、接液面を、金型転写面127を有しかつ湾曲した面として形成することが可能である。よって、ダイヤフラム部材122の接液面への制御流体の成分の付着を防止しつつ、応力集中の緩和による屈曲耐久性の向上を図ることができる。
【0109】
(8)(1)乃至(7)のいずれか1つに記載の流体制御機器(ダイヤフラム弁1)において、ダイヤフラム部材122は、制御流体が流れる流路(入力流路121aと出力流路121bとが連通することでなる一連の流路)を開閉する弁体123を備えること、流体制御機器(ダイヤフラム弁1)は、弁体123が当接離間する弁座(例えば環状弁座121d)を備えること、弁体123は、少なくとも弁座(環状弁座121d)と当接する部分が、第2の金型転写面(金型転写面127)であること、を特徴とする。
【0110】
(8)に記載の流体制御機器(ダイヤフラム弁1)によれば、ダイヤフラム部材122は、制御流体が流れる流路(入力流路121a,出力流路121b)を開閉する弁体123を備え、流体制御機器は、弁体123が当接離間する弁座(環状弁座121d)を備える。例えば、ダイヤフラム弁1の他、ニードル弁等がこれに該当する。この場合、弁体123は、少なくとも弁座(環状弁座121d)と当接する部分が、第2の金型転写面(金型転写面127)であることが望ましい。従来、弁体の弁座と当接する部分は、開閉動作を繰り返すうちに摩耗が発生しやすく、その摩耗により発生する摩耗粉がパーティクルとして制御流体に混入するおそれがあった。弁体123の、弁座(環状弁座121d)と当接する部分を金型転写面127として、表面粗さを低くすることで、摩耗の発生を抑えることが可能となる。なお、「第2の金型転写面」とは、薄膜部124の備える接液面の金型転写面127と、連続した面であるか、別個の面であるかは問わない。本実施形態においては、シール面123dの接液面の金型転写面127(第2の金型転写面)が、薄膜部124の備える接液面の金型転写面127と連続した面となっているが、例えば、弁体123の太径部123cを金型転写面とせずに、薄膜部124の金型転写面とシール面123dの金型転写面を、連続しない別個の金型転写面面としても良い。
【0111】
さらに、上記課題を解決するために、本発明の流体制御機器の製造方法は、次のような構成を有している。
【0112】
(9)制御流体が入力される入力流路121aと、入力流路121aから入力された制御流体を出力するための出力流路121bと、フッ素樹脂からなるダイヤフラム部材122と、を備え、ダイヤフラム部材122は可撓性を有する薄膜部124を備え、薄膜部124が弾性変形することにより制御流体を制御する流体制御機器(例えばダイヤフラム弁1)を製造する流体制御機器の製造方法において、薄膜部124は、制御流体と接触する接液面を備えること、接液面の、少なくとも一部が、金型転写面127であること、金型転写面127を備えたダイヤフラム部材122の半製品50を成形する第1工程と、半製品50を、金型転写面127を残して切削加工することで、ダイヤフラム部材122の形状を得る第2工程と、を備えること、を特徴とする。なお、金型転写面127とは、射出成形用の金型のキャビティ表面、または圧縮成形用の金型のキャビティ表面、またはトランスファー成形用の金型のキャビティ表面を転写した面である。
【0113】
(9)に記載の流体制御機器の製造方法によれば、薄膜部124が備える接液面の、少なくとも一部が、金型転写面127になるため、接液面を切削加工により形成するよりも、接液面の表面粗さを低くすることが可能である。よって、接液面における制御流体(例えば薬液)の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができる。制御流体の成分が付着するおそれが低減できれば、接液面から制御流体の成分が脱落して、脱落した制御流体の成分がパーティクルとして制御流体に混入するおそれも低減することができる。
【0114】
なお、薄膜部124の接液面の一部を金型転写面とするか、薄膜部124の接液面の全てを金型転写面とするかは問わない。接液面の一部を金型転写面とする場合には、例えば、薄膜部124が弾性変形したときに、変形の大きい部分や応力の集中しやすい部分を金型転写面とすることが考えられる。変形の大きい部分や応力の集中しやすい部分は、制御流体の成分が付着した場合に、当該成分が脱落しやすいためであり、金型転写面とすることで制御流体の成分が付着を防止するのである。
【0115】
(10)(9)に記載の流体制御機器の製造方法において、薄膜部124の、接液面とは反対側の面は、切削加工面128であること、を特徴とする。
【0116】
薄膜部124の、接液面とは反対側の面は、制御流体と接触しないため、接液面ほど表面粗さを低くする必要がない。また、薄膜部124は、厚みが約0.1~0.5mmであるため、金型による成形が困難である。そこで、薄膜部の、接液面とは反対側の面を、切削加工面128とすることで、ダイヤフラム部材の接液面への制御流体の成分の付着を防止しつつ、製造コストを抑えることができる。
【0117】
(11)(9)または(10)に記載の流体制御機器の製造方法において、金型転写面127の表面粗さは、Ra0.05μm以下であること、を特徴とする。
【0118】
例えば、半導体製造装置に用いられる流体制御機器においては、半導体の歩留まり向上のため、制御流体へのパーティクル混入防止の要求が年々厳しくなっている。(11)に記載の流体制御機器の製造方法によれば、金型転写面127の表面粗さは、Ra0.05μm以下であるため、より確実に、接液面における制御流体の滞留の発生を低減し、制御流体の成分が接液面に付着するおそれを低減させることができ、上記した年々厳しくなる要求に耐えうる。なお、上に、半導体製造装置に用いられる流体制御機器について言及しているが、本発明に係る流体制御機器が半導体製造装置に用いられるものであることを限定するものではない。
【0119】
(12)(9)乃至(11)のいずれか1つに記載の流体制御機器の製造方法において、フッ素樹脂は、メルトフローレートが2.2g/10min以上、2.8g/10min以下のパーフルオロアルコキシアルカンであること、を特徴とする。
【0120】
(13)(9)乃至(12)のいずれか1つに記載の流体制御機器の製造方法において、フッ素樹脂は、比重が2.08以上、2.16以下の範囲であること、を特徴とする。
【0121】
従来、薄膜部の弾性変形が繰り返されることにより、薄膜部に亀裂が発生することが懸念されていた。亀裂が発生すると、亀裂内に制御流体が滞留し、劣化した制御流体の成分が付着するおそれがある。そして、制御流体の成分の付着は、制御流体にパーティクルが混入する原因となる。
【0122】
(12)または(13)に記載の流体制御機器の製造方法によれば、薄膜部124の屈曲耐久性を向上させることができる。したがって、薄膜部124に亀裂が発生することを防止することができ、制御流体の滞留、パーティクルの発生を防止することができる。なお、ここでいうメルトフローレート(MFR)とは、原材料であるフッ素樹脂の、成形後のMFRを意味する。成形後のMFRとは、原材料であるフッ素樹脂を溶融成形した後に、再び溶融させて測定したものであり、この測定は、ASTM D1238に準拠し、樹脂温度が摂氏372度、荷重5kg、オリフィスの内径2.1mm、オリフィスの高さが8.0mmの条件下で行われるものである。
【0123】
(14)(9)乃至(13)のいずれか1つに記載の流体制御機器の製造方法において、金型転写面127は、圧縮成形またはトランスファー成形に用いられる金型(例えば雌型60,104)の鏡面仕上げ面60b,104bが転写されたものであること、を特徴とする。
【0124】
射出成形によってダイヤフラム部材122を成形するとした場合、成形時の樹脂の流動により、薄膜部124の表面にフローマークが形成され、接液面(金型転写面127)の表面粗さに悪影響を与えるおそれがある。しかし、(14)に記載の流体制御機器の製造方法によれば、金型転写面127は、圧縮成形またはトランスファー成形に用いられる金型(例えば雌型60,104)の鏡面仕上げ面60b,104bが転写されたものであるため、金型転写面127の表面粗さを確実にRa0.05μm以下にすることが可能となる。圧縮成形またはトランスファー成形のように、金型(雌型60,104)内の溶融した樹脂91,92に圧力をかければ、金型(雌型60,104)内の溶融した樹脂91,92を金型のキャビティ60a,104a表面(鏡面仕上げ面60b,104b)に押し付けることが可能であり、これにより、金型転写面127を平滑に形成することが可能であるからである。
【0125】
(15)(14)に記載の流体制御機器の製造方法において、接液面は、湾曲した面であること、を特徴とする。
【0126】
特許文献1に記載のダイヤフラムのように薄膜部を切削加工により形成する場合、湾曲した面として形成することが困難であるため、平面により形成することが一般的である。そうすると、薄膜部が弾性変形をする際、応力集中が起こりやすいため、屈曲耐久性が低下することが懸念される。
【0127】
(15)に記載の流体制御機器の製造方法によれば、圧縮成形またはトランスファー成形により、接液面を、金型転写面127を有しかつ湾曲した面として形成することが可能である。よって、ダイヤフラム部材122の接液面への制御流体の成分の付着を防止しつつ、応力集中の緩和による屈曲耐久性の向上を図ることができる。
【0128】
(16)(9)乃至(15)のいずれか1つに記載の流体制御機器の製造方法において、ダイヤフラム部材122は、制御流体が流れる流路(入力流路121aと出力流路121bとが連通することでなる一連の流路)を開閉する弁体123を備えること、流体制御機器(ダイヤフラム弁1)は、弁体123が当接離間する弁座(例えば環状弁座121d)を備えること、弁体123は、少なくとも弁座(環状弁座121d)と当接する部分が、第2の金型転写面(金型転写面127)であること、第1工程により、第2の金型転写面(金型転写面127)を備える半製品50を得ること、第2工程により、半製品50を、第2の金型転写面(金型転写面127)を残して切削加工することで、ダイヤフラム部材122の形状を得ること、を特徴とする。
【0129】
(16)に記載の流体制御機器の製造方法によれば、ダイヤフラム部材122は、制御流体が流れる流路(入力流路121a,出力流路121b)を開閉する弁体123を備え、流体制御機器は、弁体123が当接離間する弁座(環状弁座121d)を備える。例えば、ダイヤフラム弁1の他、ニードル弁等が上記流体制御機器に該当する。この場合、弁体123は、少なくとも弁座(環状弁座121d)と当接する部分が、第2の金型転写面(金型転写面127)であることが望ましい。従来、弁体の弁座と当接する部分は、開閉動作を繰り返すうちに摩耗が発生しやすく、その摩耗により発生する摩耗粉がパーティクルとして制御流体に混入するおそれがあった。弁体123の、弁座(環状弁座121d)と当接する部分を金型転写面127として、表面粗さを低くすることで、摩耗の発生を抑えることが可能となる。なお、「第2の金型転写面」とは、薄膜部124の備える接液面の金型転写面127と、連続した面であるか、別個の面であるかは問わない。本実施形態においては、シール面123dの接液面の金型転写面127(第2の金型転写面)が、薄膜部124の備える接液面の金型転写面127と連続した面となっているが、例えば、弁体123の太径部123cを金型転写面とせずに、薄膜部124の金型転写面とシール面123dの金型転写面を、連続しない別個の金型転写面面としても良い。
【0130】
なお、上記の実施形態は単なる例示にすぎず、本発明を何ら限定するものではない。したがって本発明は当然に、その要旨を逸脱しない範囲内で様々な改良、変形が可能である。例えば、ダイヤフラム弁1の駆動方式をエアオペレイト式として説明しているが、駆動方式はこれに限定されない。
【0131】
さらに、流体制御機器としては、上に説明したダイヤフラム弁1に限定されず、例えば、以下に説明するサックバック弁、ニードル弁、レギュレータ、ダイヤフラムポンプであっても良い。
【0132】
(サックバック弁について)
流体制御機器の一例であるサックバック弁3は、例えば、
図12に示すように、駆動部31および弁部32からなる。弁部32は、制御流体(例えば薬液)を入力するための入力流路321aと、入力流路321aから入力された制御流体を出力するための出力流路321bと、を備えている。そして、入力流路321aと出力流路321bとが連通することで、制御流体が流れる一連の流路が形成されている。
【0133】
弁部32は、さらに、フッ素樹脂からなるダイヤフラム部材322を備えている。このダイヤフラム部材322は可撓性を有する薄膜部324を備えている。ダイヤフラム部材322が、駆動部31により、
図12の上下方向に動作されると、この動作に伴い、薄膜部324が弾性変形する。この薄膜部324の弾性変形により流路の容積が変動され、流路を流れる制御流体のサックバックを行うことが可能である。ダイヤフラム部材322の薄膜部324は、流路に面する側の面が、制御流体に接触する接液面である。そして、この接液面の全体が金型転写面327(
図12中、太い一点鎖線で示す範囲)により形成されている。なお、接液面の一部を金型転写面としても良い。
【0134】
金型転写面327の表面粗さは、Ra0.1μm以下であることが望ましく、Ra0.05μm以下であることが更に望ましい。また、金型転写面327は、射出成形 圧縮成形、トランスファー成形のいずれで形成するものであるかは問わないが、上記した圧縮成形またはトランスファー成形により形成することが最も望ましい。
【0135】
(ニードル弁について)
流体制御機器の一例であるニードル弁4は、例えば、
図13に示すように、駆動部41および弁部42からなる。弁部42は、制御流体(例えば薬液)を入力するための入力流路421aと、入力流路421aから入力された制御流体を出力するための出力流路421bを備えている。さらに、弁部42は、弁室421cを備えており、この弁室421cを介して、入力流路421aと出力流路421bとが連通している。そして、入力流路421aと出力流路421bとが連通することで、制御流体が流れる一連の流路が形成されている。また、弁室421cの底面には、環状弁座421dが設けられている。
【0136】
弁部42は、さらに、フッ素樹脂からなるダイヤフラム部材422を備えている。このダイヤフラム部材422は、略円錐状の弁体423と、弁体423の周囲に可撓性を有する薄膜部424を備えている。弁体423の外周面のうち環状弁座421dに対向する部分はシール面423dであり、弁体423が、駆動部41により、
図13の上下方向に動作されると、シール面423dが環状弁座421dに当接離間して制御流体の流れを制御する。また、弁体423の上下動に伴い、薄膜部424が弾性変形する。薄膜部424の流路に面する側の面および弁体423の外周面は、制御流体と接触する接液面である。そして、この接液面の全体が金型転写面427(
図13中、太い一点鎖線で示す範囲)により形成されている。なお、接液面の一部を金型転写面としても良い。
【0137】
金型転写面427の表面粗さは、Ra0.1μm以下であることが望ましく、Ra0.05μm以下であることが更に望ましい。また、金型転写面427は、射出成形 圧縮成形、トランスファー成形のいずれで形成するものであるかは問わないが、上記した圧縮成形またはトランスファー成形により形成することが最も望ましい。
【0138】
(レギュレータについて)
流体制御機器の一例であるレギュレータ5は、例えば、
図14に示すように、制御流体(例えば薬液)を入力するための入力流路521aと、入力流路521aから入力された制御流体を出力するための出力流路521bを備えている。さらに、レギュレータ5は、内部に、相互に連通する第1流体室521cおよび第2流体室521dを備えており、この第1流体室521cおよび第2流体室521dを介して、入力流路521aと出力流路521bとが連通している。そして、入力流路521aと出力流路521bとが連通することで、制御流体が流れる一連の流路が形成されている。また、第1流体室521cの第2流体室521d側の上面には、環状弁座521dが設けられている。
【0139】
レギュレータ5は、さらに、フッ素樹脂からなる第1ダイヤフラム部材522Aおよび第2ダイヤフラム部材522Bを備えている。
【0140】
第1ダイヤフラム部材522Aは、弁体523と、弁体523の下端側の周囲に可撓性を有する薄膜部524Aを備えている。弁体523の環状弁座521dに対向する面はシール面523dであり、弁体423が、
図14の上下方向に動作されると、シール面523dが環状弁座521dに当接離間して制御流体の圧力制御を行う。また、弁体523の上下動に伴い、薄膜部524が弾性変形する。薄膜部524Aの流路に面する側の面および弁体523の外周面は、制御流体と接触する接液面である。そして、この接液面の全体が金型転写面527A(
図14中、太い一点鎖線で示す範囲)により形成されている。なお、接液面の一部を金型転写面としても良い。
【0141】
第2ダイヤフラム部材522Bは、中央部において第1ダイヤフラム部材522Aの上端部が結合されており、その外周に可撓性を有する薄膜部524Bを備えている。この薄膜部524Bは、弁体523の上下動に伴って弾性変形する。薄膜部524Bの流路に面する側の面は、制御流体と接触する接液面である。そして、この接液面の全体が金型転写面527B(
図14中、太い二点鎖線で示す範囲)により形成されている。なお、接液面の一部を金型転写面としても良い。
【0142】
金型転写面527A,527Bの表面粗さは、Ra0.1μm以下であることが望ましく、Ra0.05μm以下であることが更に望ましい。また、金型転写面527A,527Bは、射出成形 圧縮成形、トランスファー成形のいずれで形成するものであるかは問わないが、上記した圧縮成形またはトランスファー成形により形成することが最も望ましい。
【0143】
(ダイヤフラムポンプについて)
流体制御機器の一例であるダイヤフラムポンプ6は、例えば、
図15に示すように、制御流体(例えば薬液)を入力するための入力流路621aと、入力流路621aから入力された制御流体を出力するための出力流路621bを備えている。
【0144】
ダイヤフラムポンプ6は、内部空間が、後述する薄膜部624により駆動室62と流体室63とに区画されている。駆動室62には、エア供給路61が連通している。このエア供給路61から駆動室62に操作エアを供給することができる。流体室63は、入力流路621aと出力流路621bとを連通している。そして、入力流路621aと出力流路621bとが連通することで、制御流体が流れる一連の流路が形成されている。
【0145】
ダイヤフラムポンプ6は、さらに、フッ素樹脂からなるダイヤフラム部材622を備えている。このダイヤフラム部材622は可撓性を有する薄膜部624を備えている。駆動室62に対して、エア供給路61を通じて操作エアが入出力されることで、薄膜部624が
図15中の上下に弾性変形する。この薄膜部624の弾性変形により流体室63の容積が変動され、制御流体の入出力が可能となっている。薄膜部624は、流体室63に面する側の面が、制御流体に接触する接液面である。そして、この接液面の全体が金型転写面627(
図15中、太い一点鎖線で示す範囲)により形成されている。なお、接液面の一部を金型転写面としても良い。
【0146】
金型転写面627の表面粗さは、Ra0.1μm以下であることが望ましく、Ra0.05μm以下であることが更に望ましい。また、金型転写面627は、射出成形 圧縮成形、トランスファー成形のいずれで形成するものであるかは問わないが、上記した圧縮成形またはトランスファー成形により形成することが最も望ましい。
【符号の説明】
【0147】
1 ダイヤフラム弁
121a 入力流路
121b 出力流路
121d 環状弁座(弁座の一例)
122 ダイヤフラム部材
123 弁体
124 薄膜部
127 金型転写面