(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023171824
(43)【公開日】2023-12-05
(54)【発明の名称】センサプローブ組立体
(51)【国際特許分類】
G01B 21/08 20060101AFI20231128BHJP
G01R 29/08 20060101ALI20231128BHJP
【FI】
G01B21/08
G01R29/08 F
【審査請求】有
【請求項の数】1
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023156125
(22)【出願日】2023-09-21
(62)【分割の表示】P 2020569898の分割
【原出願日】2019-06-17
(31)【優先権主張番号】62/687,376
(32)【優先日】2018-06-20
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】520215407
【氏名又は名称】フィズィーク・インストゥルメンテ(ペーイー)ゲーエムベーハー・ウント・コー.カーゲー
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100196508
【弁理士】
【氏名又は名称】松尾 淳一
(74)【代理人】
【識別番号】100117640
【弁理士】
【氏名又は名称】小野 達己
(72)【発明者】
【氏名】ジョーダン,スコット
(57)【要約】 (修正有)
【課題】幾何学的オフセットによる表面測定の不正確さを最小にするセンサプローブ組立体提供する。
【解決手段】センサプローブ組立体102は、プローブ104と、このプローブ104に結合されたセンサ組立体107とを備える。センサ組立体107は、プローブ104が近くにあるまたは接触している表面100の物理的特性または電気的特性を測定する。センサ組立体107は、プローブ104の中心軸のまわりに対称的に配設される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
プローブと、
前記プローブに結合され、前記プローブが近くにあるまたは接触している表面の物理的特性または電気的特性を測定するように構成されるセンサ組立体と
を備えるセンサプローブ組立体であって、
前記センサ組立体は、前記プローブの中心軸のまわりに対称的に配設される、センサプローブ組立体。
【請求項2】
前記センサ組立体は、2つ以上のセンサを備え、前記センサ組立体の前記センサは、前記プローブの前記中心軸に対して対称的に配設される、請求項1に記載の組立体。
【請求項3】
前記センサ組立体は、前記プローブを取り囲む単一の円筒形のセンサを備える、請求項1に記載の組立体。
【請求項4】
前記センサ組立体は下面を備え、前記下面は、前記センサ組立体が前記表面に接触することなく、前記接触表面の前記物理的特性または電気的特性を測定するように構成される、請求項1に記載の組立体。
【請求項5】
前記センサ組立体は単一板容量性変位センサを備え、前記表面は電極板である、請求項4に記載の組立体。
【請求項6】
前記プローブは、交換可能な固定具に保持される、請求項1に記載の組立体。
【請求項7】
前記プローブは、電磁放射および物質放射の放出器または受信器である、請求項1に記載の組立体。
【請求項8】
プローブのアレイと、
前記プローブのアレイに結合され、前記プローブのアレイが近くにあるまたは接触している表面の物理的特性または電気的特性を測定するように構成されるセンサ組立体と
を備えたセンサプローブ組立体であって、
前記センサ組立体は、前記プローブのアレイの中心軸のまわりに対称的に配設される、センサプローブ組立体。
【請求項9】
前記プローブのアレイは、プローブのファイバアレイを含む、請求項8に記載の組立体。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本出願は、2018年6月20日に出願した米国仮出願第62/687,376号の優先権を主張するものであり、その内容全体は、参照により本明細書に組み込まれる。
【0002】
[0002]本発明は、プローブ組立体に関し、詳細には、プローブが基板に電磁量もしくは物質量を放出しまたは基板から電磁量もしくは物質量を受け取り、センサが距離もしくは分離を測定しまたは距離もしくは分離の制御を可能にする、プローブとセンサ組立体の両方を有する距離または近接センサプローブ組立体に関する。
【背景技術】
【0003】
[0003]微細加工プロセスは、マイクロメートルスケール以下での様々な構成要素、デバイス、およびシステムの小型化を可能にした。そのようなプロセスは、例えば、集積回路(IC)、微細電気機械システム(MEMS)、および他の微細構造を製造するために使用される。最近の進歩は、プロセスが、様々な役立つ機能を提供するために同じチップ上でIC、MEMSなどと一体化した集積光学部品、デバイス、およびシステムを製造することを含むことができることである。
【0004】
[0004]そのようなデバイスの製造は、一般に、ウェハレベル製造を含む。しばしば多くの個々のデバイスは、1つの基板上に一緒に作製され、次いで製造の終わりに向かって分離したデバイス(ダイ)に単体化される。次いで、個々のデバイス/チップが試験およびパッケージされる。
【0005】
[0005]集積電子回路(IC)の製造では、IC試験の一部は、ダイの分離前にウェハレベルで行われ得る。このウェハレベル光学試験は、光学部品および光デバイスにおける欠陥の早期特定に使用され得る。しかしながら、そのような欠陥は、マイクロスケールからナノスコピックスケールであり得るので、試験機器(例えば、ウェハプローバ)の正確さは、極めて重要である。これは、プローブの角度向きが調整または最適化されるときに幾何学的オフセットによりプローブ測定値は不正確になり得るので、ウェハの表面に対するプローブの位置を含む。
【0006】
[0006]そのようなプローブがウェハの特性を測定するように構成された1つまたは複数のセンサにさらに結合されるとき、これらのオフセットは、試験結果にさらに悪影響を与え得る。特に、ウェハとプローブの間の距離が、プローブから離れたいくらかの距離で固定する試験に組み込まれる距離センサまたは近接センサによって測定または制御されるとき、何らかの角度調整をすると、プローブ対センサにおけるさまざまな距離の変化という結果になる。センサで一定の分離を維持しようと試みると、プローブとウェハの間で衝突することになり得る。
【発明の概要】
【課題を解決するための手段】
【0007】
[0007]したがって、本明細書に記載された実施形態は、数ある中で、角度調整が必要とされるときに、または表面が波打っているまたは楔状であるとともに変化する分離を示すときに、幾何学的オフセットによる表面測定の不正確さを最小にするセンサプローブ組立体をもたらす。例示的な一実施形態は、プローブとセンサ組立体とを含むセンサプローブ組立体を提供する。センサ組立体は、プローブが近くにあるまたは接触している表面の物
理的特性または電気的特性を測定するように構成される。センサ組立体は、プローブの中心軸のまわりに対称的に配設される。
【0008】
[0008]添付の各図は、同じ参照番号が、以下の詳細な説明と共に別個の各図全体を通じて同一または機能的に類似する要素を指しており、本明細書の一部に組み込まれるとともにこの一部を形成し、権利主張される発明を含む概念に係る実施形態をさらに示し、それらの実施形態の様々な原理および利点を説明する役割を果たす。
【図面の簡単な説明】
【0009】
【
図1】[0009]一実施形態によるセンサプローブ組立体を示す図である。
【
図2】[0010]
図1のセンサプローブ組立体の様々な位置を示す図である。
【
図3】[0011]従来のセンサプローブ組立体の様々な位置を示す図である。
【発明を実施するための形態】
【0010】
[0012]図中の要素は、簡潔かつ明確となるように示され、必ずしも原寸で描かれていないことを当業者は理解するであろう。例えば、図中の要素の一部の寸法は、本発明の実施形態の理解を向上させるのを助けるために、他の要素と比べて誇張される場合がある。
【0011】
[0013]装置および方法の構成要素は、適切な場合、図面中の従来の記号によって提示されており、本明細書中の説明の利益を得る当業者に明らかである詳細で本開示を曖昧にしないように、本発明の実施形態を理解するのに関係があるそれらの特定の詳細のみを示す。
【0012】
[0014]本発明の任意の実施形態が詳細に説明される前に、本発明は、以下の説明に記載されたまたは以下の図面に示された構成要素の構成および配置の詳細にその応用において限定されないことを理解されたい。本発明は、他の実施形態であることができ、様々なやり方で実施および実行することができる。説明を簡単にするために、本明細書に示された例示のシステムの一部または全部は、その各構成要素部分の単一の例で示されている。いくつかの例は、システムの構成要素全部を説明または例示しているのではない場合がある。他の例の実施形態は、より多くのまたはより少ない例示された各構成要素を含んでもよく、いくつかの構成要素を組み合わせてもよく、または追加または代替の構成要素を含んでもよい。
【0013】
[0015]
図1は、測定される物体(例えば、シリコンウェハ)の表面100、およびセンサプローブ組立体102を示す。センサプローブ組立体102は、プローブ104と、このプローブ104に結合されたセンサ組立体107とを備える。プローブ104は、表面100に接触するように構成された先端105を備える。プローブ104は、構成要素106などの表面100の構成要素と光学的に接触するように構成された光プローブ/ファイバまたはファイバアレイであり得る。例えば、プローブ104は、表面100および/または構成要素106に局所的なレーザ光を与え、および/またはこれを受け取ることができる。構成要素106は、例えば、集積回路または様々な他の構成要素であり得る。いくつかの実施形態では、プローブ104は、表面100の1つまたは複数の構成要素と(光学的に相互作用するのとは対照的に)電気的に相互作用するように構成され得る。プローブ104は、表面特性、電磁特性、または他の材料特性の原子間力プローブまたは他のプローブとすることができる。本明細書に記載されるとき、用語「プローブ」は、表面の近くに配置または表面に接触することができるとともに、表面と相互作用するように使用され得る任意のデバイスを示す。例えば、プローブ104は、表面に対して電磁波を放射するおよび/または受け取るために使用することができ、あるいは表面に対して物理的物質(例えば、液滴、物質の連続流、スパッタ原子など)を放射するおよび/または受け取るために使用することができる。いくつかの実施形態では、プローブ104は、表面、例
えば波打っている/反った/楔状の表面がプローブ104からある設定距離で維持される必要があり得る表面、およびプローブ104の角運動が必要とされ得る表面上へ物質を供給するために使用され得る。特に、プローブ104は、付加製造(3Dプリンティング)プロセス、または直接書き込みナノリソグラフィプロセスに使用されてもよい。
【0014】
[0016]いくつかの実施形態では、プローブ104は、互いのすぐ近くに構成される複数のプローブのアレイ(例えば、ファイバアレイ)とすることができる。いくつかの実施形態では、プローブ104は、センサ組立体107とは別個のセンサの一部であってもよい。またさらなる実施形態では、プローブ組立体102は、さらなる構成要素、例えば、電子プロセッサ(図示せず)を備えるおよび/または通信結合される。いくつかの実施形態では、プローブ104は、組立体102の交換可能および/または取り換え可能な固定具に保持されてよく、プローブ104の容易な交換および取り換えを可能にする。
【0015】
[0017]続いて
図1を参照すると、センサ組立体107は、表面100までの距離を測定するようにおよび/または表面100または表面100の構成要素(例えば、構成要素106)の物理的特性または電気的特性を測定するように構成される1つまたは複数のセンサ(例えば、電極)を備える。いくつかの実施形態では、センサ組立体107は、表面100に接触させることなく、センサ組立体107の108面(例えば、下面)を介して、表面100までの距離または表面100の特性を測定するように構成される。センサ組立体107は、距離に対応する電子信号、または表面100もしくはこの表面100の構成要素の物理的特性または電気的特性に対応する電子信号を生成し、組立体102の電子プロセッサおよび関連したハードウェアおよびソフトウェア構成要素(図示せず)へ送信するようにさらに構成されてもよい。物理的特性または電気的特性は、例えば、厚さ、伝導性、磁性、誘電率、または他の物質もしくは薄膜の特性、光学性などであり得る。センサ組立体107は、例えば、単一板容量性変位センサであってもよく、面108は、その電極板であってもよい。異なるタイプのセンサが、用途に応じて実現されてもよい。例えば、いくつかの実施形態では、センサ組立体107は、渦電流を検知するように構成されてもよい。
【0016】
[0018]
図1および
図2を参照すると、センサ組立体107は、センサ組立体107およびプローブ104が同じ中心軸109(
図2)を共有するようにプローブ104のまわりに対称的に配設される。センサ組立体107は、プローブ104を完全に取り囲む、またはプローブ104を部分的に取り囲むことができる。いくつかの実施形態では、センサ組立体107のセンサは、プローブ104のまわりに分けられてもよい(言い換えれば、センサ組立体107の各センサは、プローブ104のまわりに配置されてよい)。いくつかの実施形態では、センサ組立体107の各センサは異なる種類のセンサであってもよく、または異なるタイプのセンサが組み合わされてもよい。いくつかの実施形態では、センサ組立体107は、単一角度の軸に対して対称的である。例えば、組立体102が軸に対して単一方向にだけ傾斜することが予期される(例えば、
図1に示されたように、先端105を表面100に対してほぼ同じ変位でなお維持しつつ、X方向に沿って左右に組立体102を傾斜させる)とき、センサ組立体107は、組立体の両側で等距離にある2つのセンサからなり得る(すなわち、
図1に見られるように、X方向に沿って測定されるとき、1つのセンサが左にあり、1つのセンサが右にある)。そのような実施形態では、2つの等距離のセンサ間の幾何学的オフセットを使用して、検知されたデータを正規化することができる。例えば、センサは微分的に解析されてもよく、または異なる周波数で動作され、続いて比較されてもよい。
【0017】
[0019]いくつかの実施形態では、センサ組立体107は、プローブ104のまわりに完全に対称的に配設される。センサ組立体107は円筒形として示されているが、さらなる実施形態では、センサの他の形状および構成、例えば八柱角または六柱角が実施されても
よいことに留意されたい。
【0018】
[0020]
図1および
図2を続けて参照すると、プローブ104およびセンサ組立体107は、リアルタイムで協働する。プローブ104は、センサ組立体107(およびいくつかの実施形態では、プローブ104)の測定値に影響を及ぼす何らかの幾何的誤差が減少するように、センサ組立体107の(またはそれに対して)中心領域内に配置される。例示した実施形態では、センサ組立体107は、形状が円筒形であり、中心長手方向軸109を含む。プローブ104は、中央軸109に沿って延び、いくつかの実施形態では、センサ組立体107をほぼまたは完全に通っている。
【0019】
[0021]いくつかの実施形態では、組立体102は、完全に直角には表面100と係合しななくてもよいまたは相互作用しなくてもよい。例えば、組立体102は、表面100内のおよび表面100上の異常性(バンプ、亀裂、うねり、楔など)により、または組立体102が適用される単に角度により、ある角度または傾斜で適用されてもよい。以下に説明されるように、同じ中央軸109(
図2)を共有するプローブ104およびセンサ組立体107の特定の配置のために、プローブ104およびセンサ組立体107によって見られる幾何学的オフセットは、プローブ104およびセンサ組立体107がそれ自体の別個の中心軸をそれぞれ有する組立体と比較して、最小化される。
【0020】
[0022]
図2は、一連の位置200A、200B、および200Cにおける組立体102を示す。プローブ104およびセンサ組立体107の中央軸がほぼ同じであるので、プローブ104の先端105が表面100に適用されつつ、組立体102が第1の角度A(位置200B)で傾斜されるまたは第2の角度B(位置200C)で傾斜されるとき、プローブ104とセンサ組立体107の両方が受ける任意の幾何学的オフセットは、おおよそ同じとなる。
【0021】
[0023]さらに、センサ組立体107(具体的には、センサ組立体107の面108)は、プローブ104の先端105が表面100に適用されるとき、表面100から離れて平均距離Dにほぼ留まる。組立体が(例えば、位置200Bおよび200Cに示されるような)傾斜で適用されるときでも、表面100からプローブ104と面108の交点へ直角に延びるように定められる距離Dは、平均でおおよそ同じままである。
【0022】
[0024]いくつかの実施形態では、中心軸109は組立体102の中心でないことに留意されたい。言い換えれば、プローブ104およびセンサ組立体107が共に配置される軸109は組立体102の他の構成要素、例えば、組立体102を取り囲むハウジング(図示せず)と同じ中心軸でなくてもよい。
【0023】
[0025]
図2とは対照的に、
図3は、従来の組立体302を一連の位置300A、300B、および300Cに示す。組立体302はプローブ304とセンサ組立体307とを備える。プローブ304は、表面301と接する構成された先端305を備え、一方、センサ組立体307は、面308を備える。プローブ304およびセンサ組立体307は、プローブ104およびセンサ組立体107とは異なり、センサ組立体307の中心軸310がプローブ304の中心軸311から分離されるように(例示した実施形態では、アーム309を介して)互いからある距離に配置される。プローブ304およびセンサ組立体307は、それぞれ別々の中心軸310および311に配置されるので、プローブ304の先端305が表面301に適用されている間に、組立体302が第1の角度C(位置300B)または第2の角度D(位置300C)で傾斜しているとき、表面301に関してセンサ組立体307が受ける幾何学的オフセットは、プローブ304が受けるものよりもかなり大きい。
【0024】
[0026]さらに、組立体102におけるのと異なり、組立体302が(例えば、位置300Bおよび位置300Cに示されるように)傾斜で適用されるとき、表面301から直角に延びる距離Dは、かなり大きく増加し、これは、一貫性のないおよび/または正規化されていないデータという結果になり得る。プローブ304と表面301の間の距離がセンサ組立体107によって制御されることになる場合には、幾何学的オフセットにより結果として得られる差は、衝突という結果になり得る。
【0025】
[0027]したがって、本発明は、数ある中で、幾何学的オフセットによる表面測定の不正確さを最小にするセンサプローブ組立体102を提供する。センサプローブ組立体102は、例えば、所望の設定点を維持するためにサーボ制御に使用することができ、ならびに原子間力顕微鏡および走査式プローブ形状測定などの走査式プローブ計測において、基板までの絶対距離を測定する手段を与えることによって、または表面のうねり、楔などが存在するときにプローブ組立体または基板を横方向に動かすことにより、角度調整中に基板からより一貫性のある距離を維持するためにサーボ制御に使用することができ、センサとプローブデバイスの間のオフセットを最小化する。
【0026】
[0028]本開示は、いくつかの好ましい実施形態を参照して詳細に説明されてきたが、変形例および修正例が、説明したような本開示に係る1つまたは複数の独立した態様の範囲および精神内に存在する。
【手続補正書】
【提出日】2023-10-10
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
プローブと、
前記プローブに結合され、前記プローブが近くにあるまたは接触している表面の物理的特性または電気的特性を測定するように構成されるセンサ組立体と
を備えるセンサプローブ組立体であって、
前記センサ組立体は、前記プローブの中心軸のまわりに対称的に配設される、センサプローブ組立体。
【外国語明細書】