(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023172003
(43)【公開日】2023-12-06
(54)【発明の名称】再生可能エネルギーの電力供給を管理する水電解システム
(51)【国際特許分類】
H02J 15/00 20060101AFI20231129BHJP
H02J 3/38 20060101ALI20231129BHJP
H02J 3/32 20060101ALI20231129BHJP
C25B 1/04 20210101ALI20231129BHJP
C25B 9/00 20210101ALI20231129BHJP
C25B 15/02 20210101ALI20231129BHJP
C25B 9/65 20210101ALI20231129BHJP
【FI】
H02J15/00 G
H02J3/38 120
H02J3/32
H02J3/38 110
C25B1/04
C25B9/00 A
C25B15/02
C25B9/65
【審査請求】未請求
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022083533
(22)【出願日】2022-05-23
(71)【出願人】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】古田 太
(72)【発明者】
【氏名】渡邉 敬司
(72)【発明者】
【氏名】石川 敬郎
【テーマコード(参考)】
4K021
5G066
【Fターム(参考)】
4K021AA01
4K021BA02
4K021CA05
4K021CA06
4K021DC03
5G066AA02
5G066HB04
5G066HB06
5G066HB08
5G066HB09
5G066JB03
(57)【要約】
【課題】再生可能エネルギーの電力供給を管理する水電解システムにおいて、水電解装置の利用効率を改善する。
【解決手段】水電解システムは、系統と、水電解装置の電解槽とに対する、再生可能エネルギーの電力供給を管理する。水電解システムは、再生可能エネルギーデバイスに接続される電力変換装置から、再生可能エネルギー電力および前記再生可能エネルギーデバイスの稼働情報を取得し、前記再生可能エネルギー電力および前記稼働情報に基づいて、前記再生可能エネルギー電力の推定値を算出し、前記再生可能エネルギー電力の前記推定値および売電電力に基づき、所定のタイミングの余剰電力の推定値を算出し、前記所定のタイミングより前の前記余剰電力の前記推定値と、前記所定のタイミングの前記余剰電力の前記推定値とに対して、前記電解槽の許容ランプ率に基づく変換処理を行うことにより、電解電力指令値を算出し、前記電解電力指令値を、前記電解槽の電力変換装置に入力する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
系統と、水電解装置の電解槽とに対する、再生可能エネルギーの電力供給を管理する水電解システムにおいて、
再生可能エネルギーデバイスに接続される電力変換装置から、再生可能エネルギー電力および前記再生可能エネルギーデバイスの稼働情報を取得し、
前記再生可能エネルギー電力および前記稼働情報に基づいて、前記再生可能エネルギー電力の推定値を算出し、
前記再生可能エネルギー電力の前記推定値および売電電力に基づき、所定のタイミングの余剰電力の推定値を算出し、
前記所定のタイミングより前の前記余剰電力の前記推定値と、前記所定のタイミングの前記余剰電力の前記推定値とに対して、前記電解槽の許容ランプ率に基づく変換処理を行うことにより、電解電力指令値を算出し、
前記電解電力指令値を、前記電解槽の電力変換装置に入力する、
ことを特徴とする、水電解システム。
【請求項2】
請求項1に記載の水電解システムにおいて、前記変換処理はローパスフィルタを用いて行われることを特徴とする、水電解システム。
【請求項3】
請求項2に記載の水電解システムにおいて、前記ローパスフィルタは移動平均フィルタであることを特徴とする、水電解システム。
【請求項4】
請求項2に記載の水電解システムにおいて、前記ローパスフィルタはCRフィルタであることを特徴とする、水電解システム。
【請求項5】
請求項1に記載の水電解システムにおいて、
前記電解槽は複数であり、
複数の前記電解槽が、互いに異なる許容ランプ率を有し、
前記水電解システムは、複数の前記電解槽のそれぞれについて、当該電解槽の前記許容ランプ率に基づく変換処理を行うことにより、前記電解電力指令値を算出する、
ことを特徴とする、水電解システム。
【請求項6】
請求項5に記載の水電解システムにおいて、各前記電解槽に係る変換処理はカスケード接続されることを特徴とする、水電解システム。
【請求項7】
請求項1に記載の水電解システムにおいて、
前記水電解システムは、さらに蓄電池に対する再生可能エネルギーの電力供給を管理し、
前記水電解システムは、前記再生可能エネルギー電力の推定値と、前記電解電力指令値とに基づき、蓄電電力指令値を算出し、
前記蓄電電力指令値を、前記蓄電池の電力変換装置に入力する、
ことを特徴とする、水電解システム。
【請求項8】
請求項1に記載の水電解システムにおいて、前記変換処理は、前記許容ランプ率を超えるレートの変化を、前記許容ランプ率以下のレートの変化に変更する処理であることを特徴とする、水電解システム。
【請求項9】
請求項2に記載の水電解システムにおいて、前記変換処理はゲインおよびオフセットに基づいて行われることを特徴とする、水電解システム。
【請求項10】
請求項9に記載の水電解システムにおいて、最小二乗法を用いて前記ゲインおよび前記オフセットを算出することを特徴とする、水電解システム。
【請求項11】
請求項1に記載の水電解システムにおいて、
前記電解槽は複数であり、
前記水電解システムは、複数の前記電解槽のそれぞれについて異なる許容ランプ率に基づく変換処理を行うことにより、それぞれの前記電解電力指令値を算出し、
前記水電解システムは、所定の基準に基づき、複数の前記電解槽に係る前記許容ランプ率を互いに入れ替える、
ことを特徴とする、水電解システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、再生可能エネルギーの電力供給を管理する水電解システムに関する。
【背景技術】
【0002】
低炭素社会の実現に向けて、化石燃料を利用した火力発電に代わり、太陽光や風力などの再生可能エネルギー(以下「再エネ」と略記する場合がある)を利用した発電が活発になってきている。しかし、再エネによる発電電力は自然現象に起因して変動が大きいため、そのままでは系統電力の代替になりえない。
【0003】
蓄電池を使って電力を貯蔵するか、または、電力に変える以外の方法で貯蔵できる手段(たとえば水素)に変換するオプションが必要になる。蓄電池は、貯蔵させる電力量に比例して蓄電設備やそのコストが増大する。一方で、水素は変換設備を整えてしまえば、タンクを用意する、運搬する、などの施策が可能であり、貯蔵量に対してそれほどコストは増大しない。そこで、水素は再エネを利活用する際の重要なエネルギー担体とみなされてる。
【0004】
しかし、再エネで水素を製造する際のコストは、化石燃料で発電する場合と比較すると依然として高い。これは、再エネから発電した電気の変動に追従できなくて電力を活用できない場合があること、および、再エネの変動幅が大きいため発電電力が設備容量より大きくなることがあり水素製造設備の稼働率に限界があることによる。
【0005】
1以上の再エネデバイスから電力を得て、水素を生成する従来の水電解システムの典型例を
図1に示す。再エネデバイスには、太陽電池(以下「PV」と略記する場合がある)、風力発電機、等があげられる。これらに接続されるDC/ACコンバータやAC/DC/ACコンバータなどの電力変換装置によって、各デバイスの最適動作点(普通は最大電力となる点)による発電とACへの変換を行い、系統に接続され化石燃料電力を補う。さらにその電力の一部を電解槽に入力することで水素を製造する。電解槽は直流で動作するので、系統からのAC電力は専用のAC/DCコンバータである電力変換装置で直流に変換されてから電解槽に接続される。
【0006】
再エネから得た電力のうち水素製造にかける電力は、発電電力から系統に供給した電力を引いた残りとなる。そのため、図では再エネ発電電力から売電分を引いた電力だけ電解槽に供給するようにAC/DCが制御される。
【0007】
水素を製造するための水電解装置に、再エネの電力を供給する構成として、特許文献1および2に記載される構成が知られている。
【0008】
特許文献1の技術では、水電解セルとSOECにおけるそれぞれの長所を生かしつつ、変動しやすい再エネ発電の余剰電力から効率的かつ安定して水素を製造する。余剰電力状況を気象予報などで事前に予測し、それに基づいて実際に供給される余剰電力を、一定に維持される安定電力と不安定電力とに分離する。
【0009】
特許文献2の技術では、最エネの不安定な電力を蓄電池の充放電を用い平滑化した後、水電解装置で水素を製造する。平滑化電力が電解装置の動作において余る電力は系統に供給して、不足する電力は蓄電池からの放電で補う。不安定な再エネ電力を設備コストの高い蓄電池だけでなく電解槽で保存できるとともに、系統に安定電力を供給することができる。水電解槽の応答速度に合わせた運用が可能となる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2019-173082号公報
【特許文献2】特開2018-85862号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、従来の技術では、水電解装置の利用効率に改善の余地があるという課題があった。
【0012】
再エネで発電した電力をそのまま水素製造の電力に入力すると、その効率において2つの問題が生じる。1つ目は、再エネ電力の変化に電解槽が追従できない場合があることである。再エネ電力は日射や風速の変化に応じて変動する一方、電解槽が受け入れ可能な電力は、電解槽のセル構造や特性、動作温度さらに補器であるポンプや圧縮機の稼働状況で制限される。このため電解装置では変動可能なパラメータ(ランプ率など)を規定していることが多い。
【0013】
2つ目は、再エネ電力の振れ幅が大きく、変動する電力を使いこなせない場合があることである。振れ幅の上限まで電力を活用しようとして電解装置の定格を大きくすると、電解槽の設備としての利用率が下がる。一方、電解装置の定格を小さくすると利用率は見かけ上向上するが、定格外の電力は捨てることになり、再エネを有効に利用しているとはいいがたい。
【0014】
特許文献1の技術では、再エネの不安定電力を活用するために、再エネ電力の変動をあらかじめ推定するが、気象予測から推定するため、実際の発電電力と乖離が生じる。また、再エネ発電量から需要量を引いた値を余剰電力と規定しているが、余剰電力については系統経由で流せないかまたは制限をかけられる可能性があり、再エネ発電量は必ずしも最大電力とは限らない。このため再エネの予測精度が悪く、再エネの変化に対する応答速度が低いことが予想される。
【0015】
特許文献2の技術では、再エネの不安定電力を安定化する際にフィルタで平滑化するが、この特性(たとえば通過帯域)が電解槽の応答速度とあっていない場合には、蓄電池の放電動作か不安定分として系統に供給されてしまう。完全に安定させようとすると大容量の蓄電池が必要となる。
【0016】
本発明はこのような課題を解決するためになされたものであり、再生可能エネルギーの電力供給を管理する水電解システムにおいて、水電解装置の利用効率を改善することを目的とする。
【課題を解決するための手段】
【0017】
本発明に係る水電解システムの一例は、
系統と、水電解装置の電解槽とに対する、再生可能エネルギーの電力供給を管理する水電解システムにおいて、
再生可能エネルギーデバイスに接続される電力変換装置から、再生可能エネルギー電力および前記再生可能エネルギーデバイスの稼働情報を取得し、
前記再生可能エネルギー電力および前記稼働情報に基づいて、前記再生可能エネルギー電力の推定値を算出し、
前記再生可能エネルギー電力の前記推定値および売電電力に基づき、所定のタイミングの余剰電力の推定値を算出し、
前記所定のタイミングより前の前記余剰電力の前記推定値と、前記所定のタイミングの前記余剰電力の前記推定値とに対して、前記電解槽の許容ランプ率に基づく変換処理を行うことにより、電解電力指令値を算出し、
前記電解電力指令値を、前記電解槽の電力変換装置に入力する。
【発明の効果】
【0018】
本発明によれば、再生可能エネルギーの電力供給を管理する水電解システムにおいて、水電解装置の利用効率を改善することができる。
【0019】
たとえば、電解槽への電力急変による負荷を低減することができる。また、たとえば、電解槽における電解に用いる電力量を増加させ、これによって電解の効率化を向上させることができる。
【0020】
このため、たとえば再エネによる電力が変動している状況でも、その電力を取りこぼすことなく水素製造のための電力に充てることができる。さらに系統側の制約で再エネ電力に出力抑制がかかる場合に、その抑制を緩和することができるため、水素製造にその電力を生かすことができる。結果として、電解槽の設備稼働率か上がり水素製造コストが低減する。
【図面の簡単な説明】
【0021】
【
図2】本発明の実施例1に係る水電解システムの構成。
【
図5】本発明の実施例2に係る水電解システムの構成。
【
図6A】本発明の実施例3に係るフィルタ部の構成。
【
図6B】実施例3に係るフィルタ部および電解槽の構成。
【
図7】本発明の実施例4に係るフィルタ部および電解槽の構成。
【
図9】本発明の実施例7に係るフィルタ部および電解槽の構成。
【発明を実施するための形態】
【0022】
以下、本発明の実施例を添付図面に基づいて説明する。
<実施例1>
図2に、本発明の実施例1に係る水電解システム100の構成を示す。水電解システム100は、系統と、水電解装置の電解槽101とに対する、再生可能エネルギーの電力供給を管理するシステムである。系統とは電力系統を意味し、たとえば商用電力系統であるがこれに限らない。
【0023】
水電解システム100は、さらに、水素製造装置として機能してもよく、再エネを使った水素製造用の電解槽制御装置として機能してもよい。また、水電解システム100は、再エネデバイスの情報を集約するシステムとして機能してもよい。
【0024】
水電解システム100は、データマネジメントプラットフォームとして機能してもよい。たとえば、再エネ発電システム、低炭素エネルギーを利用する水素製造システム、電力価格市場、等と連携して動作するものであってもよい。
【0025】
1以上の再エネデバイス102(
図2ではPVおよび風力発電)が、電力変換装置103であるパワーコンディショナー(PCS)を通して、系統への配線に接続されている。
【0026】
この系統への配線に、別の電力変換装置であるAC/DCコンバータ104を介して電解槽101が接続される。このAC/DCコンバータ104は、単に交流を直流に変換するものであってもよいが、さらに、図示のように電流フィードバック制御を持ち、指令された電力を電解槽101に送る機能を持つものであってもよい。
【0027】
水電解システム100は、水電解システム100の全体を制御する制御装置110を備える。水電解システム100の構成要素(たとえば電力変換装置103およびAC/DCコンバータ104)は、制御装置110の制御に従って動作する。制御装置110はたとえばコンピュータを備えてもよく、コンピュータは演算手段および記憶手段を備えてもよい。記憶手段はプログラムを格納してもよい。演算手段がこのプログラムを実行することによって、制御装置110は、本明細書に記載される動作を、水電解システム100に行わせるものであってもよい。
【0028】
電力変換装置103は、単なるDC/ACコンバータまたはAC/DC/ACコンバータではなく、接続された再エネデバイス102から稼働情報を取得する機能を持っている。
【0029】
水電解システム100(たとえば制御装置110であるが、これに限らない)は、おのおのの再エネデバイス102に接続された電力変換装置103から出力される電力(再エネ電力)を取得する。また、各電力変換装置103から、各再エネデバイス102の稼働情報を取得する。たとえばPVの場合には、稼働情報として日射量またはPV電圧を取得する。
【0030】
制御装置110は、最大電力点(MPP)を推定するMPP推定部111を備え、MPP推定部111は、稼働情報に基づいて、再エネデバイス102および電力変換装置103から取得する電力を最大化することができる。たとえばMPP推定部111は、電力変換装置103を介して、その日射量またはPV電圧に対して適切なDC電圧をPV側に設定することで、PVの特性に合わせて最大電力を出力させることができる。また風力発電の場合には、稼働情報として風況(たとえば風速値および風向き等)を取得し、電力変換装置103を介して、風況に対して適切な風車の回転速度を設定することで、最大限の電力を引き出すことができる。
【0031】
このようにして、水電解システム100は、再エネデバイス102に接続される電力変換装置103から、再エネ電力および再エネデバイス102の稼働情報を取得する。そして、再エネ電力および稼働情報に基づいて、電力変換装置103から出力される再エネ電力の推定値(たとえば電力を最大化した場合に対応する推定値)を算出する。
【0032】
この推定値は、過去および/または現時点における再エネ電力の時間的変動を表す推定値であってもよく、将来の再エネ電力を表す予測値を含む推定値であってもよい。なお、電力変換装置103から取得した再エネ電力を、そのまま推定値として扱う場合も、とくに除外しない(その場合には、MPP推定部111は省略可能な場合がある)。
【0033】
制御装置110は、売電差引部112を備える。売電差引部112は、再エネ電力の推定値と、売電電力(系統へ送る電力)とに基づき、所定のタイミングの余剰電力の推定値を算出する。たとえば、再エネ電力の推定値から売電電力を減算することにより、現在時刻における余剰電力の推定値が算出される。
【0034】
図2のように、水電解システム100が、複数の再エネデバイス102を含む再エネサイトを構成する場合には、制御装置110は集約部113を備えてもよい。再エネデバイス102ごとに売電電力が異なる場合には、複数の売電差引部112がそれぞれ対応する再エネ電力の推定値から対応する売電電力を減算する。そして、集約部113は、各再エネデバイス102それぞれの余剰電力の推定値を集約し、最終的な余剰電力の推定値を算出する。
【0035】
ここで、電解槽101の許容ランプ率について説明する。一般的に、電解槽101の劣化を防ぐ観点からは、電解槽101に入力される電力値が急激に変動することは好ましくない。このため、電解槽101には許容ランプ率が規定されている。許容ランプ率は、電解槽101に入力される電力値についての許容可能な最大の変化率を表す。たとえば許容ランプ率は、一定時間内に変化可能な電力値の、定格電力に対する比率によって表される。または、許容ランプ率は、電解値が定格の0%から100%に達するまでの時間によって表される。
【0036】
許容ランプ率は、電解槽装置の特性(とくに電解槽101を構成する電極および補器の動作特性)を総合的に考慮して、電解槽装置の劣化を防止するように規定することができる。
【0037】
売電差引部112および集約部113によって上述のように算出された余剰電力の推定値は、再エネの変動をそのまま有している。この変動は、電解槽101の許容ランプ率を超える可能性があり、その場合には、電解槽101への入力電力値として適さない。
【0038】
このため、制御装置110はフィルタ部114を備える。フィルタ部114は、余剰電力の推定値に対して変換処理(本実施例ではフィルタ処理)を行い、適切な電解電力指令値を算出し、これをAC/DCコンバータ104に送信する。
【0039】
フィルタ部114は、たとえばローパスフィルタを用いてフィルタ処理を行う。これによって、余剰電力の推定値における変化が急激なものであっても、電解電力指令値の変化は緩やかとなる。
【0040】
フィルタ部114が用いるフィルタの具体的構成例として、CR型のローパスフィルタ、移動平均フィルタなどが考えられる。本実施例では、
図3Aに示す移動平均型のフィルタを用いた場合の構成を説明する。
【0041】
図3Aにおいて、Dは遅延要素を示す。移動平均のタップ数はkであり、すなわちk個のステージの遅延要素が設けられる。遅延要素の各ステージからの出力を合計してkで除算することにより、移動平均が算出される。
【0042】
このフィルタのカットオフ周波数はkに応じて決定され、このカットオフ周波数は、接続する電解槽101の特性に応じて設計される。電解槽101の許容ランプ率と、移動平均フィルタのタップ数kとの関係を以降に説明する。
【0043】
制御する電解槽101の許容ランプ率(たとえば、電解電力が定格の0%から100%に達するまでの時間として許容される最短の時間)をTとする。電解電力指令値の更新間隔を1/fsとする。すなわちfsはサンプリング周波数である。この場合、kはTとfsに比例した自然数である。もっと厳密な例として、kは、(0.443/1.1)*π*fs*Tに近い自然数である。このfsは制御システムの構成によって決まる値であり、Tは使用する電解槽のカタログ値によって決まる値である。これらの値は、ユーザがフィルタ部114に入力することができる。
【0044】
図3Aに示すように、フィルタ部114はゲインおよびオフセットに基づいて動作するものであってもよい(詳細は後述する)。
【0045】
図3Aのkの値の根拠を、
図3Bを用いて説明する。具体例として、電解槽101のランプ特性をCR回路で近似する。その場合、許容ランプ率TはT≒2.2CRとなる。ただし、Cは容量値であり、Rは抵抗値である。CR回路のカットオフ周波数は、fc=1/(2πCR)で表される。一方、移動平均フィルタのタップ数kと、そのカットオフ周波数fcとの関係は、fc≒0.443*fs/kである(ただし、1/fsはデータの時間間隔である)。移動平均フィルタでCR回路に近似した特性を実現するためには、上記2つの関係からカットオフ周波数fcを消去して、以下の式となる。
k≒(0.443/1.1)*π*fs*T
【0046】
このように、ローパスフィルタとして移動平均フィルタを用いることにより、フィルタ部114の設計が容易になる。また、ローパスフィルタとして他のCRフィルタ(たとえば一次CRフィルタまたは二次CRフィルタ)を用いることもでき、その場合にもフィルタ部114の設計は容易である。
【0047】
図4に、本実施例における演算の進行例を示す。
図4(a)は、再エネ電力の推定値121および売電電力122(売電閾値)を表す。
図4(b)は、再エネ電力の推定値121から売電電力122を減算した値、すなわち余剰電力の推定値123を表す。
図4(c)は、
図4(b)の一部(たとえば破線領域124内)について、余剰電力の推定値123(すなわちフィルタ部114の入力)と、電解電力指令値125(すなわちフィルタ部114の出力)とを拡大して表す。
【0048】
図4(c)に示すように、制御装置110は、過去(すなわち所定のタイミングより前)の余剰電力の推定値と、現時点(すなわち所定のタイミング)の余剰電力の推定値とに対して、電解槽101の許容ランプ率に基づくフィルタ処理を行うことにより、電解電力指令値を算出する。そして、制御装置110は、算出した電解電力指令値を、AC/DCコンバータ104に入力する。電解電力指令値の算出および入力は、所定の動作サイクルごとに繰り返すことができる。
【0049】
図4(c)に示すように、電解電力指令値125の変化は余剰電力の推定値123の変化より緩やかであり、電解槽101の許容ランプ率以下に抑えられる可能性がより高い。このため、水電解装置の劣化を回避しつつ、利用効率が改善される。
【0050】
ここで、
図4(c)において、フィルタの特性により、立ち上がりにおいて、電解電力指令値125は余剰電力の推定値123より変化が遅れ、変化が小さいので電解槽101に入力できる。一方で、立ち下がりにおいては、電解電力指令値125は余剰電力の推定値123より大きくなる。このため、電解電力が余剰電力を超過し、電力が不足する場合がある。この場合に、不足する分は売電電力から引く(すなわち系統に供給される電力を小さくする)か、または、フィルタ出力にゲインとオフセットを付加して、不足分をなるべく小さくなるようにすることができる。このように、フィルタ処理をゲインおよびオフセットに基づいて行うことにより、フィルタの出力の変動を適切に制御することができる。
【0051】
ゲインとオフセットの値は、当業者が適宜設計することができる。たとえばゲインを1/2とし、オフセットを1/2としてもよい。このような値を用いると、フィルタの内部出力を角速度ωの正弦波すなわちcos(ωt)と仮定した場合に、最終的な電解電力指令値について0≦(1/2)+(1/2)・cos(ωt)≦1となることから、電解電力指令値をより確実に正にすることができる。
【0052】
または、これらの値を初期値として用い、再エネサイトの稼働データが蓄積された後は稼働データから算出することができる。例として
図3Aのように最小二乗法を用いてもよい。なお、ゲインが1から大きく離れる場合には、電解電力指令値が電解槽101の定格の0%から100%に至る時間も1/ゲインに比例して変化するので、許容ランプ率もゲインを考慮した値に決定すると好適である。
【0053】
<実施例2>
図5に、本発明の実施例2に係る水電解システム100の構成を示す。実施例2では、複数の電解槽として、第1電解槽101Aおよび第2電解槽101Bが設置される。また、複数のフィルタ部として、第1フィルタ部114Aおよび第2フィルタ部114Bが設置される。各フィルタ部は、余剰電力の推定値に基づき、それぞれ特性の異なる電解槽に対する電解電力指令値を算出する。以下、実施例1と共通する部分については説明を省略する場合がある。
【0054】
ここでは、1つの再エネデバイス102(
図5の例では風力発電とする)が電力変換装置103としてのパワーコンディショナー(PCS)を通して系統への配線に接続されている。なお、実施例1のように複数の再エネデバイス102を接続し、余剰電力を集約してもよい。
【0055】
実施例2では、電解槽は複数であり、各電解槽が互いに異なる許容ランプ率を有する。一般的に、電解槽の種類として、AEM(Anion Exchange Membrane)電解方式のように、ランプ率の大きな変動電力の入力は困難であるが安定な電力下では効率が良いものがある一方で、PEM(Proton Exchange Membrane)電解方式のように、ランプ率の大きな変動電力の入力は可能であるがAEMほどは電解効率が高くないものがある。
【0056】
そこで、それぞれの許容ランプ率に適合した複数のフィルタを用意して、変動する再エネ電力を振り分ける。すなわち、水電解システム100は、複数の電解槽のそれぞれについて、当該電解槽の許容ランプ率に基づくフィルタ処理を行うことにより、それぞれの電解電力指令値を算出する。
【0057】
具体例として、第1フィルタ部114Aは第1電解槽101Aの許容ランプ率に基づくフィルタ処理を行って第1電解電力指令値(指令値A)を算出し、第1AC/DCコンバータ104Aに入力する。一方、第2フィルタ部114Bは第2電解槽101Bの許容ランプ率に基づくフィルタ処理を行って第2電解電力指令値(指令値B)を算出し、第2AC/DCコンバータ104Bに入力する(
図5では視認性向上のため指令値Bの矢印を途中で分断している)。
【0058】
複数のフィルタ部からの合計(すなわち、それぞれの電解電力指令値に対応する電力値の合計)は、元の余剰電力の推定値を超えないことが望まれる。合計が推定値を超える場合、すなわち電力が不足する場合には、不足する分は売電電力から引く(すなわち系統に供給される電力を小さくする)か、または、フィルタ出力にゲインとオフセットを付加して、不足分をなるべく小さくなるようにすることができる。ゲインとオフセットの値は、当業者が適宜設計することができる。
【0059】
このように、実施例2によれば、特性の異なる複数の電解槽を効率的に利用することができる。
【0060】
<実施例3>
図6Aに、本発明の実施例3に係るフィルタ部の構成を示す。本実施例は、実施例2のように複数の電解槽を設けた上で、さらに各電解槽に係るフィルタ処理をカスケード接続したものである。各フィルタ部は、それぞれ特性の異なる電解槽に対する電解電力指令値を算出する。以下、実施例2と共通する部分については説明を省略する場合がある。
【0061】
図6Bに、実施例3に係るフィルタ部および電解槽の構成を示す。まず、余剰電力の推定値に基づき、第1フィルタ部114Aが、第1電解槽101Aに対する第1電解電力指令値を算出し、第1AC/DCコンバータ104Aに入力する。そして、第1電解電力指令値(または、第1電解電力指令値に応じて第1電解槽101Aに実際に流れた電力値)が、元の余剰電力の推定値から減算される。この減算の結果に基づき、第2フィルタ部114Bが、第2電解槽101Bに対する第2電解電力指令値を算出し、第2AC/DCコンバータ104Bに入力する。
【0062】
いずれかの電解電力指令値が負になる場合(すなわち電力が不足する場合)には、不足する分は売電電力から引く(すなわち系統に供給される電力を小さくする)か、または、フィルタ出力にゲインとオフセットを付加して、不足分をなるべく小さくなるようにすることができる。ゲインとオフセットの値は、当業者が適宜設計することができる。
【0063】
このように、実施例3によれば、特性の異なる複数の電解槽を効率的に利用することができる。とくに、フィルタ処理をカスケード接続することにより、前段のフィルタ処理の結果を後段のフィルタ処理で利用することができるので、系統に供給する電力を安定させることができる。
【0064】
<実施例4>
図7に、本発明の実施例4に係るフィルタ部および電解槽の構成を示す。本実施例では、水電解システムは、さらに蓄電池105に対する再エネの電力供給を管理する。以下、実施例3と共通する部分については説明を省略する場合がある。
【0065】
実施例3において、最終段の電力制御装置(
図7では第3AC/DCコンバータ104C)に接続される電解槽を蓄電池105に置き換えることにより、電解で不足する電力を補うことができる。
【0066】
実施例4に係る水電解システムは、再エネ電力の推定値と、電解電力指令値とに基づき、蓄電電力指令値を算出する。まず、実施例3と同様に、再エネ電力の推定値に基づき、第1フィルタ部114Aが第1電解電力指令値を算出し、第2フィルタ部114Bが第2電解電力指令値を算出する。そして、元の余剰電力の推定値から、第1電解電力指令値および第2電解電力指令値が減算され、これによって蓄電電力指令値が算出される。
【0067】
そして、水電解システムは、この蓄電電力指令値を、前記蓄電池の電力変換装置である第3AC/DCコンバータ104Cに入力する。これに応じて、第3AC/DCコンバータ104Cが、蓄電池105に対する充放電を制御する。蓄電電力指令値が正であれば充電となる。蓄電電力指令値が負であれば放電となり、これによって系統に供給する電力の減少を回避することができる。
【0068】
このように、実施例4によれば、電解槽に比較して充放電をより自由に制御できる蓄電池を用いることにより、系統に供給する電力をさらに安定させることができる。
【0069】
なお、
図7の例ではフィルタ部および電解槽が実施例3と同様にカスケード接続されているが、実施例2のように並列接続としてもよいし、実施例1のようにフィルタ部および電解槽をそれぞれ単独としてもよい。
【0070】
<実施例5>
図8に、本発明の実施例5に係る処理の概要を示す。本実施例では、実施例1における余剰電力の推定値から電解電力指令値を算出するための変換処理について、フィルタ処理以外の処理に変更するものである。以下、実施例1と共通する部分については説明を省略する場合がある。
【0071】
本実施例では、
図8(a)に示すように、余剰電力の推定値から電解電力指令値を算出するための変換処理として、フィルタ部114に代えてランプ率制御部115による処理が行われる。
【0072】
図8(b)は本実施例に係る入出力特性を示す。ランプ率制御部115は、急峻に変化する余剰電力の推定値123を、予め決められた所定の許容ランプ率以下のランプ率(傾きをθで表す)で変化する電解電力指令値125に変換する。
【0073】
図8(b)の例では、ステップ状に変化する余剰電力の推定値123が、指定されたランプ率で変化する電解電力指令値125に変換される。この場合のランプ率は、接続先の電解槽の許容ランプ率に応じ、その許容ランプ率以下の値として予め決定することができる。
【0074】
このように、本実施例では、余剰電力の推定値に対する変換処理は、許容ランプ率を超えるレートの変化を、許容ランプ率以下のレートの変化に変更する処理として実現される。この結果として、フィルタ制御を用いずに、実施例1と同様の効果を得ることができる。
【0075】
上述の実施例5は、実施例1の変形例であるが、実施例2~4のいずれにも同様の変形を施すことができる。
【0076】
<実施例6>
本実施例に係る水電解システムは、最小二乗法を用いてフィルタ部のゲインおよびオフセットを算出する。以下、実施例1と共通する部分については説明を省略する場合がある。
【0077】
ゲインとオフセットは、水電解システムにおける過去の情報(たとえば現在から過去1年間の情報)に基づいて決定することができる。より具体的な例として、過去1年間の情報に基づき、
図3Aに示すように最小二乗法を用いてゲインおよびオフセットを算出することができる。
【0078】
最小二乗法の具体的な応用方法は、当業者が適宜設計可能であるが、一例を以下に説明する。余剰電力の推定値を表すモデル関数をG+O・cos(ωt)とする。ただしGはゲイン、Oはオフセット、ωはフィルタのカットオフ周波数に対応する角速度、tは時間である。このモデル関数について、過去の余剰電力の推定値に最もよく適合するGおよびOの値を、最小二乗法を用いて決定する。
【0079】
実施例6によれば、フィルタ部のゲインおよびオフセットをより適切な値に決定することができる。
【0080】
上述の実施例6は、実施例1の変形例であるが、実施例2~4のいずれにも同様の変形を施すことができる。
【0081】
<実施例7>
図9に、本発明の実施例7に係るフィルタ部および電解槽の構成を示す。本実施例は、実施例4において、フィルタ部(それぞれ特定の許容ランプ率に対応する)と電解槽との対応関係を状況に応じて入れ替えるものである。以下、実施例4と共通する部分については説明を省略する場合がある。
【0082】
まず、本実施例に係る水電解システムは、実施例4と同様に、複数の電解槽のそれぞれについて異なる許容ランプ率に基づく変換処理を行うことにより、それぞれの電解電力指令値を算出する。さらに、本実施例に係る水電解システムは、所定の基準に基づき、複数の電解槽に係る許容ランプ率を互いに入れ替える。
【0083】
図9の例では、水電解システムは、指令値再配置ブロック106を備える。指令値再配置ブロック106は、フィルタ部とAC/DCコンバータとの対応関係を制御し、状況に応じて入れ替える。
【0084】
より具体的な例を以下に説明する。第1フィルタ部114Aは、第1許容ランプ率に基づくフィルタ処理を行って第1電解電力指令値を算出する。第2フィルタ部114Bは、第2許容ランプ率に基づくフィルタ処理を行って第2電解電力指令値を算出する。指令値再配置ブロック106は、第1電解電力指令値を第1AC/DCコンバータ104Aに入力し、第2電解電力指令値を第2AC/DCコンバータ104Bに入力するか、または逆に、第1電解電力指令値を第2AC/DCコンバータ104Bに入力し、第2電解電力指令値を第1AC/DCコンバータ104Aに入力するかを決定する。
【0085】
水電解システムが稼働した直後の初期段階での各電解槽の許容ランプ率の大小関係は、稼働時間の経過によって、入れ替わる可能性が出てくる。初期段階において許容ランプ率の高い電解槽は、フィルタの緩い経路(すなわち高いランプ率)で酷使されることになる。そのような電解槽の寿命を延ばすためにも、許容ランプ率の更新は必要である。本実施例はこれを実現するものである。
【0086】
入れ替えを決定する基準は、当業者が適宜設計可能であるが、たとえば経過時間を基準とすることができる。より具体的な例として、所定時間が経過するたびに許容ランプ率を入れ替えることができる。また、各電解槽の許容ランプ率が測定可能な場合には、測定された許容ランプ率を基準とすることができ、測定された許容ランプ率がより大きい電解槽に、より大きい許容ランプ率に対応するフィルタ部を割り当てるよう入れ替えることができる。
【0087】
実施例1のような単一の電解槽であれば、許容ランプ率の更新に合わせてフィルタ部の構成を変更することで対応できるが、複数のフィルタ部および複数の電解槽を備える場合は、これらの対応関係を適切に入れ替えると好適である。
【0088】
上述の実施例7は、実施例4の変形例であるが、実施例2,3,5,6のいずれにも同様の変形を施すことができる。
【0089】
また、上述の各実施例において、電解槽の電力変換装置はAC/DCコンバータであるが、変形例として、系統にインバータを介して接続されるDC/DCコンバータを用いることも可能である。
【符号の説明】
【0090】
100…水電解システム
101…電解槽
101A…第1電解槽
101B…第2電解槽
102…再エネデバイス
103…電力変換装置(再生可能エネルギーデバイスに接続される電力変換装置)
104…AC/DCコンバータ(電解槽の電力変換装置)
104A…第1AC/DCコンバータ(電解槽の電力変換装置)
104B…第2AC/DCコンバータ(電解槽の電力変換装置)
104C…第3AC/DCコンバータ
105…蓄電池
106…指令値再配置ブロック
110…制御装置
111…MPP推定部
112…売電差引部
113…集約部
114…フィルタ部
114A…第1フィルタ部
114B…第2フィルタ部
115…ランプ率制御部
121…再エネ電力の推定値
122…売電電力
123…余剰電力の推定値
124…破線領域
125…電解電力指令値