(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023172092
(43)【公開日】2023-12-06
(54)【発明の名称】マッハツェンダ型光変調器、光トランシーバ及び分散補償方法
(51)【国際特許分類】
G02F 1/01 20060101AFI20231129BHJP
H04B 10/50 20130101ALI20231129BHJP
H04B 10/2513 20130101ALI20231129BHJP
【FI】
G02F1/01 C
H04B10/50
H04B10/2513 170
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022083664
(22)【出願日】2022-05-23
(71)【出願人】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(74)【代理人】
【識別番号】100103894
【弁理士】
【氏名又は名称】家入 健
(72)【発明者】
【氏名】倉橋 諒
【テーマコード(参考)】
2K102
5K102
【Fターム(参考)】
2K102BA02
2K102BA40
2K102BB01
2K102BB04
2K102BD02
2K102CA15
2K102DB04
2K102EB20
5K102AA01
5K102AA10
5K102KA02
5K102KA36
5K102PH02
(57)【要約】
【課題】好適な受信感度にて長距離伝送を実現できる、光トランシーバへ適用可能なマッハツェンダ型光変調器、光トランシーバ及び波長分散補償方法を提供する。
【解決手段】入力側分岐部20は、入力される光を、分岐比ηのクロスポート経路と、分岐比1-ηのバーポート経路と、に分岐する。アーム31は、入力側分岐部20のクロスポート経路からの光が伝搬する。アーム32は、入力側分岐部20のバーポート経路からの光が伝搬する。出力側分岐部50は、クロスポート分岐比γ、バーポート分岐比1-γにて、アーム31から入力する光とアーム32から入力する光とを結合した出力光を出力する。位相変調部41及び42は、アーム31を伝搬する光とアーム32を伝搬する光との間で位相差を与える。η及び1-ηと、γ及び1-γとは、チャープパラメータであるαパラメータが負の値となるように決定される。
【選択図】
図1
【特許請求の範囲】
【請求項1】
入力される光を、クロスポート分岐比ηのクロスポート経路と、バーポート分岐比1-ηのバーポート経路と、に分岐する第1の方向性結合器と、
前記第1の方向性結合器の前記クロスポート経路からの光が伝搬する第1のアームと、
前記第1の方向性結合器の前記バーポート経路からの光が伝搬する第2のアームと、
一方の入力に前記第1のアームからの光が入力され、他方の入力に前記第2のアームからの光が入力され、クロスポート分岐比がγ、バーポート分岐比が1-γの2入力2出力の第2の方向性結合器と、
前記第1のアームを伝搬する前記光と前記第2のアームを伝搬する前記光との間で位相差を与える位相変調部と、を備え、
前記クロスポート分岐比ηと前記バーポート分岐比1-ηと、前記クロスポート分岐比γ及び前記バーポート分岐比1-γとは、チャープパラメータであるαパラメータが負の値となるように決定される、
マッハツェンダ型光変調器。
【請求項2】
前記クロスポート分岐比ηと前記バーポート分岐比1-ηとが同じ値とならないように、又は、前記クロスポート分岐比γ及び前記バーポート分岐比1-γとが同じ値にならないように、前記クロスポート分岐比η、前記バーポート分岐比1-η、前記クロスポート分岐比γ及び前記バーポート分岐比1-γが決定される、
請求項1に記載のマッハツェンダ型光変調器。
【請求項3】
前記第1のアームを通過する前記光と、前記第2のアームを通過する前記光との位相差がπ/2である場合に、前記位相変調部によって、前記第1及び第2のアームのそれぞれに正相の変調信号を与え、
前記入力される光に対してクロスポートとなる前記第2の方向性結合器の出力から、出力光を出力する、
請求項2に記載のマッハツェンダ型光変調器。
【請求項4】
前記クロスポート分岐比ηは、前記クロスポート分岐比γよりも大きい、
請求項3に記載のマッハツェンダ型光変調器。
【請求項5】
前記出力光の伝送経路がシングルモード光ファイバで構成され、伝送速度を25Gbps、γ=0.5、波長分散の上限値がTTC標準のJT-G652の波長1550nmにおける波長分散の上限値18.6ps/nm/kmである場合、前記出力光の伝送距離D[km]と、消光比の上限値ER
MAXとの関係は、以下の式[1]で表される、
【数1】
請求項4に記載のマッハツェンダ型光変調器。
【請求項6】
前記出力光の消光比が、前記出力光の伝送距離が15kmである場合の前記消光比の上限値17.5dB以下となるように、前記クロスポート分岐比ηは0.66以上に設定される、
請求項5に記載のマッハツェンダ型光変調器。
【請求項7】
前記出力光の消光比が、前記出力光の受信側の感度を担保するための消光比の下限値7.5dB以上となるように、前記クロスポート分岐比は0.80以下に設定される、
請求項5又は6に記載のマッハツェンダ型光変調器。
【請求項8】
前記第1のアームを通過する前記光と、前記第2のアームを通過する前記光との位相差がπ/2である場合に、前記位相変調部によって、前記第1及び第2のアームのそれぞれに正相の変調信号を与え、
前記入力される光に対してバーポートとなる前記第2の方向性結合器の出力から、出力光を出力する、
請求項2に記載のマッハツェンダ型光変調器。
【請求項9】
前記第1のアームを通過する前記光と、前記第2のアームを通過する前記光との位相差が-π/2である場合に、前記位相変調部によって、前記第1及び第2のアームのそれぞれに逆相の変調信号を与え、
前記入力される光に対してクロスポートとなる前記第2の方向性結合器の出力から、出力光を出力する、
請求項2に記載のマッハツェンダ型光変調器。
【請求項10】
前記出力光の消光比が、前記出力光の伝送距離が15kmである場合の前記消光比の上限値17.5dB以下となるように、前記クロスポート分岐比ηは0.36以下に設定される、
請求項9に記載のマッハツェンダ型光変調器。
【請求項11】
前記出力光の消光比が、前記出力光の受信側の感度を担保するための消光比の下限値7.5dB以上となるように、前記クロスポート分岐比は0.1以上に設定される、
請求項9又は10に記載のマッハツェンダ型光変調器。
【請求項12】
前記第1のアームを通過する前記光と、前記第2のアームを通過する前記光との位相差が-π/2である場合に、前記位相変調部によって、前記第1及び第2のアームのそれぞれに逆相の変調信号を与え、
前記入力される光に対してバーポートとなる前記第2の方向性結合器の出力から、出力光を出力する、
請求項2に記載のマッハツェンダ型光変調器。
【請求項13】
光源と、光源からの光を変調するマッハツェンダ型光変調器と、を有する光信号を送信する送信器と、
入力する光信号を受信する受信器と、
前記送信器及び前記受信器を制御する制御部と、を備え、
前記マッハツェンダ型光変調器は、
前記光源から入力される光を、クロスポート分岐比ηのクロスポート経路と、バーポート分岐比1-ηのバーポート経路と、に分岐する第1の方向性結合器と、
前記第1の方向性結合器の前記クロスポート経路からの光が伝搬する第1のアームと、
前記第1の方向性結合器の前記バーポート経路からの光が伝搬する第2のアームと、
一方の入力に前記第1のアームからの光が入力され、他方の入力に前記第2のアームからの光が入力され、クロスポート分岐比がγ、バーポート分岐比が1-γの2入力2出力の第2の方向性結合器と、
前記第1のアームを伝搬する前記光と前記第2のアームを伝搬する前記光との間で位相差を与える位相変調部と、を備え、
前記クロスポート分岐比ηと前記バーポート分岐比1-ηと、前記クロスポート分岐比γ及び前記バーポート分岐比1-γとは、チャープパラメータであるαパラメータが負の値となるように決定される、
光トランシーバ。
【請求項14】
入力される光を、第1の方向性結合器によって、クロスポート分岐比ηのクロスポート経路と、バーポート分岐比1-ηのバーポート経路と、に分岐し、
前記第1の方向性結合器の前記クロスポート経路からの光を第1のアームに入力し、
前記第1の方向性結合器の前記バーポート経路からの光を第2のアームに入力し、
クロスポート分岐比がγ、バーポート分岐比が1-γの2入力2出力の第2の方向性結合器の一方の入力に前記第1のアームからの光を入力し、他方の入力に前記第2のアームからの光が入力し、
前記第1のアームを伝搬する前記光と前記第2のアームを伝搬する前記光との間で位相差を与え、
前記クロスポート分岐比ηと前記バーポート分岐比1-ηと、前記クロスポート分岐比γ及び前記バーポート分岐比1-γとを、チャープパラメータであるαパラメータが負の値となるように決定する、
分散補償方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、マッハツェンダ型光変調器、光トランシーバ及び分散補償方法に関する。
【背景技術】
【0002】
一定の符号誤り率 (BER:Bit Error Rate) 以下での光通信を実現するためには、一定以上の受光パワーが要求され、これは最小受信感度と呼ばれる。光信号が光ファイバなどの伝送媒体を伝わる場合、伝送距離に応じて光パワーが次第に小さくなると、主信号に対して統計的な揺らぎを持つノイズ成分が相対的に大きくなり、BERが上昇する。
【0003】
一方で、変調時の時間軸上のパルス形状に着目すると、伝送媒体である光ファイバを伝搬することで、パルスは時間軸上で広がってしまう。これは、波長によって光の伝搬速度が異なることで生じる波長分散と呼ばれる光ファイバの特性に起因している。パルスが広がるとノイズ成分が大きくなってBERが上昇するため、最小受信感度が劣化してしまう。また、伝送距離が長くなるほど分散の影響が大きくなる。そのため、最小受信感度を満たすためには、規格やシステム要件などで決定される、波長分散、変調速度及び伝送距離が影響する。
【0004】
波長分散の影響を低減するには、分散補償ファイバの適用、光ファイバのゼロ分散波長 (汎用シングルモードファイバの場合は波長1.3μm付近) での通信規格の適用、デジタルコヒーレント技術による波形補償や送信波形のプリチャープの導入などが行われる。
【0005】
モバイルフロントホール等に使用されるSFP(Small Form-factor Pluggable) 光トランシーバは、光信号と電気信号とを相互変換する光モジュールであり、通信容量拡大や長距離伝送化が求められている。これに応じて、SFP光トランシーバには、小型パッケージ内部に多種多様な電気回路及び光回路、例えば、光信号を変調するマッハツェンダ型光変調器(特許文献1~4)が高密度に集積、実装されている。このような小型光モジュールにおいては、物理的なサイズだけではなく、消費電力とそれに伴う発熱、低コスト化といった制約がある。また、5Gや6Gなどのモバイル通信技術の進展によって伝送容量の拡大が求められている中で、既設の光ファイバ網を有効活用するために、波長多重伝送(WDM:Wavelength Division Multiplex)技術を適用していくことが考えられている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開第2006/100719号
【特許文献2】特開2017-3813号公報
【特許文献3】特開2010-206768号公報
【特許文献4】特開2015-94812号公報
【非特許文献】
【0007】
【非特許文献1】F. Koyama and K. Iga, “Frequency Chirping in External Modulators”, Jan. 1998, J. Light. Technol., vol. 6, no. 1, pp. 87-93.
【非特許文献2】T. Kawanishi, K. Kogo, S. Oikawa, M. Izutsu, “Direct measurement of chirp parameters of high-speed Mach-Zehnder-type optical modulators”, Aug. 2001, Optics Communications, vol. 195, pp399-404.
【非特許文献3】H. Kim and A. Gnauck, “Chirp Characteristics of Dual-Drive Mach-Zehnder Modulator With a Finite DC Extinction Ratio”, Mar. 2002, IEEE Photonics Technol. Lett., vol. 14, no. 3, pp. 298-300.
【非特許文献4】Y. Yamaguchi, A. Kanno, T. Kawanishi, M. Izutsu and H. Nakajima, “Precise Optical Modulation Using Extinction-Ratio and Chirp Tunable Single-Drive Mach-Zehnder Modulator”, Nov. 1998, J. Light. Technol., vol. 35, no. 21, pp. 4781-4788.
【非特許文献5】Y. Yamaguchi, “Advanced Optical Modulator Based on Integrated Mach-Zehnder Interferometer”, 2017, Doctral Dissertation, Waseda University.
【非特許文献6】「JT-G652 シングルモード光ファイバ及びケーブルの諸特性」、一般社団法人情報通信技術委員会、2018年5月24日、第1.1版
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述のような技術が適用されたネットワークにおいて伝送経路を通じて光信号を伝送する場合、伝送によって生じる波長分散を補償することが求められる。しかしながら、SFP光トランシーバは汎用シングルモードファイバ (SMF:Single Mode Fiber) と接続されるため、基幹ネットワークで培われたWDM技術が使用できる波長1.5μm帯では、ゼロ分散波長を使用することができない。また、分散補償ファイバは、伝送距離に応じて個別に長さを調整する必要があり、価格制約の強いモバイル網での使用は困難である。さらに、デジタルコヒーレント技術では、高価かつ消費電力の大きいデジタルシグナルプロセッサ (DSP:Digital Signal Processor) が必要となるため、モバイルフロントホール向けであるSFP光トランシーバへの使用はやはり難しい。
【0009】
上述した送信信号のプリチャープは、通常、変調器に印加する高周波 (RF:Radio Frequency) 信号によって実現されるが、変調器ドライバにプリチャープ機能を付与することになるため、消費電力や価格の観点でデメリットが生じる。
【0010】
一方で、SFP光トランシーバは安価で大量生産が可能であり、低消費電力かつ小型といった特徴を持つシリコン(Si)フォトニクス技術と相性がよく、送信用の光回路部分をSiフォトニクスチップに集積することができる。この場合、光変調器として、高速変調可能、低損失、高消光比といった良好な特性を有するマッハツェンダ型光変調器が採用されることがある。そこで、マッハツェンダ型光変調器によって、送出する光信号に対して、波長分散を補償するためのプリチャープを行うことが考え得る。しかし、マッハツェンダ型光変調器は、一般に、周波数チャープが生じない。厳密には、周波数チャープは0ではないものの、小さな値である。そのため、送出する光信号に対して波長分散を補償するためにマッハツェンダ型光変調器によってプリチャープを行う手法の確立が求められている。
【0011】
本開示は、上記の事情に鑑みて成されたものであり、好適な受信感度にて長距離伝送を実現できる、光トランシーバへ適用可能なマッハツェンダ型光変調器、光トランシーバ及び波長分散補償方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
本開示の一態様であるマッハツェンダ型光変調器は、入力される光を、クロスポート分岐比ηのクロスポート経路と、バーポート分岐比1-ηのバーポート経路と、に分岐する第1の方向性結合器と、前記第1の方向性結合器の前記クロスポート経路からの光が伝搬する第1のアームと、前記第1の方向性結合器の前記バーポート経路からの光が伝搬する第2のアームと、一方の入力に前記第1のアームからの光が入力され、他方の入力に前記第2のアームからの光が入力され、クロスポート分岐比がγ、バーポート分岐比が1-γの2入力2出力の第2の方向性結合器と、前記第1のアームを伝搬する前記光と前記第2のアームを伝搬する前記光との間で位相差を与える位相変調部と、を備え、前記クロスポート分岐比ηと前記バーポート分岐比1-ηと、前記クロスポート分岐比γ及び前記バーポート分岐比1-γとは、チャープパラメータであるαパラメータが負の値となるように決定されるものである。
【0013】
本開示の一態様である光トランシーバは、光源と、光源からの光を変調するマッハツェンダ型光変調器と、を有する光信号を送信する送信器と、入力する光信号を受信する受信器と、前記送信器及び前記受信器を制御する制御部と、を備え、前記マッハツェンダ型光変調器は、前記光源から入力される光を、クロスポート分岐比ηのクロスポート経路と、バーポート分岐比1-ηのバーポート経路と、に分岐する第1の方向性結合器と、前記第1の方向性結合器の前記クロスポート経路からの光が伝搬する第1のアームと、前記第1の方向性結合器の前記バーポート経路からの光が伝搬する第2のアームと、方の入力に前記第1のアームからの光が入力され、他方の入力に前記第2のアームからの光が入力され、クロスポート分岐比がγ、バーポート分岐比が1-γの2入力2出力の第2の方向性結合器と、前記第1のアームを伝搬する前記光と前記第2のアームを伝搬する前記光との間で位相差を与える位相変調部と、を備え、前記クロスポート分岐比ηと前記バーポート分岐比1-ηと、前記クロスポート分岐比γ及び前記バーポート分岐比1-γとは、チャープパラメータであるαパラメータが負の値となるように決定されるものである。
【0014】
本開示の一態様である分散補償方法は、入力される光を、第1の方向性結合器によって、クロスポート分岐比ηのクロスポート経路と、バーポート分岐比1-ηのバーポート経路と、に分岐し、前記第1の方向性結合器の前記クロスポート経路からの光を第1のアームに入力し、前記第1の方向性結合器の前記バーポート経路からの光を第2のアームに入力し、クロスポート分岐比がγ、バーポート分岐比が1-γの2入力2出力の第2の方向性結合器の一方の入力に前記第1のアームからの光を入力し、他方の入力に前記第2のアームからの光が入力し、前記第1のアームを伝搬する前記光と前記第2のアームを伝搬する前記光との間で位相差を与え、前記クロスポート分岐比ηと前記バーポート分岐比1-ηと、前記クロスポート分岐比γ及び前記バーポート分岐比1-γとを、チャープパラメータであるαパラメータが負の値となるように決定するものである。
【発明の効果】
【0015】
本開示によれば、好適な受信感度にて長距離伝送を実現できる、光トランシーバへ適用可能なマッハツェンダ型光変調器、光トランシーバ及び波長分散補償方法を提供することができる。
【図面の簡単な説明】
【0016】
【
図1】実施の形態1にかかるマッハツェンダ型光変調器の構成を模式的に示す図である。
【
図2】実施の形態1にかかるマッハツェンダ型光変調器が組み込まれた光トランシーバの構成を模式的に示す図である。
【
図3】波長1550nmにおけるαパラメータと正分散耐力の関係の実測例を示す図である。
【
図4】異なるηの値に対するγ=0.5での消光比ERとαパラメータの変化を示す図である。
【
図5】入力側分岐部20及び出力側分岐部を共に方向性結合器で構成し、かつ、出力側分岐部50の分岐比γを0.5に固定した場合の、入力側分岐部20の分岐比ηに対するαパラメータの依存性の計算結果を示す図である。
【
図6】消光比に対して実測した正分散耐力との関係を示す図である。
【
図7】波長が1525nm~1570nmの光に対する結合長と分岐比ηとの関係の実測値を示す図である。
【
図8】伝送距離15km、すなわち消光比が5dB~25dBの範囲で、出力側分岐部50の分岐比γを0.5に固定して、入力側分岐部20の分岐比ηを変化させた場合の消光比の波長依存性を示す図である。
【
図9】伝送距離15km、すなわち消光比が5dB~25dBの範囲で、出力側分岐部50を2×2MMIカプラ(γ=0.5)で構成した場合の消光比の波長依存性を示す図である。
【
図10】式[15]の消光比条件を満たす場合の消光比の波長依存性を示す図である。
【
図11】伝送条件2における伝送距離と消光比の上限との関係を示す図である。
【
図12】マッハツェンダ型光変調器100のトランスファカーブにおいてスロープを反転させた場合の出力光を示す図である。
【
図13】実施の形態2において、入力側分岐部20及び出力側分岐部50を共に方向性結合器で構成し、かつ、出力側分岐部50の分岐比γを0.5に固定した場合の、入力側分岐部20の分岐比ηに対するαパラメータの依存性の計算結果を示す図である。
【
図14】変調信号を反転させた場合の出力光を示す図である。
【
図15】トランスファカーブのスロープの反転と変調信号の反転とを組み合わせて適用した場合の出力光を示す図である。
【
図16】実施の形態2において入力側分岐部20の分岐比ηを変化させた場合の消光比の波長依存性を示す図である。
【
図17】出力側分岐部を2×2のMMIカプラとして構成した場合の、消光比の波長依存性を示す図である。
【
図18】伝送距離12.5km、すなわち消光比が5dB~30dBの範囲において、出力側分岐部の分岐比γを0.5とした場合の消光比の波長依存性を示す図である。
【
図19】伝送距離12.5km、すなわち消光比が5dB~30dBの範囲において、出力側分岐部の分岐比γを0.4に変更した場合の消光比の波長依存性を示す図である。
【
図20】実施の形態4にかかるマッハツェンダ型光変調器400の構成を模式的に示す。
【発明を実施するための形態】
【0017】
以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。
【0018】
実施の形態1
実施の形態1にかかるマッハツェンダ型光変調器について説明する。実施の形態1にかかるマッハツェンダ型光変調器は、入力側分岐部の光の分岐比と出力側分岐部の光の分岐比とを好適に設計することで、正分散耐力の付与と所望の消光比の実現とを両立するものとして構成される。以下、その構成及びメカニズムについて説明する。
【0019】
まず、実施の形態1にかかるマッハツェンダ型光変調器100の構成について説明する。
図1に、実施の形態1にかかるマッハツェンダ型光変調器100の構成を模式的に示す。マッハツェンダ型光変調器100は、入力導波路11及び12、入力側分岐部20、アーム31及び32、位相変調部41及び42出力側分岐部50、出力導波路61及び62を有する。
【0020】
入力側分岐部20は、2つの入力ポート21及び22と2つの出力ポート23及び24とを有する2入力2出力の光分岐部である。本構成においては、入力側分岐部20は方向性結合器として構成され、第1の方向性結合器とも称する。入力導波路11及び12は、それぞれ、入力ポート21及び22と接続される。ここでは、入力導波路12から入力ポート22に、光信号が入力されるものとする。入力導波路11と接続される入力ポート21に対してバーポートとなる出力ポート23には、アーム31の一端が出力される。入力導波路12と接続される入力ポート22に対してバーポートとなる出力ポート24には、アーム32の一端が出力される。
【0021】
アーム31及び32(それぞれ、第1及び第2のアームとも称する)には、それぞれ、通過する光信号の位相を調整可能な位相変調部41及び42(単に、位相変調部とも称する)が設けられる。
【0022】
出力側分岐部50は、2つの入力ポート51及び52と2つの出力ポート53及び54とを有する2入力2出力の光分岐部である。本構成においては、入力側分岐部50は方向性結合器として構成され、第2の方向性結合器とも称する。出力導波路61及び62は、それぞれ、出力ポート53及び54と接続される。アーム31の他端は、出力導波路61が接続される出力ポート53に対してバーポートとなる入力ポート51と接続される。アーム32の他端は、出力導波路62が接続される出力ポート54対してバーポートとなる入力ポート52と接続される。
【0023】
マッハツェンダ型光変調器100では、光信号が入力される入力側分岐部20の入力ポート22に対して、クロスポートとなる、出力側分岐部50の出力ポート53から、変調後の変調光信号が出力される。
【0024】
続いて、マッハツェンダ型光変調器100の適用例について説明する。
図2に、実施の形態1にかかるマッハツェンダ型光変調器100が組み込まれた光トランシーバ10の構成を模式的に示す。
図2に示すように、光トランシーバ10は、SFP光トランシーバなどのプラガブル光モジュールとして構成される。
【0025】
光トランシーバ10は、光送信器1、光受信器2及び制御部3を有する。制御部3は、光送信器1及び光受信器2の動作を制御可能に構成される。光送信器1は、外部の光通信装置などから入力される電気信号S_Tに基づいて変調した光信号L_Tを出力する。光受信器2は、光ケーブルなどを介して光トランシーバ10に入力する光信号L_Rを受信し、光信号を復号した電気信号S_Rを光通信装置に出力する。
【0026】
光送信器1は、光源1Aと光変調器1Bとを有する。光源1Aは、例えば、一定の範囲の波長のレーザ光を出力可能な波長可変レーザモジュールとして構成される。光変調器1Bは、光源1Aから入力するレーザ光Lを、電気信号S_Tに基づいて変調した光信号L_Tを出力する。
【0027】
本実施の形態にかかるマッハツェンダ型光変調器100は、この光変調器1Bとして用いられるものであり、電気信号S_T又は信号S_Tに基づいた信号が位相変調部41及び42に印加されることで、入力ポート22に入力されたレーザ光IN(
図2のレーザ光Lに対応)が変調され、変調後の光信号OUT(
図2の光信号L_Tに対応)が出力ポート53から出力される。
【0028】
本実施の形態では、上述した構成において、伝送経路により伝送される光信号に対して、波長分散に対する耐力(以下、正分散耐力と称する)を付与するため、予めプリチャープを付与した光信号を送出するものである。以下、マッハツェンダ型光変調器100における正分散耐力の付与について説明する。本実施の形態では、マッハツェンダ型光変調器100の伝送特性、具体的には、いわゆるチャープパラメータを調整することで、所望の正分散耐力を実現することができる。チャープパラメータはαパラメータとも呼ばれる値であり、以下αパラメータと表記する場合にはチャープパラメータを指すものとする。
【0029】
[αパラメータと正分散耐力との関係]
まず、マッハツェンダ型光変調器100におけるαパラメータと正分散耐力との関係について説明する。αパラメータとは、強度変調に付随する位相変調効果を表し、電界の位相Φの時間変化を電界振幅Eの時間変化で除算しものとして、式[1]のように記述される(非特許文献1)。式[1]のPは、電界Eを2乗した値であり、電界Eのパワーを示す。
【数1】
【0030】
図3に、波長1550nmにおけるαパラメータと正分散耐力の関係の実測例を示す。
図3に示すように、正分散耐力を得るためには、αパラメータを負の値とし、かつ、その絶対値を大きくすればよいことがわかる。なお、使用する波長によってSMFの波長分散の符号は異なるものの、波長1550nmにおいて正分散耐力を得るためには、
図3より、αパラメータの値を負にすればよいことがわかる。
【0031】
[αパラメータと分岐比との関係]
このαパラメータを調整するには、マッハツェンダ型光変調器の入力側分岐部及び出力側分岐部の一方又は両方の分岐比を変更すればよい。しかしながら、入力側分岐部の分岐比及び出力側分岐部の分岐比を変更すればマッハツェンダ型光変調器の消光比も変化するため、αパラメータに対する要求と消光比に対する要求とを共に満たす分岐比を採用することが求められる。
【0032】
マッハツェンダ型光変調器の入力側分岐部の分岐比及び出力側分岐部の分岐比と、αパラメータ及び消光比との関係について説明する。
図1に示すように、マッハツェンダ型光変調器100では、入力側分岐部20のクロスポートパワー分岐比をη(0≦η≦1)、出力側分岐部50のクロスポートパワー分岐比をγ(0≦γ≦1)としている。具体的には、入力側分岐部20では、入力ポート22から出力ポート23への信号通過率がη、入力ポート22から出力ポート24への信号通過率が1-ηである。また、出力側分岐部50では、入力ポート51から出力ポート53への信号通過率が1-γ、入力ポート52から出力ポート53への信号通過率がγである。なお、以下で単に分岐比と表記する場合には、パワー分岐比を示すものとする。以下では、クロスポートパワー分岐比は単にクロスポート分岐比、バーポートパワー分岐比は単にバーポート分岐比とも称する。
【0033】
マッハツェンダ型光変調器のクロスポート出力の出力電界E
OUTは、以下の式[2]~[4]のように記述される。式[1]において、Φ
1とΦ
2は、それぞれアーム31及び32による位相変化量である。式[2]において、a
1及びa
2は、それぞれ位相変調部41及び42での時間変化するバイアス電圧の係数であり、この係数が乗じられたバイアス電圧の項は、位相変化量のうちで時間変化する成分を示している。Φ
B1及びΦ
B2は、それぞれ位相変調部41及び42でのバイアス電圧による位相変化量のうち、時間変化しない成分を示している。また、E
INは、マッハツェンダ型光変調器に入力する光信号の電界を示している(非特許文献2~5)。
【数2】
【数3】
【数4】
【0034】
式[2]より、出力電界E
OUTのパワーP及び電界の位相Φは、それぞれ、以下の式[5]及び[6]のように記述できる。
【数5】
【数6】
【0035】
式[5]及び式[6]を式[1]に代入すると、αパラメータは式[7]のように記述される。
【数7】
【0036】
ここでは、マッハツェンダ型光変調器100をトランスファカーブのQuadrature Point(四分位点)で動作させるものとし、小信号入力を考えると各アームの位相変化量について、式[8]の関係が成り立つものとする。
【数8】
式[7]に式[8]を代入することで、パラメータαは以下の式[9]で記述できる。
【数9】
【0037】
ここでは、マッハツェンダ型光変調器100は、完全なプッシュプル動作を行うものとする。この場合、各アームのバイアス電圧に対する位相変化量は符号が異なるものの、絶対値は等しくなるので、式[10]の関係が成り立つ。
【数10】
よって、αパラメータは、式[10]を式[9]に代入することで、以下の式[11]のように記述される。
【数11】
この場合、式[11]から明らかなように、αパラメータは、入力側分岐部20の分岐比ηと出力側分岐部50の分岐比γのみで決定されることが分かる。特に、入力側分岐部20の分岐比ηと出力側分岐部50の分岐比γとを適宜設定することで、αパラメータの符号を決定できることが理解できる。
【0038】
[消光比と分岐比との関係]
次いで、消光比と分岐比との関係について説明する。消光比ERは、パワーPの最大値P
maxと最小値P
minとの比で決定されるため、式[5]より、以下の式[12]のように記述される。なお、式[5]において、cos(Φ
1-Φ
2)=1の場合に最大値P
maxが得られ、cos(Φ
1-Φ
2)=-1の場合に最小値P
minが得られる。
【数12】
式[12]からわかるように、消光比ERは、入力側分岐部20の分岐比ηと出力側分岐部50の分岐比γのみで決定されることが分かる。
【0039】
[αパラメータと消光比との関係]
式[11]及び式[12]から、αパラメータと消光比との間には、以下の式[13]の関係が成り立つ。
【数13】
【0040】
以下、分岐比を変化させた場合の消光比ERとαパラメータの挙動について検討する。ここでは、まず、簡略化のため、出力側分岐部50の分岐比γを0.5に固定して、入力側分岐部20の分岐比ηを変化させた場合の、消光比ERとαパラメータの挙動について説明する。
図4に、γを0.5に固定してηのみを変化させた場合の消光比ERとαパラメータとを示す。
図4から、ηの値によって消光比ER及びαパラメータが変化することと、αパラメータは、同一の消光比に対して正及び負の2つの値が存在することがわかる。
【0041】
また、出力側分岐部50の分岐比γを0.5に固定した場合のαパラメータと入力側分岐部20の分岐比ηとの関係についてさらに説明する。
図5に、入力側分岐部20及び出力側分岐部50を共に方向性結合器で構成し、かつ、出力側分岐部50の分岐比γを0.5に固定した場合の、入力側分岐部20の分岐比ηに対するαパラメータの依存性の計算結果を示す。この場合、
図5に示すように、入力側分岐部20の分岐比ηが0.5よりも大きな場合(η>0.5)にαパラメータは負の値(α<0)となり、入力側分岐部20の分岐比ηが0.5よりも小さな場合(η<0.5)にαパラメータは正の値(α>0)となることがわかる。言うまでもないが、入力側分岐部20の分岐比ηが0.5の場合、αパラメータは0(α=0)となる。
【0042】
上述の通り、正分散耐力はαパラメータにより決定されるため、消光比ERの値とαパラメータの符号とを適切に調整して、好適な分散耐性を付与することで、長距離伝送が可能になる。
図3の例において、CバンドにおいてSMFの分散に対して耐力を付与する場合を想定すると、αパラメータの符号は負であることが求められる。これによりαパラメータの符号が決まるので、分岐比η及びγの組み合わせ、消光比及びαパラメータの間には、1対1の対応関係が成り立つ。したがって、所望の消光比、付与すべき正分散耐力(すなわちαパラメータの値)に基づいて、分岐比η及びγの組み合わせを決定することが可能となる。以下、具体的に説明する。
【0043】
[消光比及び分岐比の決定]
所望の伝送特性を実現するには、光受信器で信号を受信するときのノイズ耐性が満たされなければならないため、消光比ERには満たすべき値の範囲が存在する。そのため、分岐比η及びγを適切に設計して、所望の伝送特性を実現するための消光比ERとαパラメータとを両立する必要がある。
【0044】
なお、マッハツェンダ型光変調器100の構成として、入出力それぞれに2入力2出力の分岐構造を想定しているが、入力側が1入力2出力の分岐構造であっても、また、出力側が2入力1出力の分岐構造であっても、αパラメータ及び消光比は同様に決定される。つまり、上記の議論は、入出力の分岐構造の入出力数に依存しない。また、上述では、変調器のクロスポート出力に着目したが、バーポート出力においても分岐比η及びγの値によりαパラメータは一意に決定される。バーポート出力を用いる場合の消光比、αパラメータ、分岐比η及びγの関係については後述する。
【0045】
以下、付与すべき正分散耐力に対する、消光比及び分岐比の決定について説明する。ここでは、以下の伝送条件を想定した場合について説明する。なお、以下で説明する伝送条件1及び2においては、正分散耐力の付与が可能な、αパラメータが負の値となる範囲における入力側分岐部20の分岐比ηについて検討する。
【0046】
伝送条件1:SFP光トランシーバ(SFP28)での平均条件
以下、マッハツェンダ型光変調器100がSFP光トランシーバに搭載されるものとして説明する。SFP光トランシーバとして要求される伝送距離は状況に応じて異なるものの、ここでは、SFP28のモバイルフロントホール使用を想定する。このときの要求仕様は、伝送距離が15km、伝送速度が25Gbps、消光比下限が5dBとなる。また、SMFの波長分散D(λ)は、波長1550nmにおけるTTC標準のJT-G652(非特許文献6)の平均値として、16.0ps/nm/kmを用いる。
【0047】
図6に、消光比に対して実測した正分散耐力との関係を示す。分散が16.0ps/nm/kmのSMFにて光信号を15km伝送したときに必要な正分散耐力は16.0×15=240ps/nmとなるので、実験結果より、消光比は26dB以下とする必要がある。よって、要求される消光比ERの条件は、
図6と消光比自身の条件から式[14]で記述される。
【数14】
【0048】
よって、伝送条件1の下では、式[14]の消光比ERの条件を満たすように分岐比η及びγを決定すればよいことがわかる。ここでは、入力側分岐部20として、設計によって分岐比ηを自由に変更可能な方向性結合器を用いるものとする。出力側分岐部50については、 簡略化のため、分岐比γを0.5とする。出力側分岐部50は、例えば、2×2多モード干渉計(MMI:Multi-Mode Interferometer) カプラや方向性結合器などで構成してもよい。なお、以下では、特に断らない限り、出力側分岐部50は方向性結合器として構成されるものとする。
【0049】
消光比の条件を満たす分岐比ηを決定するにあたり、方向性結合器の分岐比の波長依存性について説明する。
図7に、波長が1525nm~1570nmの光に対する方向性結合器の結合長と分岐比ηとの関係の実測値を示す。
図7において、ある結合長に着目すると、分岐比ηは波長によって変化するので、これに連動して消光比も変化する。したがって、波長可変デバイスに正分散耐力を付与するには、使用波長範囲(ここでは、例えば1525nm~1570nm)の全範囲、式[14]の消光比条件を満たす必要がある。
【0050】
そこで、1525nm~1570nmの使用波長範囲において分岐比ηを変化させた場合の消光比の波長依存性について検討する。ここでは、
図7に示した分岐比ηの波長依存性を用いて、消光比の波長依存性を計算した。
図8に、伝送距離15km、すなわち消光比が5dB~25dBの範囲で、出力側分岐部50の分岐比γを0.5に固定して、入力側分岐部20の分岐比ηを変化させた場合の消光比の波長依存性を示す。
図8においては、出力側分岐部50についても波長1550nmでの分岐比γが0.5となる方向性結合器で構成している。波長1550nmにおける出力側分岐部50の分岐比γを0.5とした場合に、太線で囲んだ消光比が5dB~25dBの範囲(式[14])を満たす入力側分岐部20の分岐比ηの範囲は、0.57~0.87と計算される。
【0051】
上述では、入力側分岐部20及び出力側分岐部50を共に方向性結合器で構成した場合について説明したが、比較のため、出力側分岐部50をγ=0.5の2×2MMIカプラで構成した場合について検討する。
図9に、伝送距離15km、すなわち消光比が5dB~25dBの範囲で、出力側分岐部50を2×2MMIカプラ(γ=0.5)で構成した場合の消光比の波長依存性を示す。MMIカプラは、理想的には分岐比に対する波長依存性が小さいため、ここでは波長特性を考慮していない。
図9に示す様に、方向性結合器として構成した入力側分岐部20の波長特性の影響を受け、波長に対して消光比は大きく変動する。これにより、出力側分岐部50としてMMIカプラを用いた場合には、出力側分岐部50を方向性結合器として構成した場合(
図8)と比べて、波長依存性によって式[14]の範囲を満たすことができない程度に、消光比の波長依存性が劣化することがわかる。
【0052】
これに対し、入力側分岐部20及び出力側分岐部50を共に方向性結合器として構成した場合には、波長変化に対して分岐比が同じ方向に変動するため、消光比に対する波長特性が相殺される。したがって、消光比の波長依存性を小さくするためには、入力側分岐部20及び出力側分岐部50を、共に方向性結合器として構成するのが望ましい。よって、上述したように、本実施の形態では、入力側分岐部20及び出力側分岐部50として方向性結合器を用いている。
【0053】
伝送条件2:SFP光トランシーバ(SFP28)での最悪条件
次に、伝送距離が15km、伝送速度が25Gbps、消光比が7.5dB、波長分散がTTC標準のJT-G652の波長1550nmにおける最悪値18.6ps/nm/kmとしたときの、必要な正分散耐力と分岐比ηの値の範囲とを計算する。15km伝送後の分散は18.6×15=279psである。
図6に基づけば、この分散に対して要求される消光比は17.542[dB]となるので、消光比の条件は以下の式[15]のように記述される。
【数15】
【0054】
伝送条件1の場合と同様に、方向性結合器である出力側分岐部50の分岐比γを0.5として、方向性結合器である入力側分岐部20の入力側の分岐比ηを決定する。
図10に、式[15]の消光比条件を満たす場合の消光比の波長依存性を示す。式[15]の消光比条件を満たす入力側分岐部20の分岐比ηの範囲は、0.66~0.80となる。この範囲においてもαパラメータは負であり、正分散耐力を付与でき、同じ変調速度に対して伝送距離を延伸することができる。
【0055】
次いで、伝送条件2における伝送距離と消光比の上限との関係について説明する。
図11に、伝送条件2における伝送距離と消光比の上限との関係を示す。伝送距離にともなって消光比の上限は変化し、
図11では、伝送距離15kmのときの消光比の上限は17.5dB、伝送距離12.5kmのときの消光比の上限は30dB、伝送距離10kmのときの消光比の上限は50dBとなっている。なお、このとき、伝送距離Dと消光比の上限値ER
MAXとの関係を示す、最小自乗法による有効数字3桁の近似曲線は以下の式で表される。
【数16】
よって、言うまでも無いが、伝送距離が短縮されるに従って、分岐比ηの許容範囲は拡大することになる。
【0056】
以上、本構成によれば、αパラメータの調整によって正分散耐力を付与するとともに、所望の消光比を実現できるように、入力側分岐部20の分岐比ηを好適に設計できることがわかる。
【0057】
実施の形態2
実施の形態1では、式[11]で表されるαパラメータが負の値となるときに正分散耐力に付与が可能になるため、入力側分岐部20の分岐比ηは、0.5よりも大きく1よりも小さい範囲(0.5<η<1.0)の中で定まる。しかし、以下で説明するようにマッハツェンダ型光変調器100を用いることで、0よりも大きく0.5よりも小さい範囲(0<η<0.5)の中で、入力側分岐部20の分岐比ηを定めることが可能となる。以下、具体的に説明する。
【0058】
実施の形態で説明した式[11]で表されるαパラメータは、入力側分岐部20の分岐比ηが0よりも大きく0.5よりも小さい範囲(0<η<0.5)では、上述の通り正の値となる。そのため、このままでは、正分散耐力を付与することはできない。
【0059】
これに対し、本実施の形態では、マッハツェンダ型光変調器100において、トランスファカーブのスロープの反転と、各アームに与える変調信号の反転と、を組み合わせて適用する。これにより、入力側分岐部20の分岐比ηが0よりも大きく0.5よりも小さい範囲(0<η<0.5)においても、αパラメータを負の値とすることができ、その結果、正分散耐力を付与することが可能となる。以下、具体的に説明する。
【0060】
[トランスファカーブのスロープの反転]
図12に、マッハツェンダ型光変調器100のトランスファカーブにおいてスロープを反転させた場合の出力光を示す。
図12において、破線で示す変調信号S1は、実施の形態1においてαパラメータが負の値である場合の変調信号を示している。実線で示す変調信号S2は、トランスファカーブのスロープを反転させた場合の変調信号を示している。スロープが反転するということは、実施の形態1の場合(すなわち、非反転の場合)と比べて位相がπだけ変化することになるので、
図12では、変調信号S2は、変調信号S1に対して位相がπだけずれている。
【0061】
スロープの反転は、例えば、アーム31及び32のそれぞれを構成する光導波路にヒータを設けることで実現することができる。ヒータによって光導波路を加熱し、熱光学効果によって光導波路の屈折率を制御することで、アーム31及び32のそれぞれにおいて、光の位相を独立して制御することができる。よって、アーム31及び32を好適に加熱することで、適宜、スロープを反転させることができる。なお、スロープの反転方法はこれに限られるものではなく、アーム31及び32のそれぞれにおいて、光の位相を独立して制御できるならば、他の手法を用いてもよい。
【0062】
この場合、位相が反転しているので、実施の形態で説明した式[8]は、以下の式に書き換えられる。
【数17】
式[7]に式[17]を代入することで、パラメータαは以下の式[18]で記述できる。
【数18】
つまり、スロープを反転させた場合、換言すれば位相差を反転させた場合(式[18])には、スロープを反転させない場合(実施の形態1の式[9])と比べて、αパラメータの符号が逆転することが理解できる。
【0063】
式[10]の完全なプッシュプル動作は同様であるものとすると、式[11]は、以下の式[19]に書き換えられる。
【数19】
式[19]についても、式[18]と同様に、αパラメータの符号が逆転する。つまり、本実施の形態におけるようにスロープを反転させると、実施の形態1の場合と比較して、入力側分岐部20の分岐比ηを同じ値としても、αパラメータの符号が反転することとなる。
【0064】
図13に、実施の形態2において、入力側分岐部20及び出力側分岐部50を共に方向性結合器で構成し、かつ、出力側分岐部50の分岐比γを0.5に固定した場合の、入力側分岐部20の分岐比ηに対するαパラメータの依存性の計算結果を示す。スロープを反転させた場合には、
図13に示すように、
図5に示す実施の形態1と比べて、入力側分岐部20の分岐比ηに対するαの値が反転することがわかる。よって、分岐比ηが0よりも大きく0.5よりも小さい場合(0<η<0.5)に、αパラメータは負の値となる。
【0065】
しかし、スロープを反転させると、
図12に示すように、変調信号のレベルに対して出力される光信号のレベルが反転してしまう。つまり、実施の形態1においては、変調信号がHIGH及びLOWのときに出力される光信号のレベルは、それぞれHIGH及びLOWとなる。一方で、本実施の形態におけるようにスロープを反転させた場合には、変調信号がHIGH及びLOWのときに出力される光信号のレベルは、それぞれLOW及びHIGHとなる。
【0066】
したがって、スロープを反転させただけでは、光信号のレベルが反転してしまうため、受信器はマッハツェンダ型光変調器100から出力された光信号を正常にデコードすることができなくなってしまう。そこで、本実施の形態では、光信号のレベルが実施の形態1における場合と同様となるように、マッハツェンダ型光変調器100の各アームに与える変調信号を反転させることで、光信号のレベルをさらに反転させている。
【0067】
[変調信号の反転]
図14に、変調信号を反転させた場合の光信号を示す。
図14において、破線で示す変調信号S1は
図12と同様であり、実線で示す変調信号S3は、変調信号S1を反転させた変調信号を示す。なお、ここでは、反転されていない変調信号は正相の変調信号とも称し、反転された変調信号S1は逆相の変調信号とも称する。この場合、当然のことながら、変調信号を反転させた場合には、非反転の場合と比べて、変調信号のレベルに対して出力される光信号のレベルが反転することとなる。つまり、非反転の場合には、変調信号がHIGH及びLOWのときに出力される光信号のレベルは、それぞれHIGH及びLOWとなる。一方で、変調信号を反転させた場合、変調信号がHIGH及びLOWのときに出力される光信号のレベルは、それぞれLOW及びHIGHとなる。
【0068】
各アームに与える変調信号を反転させることで、変調信号のレベルに対して出力される光信号のレベルは1回反転し、各アームに与える変調信号を反転させることで、変調信号のレベルに対して出力される光信号のレベルは更に1回反転し、元に戻ることとなる。
図15に、トランスファカーブのスロープの反転と変調信号の反転とを組み合わせて適用した場合の出力光を示す。破線で示す変調信号S1は
図12と同様であり、実線で示す変調信号S4は、スロープを反転させ、かつ、変調信号S1を反転させた変調信号を示す。この場合には、変調信号S1のレベルに対して出力される光信号のレベルは2度反転することとなるので、結果として、出力される光信号のレベルは、実施の形態1と同様となる。
【0069】
よって、本実施の形態におけるように、スロープを反転させ、かつ、マッハツェンダ型光変調器100の各アームに与える変調信号を反転させることで、0よりも大きく0.5よりも小さい(0<η<0.5)範囲の中で分岐比ηを設計することが可能となる。
【0070】
次いで、伝送条件2の下で、実施の形態2において入力側分岐部20の分岐比ηを変化させた場合の消光比の波長依存性について検討する。
図16に、実施の形態2において入力側分岐部20の分岐比ηを変化させた場合の消光比の波長依存性を示す。この場合でも、
図16に示すように、分岐比ηが0.36~0.15の範囲では、所望の消光比を実現できることがわかる。
【0071】
なお、
図16では、比較のため、
図10に示した、入力側分岐部20の分岐比ηが0.66~0.80の範囲における消光比の波長依存性を併せて表示した。当然のことながら、分岐比ηが0.66~0.80の範囲における消光比の波長依存性は実施の形態1におけるものなので、スロープの反転及び変調信号の反転は行われていない。
【0072】
図16からわかるように、所望の分散補償を実現するには、分岐比ηを、0.5よりも小さな範囲、及び、0.5よりも大きな範囲、の両方の中で設計できることが理解できる。
【0073】
また、分岐比ηが0.66~0.80の範囲となる実施の形態1と、分岐比ηが0.36~0.15の範囲となる実施の形態2と、を比較すると、実施の形態2の方が、消光比の波長依存性が低いことがわかる。
【0074】
次いで、比較例として、出力側分岐部50を2×2のMMIカプラとして構成した場合の消光比の波長依存性についても検討した。
図17に、出力側分岐部50を2×2のMMIカプラとして構成した場合の、消光比の波長依存性を示す。出力側分岐部50を2×2のMMIカプラとして構成した場合には、
図9の場合と同様に、分岐比ηの値にかかわりなく、消光比の波長依存性が大きくなることがわかる。したがって、消光比の波長依存性を小さくするためには、入力側分岐部20及び出力側分岐部50を、共に方向性結合器として構成するのが望ましいことが、改めて確認できる。
【0075】
実施の形態3
上述の実施の形態では、簡略化のため、出力側分岐部50の分岐比γを0.5に固定した場合について説明した。しかしながら、出力側分岐部50の分岐比γを、0.5以外の値とすることも可能である。ここでは、出力側分岐部50の分岐比γを0.5以外の値とした場合について説明する。
【0076】
[伝送条件3]
ここでは、伝送条件3として、伝送距離を12.5km、すなわち消光比の上限を30dB、下限を伝送条件1と同じ5dBとした場合について説明する。なお、ここでも、入力側分岐部20及び出力側分岐部50を方向性結合器として構成している。
【0077】
[比較例:出力側分岐部50の分岐比γを0.5とした場合]
図18に、伝送距離12.5km、すなわち消光比が5dB~30dBの範囲において、出力側分岐部50の分岐比γを上述と同様に0.5とした場合の消光比の波長依存性を示す。この場合、入力側分岐部20の分岐比ηが0.46~0.10及び0.54~0.87の範囲で、所望の消光比が実現できる。
【0078】
[変更例:出力側分岐部50の分岐比γを0.4とした場合]
【0079】
図19に、伝送距離12.5km、すなわち消光比が5dB~30dBの範囲において、出力側分岐部50の分岐比γを0.4に変更した場合の消光比の波長依存性を示す。この場合、入力側分岐部20の分岐比ηが0.37~0.05及び0.44~0.84の範囲で、所望の消光比が実現できる。なお、入力側分岐部20の分岐比ηが0.37~0.05の範囲となるときが、スロープの反転及び変調信号の反転を行っていない状態に対応する。また、入力側分岐部20の分岐比ηが0.44~0.84の範囲となるときが、スロープの反転及び変調信号の反転を行っている状態に対応する。
【0080】
以上より、入力側分岐部20の分岐比η及び出力側分岐部50の分岐比γを、共に0.5以外の値とした場合でも、所望の正分散耐力を付与し、かつ、所望の消光比を実現できる分岐比η及びγを適切に設計できることが理解できる。
【0081】
実施の形態4
上述の実施の形態では、マッハツェンダ型光変調器100の出力はクロスポート出力である場合について説明した。しかし、出力はこれに限られるものでなく、バーポート出力としてもよい。以下では、バーポート出力の場合について説明する。
【0082】
図20に、実施の形態4にかかるマッハツェンダ型光変調器400の構成を模式的に示す。マッハツェンダ型光変調器400は、
図1のマッハツェンダ型光変調器100と比べて、出力光の出力元が、クロスポート経路の出力ポート53からバーボート経路の出力ポート54に変更されている。
【0083】
マッハツェンダ型光変調器においてバーポート出力を用いる場合、マッハツェンダ型光変調器のバーポート出力の出力電界E
OUTは、以下の式[20]で表される。なお、式[20]は、マッハツェンダ型光変調器のクロスポート出力の出力電界の式[2]において、出力側分岐部50のクロスポート分岐比γとバーポート分岐比(1-γ)とを入れ替えたものなる。
【数20】
式[20]より、出力電界E
OUTのパワーPは、以下の式[21]のように記述できる。
【数21】
【0084】
実施の形態1と同様に、スロープ及び変調信号は非反転であるものとすると、αパラメータは、以下の式[22]で記述できる。
【数22】
【0085】
この場合、消光比ERは、以下の式[23]で記述できる。
【数23】
言うまでも無いが、式[21]~[23]についても、それぞれ、式[5]、[11]及び[12]の出力側分岐部50のクロスポート分岐比γとバーポート分岐比(1-γ)とを入れ替えたものとなっている。
【0086】
以上説明したように、バーポート出力を用いる場合でも、同様に、αパラメータの調整によって正分散耐力を付与するとともに、所望の消光比を実現できるように、入力側分岐部20の分岐比ηと、出力側分岐部50の分岐比γとを好適に設計できることがわかる。
【0087】
よって、マッハツェンダ型光変調器100のバーポート出力についても、クロスポート出力と同様に用いることができる。
【0088】
その他の実施の形態
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。上述のマッハツェンダ型光変調器は、各種の材料系やプロセスで作製されてもよく、例えば、シリコンフォトニクスデバイスとして作製されてもよい。
【符号の説明】
【0089】
100 マッハツェンダ型光変調器
11、12 入力導波路
20 入力側分岐部
21、22、51、52 入力ポート
23、24、53、54 出力ポート
31、32 アーム
41、42 位相変調部
50 出力側分岐部
61、62 出力導波路