IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社トプコンの特許一覧

<>
  • 特開-眼科装置、及びその制御方法 図1
  • 特開-眼科装置、及びその制御方法 図2
  • 特開-眼科装置、及びその制御方法 図3
  • 特開-眼科装置、及びその制御方法 図4
  • 特開-眼科装置、及びその制御方法 図5
  • 特開-眼科装置、及びその制御方法 図6
  • 特開-眼科装置、及びその制御方法 図7
  • 特開-眼科装置、及びその制御方法 図8
  • 特開-眼科装置、及びその制御方法 図9
  • 特開-眼科装置、及びその制御方法 図10
  • 特開-眼科装置、及びその制御方法 図11
  • 特開-眼科装置、及びその制御方法 図12
  • 特開-眼科装置、及びその制御方法 図13
  • 特開-眼科装置、及びその制御方法 図14
  • 特開-眼科装置、及びその制御方法 図15
  • 特開-眼科装置、及びその制御方法 図16
  • 特開-眼科装置、及びその制御方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023175006
(43)【公開日】2023-12-08
(54)【発明の名称】眼科装置、及びその制御方法
(51)【国際特許分類】
   A61B 3/10 20060101AFI20231201BHJP
【FI】
A61B3/10 100
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2023182184
(22)【出願日】2023-10-24
(62)【分割の表示】P 2018179981の分割
【原出願日】2018-09-26
(71)【出願人】
【識別番号】000220343
【氏名又は名称】株式会社トプコン
(74)【代理人】
【識別番号】100124626
【弁理士】
【氏名又は名称】榎並 智和
(72)【発明者】
【氏名】廣瀬 僚一
(72)【発明者】
【氏名】山口 達夫
(72)【発明者】
【氏名】三野 聡大
【テーマコード(参考)】
4C316
【Fターム(参考)】
4C316AA09
4C316AB04
4C316AB11
4C316AB16
4C316FB29
4C316FZ03
(57)【要約】
【課題】光スキャナーを用いてOCT計測を行うための新たな技術を提供する。
【解決手段】眼科装置は、データ取得部と、記憶部と、補正部とを含む。データ取得部は、線形動作範囲と非線形動作範囲とを含む所定の偏向角度範囲で光を偏向可能な光スキャナーを含み、光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得する。記憶部は、光スキャナーの偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した非線形動作範囲の複数の補正データを記憶する。補正部は、光スキャナーのスキャン条件に対応した複数の補正データのいずれかに基づいて、第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する。
【選択図】図11
【特許請求の範囲】
【請求項1】
線形動作範囲と非線形動作範囲とを含む所定の偏向角度範囲で光を偏向可能な光スキャナーを含み、前記光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得するデータ取得部と、
前記光スキャナーの偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した前記非線形動作範囲の複数の補正データを記憶する記憶部と、
前記光スキャナーのスキャン条件に対応した前記複数の補正データのいずれかに基づいて、前記測定光による走査位置の偏在をキャンセルするように前記第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する補正部と、
を含む、眼科装置。
【請求項2】
線形動作範囲と非線形動作範囲とを含む第1偏向角度範囲で光を偏向可能な第1光スキャナーと、線形動作範囲と非線形動作範囲とを含む第2偏向角度範囲で光を偏向可能な第2光スキャナーとを含み、前記第1光スキャナー及び前記第2光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得するデータ取得部と、
前記第1偏向角度範囲の非線形動作範囲に対応した第1補正データと、前記第2偏向角度範囲の非線形動作範囲に対応した第2補正データとを記憶する記憶部と、
前記第1補正データ又は前記第2補正データに基づいて、前記測定光による走査位置の偏在をキャンセルするように前記第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する補正部と、
を含む、眼科装置。
【請求項3】
前記記憶部は、前記第1光スキャナーの前記第1偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した前記非線形動作範囲の複数の第1補正データと、前記第2光スキャナーの前記第2偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した前記非線形動作範囲の複数の第2補正データとを記憶し、
前記補正部は、前記第1光スキャナーのスキャン条件に対応した前記複数の第1補正データのいずれか、又は前記第2光スキャナーのスキャン条件に対応した前記複数の第2補正データのいずれかに基づいて、前記第2データセット群を生成する
ことを特徴とする請求項2に記載の眼科装置。
【請求項4】
前記補正部は、
前記非線形動作範囲において偏向角度が等間隔になるように前記第1データセット群の2つのデータセットを選択し、選択された2つのデータセットについてAスキャン方向の所定範囲を特定し、偏向角度が等間隔になるように補間データセットのAスキャン方向の位置を特定し、選択された2つのデータセットを、特定された前記位置に位置合わせする位置合わせ部と、
前記位置合わせ部により位置合わせが行われた前記2つのデータセットを補間して補間データセットを算出する補間部と、
を含み、前記選択された2つのデータセットを前記補間部により算出された補間データセットに置き換える
ことを特徴とする請求項1~請求項3のいずれか一項に記載の眼科装置。
【請求項5】
前記補正部により生成された前記第2データセット群に基づいて前記被検眼の断層像を形成する画像形成部を含む
ことを特徴とする請求項1~請求項4のいずれか一項に記載の眼科装置。
【請求項6】
線形動作範囲と非線形動作範囲とを含む所定の偏向角度範囲で光を偏向可能な光スキャナーを含む眼科装置の制御方法であって、
前記光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得するデータ取得ステップと、
前記光スキャナーの偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した前記非線形動作範囲の複数の補正データのうち、前記光スキャナーのスキャン条件に対応した前記複数のデータのいずれかに基づいて、前記測定光による走査位置の偏在をキャンセルするように前記第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する補正ステップと、
を含む、眼科装置の制御方法。
【請求項7】
線形動作範囲と非線形動作範囲とを含む第1偏向角度範囲で光を偏向可能な第1光スキャナーと、線形動作範囲と非線形動作範囲とを含む第2偏向角度範囲で光を偏向可能な第2光スキャナーとを含む眼科装置の制御方法であって、
前記第1光スキャナー及び前記第2光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得するデータ取得ステップと、
前記第1偏向角度範囲の非線形動作範囲に対応した第1補正データ、又は前記第2偏向角度範囲の非線形動作範囲に対応した第2補正データに基づいて、前記測定光による走査位置の偏在をキャンセルするように前記第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する補正ステップと、
を含む、眼科装置の制御方法。
【請求項8】
前記眼科装置は、前記第1光スキャナーの前記第1偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した前記非線形動作範囲の複数の第1補正データと、前記第2光スキャナーの前記第2偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した前記非線形動作範囲の複数の第2補正データとを記憶し、
前記補正ステップは、前記第1光スキャナーのスキャン条件に対応した前記複数の第1補正データのいずれか、又は前記第2光スキャナーのスキャン条件に対応した前記複数の第2補正データのいずれかに基づいて、前記第2データセット群を生成する
ことを特徴とする請求項7に記載の眼科装置の制御方法。
【請求項9】
前記補正ステップは、
前記非線形動作範囲において偏向角度が等間隔になるように前記第1データセット群の2つのデータセットを選択し、選択された2つのデータセットについてAスキャン方向の所定範囲を特定し、偏向角度が等間隔になるように補間データセットのAスキャン方向の位置を特定し、選択された2つのデータセットを、特定された前記位置に位置合わせする位置合わせステップと、
前記位置合わせステップにおいて位置合わせが行われた前記2つのデータセットを補間して補間データセットを算出する補間ステップと、
を含み、前記選択された2つのデータセットを前記補間ステップにおいて算出された補間データセットに置き換える
ことを特徴とする請求項6~請求項8のいずれか一項に記載の眼科装置の制御方法。
【請求項10】
前記補正ステップにおいて生成された前記第2データセット群に基づいて前記被検眼の断層像を形成する画像形成ステップを含む
ことを特徴とする請求項6~請求項9のいずれか一項に記載の眼科装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、眼科装置、及びその制御方法に関する。
【背景技術】
【0002】
近年、レーザー光源等からの光ビームを用いて被測定物体の形態を測定したり画像化したりする光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)が注目を集めている。OCTは、X線CT(Computed Tomography)のような人体に対する侵襲性を持たないことから、特に医療分野や生物学分野における応用の展開が期待されている。例えば、眼科分野においては、眼底や角膜等の画像を形成する装置が実用化されている。このようなOCTを用いた装置(OCT装置)は被検眼の様々な部位(眼底や前眼部)の観察に適用可能である。また、高精細な画像を取得できることから、様々な眼科疾患の診断に応用されている。
【0003】
OCTを用いた計測(撮影)では、光スキャナーにより偏向された測定光を用いて計測部位に対してスキャンが実行される。例えば、特許文献1には、ガルバノスキャナーの移動指令値に対して常時補正計算を実施することにより、走査軌跡の直線性を担保する手法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2011-170209号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
OCTを用いた計測では、より広角で、より高精細な計測結果を取得することが求められる。従って、光スキャナーには、より広い偏向角度範囲で、より高速に動作することが求められる。しかしながら、ガルバノスキャナー等の光スキャナーは、高速動作に追従することが難しい。
【0006】
このように、光スキャナーの動作特性によってOCT計測において所望の計測結果を取得することが制限される。
【0007】
本発明は、このような事情を鑑みてなされたものであり、その目的は、光スキャナーを用いてOCT計測を行うための新たな技術を提供することにある。
【課題を解決するための手段】
【0008】
いくつかの実施形態の第1態様は、所定の偏向角度範囲で光を偏向可能な光スキャナーを含み、前記光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得するデータ取得部と、前記光スキャナーの動作特性に対応した補正データを記憶する記憶部と、前記記憶部に記憶された補正データに基づいて前記第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する補正部と、を含む眼科装置である。
【0009】
いくつかの実施形態の第2態様では、第1態様において、前記補正部は、前記第1データセット群が前記光スキャナーにより前記偏向角度範囲において略等間隔の偏向角度で偏向された測定光に基づいて取得されたデータセット群になるように、前記第1データセット群のうち前記偏向角度範囲の少なくとも一部の範囲に対応する1以上のデータセットを前記補正データに基づいて補正する。
【0010】
いくつかの実施形態の第3態様では、第2態様において、前記光スキャナーは、前記測定光を反射するミラーを含み、前記ミラーを前記偏向方向に対応する揺動方向に往復的に揺動することにより前記偏向角度範囲で前記測定光を偏向し、前記偏向角度範囲の少なくとも一部の範囲は、前記揺動方向への前記ミラーの揺動を開始する第1偏向角度又は前記揺動方向への前記ミラーの揺動を終了する第2偏向角度を含む。
【0011】
いくつかの実施形態の第4態様では、第1態様~第3態様のいずれかにおいて、前記補正部は、前記第1データセット群の少なくとも一部から1以上のデータセットを抽出する抽出部を含み、前記第1データセット群の少なくとも一部を前記1以上のデータセットに置き換える。
【0012】
いくつかの実施形態の第5態様では、第1態様~第3態様のいずれかにおいて、前記補正部は、前記第1データセット群の少なくとも一部を補間して補間データセットを算出する補間部を含み、前記第1データセット群の少なくとも一部を前記補間部により算出された補間データセットに置き換える。
【0013】
いくつかの実施形態の第6態様では、第1態様~第3態様のいずれかにおいて、前記補正部は、前記第1データセット群の少なくとも一部をAスキャン方向に位置合わせする位置合わせ部と、前記位置合わせ部により位置合わせが行われた前記第1データセット群の少なくとも一部を補間して補間データセットを算出する補間部と、を含み、前記第1データセット群の少なくとも一部を前記補間部により算出された補間データセットに置き換える。
【0014】
いくつかの実施形態の第7態様では、第1態様~第3態様のいずれかにおいて、前記補正部は、前記第1データセット群に新たなデータセットを追加する。
【0015】
いくつかの実施形態の第8態様では、第7態様において、前記新たなデータセットは、前記第1データセット群の少なくとも一部に基づいて生成される。
【0016】
いくつかの実施形態の第9態様では、第1態様~第8態様のいずれかにおいて、前記光スキャナーは、前記測定光を第1偏向方向に第1偏向角度範囲で偏向する第1スキャナーと、前記第1スキャナーにより偏向された前記測定光を第2偏向方向に第2偏向角度範囲で前記被検眼に向けて偏向する第2スキャナーと、を含み、前記補正部は、前記第1スキャナーの動作特性に対応した第1補正データに基づく前記第1データセット群の少なくとも一部に対する補正処理、及び前記第2スキャナーの動作特性に対応した第2補正データに基づく前記第1データセット群の少なくとも一部に対する補正処理のいずれかを切り替えて実行可能である。
【0017】
いくつかの実施形態の第10態様では、第1態様~第9態様のいずれかにおいて、前記記憶部は、前記光スキャナーの偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した複数の補正データを記憶し、前記補正部は、前記スキャン条件に対応して前記記憶部に記憶された補正データに基づいて前記第1データセット群の少なくとも一部を補正する。
【0018】
いくつかの実施形態の第11態様は、第1態様~第10態様のいずれかにおいて、前記補正部により生成された前記第2データセット群に基づいて前記被検眼の断層像を形成する画像形成部を含む。
【0019】
いくつかの実施形態の第12態様は、所定の偏向角度範囲で光を偏向可能な光スキャナーを含む眼科装置の制御方法である。眼科装置の制御方法は、前記光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得するデータ取得ステップと、前記光スキャナーの動作特性に対応した補正データに基づいて前記第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する補正ステップと、を含む。
【0020】
いくつかの実施形態の第13態様では、第12態様において、前記補正ステップは、前記第1データセット群が前記光スキャナーにより前記偏向角度範囲において略等間隔の偏向角度で偏向された測定光に基づいて取得されたデータセット群になるように、前記第1データセット群のうち前記偏向角度範囲の少なくとも一部の範囲に対応する1以上のデータセットを前記補正データに基づいて補正する。
【0021】
いくつかの実施形態の第14態様では、第13態様において、前記光スキャナーは、前記測定光を反射するミラーを含み、前記ミラーを前記偏向方向に対応する揺動方向に往復的に揺動することにより前記偏向角度範囲で前記測定光を偏向し、前記偏向角度範囲の少なくとも一部の範囲は、前記揺動方向への前記ミラーの揺動を開始する第1偏向角度又は前記揺動方向への前記ミラーの揺動を終了する第2偏向角度を含む。
【0022】
いくつかの実施形態の第15態様では、第12態様~第14態様のいずれかにおいて、前記光スキャナーは、前記測定光を第1偏向方向に第1偏向角度範囲で偏向する第1スキャナーと、前記第1スキャナーにより偏向された前記測定光を第2偏向方向に第2偏向角度範囲で前記被検眼に向けて偏向する第2スキャナーと、を含み、前記補正ステップは、前記第1スキャナーの動作特性に対応した第1補正データに基づく前記第1データセット群の少なくとも一部に対する補正処理、及び前記第2スキャナーの動作特性に対応した第2補正データに基づく前記第1データセット群の少なくとも一部に対する補正処理のいずれかを切り替えて実行可能である。
【0023】
いくつかの実施形態の第16態様は、第12態様~第15態様のいずれかにおいて、前記補正ステップにおいて生成された前記第2データセット群に基づいて前記被検眼の断層像を形成する画像形成ステップを含む。
【0024】
なお、上記した複数の請求項に係る構成を任意に組み合わせることが可能である。
【発明の効果】
【0025】
本発明によれば、光スキャナーを用いてOCT計測を行うための新たな技術を提供することができる。
【図面の簡単な説明】
【0026】
図1】実施形態に係る眼科装置の構成の一例を表す概略図である。
図2】実施形態に係る眼科装置の構成の一例を表す概略図である。
図3】実施形態に係る眼科装置の構成の一例を表す概略ブロック図である。
図4】実施形態に係る光スキャナーの動作特性の一例を示す概略図である。
図5】実施形態に係る眼科装置が実行する処理を説明するための概略図である。
図6】実施形態に係る眼科装置が実行する処理を説明するための概略図である。
図7】実施形態に係る眼科装置の構成の一例を表す概略図である。
図8】実施形態に係る眼科装置が実行する処理を説明するための概略図である。
図9】実施形態に係る眼科装置の構成の一例を表す概略図である。
図10】実施形態に係る眼科装置が実行する処理を説明するための概略図である。
図11】実施形態に係る眼科装置の構成の一例を表す概略図である。
図12】実施形態に係る眼科装置が実行する処理を説明するための概略図である。
図13】実施形態に係る眼科装置の構成の一例を表す概略図である。
図14】実施形態に係る眼科装置が実行する処理を説明するための概略図である。
図15】実施形態に係る眼科装置の動作例を表すフローチャートである。
図16】実施形態に係る眼科装置の動作例を表すフローチャートである。
図17】実施形態の変形例に係る眼科装置の構成の一例を表す概略ブロック図である。
【発明を実施するための形態】
【0027】
この発明に係る眼科装置、及び眼科装置の制御方法の実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
【0028】
実施形態に係る眼科装置は、所定の偏向角度範囲で測定光を偏向可能な光スキャナーを含み、光スキャナーにより所定の偏向方向に偏向される測定光を用いて被検眼に対してOCTを実行することが可能である。眼科装置は、OCTを実行することによりAスキャン方向のデータセット群(第1データセット群)を取得し、光スキャナーの動作特性(例えば、偏向角度対時間特性)に対応した補正データに基づいてデータセット群の少なくとも一部を補正することにより新たなデータセット群(第2データセット群)を生成する。いくつかの実施形態では、データセット群は、干渉光の検出データ(検出結果)に対してフーリエ変換等を施すことにより得られたAスキャン方向の反射強度プロファイルデータのデータセット群である。いくつかの実施形態では、データセット群は、反射強度プロファイルを画像化することにより得られたAスキャン画像データのデータセット群である。いくつかの実施形態では、データセット群は、干渉光の検出データのデータセット群である。
【0029】
これにより、光スキャナーの動作特性を考慮したAスキャン方向のデータセット群を取得することが可能になる。例えば、光スキャナーの非線形動作によって偏在した走査位置において取得されたデータセット群から、均一に配置された走査位置におけるデータセット群を生成することが可能になる。ここで、光スキャナーの非線形動作は、光スキャナーが時間(データ収集タイミング)の変化に対して偏向角度が線形的に変化しない動作を意味する。また、例えば、光スキャナーの線形動作によって取得されたデータセット群から、所望の部位だけ高密度で取得されたデータセット群を生成することが可能である。
【0030】
以下では、光スキャナーがガルバノスキャナーを含み、所定の偏向角度範囲において線形動作を行い、別の偏向角度範囲において非線形動作を行う場合について説明する。しかしながら、光スキャナーが線形動作を行う場合についても以下の実施形態を適用することが可能である。また、以下では、光スキャナーの動作特性として偏向角度対時間特性を例に説明するが、光スキャナーの他の動作特性についても以下の実施形態を適用することが可能である。
【0031】
また、以下では、Aスキャン画像データのデータセット群を補正する場合について説明するが、反射強度プロファイルデータ等のデータセット群を補正する場合についても以下の実施形態を適用することが可能である。
【0032】
この明細書では、OCTによって取得される画像をOCT画像と総称することがある。また、OCT画像を形成するための計測動作をOCT計測と呼ぶことがある。
【0033】
いくつかの実施形態に係る眼科装置は、眼科撮影装置と、眼科測定装置と、眼科治療装置とのうちのいずれか1つ以上を含む。いくつかの実施形態の眼科装置に含まれる眼科撮影装置は、例えば、眼底カメラ、走査型レーザー検眼鏡、スリットランプ検眼鏡、手術用顕微鏡等のうちのいずれか1つ以上である。また、いくつかの実施形態の眼科装置に含まれる眼科測定装置は、例えば、眼屈折検査装置、眼圧計、スペキュラーマイクロスコープ、ウェーブフロントアナライザ、視野計、マイクロペリメータ等のうちのいずれか1つ以上である。また、いくつかの実施形態の眼科装置に含まれる眼科治療装置は、例えば、レーザー治療装置、手術装置、手術用顕微鏡等のうちのいずれか1つ以上である。
【0034】
以下の実施形態に係る眼科装置は、OCT計測が可能なOCT装置と眼底カメラとを含む。また、以下の実施形態に係る構成を、単体のOCT装置に組み込むことも可能である。
【0035】
以下では、被検眼の眼底に対するOCT計測が可能な眼科装置を例に説明するが、実施形態に係る眼科装置は、被検眼の前眼部に対してOCT計測が可能であってよい。いくつかの実施形態では、測定光の焦点位置を変更するレンズを移動することで、OCT計測の範囲や計測部位を変更する。いくつかの実施形態では、1以上のアタッチメント(対物レンズ、前置レンズ等)を加えることで、眼底に対するOCT計測と、前眼部に対するOCT計測と、眼底及び前眼部を含む全眼球に対するOCT計測とが可能な構成である。いくつかの実施形態では、眼底計測用の眼科装置において、対物レンズと被検眼との間に前置レンズを配置することで平行光束にされた測定光を被検眼に入射させることで前眼部に対するOCT計測を行う。
【0036】
<構成>
〔光学系〕
図1に示すように、眼科装置1は、眼底カメラユニット2、OCTユニット100及び演算制御ユニット200を含む。眼底カメラユニット2には、被検眼Eの正面画像を取得するための光学系や機構が設けられている。OCTユニット100には、OCTを実行するための光学系や機構の一部が設けられている。OCTを実行するための光学系や機構の他の一部は、眼底カメラユニット2に設けられている。演算制御ユニット200は、各種の演算や制御を実行する1以上のプロセッサを含む。これらに加え、被検者の顔を支持するための部材(顎受け、額当て等)や、OCTの対象部位を切り替えるためのレンズユニット(例えば、前眼部OCT用アタッチメント)等の任意の要素やユニットが眼科装置1に設けられてもよい。いくつかの実施形態では、レンズユニットが手動で被検眼Eと後述の対物レンズ22との間に挿脱されるように構成される。いくつかの実施形態では、後述の制御部210からの制御を受け、レンズユニットが被検眼Eと後述の対物レンズ22との間に自動で挿脱されるように構成される。
【0037】
本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
【0038】
[眼底カメラユニット]
眼底カメラユニット2には、被検眼Eの眼底Efを撮影するための光学系が設けられている。取得される眼底Efの画像(眼底像、眼底写真等と呼ばれる)は、観察画像、撮影画像等の正面画像である。観察画像は、近赤外光を用いた動画撮影により得られる。撮影画像は、フラッシュ光を用いた静止画像である。更に、眼底カメラユニット2は、被検眼Eの前眼部Eaを撮影して正面画像(前眼部像)を取得することができる。
【0039】
眼底カメラユニット2は、照明光学系10と撮影光学系30とを含む。照明光学系10は被検眼Eに照明光を照射する。撮影光学系30は、被検眼Eからの照明光の戻り光を検出する。OCTユニット100からの測定光は、眼底カメラユニット2内の光路を通じて被検眼Eに導かれ、その戻り光は、同じ光路を通じてOCTユニット100に導かれる。
【0040】
照明光学系10の観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。更に、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19及びリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて被検眼E(眼底Ef又は前眼部Ea)を照明する。被検眼Eからの観察照明光の戻り光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過する。ダイクロイックミラー55を透過した戻り光は、撮影合焦レンズ31を経由し、ミラー32により反射される。更に、この戻り光は、ハーフミラー33Aを透過し、ダイクロイックミラー33により反射され、集光レンズ34によりイメージセンサ35の受光面に結像される。イメージセンサ35は、所定のフレームレートで戻り光を検出する。なお、撮影光学系30のフォーカスは、眼底Ef又は前眼部Eaに合致するように調整される。
【0041】
撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。被検眼Eからの撮影照明光の戻り光は、観察照明光の戻り光と同じ経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりイメージセンサ38の受光面に結像される。
【0042】
LCD(Liquid Crystal Display)39は固視標や視力測定用視標を表示する。LCD39から出力された光束は、その一部がハーフミラー33Aにて反射され、ミラー32に反射され、撮影合焦レンズ31及びダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過する。孔開きミラー21の孔部を通過した光束は、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。
【0043】
LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eの固視位置を変更できる。固視位置の例として、黄斑を中心とする画像を取得するための固視位置や、視神経乳頭を中心とする画像を取得するための固視位置や、黄斑と視神経乳頭との間の眼底中心を中心とする画像を取得するための固視位置や、黄斑から大きく離れた部位(眼底周辺部)の画像を取得するための固視位置などがある。いくつかの実施形態に係る眼科装置1は、このような固視位置の少なくとも1つを指定するためのGUI(Graphical User Interface)等を含む。いくつかの実施形態に係る眼科装置1は、固視位置(固視標の表示位置)をマニュアルで移動するためのGUI等を含む。
【0044】
移動可能な固視標を被検眼Eに呈示するための構成はLCD等の表示装置には限定されない。例えば、光源アレイ(発光ダイオード(LED)アレイ等)における複数の光源を選択的に点灯させることにより、移動可能な固視標を生成することができる。また、移動可能な1以上の光源により、移動可能な固視標を生成することができる。
【0045】
また、眼科装置1には、1以上の外部固視光源が設けられてもよい。1以上の外部固視光源の1つは、被検眼Eの僚眼に固視光を投射することが可能である。僚眼における固視光の投射位置は、変更可能である。僚眼に対する固視光の投射位置を変更することにより、被検眼Eの固視位置を変更することができる。外部固視光源による固視位置は、LCD39を用いた被検眼Eの固視位置と同様であってよい。例えば、複数の外部固視光源を選択的に点灯させることにより、移動可能な固視標を生成することができる。また、移動可能な1以上の外部固視光源により、移動可能な固視標を生成することができる。
【0046】
アライメント光学系50は、被検眼Eに対する光学系のアライメントに用いられるアライメント指標を生成する。LED51から出力されたアライメント光は、絞り52及び53並びにリレーレンズ54を経由し、ダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過する。孔開きミラー21の孔部を通過した光は、ダイクロイックミラー46を透過し、対物レンズ22により被検眼Eに投射される。アライメント光の角膜反射光は、観察照明光の戻り光と同じ経路を通ってイメージセンサ35に導かれる。その受光像(アライメント指標像)に基づいてマニュアルアライメントやオートアライメントを実行できる。
【0047】
フォーカス光学系60は、被検眼Eに対するフォーカス調整に用いられるスプリット指標を生成する。フォーカス光学系60は、撮影光学系30の光路(撮影光路)に沿った撮影合焦レンズ31の移動に連動して、照明光学系10の光路(照明光路)に沿って移動される。反射棒67は、照明光路に対して挿脱可能である。フォーカス調整を行う際には、反射棒67の反射面が照明光路に傾斜配置される。LED61から出力されたフォーカス光は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65により反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。更に、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投射される。フォーカス光の眼底反射光は、アライメント光の角膜反射光と同じ経路を通ってイメージセンサ35に導かれる。その受光像(スプリット指標像)に基づいてマニュアルフォーカスやオートフォーカスを実行できる。
【0048】
ダイクロイックミラー46は、眼底撮影用光路とOCT用光路とを合成する。ダイクロイックミラー46は、OCTに用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。OCT用光路(測定光の光路)には、OCTユニット100側からダイクロイックミラー46側に向かって順に、コリメータレンズユニット40、光路長変更部41、光スキャナー42、OCT合焦レンズ43、ミラー44、及びリレーレンズ45が設けられている。
【0049】
光路長変更部41は、図1に示す矢印の方向に移動可能とされ、OCT用光路の長さを変更する。この光路長の変更は、眼軸長に応じた光路長補正や、干渉状態の調整などに利用される。光路長変更部41は、コーナーキューブと、これを移動する機構とを含む。
【0050】
光スキャナー42は、被検眼Eの瞳孔と光学的に共役な位置に配置される。光スキャナー42は、OCT用光路を通過する測定光LSを偏向する。光スキャナー42は、測定光LSを1次元的又は2次元的に偏向することが可能である。
【0051】
1次元的に偏向する場合、光スキャナー42は、所定の偏向方向に所定の偏向角度範囲で測定光LSを偏向するガルバノスキャナーを含む。2次元的に偏向する場合、光スキャナー42は、第1ガルバノスキャナーと、第2ガルバノスキャナーとを含む。第1ガルバノスキャナーは、OCT光学系8の光軸に直交する水平方向に撮影部位(眼底Ef又は前眼部)をスキャンするように測定光LSを偏向する。第2ガルバノスキャナーは、OCT光学系8の光軸に直交する垂直方向に撮影部位をスキャンするように、第1ガルバノスキャナーにより偏向された測定光LSを偏向する。光スキャナー42による測定光LSの走査態様としては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。
【0052】
OCT合焦レンズ43は、OCT用の光学系のフォーカス調整を行うために、測定光LSの光路に沿って移動される。OCT合焦レンズ43は、被検眼Eの眼底Ef又はその近傍に測定光LSの焦点位置を配置するための第1レンズ位置と、被検眼Eに照射される測定光LSを平行光束にするための第2レンズ位置とを含む移動範囲で移動可能である。撮影合焦レンズ31の移動、フォーカス光学系60の移動、及びOCT合焦レンズ43の移動を連係的に制御することができる。
【0053】
[OCTユニット]
OCTユニット100の構成の一例を図2に示す。OCTユニット100には、被検眼EのOCT画像を取得するための光学系が設けられている。この光学系は、波長掃引型(波長走査型)光源からの光を測定光と参照光とに分割し、被検眼Eからの測定光の戻り光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光を検出する干渉光学系である。干渉光学系による干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す干渉信号であり、演算制御ユニット200に送られる。
【0054】
光源ユニット101は、一般的なスウェプトソースタイプの眼科装置と同様に、出射光の波長を掃引(走査)可能な波長掃引型(波長走査型)光源を含んで構成される。波長掃引型光源は、共振器を含むレーザー光源を含んで構成される。光源ユニット101は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。
【0055】
光源ユニット101から出力された光L0は、光ファイバ102により偏波コントローラ103に導かれてその偏光状態が調整される。偏波コントローラ103は、例えばループ状にされた光ファイバ102に対して外部から応力を与えることで、光ファイバ102内を導かれる光L0の偏光状態を調整する。
【0056】
偏波コントローラ103により偏光状態が調整された光L0は、光ファイバ104によりファイバカプラ105に導かれて測定光LSと参照光LRとに分割される。
【0057】
参照光LRは、光ファイバ110によりコリメータ111に導かれて平行光束となる。平行光束となった参照光LRは、光路長変更部114に導かれる。光路長変更部114は、図2に示す矢印の方向に移動可能とされ、参照光LRの光路長を変更する。この移動により参照光LRの光路の長さが変更される。この光路長の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部114は、例えばコーナーキューブと、これを移動する移動機構とを含んで構成される。この場合、光路長変更部114のコーナーキューブは、コリメータ111により平行光束とされた参照光LRの進行方向を逆方向に折り返す。コーナーキューブに入射する参照光LRの光路と、コーナーキューブから出射する参照光LRの光路とは平行である。
【0058】
なお、図1及び図2に示す構成においては、測定光LSの光路(測定光路、測定アーム)の長さを変更するための光路長変更部41と、参照光LRの光路(参照光路、参照アーム)の長さを変更するための光路長変更部114の双方が設けられている。しかしながら、光路長変更部41及び114の一方だけが設けられていてもよい。また、これら以外の光学部材を用いて、参照光路長と測定光路長との差を変更することも可能である。
【0059】
光路長変更部114を経由した参照光LRは、コリメータ116によって平行光束から集束光束に変換されて光ファイバ117に入射する。
【0060】
コリメータ111と光路長変更部114との間の参照光路、及びコリメータ116と光路長変更部114との間の参照光路の少なくとも一方には、光路長補正部材が配置されていてもよい。光路長補正部材は、参照光LRの光路長(光学距離)と測定光LSの光路長とを合わせるための遅延手段として作用する。
【0061】
光ファイバ117に入射した参照光LRは、偏波コントローラ118に導かれてその偏光状態が調整される。偏波コントローラ118は、例えば、偏波コントローラ103と同様の構成を有する。偏波コントローラ118により偏光状態が調整された参照光LRは、光ファイバ119によりアッテネータ120に導かれて、演算制御ユニット200の制御の下で光量が調整される。アッテネータ120により光量が調整された参照光LRは、光ファイバ121によりファイバカプラ122に導かれる。
【0062】
一方、ファイバカプラ105により生成された測定光LSは、光ファイバ127によりに導かれ、コリメータレンズユニット40により平行光束とされる。平行光束にされた測定光LSは、光路長変更部41、光スキャナー42、OCT合焦レンズ43、ミラー44及びリレーレンズ45を経由してダイクロイックミラー46に導かれる。ダイクロイックミラー46に導かれてきた測定光LSは、ダイクロイックミラー46により反射され、対物レンズ22により屈折されて被検眼Eに照射される。測定光LSは、被検眼Eの様々な深さ位置において散乱(反射を含む)される。このような後方散乱光を含む測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバカプラ105に導かれ、光ファイバ128を経由してファイバカプラ122に到達する。
【0063】
ファイバカプラ122は、光ファイバ128を介して入射された測定光LSと、光ファイバ121を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ122は、所定の分岐比(例えば1:1)で、測定光LSと参照光LRとの干渉光を分岐することにより、一対の干渉光LCを生成する。ファイバカプラ122から出射した一対の干渉光LCは、それぞれ光ファイバ123、124により検出器125に導かれる。
【0064】
検出器125は、例えば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを有し、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode)である。検出器125は、その検出結果(干渉信号)をDAQ(Data Acquisition System)130に送る。DAQ130には、光源ユニット101からクロックKCが供給される。クロックKCは、光源ユニット101において、波長掃引型光源により所定の波長範囲内で掃引(走査)される各波長の出力タイミングに同期して生成される。光源ユニット101は、例えば、各出力波長の光L0を分岐することにより得られた2つの分岐光の一方を光学的に遅延させた後、これらの合成光を検出した結果に基づいてクロックKCを生成する。DAQ130は、クロックKCに基づき、検出器125の検出結果をサンプリングする。DAQ130は、サンプリングされた検出器125の検出結果を演算制御ユニット200に送る。演算制御ユニット200は、例えば一連の波長走査毎に(Aライン毎に)、検出器125により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、演算制御ユニット200は、各Aラインの反射強度プロファイルを画像化することにより画像データを形成する。
【0065】
[演算制御ユニット]
演算制御ユニット200は、DAQ130から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のスウェプトソースタイプのOCT装置と同様である。
【0066】
また、演算制御ユニット200は、眼底カメラユニット2、表示装置3、及びOCTユニット100の各部を制御する。
【0067】
眼底カメラユニット2の制御として、演算制御ユニット200は、観察光源11、撮影光源15、及びLED51、61の動作制御、LCD39の動作制御、撮影合焦レンズ31の移動制御、OCT合焦レンズ43の移動制御、反射棒67の移動制御、フォーカス光学系60の移動制御、光路長変更部41の移動制御、光スキャナー42の動作制御などを行う。
【0068】
表示装置3の制御として、演算制御ユニット200は、被検眼EのOCT画像を表示装置3に表示させる。
【0069】
OCTユニット100の制御として、演算制御ユニット200は、光源ユニット101の動作制御、光路長変更部114の移動制御、アッテネータ120の動作制御、偏波コントローラ103、118の動作制御、検出器125の動作制御、DAQ130の動作制御などを行う。
【0070】
演算制御ユニット200は、例えば、従来のコンピュータと同様に、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイスなどを含んで構成される。ハードディスクドライブ等の記憶装置には、眼科装置1を制御するためのコンピュータプログラムが記憶されている。演算制御ユニット200は、各種の回路基板、例えばOCT画像を形成するための回路基板を備えていてもよい。また、演算制御ユニット200は、キーボードやマウス等の操作デバイス(入力デバイス)や、LCD等の表示デバイスを備えていてもよい。
【0071】
眼底カメラユニット2、表示装置3、OCTユニット100、及び演算制御ユニット200は、一体的に(つまり単一の筺体内に)構成されていてもよいし、2つ以上の筐体に別れて構成されていてもよい。
【0072】
〔制御系〕
図3に、眼科装置1の制御系の構成例を示す。図3において、眼科装置1に含まれる構成要素の一部が省略されている。
【0073】
(制御部)
制御部210は、各種の制御を実行する。制御部210は、主制御部211と記憶部212とを含む。
【0074】
(主制御部)
主制御部211は、プロセッサを含み、眼科装置1の各部を制御する。例えば、主制御部211は、眼底カメラユニット2の合焦駆動部31A及び43A、イメージセンサ35及び38、LCD39、光路長変更部41、光スキャナー42、及び光学系全体(移動機構150)などを制御する。さらに、主制御部211は、OCTユニット100の光源ユニット101、光路長変更部114、アッテネータ120、偏波コントローラ103及び118、検出器125、DAQ130などを制御する。
【0075】
例えば、主制御部211は、手動又は自動で設定された固視位置に対応するLCD39の画面上の位置に固視標を表示する。また、主制御部211は、LCD39に表示されている固視標の表示位置を(連続的に又は段階的に)変更することができる。それにより、固視標を移動することができる(つまり、固視位置を変更することができる)。固視標の表示位置や移動態様は、マニュアルで又は自動的に設定される。マニュアルでの設定は、例えばGUIを用いて行われる。自動的な設定は、例えば、データ処理部230により行われる。
【0076】
合焦駆動部31Aは、撮影光学系30の光軸方向に撮影合焦レンズ31を移動させるとともに、照明光学系10の光軸方向にフォーカス光学系60を移動させる。それにより、撮影光学系30の合焦位置が変更される。合焦駆動部31Aは、撮影合焦レンズ31を移動させる機構と、フォーカス光学系60を移動させる機構とを個別に有していてよい。合焦駆動部31Aは、フォーカス調整を行うときなどに制御される。
【0077】
合焦駆動部43Aは、測定光路の光軸方向にOCT合焦レンズ43を移動させる。それにより、測定光LSの合焦位置が変更される。例えば、OCT合焦レンズ43を第1レンズ位置に移動させることにより、測定光LSの合焦位置を眼底Ef又はその近傍に配置することができる。例えば、OCT合焦レンズ43を第2レンズ位置に移動させることにより、測定光LSの合焦位置を遠点位置に配置して測定光LSを平行光束にすることができる。測定光LSの合焦位置は、測定光LSのビームウェストの深さ位置(z位置)に相当する。
【0078】
移動機構150は、例えば、少なくとも眼底カメラユニット2(光学系)を3次元的に移動する。典型的な例において、移動機構150は、少なくとも眼底カメラユニット2をx方向(左右方向)に移動するための機構と、y方向(上下方向)に移動するための機構と、z方向(奥行き方向、前後方向)に移動するための機構とを含む。x方向に移動するための機構は、例えば、x方向に移動可能なxステージと、xステージを移動するx移動機構とを含む。y方向に移動するための機構は、例えば、例えば、y方向に移動可能なyステージと、yステージを移動するy移動機構とを含む。z方向に移動するための機構は、例えば、z方向に移動可能なzステージと、zステージを移動するz移動機構とを含む。各移動機構は、パルスモータ等のアクチュエータを含み、主制御部211からの制御を受けて動作する。
【0079】
移動機構150に対する制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの眼球運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとフォーカス調整が実行される。トラッキングは、装置光学系の位置を眼球運動に追従させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。いくつかの実施形態では、参照光の光路長(よって、測定光の光路と参照光の光路との間の光路長差)を変更するために移動機構150の制御を行うように構成される。
【0080】
マニュアルアライメントの場合、光学系に対する被検眼Eの変位がキャンセルされるようにユーザが後述のユーザインターフェイス240に対して操作することにより光学系と被検眼Eとを相対移動させる。例えば、主制御部211は、ユーザインターフェイス240に対する操作内容に対応した制御信号を移動機構150に出力することにより移動機構150を制御して光学系と被検眼Eとを相対移動させる。
【0081】
オートアライメントの場合、光学系に対する被検眼Eの変位がキャンセルされるように主制御部211が移動機構150を制御することにより光学系と被検眼Eとを相対移動させる。いくつかの実施形態では、主制御部211は、光学系の光軸が被検眼Eの軸に略一致し、かつ、被検眼Eに対する光学系の距離が所定の作動距離になるように制御信号を移動機構150に出力することにより移動機構150を制御して光学系と被検眼Eとを相対移動させる。ここで、作動距離とは、対物レンズ22のワーキングディスタンスとも呼ばれる既定値であり、光学系を用いた測定時(撮影時)における被検眼Eと光学系との間の距離に相当する。
【0082】
主制御部211は、眼底カメラユニット2等を制御することにより眼底撮影及び前眼部撮影を制御する。また、主制御部211は、眼底カメラユニット2及びOCTユニット100等を制御することによりOCT計測を制御する。主制御部211は、OCT計測を行う前に複数の予備的な動作を実行可能である。予備的な動作としては、アライメント、フォーカス粗調整、偏光調整、フォーカス微調整などがある。複数の予備的な動作は、所定の順序で実行される。いくつかの実施形態では、複数の予備的な動作は、上記の順序で実行される。
【0083】
なお、予備的な動作の種別や順序はこれに限定されるものではなく、任意である。例えば、被検眼Eが小瞳孔眼であるか否か判定するための予備動作(小瞳孔判定)を予備的な動作に加えることができる。小瞳孔判定は、例えば、フォーカス粗調整と光路長差調整との間に実行される。いくつかの実施形態では、小瞳孔判定は、以下の一連の処理を含む:被検眼Eの正面画像(前眼部像)の取得する処理;瞳孔に相当する画像領域を特定する処理;特定された瞳孔領域のサイズ(径、周長など)を求める処理;求められたサイズに基づき小瞳孔眼か否か判定する処理(閾値処理);小瞳孔眼であると判定された場合に絞り19を制御する処理。いくつかの実施形態では、瞳孔サイズを求めるために瞳孔領域を円近似または楕円近似する処理を更に含む。
【0084】
フォーカス粗調整は、スプリット指標を用いたフォーカス調整である。なお、あらかじめ取得された眼屈折力と撮影合焦レンズ31の位置とを関連付けた情報と、被検眼Eの屈折力の測定値とに基づいて撮影合焦レンズ31の位置を決定することにより、フォーカス粗調整を行うこともできる。
【0085】
フォーカス微調整は、OCT計測の干渉感度に基づいて行われる。例えば、被検眼EのOCT計測により取得された干渉信号の干渉強度(干渉感度)をモニタすることにより、干渉強度が最大となるようなOCT合焦レンズ43の位置を求め、その位置にOCT合焦レンズ43を移動させることにより、フォーカス微調整を実行することができる。
【0086】
光路長差調整においては、被検眼Eにおける所定の位置が深さ方向の計測範囲の基準位置になるように制御される。この制御は、光路長変更部41、114の少なくとも一方に対して行われる。それにより、測定光路と参照光路との間の光路長差が調整される。光路長差調整により基準位置を設定しておくことで、波長掃引速度の変更を行うだけで深さ方向の所望の計測範囲に対して精度よくOCT計測を行うことができるようになる。
【0087】
偏光調整においては、測定光LSと参照光LRとの干渉効率を最適化するために参照光LRの偏光状態が調整される。
【0088】
(記憶部)
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、例えば、OCT画像の画像データ、眼底像の画像データ、前眼部像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。
【0089】
また、記憶部212には、補正データ212Aが記憶されている。補正データ212Aは、OCTを実行することにより取得されたAスキャン方向のデータセット群を補正するためのデータである。補正データ212Aは、光スキャナー42の偏向角度対時間特性(広義には、動作特性)に対応したデータである。いくつかの実施形態では、記憶部212は、光スキャナー42の偏向角度範囲及び偏向速度(走査周波数)の少なくとも1つが異なる複数のスキャン条件に対応した複数の補正データ212Aを記憶する。
【0090】
また、記憶部212には、眼科装置1を動作させるための各種プログラムやデータが記憶されている。
【0091】
(データ処理部)
データ処理部230は、被検眼Eの撮影やOCT計測により取得されたデータを処理する。データ処理部230は、画像形成部231と、補正部232とを含む。
【0092】
(画像形成部)
画像形成部231は、検出器125からの検出信号をDAQ130でサンプリングすることにより得られたサンプリングデータに基づいて、被検眼EのOCT画像(画像データ)を形成する。画像形成部231により形成されるOCT画像には、Aスキャン画像、Bスキャン画像(断層像)、Cスキャン画像などがある。この処理には、従来のスウェプトソースタイプのOCTと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、分散補償、FFT(Fast Fourier Transform)などの処理が含まれている。他のタイプのOCT装置の場合、画像形成部231は、そのタイプに応じた公知の処理を実行する。
【0093】
画像形成部231は、例えば、前述の回路基板を含んで構成される。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。
【0094】
例えば、データ処理部230は、画像形成部231により形成された画像に対して各種の画像処理や解析処理を施す。例えば、データ処理部230は、画像の輝度補正等の各種補正処理を実行する。また、データ処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して各種の画像処理や解析処理を施す。
【0095】
データ処理部230は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行して、眼底Efの3次元画像の画像データを形成する。なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、データ処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240A等の表示デバイスには、この擬似的な3次元画像が表示される。
【0096】
また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数のスキャンラインに沿って得られた複数の断層像を、スキャンラインの位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。
【0097】
データ処理部230は、取得された3次元データセット(ボリュームデータ、スタックデータ等)に各種のレンダリングを施すことで、任意断面におけるBモード画像(縦断面像、軸方向断面像)、任意断面におけるCモード画像(横断面像、水平断面像)、プロジェクション画像、シャドウグラムなどを形成することができる。Bモード画像やCモード画像のような任意断面の画像は、指定された断面上の画素(ピクセル、ボクセル)を3次元データセットから選択することにより形成される。プロジェクション画像は、3次元データセットを所定方向(z方向、深さ方向、軸方向)に投影することによって形成される。シャドウグラムは、3次元データセットの一部(たとえば特定層に相当する部分データ)を所定方向に投影することによって形成される。Cモード画像、プロジェクション画像、シャドウグラムのような、被検眼の正面側を視点とする画像を正面画像(en-face画像)と呼ぶ。
【0098】
データ処理部230は、OCTにより時系列に収集されたデータ(例えば、Bスキャン画像データ)に基づいて、網膜血管や脈絡膜血管が強調されたBモード画像や正面画像(血管強調画像、アンギオグラム)を構築することができる。例えば、被検眼Eの略同一部位を反復的にスキャンすることにより、時系列のOCTデータを収集することができる。
【0099】
いくつかの実施形態では、データ処理部230は、略同一部位に対するBスキャンにより得られた時系列のBスキャン画像を比較し、信号強度の変化部分の画素値を変化分に対応した画素値に変換することにより当該変化部分が強調された強調画像を構築する。更に、データ処理部230は、構築された複数の強調画像から所望の部位における所定の厚さ分の情報を抽出してen-face画像として構築することでOCTA像を形成する。
【0100】
データ処理部230により生成された画像(例えば、3次元画像、Bモード画像、Cモード画像、プロジェクション画像、シャドウグラム、OCTA像)もまたOCT画像に含まれる。
【0101】
更に、データ処理部230は、OCT計測により得られた干渉光の検出結果を解析してフォーカス微調整制御における測定光LSのフォーカス状態を判定する。例えば、主制御部211は、合焦駆動部43Aを所定のアルゴリズムにしたがって制御しつつ、反復的なOCT計測を行う。データ処理部230は、OCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、OCT画像の画質に関する所定の評価値を算出する。データ処理部230は、算出された評価値が閾値以下であるか否か判定する。いくつかの実施形態では、フォーカス微調整は、算出される評価値が閾値以下になるまで継続される。すなわち、評価値が閾値以下であるとき測定光LSのフォーカス状態が適正であると判断され、フォーカス微調整は、測定光LSのフォーカス状態が適正であると判断されるまで継続される。
【0102】
いくつかの実施形態では、主制御部211は、上記のような反復的なOCT計測を行って干渉信号を取得しつつ、逐次に取得される干渉信号の強度(干渉強度、干渉感度)をモニタする。更に、このモニタ処理を行いながら、OCT合焦レンズ43を移動させることにより、干渉強度が最大となるようなOCT合焦レンズ43の位置を探索する。このようなフォーカス微調整によれば、干渉強度が最適化されるような位置にOCT合焦レンズ43を導くことができる。
【0103】
また、データ処理部230は、OCT計測により得られた干渉光の検出結果を解析して、測定光LS及び参照光LRの少なくとも一方の偏波状態を判定する。例えば、主制御部211は、偏波コントローラ103、118の少なくとも一方を所定のアルゴリズムにしたがって制御しつつ、反復的なOCT計測を行う。いくつかの実施形態では、主制御部211は、アッテネータ120を制御して、参照光LRの減衰量を変更する。データ処理部230は、OCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、OCT画像の画質に関する所定の評価値を算出する。データ処理部230は、算出された評価値が閾値以下であるか否か判定する。この閾値はあらかじめ設定される。偏波調整は、算出される評価値が閾値以下になるまで継続される。すなわち、評価値が閾値以下であるとき測定光LSの偏波状態が適正であると判断され、偏波調整は、測定光LSの偏波状態が適正であると判断されるまで継続される。
【0104】
いくつかの実施形態では、主制御部211は、偏波調整においても干渉強度をモニタすることが可能である。
【0105】
更に、データ処理部230は、OCT計測により得られた干渉光の検出結果、又は当該検出結果に基づいて形成されたOCT画像に対して所定の解析処理を行う。所定の解析処理には、被検眼Eにおける所定の部位(組織、病変部)の特定;指定された部位間の距離(層間距離)、面積、角度、比率、密度の算出;指定された計算式による演算;所定の部位の形状の特定;これらの統計値の算出;計測値、統計値の分布の算出;これら解析処理結果に基づく画像処理などがある。所定の組織には、血管、視神経乳頭、中心窩、黄斑などがある。所定の病変部には、白斑、出血などがある。
【0106】
(補正部)
補正部232は、画像形成部231により形成されたAスキャン方向のデータセット群を補正データ212Aに基づいて補正することにより、新たなAスキャン方向のデータセット群を生成する。いくつかの実施形態では、補正部232は、スキャン条件に対応して記憶部212に記憶された補正データに基づいてAスキャン方向のデータセット群の少なくとも一部を補正することが可能である。
【0107】
図4図6に、実施形態に係る補正部232の動作説明図を示す。図4は、光スキャナー42の偏向角度対時間特性を模式的に表す。図4において、横軸はAスキャンの実行タイミング(データセットの取得タイミング)に対応する時間を表し、縦軸は偏向角度を表す。図5は、補正部232による補正動作を説明するための図である。図6は、被検眼Eの眼底Efの断層像を模式的に表す。なお、図6において、断層像IMG0、IMG1におけるAスキャンの数は例示的なものであり、その数に限定されるものではない。
【0108】
光スキャナー42は、測定光LSを反射するミラーを含み、ミラーを所定の偏向方向に対応する揺動方向に往復的に揺動することにより所定の偏向角度範囲で測定光LSを偏向する。偏向角度範囲は、図4に示すように、偏向開始角度rs(第1偏向角度)と偏向終了角度re(第2偏向角度)との間の範囲である。このような光スキャナー42は、ガルバノスキャナー、レゾナントミラー等を含む。すなわち、光スキャナー42による偏向角度範囲には、図4に示すように、データセットの取得タイミングの変化(時間変化)に対して偏向角度の変化が略線形的に動作する線形動作範囲R0と、データセットの取得タイミングの変化に対して偏向角度の変化が線形的に動作しない非線形動作範囲R1、R2とが含まれる。非線形動作範囲R1は、偏向開始角度rsを含む。非線形動作範囲R2は、偏向終了角度reを含む。
【0109】
図4に示す偏向角度範囲で測定光LSを偏向することにより得られたAスキャン方向のデータセット群から図6に示すような断層像IMG0が得られる。図6に示す断層像IMG0では、上記の光スキャナー42の非線形動作によって、非線形動作範囲R1、R2において偏向角度の変化が小さくなるため時間的に等間隔で取得されたデータセット群の走査位置の間隔は狭くなる。これに対して、線形動作範囲R0において偏向角度が略等間隔に変化するため時間的に等間隔で取得されたデータセット群の走査位置が等間隔になる。従って、実用上、非線形動作範囲R1、R2で取得されたデータセット群を用いて断層像を形成することができず、線形動作範囲R0で取得されたデータセット群を用いて断層像を形成せざるを得ない。広角で高精細なOCT計測に必要な偏向速度の高速化は非線形動作範囲の拡大を招くため、これは、偏向速度のより一層の高速化には対応することができないことを意味する。
【0110】
一方、補正部232は、図5に示すように、光スキャナー42の動作特性に応じて上記の走査位置の偏在をキャンセルするようにデータセット群を補正する。すなわち、補正部232は、OCTにより得られたデータセット群が光スキャナー42により偏向角度範囲において略等間隔の偏向角度で偏向された測定光LSに基づいて取得されたデータセット群になるように、データセット群のうち偏向角度範囲の少なくとも一部の範囲(非線形動作範囲R1、R2)に対応する1以上のデータセットを補正データに基づいて補正する。
【0111】
補正部232により生成された新たなデータセット群から図6に示すような断層像IMG1が得られる。図6に示す断層像IMG1は、上記の光スキャナー42の非線形動作にかかわらず、偏向角度範囲において略等間隔の偏向角度で偏向された測定光LSにより取得されたデータセット群から形成される。従って、線形動作範囲R0だけではなく非線形動作範囲R1、R2(の少なくとも一部)で取得されたデータセット群を用いて断層像を形成することができるようになる。これは、偏向速度を高速化しても非線形動作範囲の一部を活用することができるため、偏向速度のより一層の高速化に対応することができることを意味する。
【0112】
補正部232は、種々の方法でデータセット群を補正することが可能である。
【0113】
(第1動作例)
図7に、実施形態の第1動作例に係る補正部232の構成例のブロック図を示す。
【0114】
補正部232は、抽出部232Aを含む。抽出部232Aは、OCTを実行することにより得られたデータセット群の少なくとも一部から1以上のデータセットを抽出する。補正部232は、OCTを実行することにより得られたデータセット群の少なくとも一部を、抽出部232Aにより抽出された1以上のデータセットに置き換えることにより新たなデータセット群を生成する。
【0115】
図8に、実施形態の第1動作例に係る補正部232の動作説明図を示す。図8において、図5と同様の部分には同一符号を付し、適宜説明を省略する。
【0116】
抽出部232Aは、偏向角度が等間隔になるように1以上のデータセットを抽出する。このとき、抽出部232Aは、光スキャナー42の偏向角度対時間特性における非線形動作範囲R1又はR2において所望の偏向角度に対応するデータセットに対して最も近いデータセットを抽出することが可能である。すなわち、抽出部232Aは、最近傍法により選択された1以上のデータセットを抽出することが可能である。
【0117】
(第2動作例)
図9に、実施形態の第2動作例に係る補正部232の構成例のブロック図を示す。
【0118】
補正部232は、補間部232Bを含む。補間部232Bは、OCTを実行することにより得られたデータセット群の少なくとも一部を補間して補間データセットを算出する。補正部232は、OCTを実行することにより得られたデータセット群の少なくとも一部を、補間部232Bにより算出された補間データセットに置き換えることにより新たなデータセット群を生成する。
【0119】
図10に、実施形態の第2動作例に係る補正部232の動作説明図を示す。図10において、図5と同様の部分には同一符号を付し、適宜説明を省略する。
【0120】
補間部232Bは、偏向角度が等間隔になるように、OCTを実行することにより得られたデータセット群の少なくとも一部を補間して補間データセットを算出する。このとき、補間部232Bは、光スキャナー42の偏向角度対時間特性における非線形動作範囲R1又はR2において所望の偏向角度に対応するデータセットに隣接する両側のデータセットを線形補間することにより補間データセットを算出する。いくつかの実施形態では、補間部232Bは、光スキャナー42の偏向角度対時間特性における非線形動作範囲R1又はR2において所望の偏向角度に対応するデータセットを含む所定範囲内のデータセットを平均化することにより補間データセットを算出する。
【0121】
(第3動作例)
図11に、実施形態の第3動作例に係る補正部232の構成例のブロック図を示す。
【0122】
補正部232は、位置合わせ部232Cと、補間部232Dとを含む。位置合わせ部232Cは、OCTを実行することにより得られたデータセット群の少なくとも一部をAスキャン方向に位置合わせする。補間部232Dは、位置合わせ部232Cにより位置合わせが行われたデータセット群の少なくとも一部を補間して補間データセットを算出する。補正部232は、OCTを実行することにより得られたデータセット群の少なくとも一部を補間部232Dにより算出された補間データセットに置き換えることにより新たなデータセット群を生成する。
【0123】
図12に、実施形態の第3動作例に係る補正部232の動作説明図を示す。図12は、実施形態に係る偏向角度対時間特性のグラフを模式的に表す。図12において、図5と同様の部分には同一符号を付し、適宜説明を省略する。また、図12は、Aラインの反射強度プロファイルデータのデータセットの補間処理の動作を模式的に表すが、Aスキャン画像データのデータセットの補間処理の動作も同様である。
【0124】
位置合わせ部232Cは、光スキャナー42の偏向角度対時間特性における非線形動作範囲R1又はR2において偏向角度が等間隔になるように2つのデータセットを選択し、選択された2つのデータセットについて深さ方向の所定範囲を特定する。いくつかの実施形態では、位置合わせ部232Cは、セグメンターション処理により所定の層領域に相当する深さ方向の範囲を特定する。位置合わせ部232Cは、非線形動作範囲R1又はR2における2つのデータセットについて上記の深さ方向の範囲を特定し、偏向角度が等間隔になるように補間データセットのz位置を特定する。位置合わせ部232Cは、非線形動作範囲R1又はR2における2つのデータセットを、特定されたz位置に位置合わせする。
【0125】
補間部232Dは、位置合わせ部232Cにより位置合わせが行われた2つのデータセットについて、特定された深さ方向の範囲について補間して補間データセットを算出する。このとき、補間部232Dは、線形補間処理、平均化処理、又は加重平均処理により補間データセットを算出する。
【0126】
(第4動作例)
図13に、実施形態の第4動作例に係る補正部232の構成例のブロック図を示す。
【0127】
補正部232は、追加部232Eを含む。追加部232Eは、偏向角度が等間隔になるように新たなデータセットを生成する。いくつかの実施形態では、追加部232Eは、光スキャナー42の偏向角度対時間特性における線形動作範囲R0の偏向角度に対応するデータセットを追加する。いくつかの実施形態では、追加部232Eは、隣接するAラインのデータセットを複製する。すなわち、追加部232Eは、線形動作範囲R0の偏向角度に対応するデータセットに基づいてデータセットを追加する。
【0128】
図14に、実施形態の第4動作例に係る補正部232の動作説明図を示す。図14において、図5と同様の部分には同一符号を付し、適宜説明を省略する。
【0129】
追加部232Eは、偏向角度が等間隔になるように線形動作範囲R0における偏向角度に対応するデータセットを追加する。いくつかの実施形態では、補正部232は、偏向角度が等間隔になるように、非線形動作範囲R1又はR2における偏向角度に対応するデータセットを間引く。
【0130】
以上のように機能するデータ処理部230は、例えば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。ハードディスクドライブ等の記憶装置には、上記機能をマイクロプロセッサに実行させるコンピュータプログラムがあらかじめ格納されている。
【0131】
(ユーザインターフェイス)
ユーザインターフェイス240には、表示部240Aと操作部240Bとが含まれる。表示部240Aは、前述した演算制御ユニット200の表示デバイスや表示装置3を含んで構成される。操作部240Bは、前述した演算制御ユニット200の操作デバイスを含んで構成される。操作部240Bには、眼科装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。例えば眼底カメラユニット2が従来の眼底カメラと同様の筺体を有する場合、操作部240Bは、この筺体に設けられたジョイスティックや操作パネル等を含んでいてもよい。また、表示部240Aは、眼底カメラユニット2の筺体に設けられたタッチパネルなどの各種表示デバイスを含んでいてもよい。
【0132】
なお、表示部240Aと操作部240Bは、それぞれ個別のデバイスとして構成される必要はない。例えばタッチパネルのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部240Bは、このタッチパネルとコンピュータプログラムとを含んで構成される。操作部240Bに対する操作内容は、電気信号として制御部210に入力される。また、表示部240Aに表示されたグラフィカルユーザインターフェイス(GUI)と、操作部240Bとを用いて、操作や情報入力を行うようにしてもよい。
【0133】
OCTユニット100に含まれる干渉光学系から対物レンズ22に至る経路における光学系、又はこれら光学系と画像形成部231は、実施形態に係る「データ取得部」の一例である。
【0134】
[動作]
実施形態に係る眼科装置1の動作について説明する。
【0135】
第1動作例では、Aスキャン画像データのデータセット群が補正される。
【0136】
図15に、実施形態に係る眼科装置1の第1動作例を示す。図15は、実施形態に係る眼科装置1の第1動作例のフローチャートを表す。記憶部212には、図15に示す処理を実現するためのコンピュータプログラムが記憶されている。主制御部211は、このコンピュータプログラムに従って動作することにより、図15に示す処理を実行する。
【0137】
(S1:アライメント)
主制御部211は、アライメントを実行する。
【0138】
すなわち、主制御部211は、アライメント光学系50を制御して、被検眼Eにアライメント指標を投影させる。このとき、被検眼Eには、LCD39による固視標も投影される。主制御部211は、例えばイメージセンサ35により取得された受光像に基づいて特定された光学系の移動量に基づいて移動機構150を制御し、被検眼Eに対して光学系を当該移動量だけ相対的に移動させる。主制御部211は、この処理を繰り返し実行させる。
【0139】
いくつかの実施形態では、ステップS1におけるアライメント完了後に、上記のアライメント粗調整及びアライメント微調整が行われる。
【0140】
(S2:調整用断層像を取得)
主制御部211は、LCD39の所定位置にOCT計測用の固視標を表示させる。主制御部211は、眼底Efにおける光学系の光軸の位置に対応するLCD39の表示位置に固視標を表示させることが可能である。
【0141】
続いて、主制御部211は、OCTユニット100を制御してOCT仮計測を実行させ、深さ方向の計測範囲の基準位置を調整するための調整用断層像を取得させる。具体的には、主制御部211は、光スキャナー42を制御することにより、光源ユニット101から出射された光L0に基づいて生成された測定光LSを偏向し、偏向された測定光LSで被検眼Eの所定部位(例えば眼底)をスキャンさせる。測定光LSのスキャンにより得られた干渉光の検出結果は、クロックKCに同期してサンプリングされた後、画像形成部231に送られる。画像形成部231は、得られた干渉信号から被検眼Eの断層像(OCT画像)を形成する。
【0142】
(S3:深さ方向の基準位置を調整)
続いて、主制御部211は、深さ方向(z方向)の計測範囲の基準位置を調整する。
【0143】
例えば、主制御部211は、ステップS2において得られた断層像における所定の部位(例えば、強膜)をデータ処理部230に特定させ、特定された所定の部位の位置に対して深さ方向に所定の距離だけ離れた位置を計測範囲の基準位置として設定する。また、測定光LSと参照光LRの光路長が略一致するようにあらかじめ決められた所定の位置が計測範囲の基準位置として設定されてもよい。
【0144】
(S4:フォーカス調整、偏波調整)
次に、主制御部211は、フォーカス調整制御及び偏波調整制御を実行する。
【0145】
例えば、主制御部211は、合焦駆動部43Aを制御してOCT合焦レンズ43を所定の距離だけ移動させた後、OCTユニット100を制御してOCT計測を実行させる。主制御部211は、上記のように、OCT計測により得られた干渉光の検出結果に基づいて測定光LSのフォーカス状態をデータ処理部230に判定させる。データ処理部230による判定結果に基づいて測定光LSのフォーカス状態が適正ではないと判断されたとき、主制御部211は、再び合焦駆動部43Aの制御を行い、フォーカス状態が適正であると判断されるまで繰り返す。
【0146】
また、例えば、主制御部211は、偏波コントローラ103、118の少なくとも一方を制御して光L0及び測定光LSの少なくとも一方の偏波状態を所定の量だけ変更した後、OCTユニット100を制御してOCT計測を実行させ、取得された干渉光の検出結果に基づくOCT画像を画像形成部231に形成させる。主制御部211は、上記のように、OCT計測により得られたOCT画像の画質をデータ処理部230に判定させる。データ処理部230による判定結果に基づいて測定光LSの偏波状態が適正ではないと判断されたとき、主制御部211は、再び偏波コントローラ103、118の制御を行い、偏波状態が適正であると判断されるまで繰り返す。
【0147】
(S5:干渉信号を取得)
続いて、主制御部211は、OCTユニット100を制御してOCT計測を実行させる。当該OCT計測により取得された干渉光の検出結果は、DAQ130においてサンプリングされ、干渉信号として記憶部212等に保存される。
【0148】
(S6:断層像を形成)
次に、主制御部211は、ステップS5において取得された干渉信号に基づいて被検眼EのAスキャン画像データのデータセット群を画像形成部231に形成させる。
【0149】
(S7:断層像を補正)
主制御部211は、記憶部212に記憶された補正データ212Aに基づいて、ステップS6において形成されたAスキャン画像データのデータセット群の少なくとも一部を補正部232に補正させることにより新たなAスキャン画像データのデータセット群を生成させる。主制御部211は、新たに生成されたAスキャン画像データのデータセット群に基づいてBスキャン画像(図6の断層像IMG1)を表示部240Aに表示させることが可能である。
【0150】
以上で、眼科装置1の動作は終了である(エンド)。
【0151】
第2動作例では、反射強度プロファイルデータのデータセット群が補正される。
【0152】
図16に、実施形態に係る眼科装置1の第2動作例を示す。図16は、実施形態に係る眼科装置1の第2動作例のフローチャートを表す。記憶部212には、図16に示す処理を実現するためのコンピュータプログラムが記憶されている。主制御部211は、このコンピュータプログラムに従って動作することにより、図16に示す処理を実行する。
【0153】
(S11:アライメント)
主制御部211は、ステップS1と同様に、アライメントを実行する。
【0154】
(S12:調整用断層像を取得)
主制御部211は、ステップS2と同様に、OCTユニット100を制御してOCT仮計測を実行させ、深さ方向の計測範囲の基準位置を調整するための調整用断層像を取得させる。
【0155】
(S13:深さ方向の基準位置を調整)
続いて、主制御部211は、ステップS3と同様に、深さ方向(z方向)の計測範囲の基準位置を調整する。
【0156】
(S14:フォーカス調整、偏波調整)
次に、主制御部211は、ステップS4と同様に、フォーカス調整制御及び偏波調整制御を実行する。
【0157】
(S15:干渉信号を取得)
続いて、主制御部211は、ステップS5と同様に、OCTユニット100を制御してOCT計測を実行させる。
【0158】
(S16:データセット群を補正)
主制御部211は、記憶部212に記憶された補正データ212Aに基づいて、ステップS15において取得された反射強度プロファイルデータのデータセット群の少なくとも一部を補正部232に補正させることにより新たな反射強度プロファイルデータのデータセット群を生成させる。
【0159】
(S17:断層像を形成)
次に、主制御部211は、ステップS16において生成された新たな反射強度プロファイルデーのデータセット群に基づいて被検眼EのAスキャン画像データのデータセット群を画像形成部231に形成させる。主制御部211は、画像形成部231により形成されたAスキャン画像データのデータセット群に基づいてBスキャン画像(図6の断層像IMG1)を表示部240Aに表示させることが可能である。
【0160】
以上で、眼科装置1の動作は終了である(エンド)。
【0161】
<変形例>
上記の実施形態において、光スキャナー42が第1ガルバノスキャナーと第2ガルバノスキャナーとを含む場合に、記憶部212は、ガルバノスキャナー毎に補正データを記憶してもよい。以下では、実施形態の変形例に係る眼科装置の構成について、実施形態に係る眼科装置1の構成との相違点を中心に説明する。
【0162】
図17に、実施形態の変形例に係る眼科装置の構成例のブロック図を示す。図17において、図3と同様の部分には同一符号を付し、適宜説明を省略する。
【0163】
実施形態の変形例に係る眼科装置の構成が、図3に示す実施形態に係る眼科装置1の構成と異なる点は、記憶部212に記憶される補正データ212Aである。補正データ212Aは、第1補正データ2121と、第2補正データ2122とを含む。
【0164】
第1補正データ2121は、第1ガルバノスキャナーの偏向角度対時間特性(動作特性)に対応した補正データである。第2補正データ2122は、第2ガルバノスキャナーの偏向角度対時間特性(動作特性)に対応した補正データである。補正部232は、第1補正データ2121に基づくデータセット群の少なくとも一部に対する補正処理、及び第2補正データ2122に基づくデータセット群の少なくとも一部に対する補正処理のいずれかを切り替えて実行可能である。
【0165】
OCT計測では、種々の走査態様で計測部位が走査される。走査領域や走査パターンによって偏向角度範囲や偏向速度が異なるため、スキャン条件に応じて第1ガルバノスキャナー及び第2ガルバノスキャナーの一方が高速で動作し、他方が低速で動作するように制御される。本変形例によれば、スキャン条件に応じて、第1ガルバノスキャナー及び第2ガルバノスキャナーのいずれか一方の非線形動作に対してデータセット群を補正することができるため、種々の走査態様において偏向速度の高速化に対応することが可能になる。
【0166】
なお、上記の実施形態又は変形例では、光スキャナー42は、ガルバノスキャナーにより構成される場合について説明したが、実施形態又はその変形例に係る構成はこれに限定されるものではない。例えば、光スキャナー42は、レゾナントミラーにより構成されていてもよい。
【0167】
[効果]
実施形態に係る眼科装置、及びその制御方法について説明する。
【0168】
いくつかの実施形態に係る眼科装置(1)は、データ取得部(OCTユニット100に含まれる干渉光学系から対物レンズ22に至る経路における光学系、又はこれら光学系と画像形成部231)と、記憶部(212)と、補正部(232)とを含む。データ取得部は、所定の偏向角度範囲で光を偏向可能な光スキャナー(42)を含み、光スキャナーにより所定の偏向方向に偏向される測定光(LS)を用いて被検眼(E)に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得する。記憶部は、光スキャナーの動作特性(偏向角度対時間特性)に対応した補正データ(212A)を記憶する。補正部は、記憶部に記憶された補正データに基づいて第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する。
【0169】
このような構成によれば、光スキャナーを用いたOCTを実行することにより取得された複数のAスキャン方向の第1データセット群の少なくとも一部を、光スキャナーの動作特性に対応した補正データに基づいて補正することにより第2データセット群を生成するようにしたので、光スキャナーの動作特性を考慮したAスキャン方向のデータセット群を取得することが可能になる。例えば、光スキャナーの非線形動作によって偏在した走査位置において取得されたデータセット群から、均一に配置された走査位置におけるデータセット群を生成することが可能になる。また、例えば、光スキャナーの線形動作によって取得されたデータセット群から、所望の部位だけ高密度で取得されたデータセット群を生成することが可能になる。それにより、光スキャナーの非線形動作範囲の一部を用いることができるようになるので、光スキャナーの偏向速度の高速化に対応することが可能になり、広角で高精度にOCT計測を行うことができるようになる。
【0170】
いくつかの実施形態に係る眼科装置では、補正部は、第1データセット群が光スキャナーにより偏向角度範囲において略等間隔の偏向角度で偏向された測定光に基づいて取得されたデータセット群になるように、第1データセット群のうち偏向角度範囲の少なくとも一部の範囲に対応する1以上のデータセットを補正データに基づいて補正する。
【0171】
このような構成によれば、光スキャナーの非線形動作によって偏在した走査位置において取得されたデータセット群から、均一に配置された走査位置におけるデータセット群を生成することが可能になる。それにより、光スキャナーの偏向速度(走査周波数)を高速化した場合でも非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0172】
いくつかの実施形態に係る眼科装置では、光スキャナーは、測定光を反射するミラーを含み、ミラーを偏向方向に対応する揺動方向に往復的に揺動することにより偏向角度範囲で測定光を偏向し、偏向角度範囲の少なくとも一部の範囲は、揺動方向へのミラーの揺動を開始する第1偏向角度(rs)又は揺動方向へのミラーの揺動を終了する第2偏向角度(re)を含む。
【0173】
このような構成によれば、ガルバノスキャナー等の光スキャナーの非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0174】
いくつかの実施形態に係る眼科装置では、補正部は、第1データセット群の少なくとも一部から1以上のデータセットを抽出する抽出部(232A)を含み、第1データセット群の少なくとも一部を1以上のデータセットに置き換える。
【0175】
このような構成によれば、データセット群に対する簡素な抽出処理で光スキャナーの非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0176】
いくつかの実施形態に係る眼科装置では、補正部は、第1データセット群の少なくとも一部を補間して補間データセットを算出する補間部(232B)を含み、第1データセット群の少なくとも一部を補間部により算出された補間データセットに置き換える。
【0177】
このような構成によれば、データセット群に対する簡素な補間処理で光スキャナーの非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0178】
いくつかの実施形態に係る眼科装置では、補正部は、第1データセット群の少なくとも一部をAスキャン方向に位置合わせする位置合わせ部(232C)と、位置合わせ部により位置合わせが行われた第1データセット群の少なくとも一部を補間して補間データセットを算出する補間部(232D)と、を含み、第1データセット群の少なくとも一部を補間部により算出された補間データセットに置き換える。
【0179】
このような構成によれば、データセット群に対する簡素な位置合わせ処理と補間処理で光スキャナーの非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0180】
いくつかの実施形態に係る眼科装置では、補正部は、第1データセット群に新たなデータセットを追加する。
【0181】
このような構成によれば、データセット群に対する簡素な追加処理で光スキャナーの非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0182】
いくつかの実施形態に係る眼科装置では、新たなデータセットは、第1データセット群の少なくとも一部に基づいて生成される。
【0183】
このような構成によれば、第1データセット群の少なくとも一部に基づいて新たなデータセットを求め、求められた新たなデータセットを追加するようにしたので、簡素な処理でデータセット群に対する追加処理を実行することができる。
【0184】
いくつかの実施形態に係る眼科装置では、光スキャナーは、測定光を第1偏向方向に第1偏向角度範囲で偏向する第1スキャナー(第1ガルバノスキャナー)と、第1スキャナーにより偏向された測定光を第2偏向方向に第2偏向角度範囲で被検眼に向けて偏向する第2スキャナー(第2ガルバノスキャナー)と、を含み、補正部は、第1スキャナーの動作特性に対応した第1補正データ(2121)に基づく第1データセット群の少なくとも一部に対する補正処理、及び第2スキャナーの動作特性に対応した第2補正データ(2122)に基づく第1データセット群の少なくとも一部に対する補正処理のいずれかを切り替えて実行可能である。
【0185】
このような構成によれば、スキャン条件に応じて第1スキャナー及び第2スキャナーのいずれか一方の非線形動作に対してデータセット群を補正することができるため、種々の走査態様で実行されるOCT計測における偏向速度の高速化に対応することが可能になる。
【0186】
いくつかの実施形態に係る眼科装置では、記憶部は、光スキャナーの偏向角度範囲及び偏向速度の少なくとも1つが異なる複数のスキャン条件に対応した複数の補正データを記憶し、補正部は、スキャン条件に対応して記憶部に記憶された補正データに基づいて第1データセット群の少なくとも一部を補正する。
【0187】
このような構成によれば、スキャン条件に対応した補正データに基づいて第1データセット群の少なくとも一部を補正することにより第2データセット群を生成することができるので、スキャン条件が異なる場合でも光スキャナーの動作特性を考慮したデータセット群を取得することが可能になる。
【0188】
いくつかの実施形態に係る眼科装置は、補正部により生成された第2データセット群に基づいて被検眼の断層像を形成する画像形成部(231)を含む。
【0189】
このような構成によれば、Aスキャン方向の反射強度プロファイルデータのデータセット群を光スキャナーの動作特性に応じて補正することにより新たなデータセット群を生成することができる。
【0190】
いくつかの実施形態は、所定の偏向角度範囲で光を偏向可能な光スキャナー(42)を含む眼科装置(1)の制御方法である。眼科装置の制御方法は、データ取得ステップと、補正ステップとを含む。データ取得ステップは、光スキャナーにより所定の偏向方向に偏向される測定光(LS)を用いて被検眼(E)に対して光コヒーレンストモグラフィを実行することによりAスキャン方向の第1データセット群を取得する。補正ステップは、光スキャナーの動作特性(偏向角度対時間特性)に対応した補正データ(212A)に基づいて第1データセット群の少なくとも一部を補正することにより第2データセット群を生成する。
【0191】
このような方法によれば、光スキャナーを用いたOCTを実行することにより取得された複数のAスキャン方向の第1データセット群の少なくとも一部を、光スキャナーの動作特性に対応した補正データに基づいて補正することにより第2データセット群を生成するようにしたので、光スキャナーの動作特性を考慮したAスキャン方向のデータセット群を取得することが可能になる。例えば、光スキャナーの非線形動作によって偏在した走査位置において取得されたデータセット群から、均一に配置された走査位置におけるデータセット群を生成することが可能になる。また、例えば、光スキャナーの線形動作によって取得されたデータセット群から、所望の部位だけ高密度で取得されたデータセット群を生成することが可能になる。それにより、光スキャナーの非線形動作範囲の一部を用いることができるようになるので、光スキャナーの偏向速度の高速化に対応することが可能になり、広角で高精度にOCT計測を行うことができるようになる。
【0192】
いくつかの実施形態に係る眼科装置の制御方法では、補正ステップは、第1データセット群が光スキャナーにより偏向角度範囲において略等間隔の偏向角度で偏向された測定光に基づいて取得されたデータセット群になるように、第1データセット群のうち偏向角度範囲の少なくとも一部の範囲に対応する1以上のデータセットを補正データに基づいて補正する。
【0193】
このような方法によれば、光スキャナーの非線形動作によって偏在した走査位置において取得されたデータセット群から、均一に配置された走査位置におけるデータセット群を生成することが可能になる。それにより、光スキャナーの偏向速度(走査周波数)を高速化した場合でも非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0194】
いくつかの実施形態に係る眼科装置の制御方法では、光スキャナーは、測定光を反射するミラーを含み、ミラーを偏向方向に対応する揺動方向に往復的に揺動することにより偏向角度範囲で測定光を偏向し、偏向角度範囲の少なくとも一部の範囲は、揺動方向へのミラーの揺動を開始する第1偏向角度(rs)又は揺動方向へのミラーの揺動を終了する第2偏向角度(re)を含む。
【0195】
このような方法によれば、ガルバノスキャナー等の光スキャナーの非線形動作範囲を用いて画像化することが可能になるので、偏向速度の高速化に対応することができるようになる。
【0196】
いくつかの実施形態に係る眼科装置の制御方法では、光スキャナーは、測定光を第1偏向方向に第1偏向角度範囲で偏向する第1スキャナー(第1ガルバノスキャナー)と、第1スキャナーにより偏向された測定光を第2偏向方向に第2偏向角度範囲で被検眼に向けて偏向する第2スキャナー(第2ガルバノスキャナー)と、を含み、補正ステップは、第1スキャナーの動作特性に対応した第1補正データ(2121)に基づく第1データセット群の少なくとも一部に対する補正処理、及び第2スキャナーの動作特性に対応した第2補正データ(2122)に基づく第1データセット群の少なくとも一部に対する補正処理のいずれかを切り替えて実行可能である。
【0197】
このような方法によれば、スキャン条件に応じて第1スキャナー及び第2スキャナーのいずれか一方の非線形動作に対してデータセット群を補正することができるため、種々の走査態様で実行されるOCT計測における偏向速度の高速化に対応することが可能になる。
【0198】
いくつかの実施形態に係る眼科装置の制御方法は、補正ステップにおいて生成された第2データセット群に基づいて被検眼の断層像を形成する画像形成ステップを含む。
【0199】
このような方法によれば、Aスキャン方向の反射強度プロファイルデータのデータセット群を光スキャナーの動作特性に応じて補正することにより新たなデータセット群を生成することができる。
【0200】
<その他>
以上に示された実施形態又はその変形例は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
【0201】
いくつかの実施形態では、上記の眼科装置の制御方法をコンピュータに実行させるためのプログラムが提供される。このようなプログラムを、コンピュータによって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、半導体メモリ、光ディスク、光磁気ディスク(CD-ROM/DVD-RAM/DVD-ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
【符号の説明】
【0202】
1 眼科装置
2 眼底カメラユニット
42 光スキャナー
100 OCTユニット
200 演算制御ユニット
210 制御部
211 主制御部
212 記憶部
212A 補正データ
230 データ処理部
231 画像形成部
232 補正部
E 被検眼
LS 測定光
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17