(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023175791
(43)【公開日】2023-12-12
(54)【発明の名称】反マネー・ロンダリング・システム
(51)【国際特許分類】
G06Q 40/02 20230101AFI20231205BHJP
【FI】
G06Q40/02
【審査請求】有
【請求項の数】33
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023148319
(22)【出願日】2023-09-13
(62)【分割の表示】P 2021168014の分割
【原出願日】2013-08-27
(31)【優先権主張番号】13/595,768
(32)【優先日】2012-08-27
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】515053818
【氏名又は名称】ソン、ユー-シェン
(71)【出願人】
【識別番号】515053829
【氏名又は名称】リュー、キャサリン
(71)【出願人】
【識別番号】515053830
【氏名又は名称】ソン、アレクサンダー
(71)【出願人】
【識別番号】515053841
【氏名又は名称】ソン、ビクトリア
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【復代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】ユー-シェン・ソン
(72)【発明者】
【氏名】キャサリン・リュー
(72)【発明者】
【氏名】アレクサンダー・ソン
(72)【発明者】
【氏名】ビクトリア・ソン
(57)【要約】 (修正有)
【課題】金融犯罪を防ぎ、異なるタイプの法律および規制に準拠するようビジネスを支援するために、異なるタイプの可能な事例を検知するトランザクション・モニタリングを実行するトコンピュータ・システム及び方法を提供する。
【解決手段】方法は、リスク要因に基づいて、エンティティのグループのおのおのの合計リスク・スコアを導出する。リスク要因のおのおのは、リスク・スコアを割り当てられる。方法はまた、検知されたエンティティの合計リスク・スコアが、これらエンティティのグループの合計リスク・スコアから導出された基準から、予め決定されたマージン異なっている場合、エンティティを検知し、検知されたエンティティに対して、エンティティのグループの合計リスク・スコアから導出された基準とは異なる合計リスク・スコアをもたらしている少なくとも1つのトランザクションを特定するために、ユーザを支援する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
反マネー・ロンダリング法および/または規則にビジネスが準拠するのを支援するためのコンピュータ・システムであって、
メモリ・デバイスと、
前記メモリ・デバイスに接続された少なくとも1つのプロセッサとを備え、
前記少なくとも1つのプロセッサは、
複数のリスク要因に基づいて、複数のエンティティのおのおのの合計リスク・スコアを導出し、ここで、前記複数のリスク要因のおのおのがリスク・スコアを割り当てられている、
検知されるエンティティの合計リスク・スコアが、前記複数のエンティティの合計リスク・スコアから導出される基準と、予め定められたマージン異なっている場合、前記エンティティを検知し、
前記複数のエンティティの合計リスク・スコアから導出された基準とは異なる合計リスク・スコアを、前記検知されたエンティティに持たせた少なくとも1つのトランザクションを、ユーザが特定することを支援するように構成された、コンピュータ・システム。
【請求項2】
前記少なくとも1つのプロセッサはさらに、
前記ユーザが、前記特定された少なくとも1つのトランザクションを報告すると決定した場合、前記特定された少なくとも1つのトランザクションを、疑わしいマネー・ロンダリング取引であるとして、前記ユーザが報告することを支援し、
前記ユーザが、前記特定された少なくとも1つのトランザクションを報告しないと決定した場合、前記決定を正当化するための理由を格納するように構成された、請求項1に記載の方法。
【請求項3】
前記リスク要因は、少なくとも、カスタマの企業カテゴリ、前記カスタマのビジネス・タイプ、前記カスタマの地理的エリア、前記カスタマの住所の国、前記カスタマのビジネスの特性、前記ビジネスの製品タイプ、前記ビジネスのサービス・タイプ、前記ビジネスの構造、前記カスタマの職業、国籍、過去の記録、実行されたトランザクションのタイプ、口座の残高、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、前記トランザクションの場所、前記トランザクションの時間、前記トランザクションの国、送金トラザクションの送り主、前記送り主の場所、前記送り主の国、前記送り主の特性、送金トランザクションの受取人、前記受取人の場所、前記受取人の国、前記受取人の特性、関係、社会的地位、政治的な露出度、および/または、過去のトランザクションを含む、請求項1に記載のコンピュータ・システム。
【請求項4】
前記少なくとも1つのプロセッサはさらに、前記エンティティがビジネスである場合、前記リスク要因のうちの少なくとも1つを、オペレーションのサイズに部分的に基づいて調節するように構成された、請求項1に記載のコンピュータ・システム。
【請求項5】
前記少なくとも1つのプロセッサはさらに、すべてのリスク要因のすべてのリスク・スコアの数学的変換によって、前記合計リスク・スコアを取得するように構成された、請求項1に記載のコンピュータ・システム。
【請求項6】
前記数学的変換は、すべてのリスク要因のすべてのリスク・スコアの総和である、請求項5に記載のコンピュータ・システム。
【請求項7】
前記予め定められたマージンは、統計的なアプローチおよび/または人間の判断に基づいて部分的に決定される、請求項1に記載のコンピュータ・システム。
【請求項8】
前記統計的なアプローチは、前記複数のエンティティのすべての合計リスク・スコアの標準偏差に部分的に基づく、請求項7に記載のコンピュータ・システム。
【請求項9】
前記疑わしいマネー・ロンダリング取引が、政府機関に報告される、請求項1に記載のコンピュータ・システム。
【請求項10】
前記政府機関は、金融犯罪是正ネットワークである、請求項9に記載のコンピュータ・システム。
【請求項11】
前記複数のエンティティの合計リスク・スコアから導出された基準は、前記複数のエンティティの合計リスク・スコアの平均値、平均、中央、加重平均、および/または、統計値を備える、請求項1に記載の方法。
【請求項12】
反マネー・ロンダリング法および/または規則にビジネスが準拠するのを支援するためのコンピュータ化された方法であって、
少なくとも1つの共通のリスク要因を有する複数のエンティティを特定することと、
複数のリスク要因に基づいて、前記複数のエンティティのおのおのの合計リスク・スコアを導出することと、ここで、前記複数のリスク要因のおのおのに、リスク・スコアが割り当てられる、
検知されるエンティティの合計リスク・スコアが、前記複数のエンティティの合計リスク・スコアから導出される基準と、予め定められたマージン異なっている場合、コンピュータ・システムによって、前記エンティティを検知することと、
前記特定されたトランザクションが疑わしいマネー・ロンダリング取引であるとの調査をイネーブルするために、前記エンティティの過去の取引および/または関連する事例を提供することとを備える、コンピュータ化された方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、トランザクション・モニタリング・システムに関する。
【0002】
さらに詳しくは、本開示は、異なるタイプの疑惑取引を、ビジネスがモニタリングおよび検知することを支援することと、コンピュータ・システムによって、さまざまな法律および規制に準拠するようにビジネスを援助することと、に関する。
【背景技術】
【0003】
米国における銀行秘密法は、1970年に最初に確立された。銀行秘密法の下では、金融機関は、疑惑取引を政府に報告しなければならない。歴史的に、金融機関は、疑惑取引を観察および特定するように、前線の人員(例えば、出納係)を訓練する。しかしながら、ほとんどの金融機関は、銀行秘密法に効果的に準拠することができなかった。9/11の悲劇の後、米国の立法者は、金融機関による銀行秘密法への真のコンプライアンスが、9/11の悲劇を防いだかもしれないと信じている。
【0004】
さらに銀行秘密法を強化するために、米国連邦議会は、銀行秘密法の違反に対して、厳しい民事的および/または刑事的な処罰を科す米国愛国者法を可決した。さらに、例えば金融犯罪是正ネットワーク(FinCEN)、通貨監督庁(OCC)、連邦準備銀行(FRB)、連邦預金保険会社(FDIC)、全国信用組合本部(NCUA)、州銀行局、金融機関省等のような米国政府機関は、金融機関に対して、特に、疑惑取引レポート(SAR)をFinCENに提出する義務において、銀行秘密法に準拠するように強く要求している。
【0005】
疑惑取引は、非常に広いスコープをカバーする。例えば、マネー・ロンダリング、テロリスト資金調達、不正行為、横領、個人情報の盗み取り、コンピュータ侵入、自己取り引き、贈賄、虚偽の陳述、偽造証書、不可解な消失等はすべて、疑惑取引として分類される。
【0006】
しかしながら、多くの金融機関は、疑惑取引を検知も報告していない。実際、多くの金融機関は、不正行為を防ぐことに効果的であるが、マネー・ロンダリングまたはその他の金融犯罪を防ぐことには効果がない製品を使用している。一般に、不正行為は、振る舞いの変化に基づいて検知されうる。なぜなら、犠牲者の個人情報(または金融商品)を盗んだ不正行為者は、犠牲者とは異なって振る舞うからである。口座の取引が、過去の行動から導かれるような、予想される取引とは異なるのであれば、コンピュータ・システムは、不正行為事例を検知しうる。
【0007】
例えば、米国出願(公開番号2003/0177087)は、例えば、トランザクションがそのプロファイル外で起こる場合、示されている口座の通常の振る舞いにおける変化を、ハイ・リスク変数が示しうることを明示している。この公開によれば、カスタマのプロファイル外で起こるトランザクションを検知するために、ベータ・モデル、デルタ・モデル、およびシータ・モデルが使用される。
【0008】
しかしながら、マネー・ロンダリングおよびその他のいくつかの金融犯罪は、振る舞いにおける変化無く犯されうる。その結果、振る舞いにおける変化に基づいて不正行為を検知する従来のアプローチは、いくつかの基本的なマネー・ロンダリング取引またはその他の金融犯罪を検知することができない。マネー・ロンダリングの領域では、ハイ・リスクのカスタマは、疑わしくないかもしれない。例えば、マネー・サービス・ビジネス(MSB)、質屋、ATMベンダ、客室乗務員等は、一般に、反マネー・ロンダリング・プログラムにおいて、銀行によってハイ・リスクのカスタマとして分類される。しかしながら、それは、これらハイ・リスクのカスタマが、マネー・ロンダリング取引を実行していることを意味しない。ハイ・リスクは、これらカスタマに関連付けられているが、これらのカスタマのどこも悪くないかもしれない。
【0009】
いくつかのビジネスは、モニタすることが非常に難しい。例えば、MSBは、毎日大量のトランザクションを取り扱い、多量のトランザクションと組み合わされた単一のマネー・ロンダリング・トランザクションは、従来のアプローチによって検知されないかもしれない。
【0010】
米国愛国者法および銀行秘密法(BSA)に準拠するために注目されるチャレンジは、疑惑取引を特定する重要性を例示する単なるいくつかの例である。疑惑取引を特定することはまた、例えば、公正かつ正確な信用取引法(FACT法)、不正なインターネット・ギャンブル是正法(UIGEA)、高齢者虐待報告法(EARA)、サーベンス・オクスリー法(SOX)、外国資産管理局(OFAC)によって設定された規制、およびその他の法律および規制群のようなその他の法律に準拠するために使用されうる。
【0011】
規制コンプライアンスは、従来、いくつかの条件に応じて人間作業者がいくつかの特定のアクションを講じることを必要とするポリシーおよび手続によって実施される。例えば、銀行は、銀行秘密法に準拠するために、支店の出納係に対して、彼らが疑わしいと思ったものは何でも観察し報告するように訓練している。
【0012】
銀行のカスタマはもはや銀行の支店に現われる必要はないので、この従来のアプローチは現代の時代にはもはや有効ではない。カスタマは、電子トランザクションを遠隔的に(例えば、ATM、インターネット等で)行うことができ、カスタマに利用可能な多くの金融商品(例えば、小切手、クレジット・カード、デビッド・カード等)がある。さらに、犯人は教養があり、どのようにして出納係から注目を受けないようにするかを知っている。その結果、銀行秘密法への準拠のために、疑惑取引を検知するために出納係に依存することは不十分である。
【0013】
さらに、この人間ベースのアプローチのコストは、非常に高い。異なる法律および規制に準拠する異なるそれぞれの状況にどのように応じるのかを人間の作業者が本当に認識することを保証するために、厳しい訓練が定期的に実行されねばならない。しかしながら、人間作業者は誤る傾向にある。実際、人間の見落としにより、多くの金融機関が、異なる法律および規制に準拠することができず、政府機関から厳しい罰を受けた。
【0014】
本開示は、異なるタイプの疑惑取引を検知することができ、異なるタイプの法律および規制に準拠するようにビジネスを支援するいくつかの解決策を提供する。
【発明の概要】
【0015】
本開示は、コンピュータ・システムがトランザクションをモニタし、疑惑取引を検知する、包括的なトランザクション・モニタリング・システムを導く。その結果、このコンピュータ・システムは、金融機関が銀行秘密法に準拠することを支援しうる。
【0016】
銀行秘密法に加えて、コンピュータ・システムは、トランザクション・モニタリングによって、ビジネスがその他多くの法律および規制に準拠することを支援しうる。これらの法律および規制の特定の要件に依存して、コンピュータ・システムは、異なる方法を用いることにより、異なるタイプの取引をモニタしうる。本開示は、どのようにして、トランザクションをモニタし、ビジネスを、異なるタイプの法律および規制に準拠させることを支援するのか、に関するさまざまな詳細を提供する。このコンピュータ・システムは、人間の負担および誤りを低減または排除し、リソースおよび費用を節約し、ビジネスのための改善された結果を効果的に達成しうる。
【0017】
本開示では、用語「ネットワーク」は、一般に、無線または有線、個人または公衆、リアル・タイムまたは非リアル・タイム、またはこれらの組み合わせでありうる通信ネットワーク(単数または複数)を称し、周知のインターネットを含む。
【0018】
本開示では、用語「コンピュータ」または「コンピュータ・システム」は、一般に、システムの目的を達成するために単独で動作するか、またはともに動作しうる1つのコンピュータまたはコンピュータのグループの何れかを称する。
【0019】
本開示では、用語「プロセッサ」は一般に、プロセッサの目的を達成するために単独で動作するか、またはともに動作しうる1つのプロセッサまたはプロセッサのグループの何れかを称する。
【0020】
本ドキュメントでは、用語「モジュール」は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせでありうる単一の構成要素または複数の構成要素を称し、モジュールの目的を達成するために単独で動作するか、またはともに動作しうる。
【0021】
本開示では、「銀行」または「金融機関」は一般に、金融サービスおよびマネー・サービスが提供される、銀行またはノンバンクの何れかである金融サービス・プロバイダを称する。金融機関のいくつかの例は、銀行、信用組合、保険会社、保険代理店、株式ブローカ、証券会社、抵当金融会社、マネー・サービス・ビジネス、マネー・サービス・ビジネスのための機関、金融サービスまたはマネー・サービスを提供する組織のための機関等でありうる。
【0022】
本開示では、「銀行口座」または「金融口座」は、銀行またはノンバンクのうちの何れかである金融機関に関連付けられた口座を称し、金融トランザクションは、例えば、現金、小切手、クレジット・カード、デビット・カード、ATMカード、ストアド・バリュー・カード、ギフト・カード、プリ・ペイド・カード、ワイヤ、貨幣代替物、信用状、手形、有価証券、商業手形、商品、貴金属、電子的資金移転、自動手形交換機構等のような金融商品によって実行されうる。
【0023】
本開示では、「金融トランザクション」は一般に、限定される訳ではないが、支払い、資金移転、マネー・サービス、給料支払簿、請求、取引、エスクロ、保険、アンダーライティング、吸収合併、獲得、口座開設、口座閉鎖等を含む、金融取引に関連するトランザクションを称する。
【0024】
本開示では、「トレーディング」は一般に、限定される訳ではないが、株式、通貨、商品、権利、バリュー、有価証券、デリバティブ、品物、サービス、商品等のような、個人と公衆との両方のトレーディング取引を称する。
【0025】
本開示では、「有価証券」は一般に、1933年の証券法における定義にしたがって称される。例えば、有価証券は一般に、手形、株券、ボンド、債券、小切手、為替手形、ワラント、トラベラーズ・チェック、信用状、預り証券、譲渡可能船荷証券、負債の証拠、あらゆる利益分配合意への関心または参加の証明書、付随的な信託証券、事前構成証明書または予約、移転可能株式、投資契約、議決権信託証書、有効かブランクの自動車証書、有形または無形である財産関連証書、動産、製品、および商品の説明書、文書、または書面証拠、または、動産、製品、および商品に対するあらゆる権利、証書、または利益の移転または譲渡、または、一般に、「有価証券」として一般に知られているあらゆる証書、ワラントの受領、一時的または暫定的な証明書における興味または参加に関するあらゆる証明書または、前述したもののうちの何れかの予約または購入の権利、を含みうる。
【0026】
本開示では、「コンシューマ」は一般に、個人、組織、商人、および/または金融機関とトランザクションを実行することを求めるカスタマ、人、被験者、支払人、受取人、受益者、ユーザ、またはクライアント等を称する。
【0027】
本ドキュメントでは、用語「個人情報ドキュメント」は一般に、パスポート、運転免許証、投票用紙、給付用紙、学生証、社会保険カード、国民個人情報カード、個人情報カード、法的地位証明書、および、いくつかの証明可能な特徴によって指定された個人を識別し、かつ、領事館、大使館、政府機関、民間または公的組織、またはその他の政府機関によって発行され、かつ、責任のあるパーティ(単数または複数)によって、無許可の複製や改造に対して保護されている、証明に耐えるその他の公文書および情報を称する。特に、このような「個人情報ドキュメント」は、紙、プラスチック、ポリカーボネート、PVC、ABS、PET、テズリン、合成物等を含むさまざまな材料から形成され、ドキュメント(またはカード)上への印刷またはエンボス、磁気媒体上への書き込み、電子デバイスへのプログラミング、メモリへの格納、およびこれらの組み合わせを含むさまざまなフォーマットで個人情報を埋め込みうる。「個人情報」は、必ずしも制限されないが、名前、識別番号、生年月日、署名、住所、パスワード、電話番号、電子メール・アドレス、個人識別番号、納税識別番号、国民個人番号、IDを発行する国、IDを発行する州、ID有効期限、写真、指紋、虹彩スキャン、物理的な説明、およびその他のバイオメトリック情報を含みうる。埋め込まれた情報は、光学、音響、電子、磁気、電磁気、およびその他の媒体を通じて読み取られうる。
【0028】
本開示では、「個人特定情報」は一般に、名前、住所、生年月日、個人特定番号、ユーザID、パスワード、納税識別番号、使用される個人情報ドキュメントのタイプ、個人情報ドキュメントに関連付けられた識別情報番号、国、州、個人情報ドキュメントを発行する政府組織および/または民間組織、個人情報ドキュメントの有効期限、電話番号、スクリーン名、電子メール・アドレス、写真、指紋、虹彩スキャン、物理的な説明、およびその他のバイオメトリック情報を称する。
【0029】
本開示では、「個人情報」は、個人特定情報、個人の関係、個人の地位、個人の背景、個人の利益、および、金融商品、金融口座、および金融取引に関連する情報を含む個人の財務情報を含む。
【0030】
本開示では、「金融商品」は一般に、金融取引を実行するために使用される商品を称する。金融商品の例は、現金、クレジット・カード、デビット・カード、ATMカード、プリペイド・カード、ストアド・バリュー・カード、ギフト・カード、小切手、貨幣代替物、電信送金、AHC移転、信用状、手形、有価証券、商業手形、商品、金、銀等を含む。
【0031】
本開示では、「個人通信デバイス」は一般に、個人通信目的のために使用されるデバイス・インタフェースを称する。
【0032】
本開示では、「デバイス・インタフェース」は一般に、キーボード、キーパッド、モニタ、ディスプレイ、端末、コンピュータ、制御パネル、車両ダッシュ・ボード、ネットワーク・インタフェース、機械インタフェース、ビデオ・インタフェース、オーディオ・インタフェース、電気的なインタフェース、電子的なインタフェース、磁気的なインタフェース、電磁波インタフェースを含む電磁的なインタフェース、光学的なインタフェース、光インタフェース、音響的なインタフェース、ビデオ・インタフェース、オーディオ・インタフェース、非接触インタフェース、モバイル電話インタフェース、スマートフォン・インタフェース、スマートブック・インタフェース、その他の通信デバイス・インタフェース、情報携帯端末(PDA)インタフェース、ハンドヘルド・デバイス・インタフェース、ポータブル・デバイス・インタフェース、無線インタフェース、有線インタフェース、およびその他のインタフェースを称する。
【0033】
本書では、用語「端末」または「キオスク」は一般に、コンピュータおよび/またはその周辺装置、マイクロプロセッサおよび/またはその周辺装置、ATM端末、チェック・キャッシング・キオスク、マネー・サービス・キオスク、商人精算台、キャッシュ・レジスタ、両替機、駐車料金支払いキオスク、その他の支払いキオスク、非接触デバイス、有線電話、モバイル電話、スマートフォン、スマートブック、パーソナル通信デバイス、タブレット・デバイス、デジタル・アシスタント、エンタテイメント・デバイス、ネットワーク・インタフェース・デバイス、ルータ、および/または情報携帯端末(PDA)等を含み、ユーザが、コンピュータ・システムや、コンピュータ・ネットワークに接続されたその他の機器とインタラクトできるように、ユーザをコンピュータ・ネットワークとインタフェースさせる機器を称する。
【0034】
さらに、これらの全体において参照によって本明細書に明確に組み込まれている"Global Customer Identification Network" (SONGらの米国特許出願公開番号2012/0123942)および"Paperless Coupon Transactions System"(SONGらの米国特許出願公開番号2011/0225045)と題された同時係属中の出願に対する参照もなされねばならない。
【0035】
以下に続く詳細記載が良好に理解されるために、本開示の特徴および技術的利点が、広く概説された。本開示のさらなる特徴および利点が以下に記載されるだろう。本開示は、本開示のものと同じ目的を実行するために、修正したり、その他の構成を設計するための基礎として容易に利用されうることが当業者によって理解されるべきである。このような等価な構成は、特許請求の範囲に記載された開示の教示から逸脱しないこともまた当業者によって理解されるべきである。さらなる目的および利点とともに、動作の方法と構成との両方に関し、本開示の特徴であると信じられている新規の特徴が、添付図面と関連して考慮された場合に、以下の記載から良好に理解されるであろう。しかしながら、図面のおのおのは、例示および説明のみの目的のために提供されており、本開示の限界の定義として意図されていないことが明確に理解されるべきである。
【図面の簡単な説明】
【0036】
本開示の特徴、特性および利点は、図面と連携された場合、以下の詳細説明からより明らかになるだろう。
【
図1】
図1は、BSA執行官、コンプライアンス執行官、セキュリティ執行官、および/または、その他の責任者が、異なるタイプの法律および規制に準拠できるようにするためのトランザクション・モニタリングのためのコンピュータ・システムのシステムおよびネットワーク図を例示する。
【
図2】
図2は、BSA執行官、コンプライアンス執行官、セキュリティ執行官、または、その他の責任者が、疑惑取引を、
図1に図示されるコンピュータ・システムを用いて、どのようにして検知し、報告するのかを示すプロセスの例のフローチャートである。
【0037】
添付図面と関連付けられた以下の詳細説明は、さまざまな構成の記載として意図されており、本明細書に記載された概念が実現されうる唯一の構成しか表していないことは意図されていない。この詳細説明は、さまざまな概念の完全な理解を提供することを目的とした具体的な詳細を含んでいる。しかしながら、これらの概念は、これら具体的な詳細無しで実現されうることが当業者に明らかになるであろう。いくつかの事例では、周知の構成および構成要素が、このような概念を曖昧にすることを避けるために、ブロック図形式で示されている。本明細書に記載されるように、用語「および/または」の使用は、「包括的なまたは」を表わすことが意図されており、用語「または」の使用は、「限定的なまたは」を表わすことが意図されている。
【発明を実施するための形態】
【0038】
米国政府は、ビジネス、特に、金融機関(例えば、銀行、信用組合、抵当金融会社、マネー・サービス・ビジネス、株式仲買人、保険会社等)に対して、米国愛国者法、銀行秘密法(BSA)、公正かつ正確な信用取引法(FACT法)、不正なインターネット・ギャンブル是正法(UIGEA)、高齢者虐待報告法(EARA)、サーベンス・オクスリー法(SOX)、外国資産管理局(OFAC)によって設定された規制、およびその他の法律および規制群のようなその他の法律に準拠することを厳しく強いている。これらの法律および規制に違反したいくつかの金融機関に対しては、民事制裁金法(CMP)において、すでに数億ドルが米国政府当局および機関によって徴収されている。刑事罰も、金融機関で働く何人かの人々に発効されている。
【0039】
金融機関は、単なる1つのタイプのビジネスである。金融機関は、これら法律および規制に準拠する必要のあるただ1つの組織ではない。多くのビジネスもまた、これら法律および規制に準拠する必要がある。金融機関は、政府機関によって緊密に規制されているので、より多くの圧力を受ける。本開示は、異なるタイプの犯罪を防ぐため法律および規制に準拠するように義務付けられているすべてのビジネスに当てはまる。
【0040】
米国の法律および規制は、本開示において例として使用される。同様の法律および規則はその他の多くの国々に存在する。さらに、本開示は、ビジネスがそれぞれの法律および規則に準拠するのを支援するために、これら国々においても適用可能である。
【0041】
同様に、金融犯罪是正ネットワーク(FinCEN)および外国資産管理局(OFAC)は米国の組織である。他の多くの国々が、同様のタスクを行なう同様の組織を持っている。本開示はまた、それらの組織の要件に準拠するためにも使用されうる。
【0042】
非常に頻繁に、人または人のグループが疑惑取引を本当に行った否かは明確ではない。米国における銀行秘密法によれば、ビジネスは、FinCENに疑惑取引レポート(SAR)を提出した場合、報告した事例が、本当の違法取引であるか否かを証明する義務はない。実際、「免責」ルールは、ビジネスに対して、合法である取引を誤って報告することを非難される波及効果に関する心配なく、疑惑取引をより多く報告することを促す。この「免責」ルールの下では、人も(または組織も)いかなるエンティティに対する訴訟も起こすことはできない。なぜなら、エンティティは、この人(または組織)についてFinCENに疑惑取引レポート(SAR)を提出しているからである。SARは、情報を収集するために政府によって使用され、ビジネスは、SARで情報及び意見を提供することのみ期待される。SARによって報告された取引が本当に疑わしいか否かは、政府機関の自身の調査に基づいて、政府機関によって判定される。
【0043】
一般に、(不正行為ではない)疑惑取引を報告するか否かに関する決定プロセスはしばしば、不正行為事例を報告するか否かに関する決定プロセスとは非常に異なる。不正行為事例の場合、誰か(ビジネスまたはコンシューマのいずれか)が、お金を失いうる。したがって、これは、一般に、明らかな状況である。したがって、不正行為事例を報告すべきか否かは、容易な決定である。実際、不正行為を防ぐこともまたより容易である。一般に、コンピュータ・システムは、トランザクションに関連付けらえた高い不正行為リスクを検知すると、直ちにこのトランザクションをブロックし、調査者に対して、それが本当に不正行為事例であるか否かを判定させるために、このトランザクションを調査させうる。
【0044】
本開示の1つの態様では、不正行為検知のために、コンピュータ・システムは、トランザクションに関連付けられた多くの異なる要因に基づいて、トランザクションに関連付けられたリスク・スコアを計算する。例えば、これらの要因は、口座の過去の取引、予想される取引からの乖離、トランザクションの場所、時間、量、頻度および特性、複数の口座間の関係、口座保有者のタイプ、特性、および構成等を含みうる。
【0045】
本開示の1つの態様では、不正行為検知のために、コンピュータ・システムは、トランザクションの不正行為リスク・スコアがしきい値を上回るのであれば、トランザクションをブロックする。しきい値は、ビジネスのポリシに基づいて予め決定されうる。
【0046】
本開示の1つの態様では、不正行為検知のために、コンピュータ・システムは、検知された高い不正行為リスク・トランザクションに基いて、事例を生成する。その事例と関連情報が、さらなる調査のために、調査者に提示される。
【0047】
それに比べて、違法を証明する明らかな証拠がないかもしれないので、(不正行為ではない)疑惑取引を報告するか否かは、簡単な決定ではない。例えば、銀行の反マネー・ロンダリング・モニタリング実行にしたがって、カスタマが多額の現金を頻繁に預金する場合、このカスタマが、ドラッグを販売し、支払として現金を受け取ることが可能である。また、このカスタマが、支払として現金のみを受け付ける農業市場において自家製の製品を売ることも可能である。何度も、何か疑わしいことがあるか否かを判定するために、精査が必要とされる。
【0048】
さらに、カスタマは、農業市場において自家製の製品を売るものの、他の場所で秘密でドラッグを売ることも可能である。銀行が、実際に、このカスタマからドラッグを買わないか、または、カスタマ(または誰か)が、カスタマがドラッグを売っていることを銀行に伝えないのであれば、銀行は、このカスタマがドラッグを売っていることを証明する証拠がない。しかしながら、カスタマが実際にドラッグを売り、銀行が、このような疑惑取引をFinCENに報告しないのであれば、カスタマが、ドラッグを売ることによって政府によって捕らえられるや否や、銀行は、この事例をFinCENに報告しなかったことにより、後に、厳しい罰則を受けうる。
【0049】
一方、銀行が、疑惑がある僅かな可能性を有するすべての事例を報告すると、銀行は、政府機関からの不必要な注意を招きうる。これは、銀行のオペレーションを調査するために銀行内で数カ月を費やし、銀行のオペレーションに非常に悪影響を与えうる。
【0050】
したがって、事例を報告するべきか否かは、しばしば、この事例を調査する人による個人的見解である。さらに、この意志決定プロセスは、全く主観的でありうる。さらに、単にそれが疑わしいマネー・ロンダリング取引であるように見えるというだけの理由で、ビジネスは、トランザクションをブロックすることができない。コンシューマは、このビジネスが、マネー・ロンダリングがあったことを実際に証明出来なかった場合、コンシューマのトランザクションをブロックしたビジネスを訴えうる。実際、多くの政府機関は、例えばマネー・ロンダリングまたはテロリスト資金調達のような(不正行為ではない)疑惑取引を報告したビジネスに対してしばしば、容疑者が警戒せず、逃げないように、平静を保ち、疑惑のあるトランザクションを通常のトランザクションのように処理するようにアドバイスする。このアプローチは、関連するすべての犯人を特定するために、政府機関に、より多くの時間および機会を与える。
【0051】
米国の銀行秘密法によれば、SARを提出したビジネスは、SARを内密に保つ義務を負い、容疑者(すなわち、この事例に関与する人)に対して、SARの存在を含めて、SARに関するいかなることも知らせることはできない。SARは、許可された政府機関によってのみ調査されうる。裁判官が、自分の事例においてSARの存在を知っている場合でさえも、裁判官はSARの内容を見ることができない。
【0052】
疑惑取引事例の取り扱いは、前述したように、不正行為事例の取り扱いとは非常に異なるので、不正行為検知および防止のために適用可能な多くの伝統的なアプローチおよび概念は、例えば、マネー・ロンダリング、テロリスト資金調達、高齢者虐待、オンライン・ギャンブリング等のような疑惑取引を検知し管理するためにはもはや効果的ではない。本開示の1つの態様では、コンピュータ・システムは、検知された疑惑取引事例を報告しないことを決定した人の意見を記録する。そのような状況の下では、その人がなぜそのような決定をしたのかを正当化する理由を記録することが重要である。
【0053】
不正行為事例とは異なり、疑惑取引事例は、さらなる証拠が利用可能になるまで、この事例を調査する人に明らかにされないことがありうる。したがって、人は、最初は、検知された疑惑取引事例を却下しうるが、さらなる証拠が利用可能になった場合、後に考えを変えることが可能である。本開示の1つの態様では、検知された疑惑取引事例を調査する人はまた、何れかの新たな証拠が、恐らくは却下された事例からの古い証拠と組み合わされた場合に、新たに検知された事例をより疑わしくするか否かを判定するために、同じ容疑者に関して過去に検知されたすべての事例を検討する必要がありうる。その結果、事例が以前に誤った検知として却下された場合であっても、この却下された事例が後に再度調査されうる。
【0054】
不正行為事例は通常、明確な結論を持つので、この疑惑取引の事例調査プラクティスは、不正行為の事例調査プラクティスとは非常に異なる。カスタマが不正行為者ならば、カスタマの口座は直ちに閉鎖され、カスタマに関連付けられた将来の取引はないだろう。カスタマが不正行為の犠牲者であれば、検知された不正行為事例は、カスタマに何の関係もなく、その証拠は、将来において、カスタマに対して使用されない。したがって、不正行為調査者は通常、新たに検知された事例のみに集中し、迅速な決定を行う。逆に、不正行為ではない疑惑取引調査者は、検知された事例の履歴を調査し、集中的な調査および分析後に決定をする必要がありうる。本開示の1つの態様では、疑惑取引を報告しないとの決定の正当化理由が、データベースに格納され、将来の参照のために利用可能である。
【0055】
本開示の別の態様では、コンピュータ・システムが、検知された事例を報告しないと決定した人の個人情報をも記録する。本開示のさらに別の態様では、コンピュータ・システムは、検知された容疑者または事例を隠すことを意図している人がいるか否かを判定するために、同じ容疑者(または、同じ容疑者のグループ)の疑惑取引を報告しないように複数の人によってなされた決定を比較する。
【0056】
大規模なビジネスの場合、何千もの疑惑取引が毎月検知されうる。このビジネスが、これら事例についてSARを提出する必要があるか否かを判定するために、人のグループが、これら検知された事例を調査することを要求されうる。本開示の1つの態様では、コンピュータ・システムは、検知された事例を、ビジネスによって設定されたポリシに基づいて、異なる人に自動的に割り当てる。
【0057】
本開示の別の態様では、コンピュータ・システムは、検知されたおのおのの事例のステータスをモニタし、記録する。特定の人によって事例の調査が表示された場合、コンピュータ・システムは、ビジネスに対して、このような遅延を警告するだろう。
【0058】
本開示のさらに別の態様では、コンピュータ・システムは、検知された事例を調査する各々の人の作業負荷をモニタする。検知された事例を同じ期間中に調査する他の人と比較された場合、この人が、異常に多くの事例を調査しているのであれば、この人自身が、容疑者または不審者となりうる。
【0059】
一方、検知された事例を同じ期間中に調査する他の人と比較された場合、この人が、異常に少ない事例しか調査していないのであれば、この人自身もまた、容疑者または不審者となりうる。上記2つの状況のうちの何れかにおいて、ビジネスのマネジャは、この状況を調査し、自身の結論および解決策に達することを望みうる。
【0060】
本開示の1つの態様では、コンピュータ・システムは、検知された事例を調査するおのおのの人の作業負荷をモニタする。検知された事例を同じ期間中に調査する他の人と比較された場合、この人が、異常に多くの事例を却下しているのであれば、この人自身が、容疑者または不審者となりうる。
【0061】
本開示の別の態様において、検知された事例を同じ期間中に調査する他の人と比較された場合、この人が、異常に少ない事例しか却下していないのであれば、この人自身もまた、容疑者または不審者となりうる。上記2つの状況のうちの何れかにおいて、ビジネスのマネジャは、この状況を調査し、自身の結論および解決策に達することを望みうる。
【0062】
一般に、疑惑取引は、多くの異なるタイプの取引において生じうるので、疑惑取引を検知するために、多くの検知アルゴリズムが使用される。疑惑取引の検知は明らかではないので、検知されたいくつかの事例は、調査後に本当に疑わしくなくなることがありうる。そのような状況の下では、このように検知された事例は、誤検知または誤肯定として「却下」される。誤検知または誤肯定は、一般に、この事例がなぜ却下されたのかを正当化するための理由ではなく、事例の調査の結論として照会される。
【0063】
例えば、いくつかのカスタマが、同じ住所に住んでおり、多額の現金を、金融機関に預金するのであれば、この事例は、家族メンバの多くがドラッグ販売からの売上を預金する、ドラック・ディーラ家族に関するものでありうる。しかしながら、調査後、この事例は、実際には、レストランにおける労働から受け取ったチップを預金している、同居している学生のグループでありうる。この事例を報告しないとの決定を正当化する理由は、「同居している学生が、パート・タイプの仕事から得たチップを預金している」ことになるべきである。その後、検知された事例の結論は、この理由によって、「誤結論」または「誤肯定」となる。
【0064】
一般に、検知された事例の調査後、この事例は、この事例を調査した人によって、誤検知(または、誤肯定)として分類されうる。本開示の1つの態様では、コンピュータ・システムは、誤検知として分類された検知されたすべての事例をユーザが分析するために、情報および/または統計を提供する。これら誤検知から、ユーザは、異常に多くの誤検知をもたらした検知アルゴリズムを特定しうる。ユーザはさらに、将来の疑惑取引を検知する際により効果的になるように、これら検知アルゴリズムを改善しうる。
【0065】
米国愛国者法、銀行秘密法(BSA)、反マネー・ロンダリング(AML)、および反テロリスト資金調達(ATF)は、9/11以来、金融業界で最も重要なコンプライアンス問題となった。多くの金融機関がこれらのコンプライアンス問題に、多額の資本を投資したが、真のマネー・ロンダリング事例およびテロリスト資金調達事例をまだまだ見逃している。
【0066】
これらのコンプライアンス問題の根本原因は、多くの金融機関が基本的なマネー・ロンダリング事例さえも検知せず、金融機関の上級管理者は、これらの問題を理解するのに苦労することである。多くの金融機関が、マネー・ロンダリング取引、および、不正行為事例とマネー・ロンダリング事例との混合を検知するために、不正行為検知原理を利用する。
【0067】
しかしながら、実際には、マネー・ロンダリングは、不正行為とは非常に異なる。不正行為検知製品は、口座保有者の現在の取引を、口座保有者の過去の取引とを容易に比較し、現在の取引が、過去の取引から導出される、予想される取引から乖離しているのであれば、ありうる不正行為を検知しうる。例えば、不正行為者が犠牲者からクレジット・カードを盗み取ると、不正行為者は、犠牲者の過去の取引とは異なる購入取引を行うだろう。それは、単にクレジット・カード会社が不正取引を検知し、クレジットカードを不能にするまでの、時間の問題である。新たな口座がまだ十分な過去の記録を有していないのであれば、不正行為検知製品は、口座保有者の現在の取引を、口座開設処理中に口座所有者が言ったことと比較する。
【0068】
不正行為検知製品の目的は、損失を可能な限り早く停止させることであるので、金融機関は通常、不正行為検知またはリスク・スコアリングを、リアル・タイムで、または、少なくとも毎日一度、実行しうる。対照的に、不正行為検知のために効果的なリアル・タイム・リスク・スコアリング、リアル・タイム検知、デイリー・リスク・スコアリング、およびデイリー検知方法は、多くの基本的なマネー・ロンダリング取引を検知することができない。実際、以前に説明されたように、ハイ・リスク・カスタマは、マネー・ロンダラではないかもしれない。ハイ・リスク・カスタマが疑いのあるマネー・ロンダリング取引を行っていると仮定することは時間の浪費である。
【0069】
金融機関は、一般に、疑わしいマネー・ロンダリング取引またはテロリスト資金調達取引をFinCENへレポートする責任のある銀行秘密法執行官(BAS執行官)を有している。以下の事例は、金融機関内のBSA執行官が、実際のマネー・ロンダリング事例を見逃しながら、リアル・タイム・リスク・スコアリング結果またはデイリー・リスク・スコアリング結果を調査するのにどのように著しく時間を浪費しているかの例である。この例は以下の事実から成る。(a) クライアントAが、毎月5日頃、XYZに3,000ドル未満を送金する。(b) クライアントBが、毎月8日頃、XYZに3,000ドル未満を送金する。(c) クライアントCが、毎月12日頃、XYZに3,000ドル未満を送金する。(d) クライアントDが、毎月17日頃、XYZに3,000ドル未満を送金する。(e) クライアントEが、毎月24日頃、XYZに3,000ドル未満を送金する。(f) クライアントFが、毎月29日頃、XYZに3,000ドル未満を送金する。(g) A、B、C、D、EおよびFは、無関係な個人である。そして、(h)XYZは、以前の犯罪歴のない、ロサンゼルスのドラッグ販売人である。
【0070】
上記の例において、BSA執行官が、振る舞いの変化を検知するために、クライアントの現在の取引を、クライアントの過去の取引と比較した場合、クライアントは、毎月、同じようなトランザクションを一貫して実行しているので、BSA執行官は、何ら異常を検知しない。銀行出納係がクライアントに対して、資金移転の目的について尋ねると、クライアントは、容易に嘘をつきうる。これらのクライアントは、その月の異なる日にこれらトランザクションを実行しているので、BSA執行官は、その月の所与の日におけるリスクを検知することができないだろう。
【0071】
さらに、これらのクライアントは関連していないので、BSA執行官は、彼らの全体の取引を見ることはないだろう。さらに、おのおののトランザクションは、月に一度発生する少額のドルしか含んでおらず、資金の受取人は、人口が多く商業取引が活発な米国の都市に住んでいるので、これらのトラザクションに基づいて、これらクライアントの誰もが、ハイ・リスクまたは疑惑のあるものと見られないであろう。その結果、不正行為検知製品は、BSA執行官が毎日、不正行為検知製品を用いて勤勉に働いているという事実にも関わらず、これら基本的なマネー・ロンダリング事例を見逃すだろう。
【0072】
本開示の1つの態様では、これらのマネー・ロンダリング事例を検知するために、コンピュータ・システムは、金融機関からトランザクション・データを収集し、30日またはそれより長い期間、すべてのクライアントのすべてのトランザクションにわたって、反マネー・ロンダリング・シナリオおよび反テロリスト資金調達シナリオに基づいてデータ・マイニングを実行する。コンピュータ・システムは、金融機関内部で、例えば電信、ACH、カード支払、モバイル支払等のような異なるデータ・ソースから、すべての資金移転トランザクションの詳細を収集し、これら資金移転トランザクションの共通の受取人を特定する。
【0073】
共通の受取人が特定された場合、コンピュータ・システムは、金融機関のBSA執行官に、共通の受取人に送られたすべてのトランザクションを表示しうる。BSA執行官は、コンピュータ・システムによって特定されたトランザクションを調査する。BSA執行官はまた、新たに検知された事例の容疑者に関連付けられた過去のすべての事例をも調査する。共通の受取人があまりに多くの金銭を受け取っているので、このようなトランザクションが疑惑取引であることにBSA執行官(すなわち、責任者)が合意すると、コンピュータ・システムは、BSA執行官がSARをFinCENへ提出することを支援する。BSA執行官は、SARを提出しないことを決定すると、検知されたこの取引を報告しないとの彼の決定を正当化する理由を、コンピュータ・システムに入力する。
【0074】
容易に理解されるように、長期にわたって蓄積された金融機関のすべてのクライアントの膨大な量のトランザクション・データをデータ・マイニングすることは、非常に小さな金融機関に関する場合であっても、時間がかかる。金融機関は、マネー・ロンダリング事例において直接的には何ら金銭を失わないので、規制ガイドラインによれば、BSA執行官は、SARを提出するために最大30日を有する。この例は、本当のマネー・ロンダリング取引を実際に見逃すデイリー・リスク・スコアリングまたはリアル・タイム・リスク・スコアリングを実行することは時間およびリソースの無駄であることを例示する。
【0075】
実際、多くのBSA執行官は、実際のマネー・ロンダリング事例を検知することを犠牲にして、毎日、誤った肯定に時間を浪費しているという共通のフラストレーションを漏らしている。このフラストレーションは、マネー・ロンダリングと不正行為は、しばしば、同じ犯罪者によって引き起こされる犯罪であり、検知された振る舞いの変化に基づいてともに検知されるべきであるという流布している誤った概念の結果である。不正行為検知製品を購入した後、いくつかの金融機関は、マネー・ロンダリング事例と不正行為事例との両方をともに検知することを試みる。この結果、膨大な時間、金、およびリソースが浪費されるという結果になった。この誤った概念は、トランザクション・リスクの洗練されたファセットの適切な理解によって修正されうる。
【0076】
トランザクション・リスクは、トランザクションに直接的に関連付けられたリスクとして定義される。例えば、マネー・ロンダリング・リスクおよび不正行為リスクは、トランザクションに直接的に関連付けられる。しかしながら、これらのリスクは、非常に異なる特性を有する。金融機関によってマネー・ロンダリングを実行するカスタマは、自分たちの目的を達成するための手段としてこの金融機関を使うつもりである。これらマネー・ロンダラたちは、自分たちのスキームを遂行するために、金融機関の支援を必要とするので、通常、「良いカスタマ」であるふりをする。彼らは、追徴課税を払うこと、または、彼らのお金に関する利子を失うことを気にかけない。したがって、金融機関の観点からは、これらマネー・ロンダラは、すばらしいカスタマであるように見える。これは、舞台裏に隠されているマネー・ロンダリング取引を検知するためにすべてのトランザクションについて、なぜ金融機関がデータ・マイニングを実行する必要があるのかの主要な理由のうちの1つである。
【0077】
それに比べて、不正行為リスクは、それら自身を非常に異なるように表わす。カスタマによって犯される不正行為は、一般に、2つのカテゴリ、すなわち(1)サード・パーティ不正行為と、(2)カウンタ・パーティ不正行為とに分類される。サード・パーティ不正行為は、金融機関ではなくカスタマでもないサード・パーティによって犯される不正行為であると定義される。例えば、不正行為者(すなわち、サード・パーティ)がカスタマから小切手を盗んだ場合、金融機関(すなわち、プライマリ・パーティ)とカスタマ(すなわち、カウンタ・パーティ)との両方が、犠牲者になりうる。そのような状況の下では、サード・パーティ不正行為者によってなされるトランザクションは、カスタマとまったく関係がない。したがって、カスタマは、サード・パーティによってなされた不正行為の単なる犠牲者であるので、(例えば、振る舞いの変化があった場合)カスタマがマネー・ロンダリングを実行したと仮定する非効率的な不正行為検知によってBSA執行官がミスリードされる場合、それは時間、金、およびリソースの浪費である。
【0078】
カウンタ・パーティ不正行為は、金融機関(すなわち、プライマリ・パーティ)を欺いたカスタマ(すなわち、カウンタ・パーティ)によって犯された不正行為であると定義される。カスタマは、金融機関を欺くことに成功すると、直ちに姿をくらまし、この金融機関を使ってマネー・ロンダリングを行わない。不正行為者は、不正行為者が金融機関Bから盗んだ金をロンダリングするために金融機関Aを使いうる。金融機関Bにとって、これは不正行為事例である。金融機関Aにとって、これはマネー・ロンダリング事例である。しかしながら、金融機関Aおよび金融機関Bの何れも、この同じカスタマに対して起こった不正行為事例もマネー・ロンダリング事例も見ることはない。明らかに、不正行為事例を毎日検知することを意図しているシステムは、マネー・ロンダリングのための多くの誤った肯定をシステマティックに生成し、真のマネー・ロンダリング事例を実際に見逃している。このようなアプローチを用いることは、BSA執行官の作業負荷を増大させ、金融機関を不必要な規制リスクにさらす。
【0079】
サード・パーティ不正行為のカテゴリの下に、注目に値するその他多くのリスクがある。例えば、偽小切手、クレジット・カード不正行為、デビット・カード不正行為、ATM不正行為、オンライン不正行為等は、サード・パーティ不正行為のカテゴリの下の典型的なリスクである。同様に、カウンタ・パーティ不正行為のカテゴリの下に、例えば、小切手詐欺、預金不正行為、ローン不正行為等のような多くの異なるリスクがある。したがって、良好なトランザクション・リスク管理システムは、不正行為を正しく検知するためにさまざまなタイプの不正行為のおのおののユニークな特性をインテリジェントに考慮する複数の検知アルゴリズムを使用する。
【0080】
さらに、以前に説明されたように、多くのカスタマは、別の日に、おのおのの人の1つの少額のトラザクションをともに実行することによって金のロンダリングまたはテロリストへの資金調達を行い、毎日のモニタリングは、このような事例を見逃す。これは、振る舞いの変化を検知するために単一の方法を用いるシステムは、リソースを浪費し、真のマネー・ロンダリング事例およびテロリスト資金調達事例を見逃しているという論理的結論をもたらす。本開示の1つの態様では、マネー・ロンダリング取引およびテロリスト資金調達取引は、期間にわたって蓄積された金融機関全体のすべてのトランザクションに関して、ユーザ定義シナリオに基づいてデータ・マイニングを実行する異なる検知方法によって検知される。
【0081】
本開示の1つの態様では、コンピュータ・システムは、トランザクションをモニタリングするため複数の検知方法を利用し、これら検知結果を、集中化された事例管理プラットフォームへ統合する。このアプローチは、全体的な、正確な状況をすべての時間において維持しながら、反マネー・ロンダリング、反不正行為、および反金融犯罪を、最大の効率で強化し、効率化する。その結果、金融機関は、効率的に、規制要件に準拠し、リスクを除去し、損失を回避し、生産性を押し上げ、トランザクション・リスクを管理する際のリソースを最小化し、ハードウェア、データベース、およびソフトウェアに関連付けられたコストを低減し、ITメンテナンス作業負荷を下げ、全体的な収益性を増加させうる。
【0082】
本開示の1つの態様では、コンピュータ・システムは、疑惑のあるマネー・ロンダリング取引を検知するために、カスタマ(またはカスタマのグループ)のトランザクション・パターンを、いくつかの既知のマネー・ロンダリング・トランザクション・パターンと比較する。一致した場合、起こりうるマネー・ロンダリング取引が検知されうる。
【0083】
例えば、10,000ドルを超える現金が同じ日に銀行口座に預金された場合、多くの犯罪者は、銀行が、米国政府へ通貨トランザクション・レポート(CTR)を提出しなければならないことを知っている。CTRの提出を避けるために、犯罪者はしばしば、1つの大きな現金預金を、複数の小さな現金預金に分割する。おのおのの現金預金は、別の日になされ、おのおのの現金預金は、10,000ドル未満である。このトランザクション・パターンは、既知のマネー・ロンダリング・トランザクション・パターンであり、コンピュータ・システムは、このタイプのトランザクション・パターンを検知しうる。マネー・ロンダリング・トランザクション・パターンとして知られているその他多くのタイプのトランザクション・パターンがある。コンピュータ・システムは、これら既知のマネー・ロンダリング・トランザクション・パターンのおのおのを検知するように設計されうる。その結果、振る舞いの変化がなくても、疑惑(単数または複数)のあるトランザクション・パターンに基づいて、マネー・ロンダリング取引が検知されうる。
【0084】
本開示の1つの態様では、BSA執行官(または責任者)は、検知された事例を、それが真のマネー・ロンダリング事例か否かを判定するために調査する。本開示の1つの態様では、BSA執行官はまた、現在検知されている事例の容疑者(単数または複数)に関連付けられた過去のすべての事例をも調査する。本開示の1つの態様では、そのようなトランザクションが疑惑取引であることにBSA執行官が合意した場合、コンピュータ・システムは、BSA執行官がFinCENへSARを提出することを支援する。本開示の別の態様では、BSA執行官は、SARを提出しないと決定すると、検知された取引を報告しないとの決定を正当化するための理由をコンピュータ・システムへ入力する。
【0085】
本開示の別の態様では、疑惑のあるマネー・ロンダリング取引を検知するために、例えば、ビジネスのタイプ、ビジネス・モデル、組織構成、サイズ、場所、製品、サービス、キャリア・タイプ、場所等のような少なくとも1つの共通のリスク要因(または、特性)を有するカスタマのグループが、ともに比較される。1つのカスタマのトランザクション取引(例えば、トランザクション・パターン、トランザクション・ボリューム、トランザクション頻度、トランザクション傾向、トランザクション数、トランザクション量、トランザクション派生等)が、他のカスタマのトランザクション取引と異なるのであれば、このカスタマは、疑わしいマネー・ロンダリング取引をしたのかもしれない。本開示の1つの態様では、カスタマのグループの、例えば中央、分散、標準偏差等のような統計数字が、これらの比較を容易にするために使用される。同様に、1つのカスタマが、同じセットのリスク要因(または特性)を有する他のカスタマと異なって振る舞うのであれば、このカスタマは、疑わしいマネー・ロンダリング取引をしたのかもしれない。その結果、口座における振る舞いに変化がなくても、疑わしいマネー・ロンダリング取引が検知されうる。
【0086】
しばしば、カスタマのグループをともに比較することは容易ではない。例えば、100の支店を持つMSBが、2つしか支店を持たない別のMSBよりもより多くの現金取引をすることがありうる。本開示の1つの態様では、より効果的な比較を達成するために、オリジナルの生データの代わりに、いくつかの派生(例えば、いくつかの数の比率)を比較することが有用である。例えば、比率は、「銀行に預金された小切手の総数によって除された、銀行からの総現金引出」でありうる。この例では、預金された小切手の数は、MSBの小切手現金化オペレーションのサイズを測定するために使用されうる。したがって、比率「預金された小切手の総数によって除された総現金引出」は基本的に、小切手現金化取引に基づいて、100の支店を持つMSBの小切手現金化オペレーションと、2つの支店を持つMSBの小切手現金化オペレーションを、同じレベルの見地で比較できるように、およそ同じレベルにスケールする。
【0087】
その他の多くの派生も、よい良好な比較を達成するために使用されうる。一般に、より効果的な比較のための派生は、「ビジネス(またはオペレーション)のサイズを測定する第2の変数によって除された第1の利益の変数」を含みうる。例えば、「預金された小切手の合計数によって除された合計ACH出金トランザクション量」、「預金された小切手の合計数によって除された合計電信出金トランザクション量」、「預金された小切手の合計数によって除された、発行済みプリペイド・カードの合計数」、「支店の合計数によって除された、合計ACH出金トランザクション量」、「支店の合計数によって除された、合計電信出金トランザクション量」、「支店の合計数によって除された、発行済みプリペイド・カードの合計数」、「発行済みプリペイド・カードの合計数によって除された、合計ACH出金トランザクション量」、「発行済みプリペイド・カードの合計数によって除された、合計電信出金トランザクション量」等は、使用される可能な派生の単なるいくつかの例である。本開示の1つの態様では、上記の比率に加えて、その他の形式の数学的な変換が、派生を生む。
【0088】
本開示の1つの態様では、コンピュータ・システムは、特定のカスタマの派生を、特定のカスタマと少なくとも1つの共通(例えば、同じタイプのビジネスまたは職業)のリスク要因(または特性)を有するカスタマのグループの派生と比較する。特定のカスタマの派生が、カスタマのグループの派生から著しく乖離しているのであれば、特定のカスタマは、疑いのあるマネー・ロンダリング取引を行ったのかもしれない。本開示の1つの態様では、カスタマのグループの、例えば中央、分散、標準偏差等のような統計分析が、このような比較を容易にする。
【0089】
本開示の1つの態様では、コンピュータ・システムは、金融機関のおのおののカスタマのマネー・ロンダリング・リスクを判定するために、多くの異なるリスク要因を用いる。例えば、これらリスク要因は、産業、カスタマのカテゴリ、カスタマのビジネス・タイプ、カスタマの地理的エリア、カスタマの住所の国、カスタマのビジネスの特性、ビジネスの製品タイプ、ビジネスのサービス・タイプ、ビジネスの構造、カスタマの職業、国籍、過去の記録、実行されたトランザクションのタイプ、口座の残高、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、トランザクションの場所、トランザクションの時間、トランザクションの国、送金トラザクションの送り主、送り主の場所、送り主の国、送り主の特性、送金トランザクションの受取人、受取人の場所、受取人の国、受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション等でありうる。実際、何千ものリスク要因が、カスタマのマネー・ロンダリング・リスクを判定すると考えられうる。「リスク要因」は「リスク・ディメンション」とも呼ばれる。
【0090】
本開示の1つの態様では、同じタイプのリスクのおのおのの程度が、リスク要因であり、リスク・スコアを与えられる。例えば、30日の期間内の合計の現金トランザクション量は、マネー・ロンダリングに関連付けられたリスクの程度を測定するために使用されうる。例えば、我々は、合計キャッシュ・トランザクション量を、30日期間中、0ドルから5,000ドルまで、10であるリスク・スコアを有するように、5,001ドルから50,000ドルまで、50であるリスク・スコアを有するように、50,001ドルから250,000ドルまで、100であるリスク・スコアを有するように、250,001ドルから1,000,000ドルまで、200であるリスク・スコアを有するように、1,000,001ドルから10,000,000ドルまで、500であるリスク・スコアを有するように、10,000,000ドルを超える場合、1,000であるリスク・スコアを有するように定義しうる。この例において、30日の期間中に、60,000ドルの合計現金トランザクションを行った人は、100であるリスク・スコアを有する。
【0091】
「現金トランザクション量」は、単なる例として使用される。例えば、現金トランザクションの量、現金トランザクションの加速等のようなその他の考慮もまた、マネー・ロンダリングに関連付けられたリスクとして使用されうる。現金に加えて、例えば小切手、電信、ATM、ACH、クレジット・カード、デビット・カード、プリペイド・カード、貨幣代替物、移転等のようなその他の金融トランザクションもまた、マネー・ロンダリングに関連付けられたリスクとして使用されうる。当業者であれば、上記例に基づいて、多くのリスク要因を容易に理解しうる。
【0092】
本開示の1つの態様では、おのおののリスク要因は、リスク・スコアを与えられ、カスタマは、カスタマに関連付けられたリスク要因のすべてのリスク・スコアの総和でありうる合計リスク・スコアを与えられる。この合計リスク・スコアは、カスタマに関連付けられたリスクのレベルを決定するために使用されうる。総和は、本開示において一例として使用される。実際、類似の効果を達成するために、多くの異なるタイプの数学的変換が使用されうる。
【0093】
以前に説明したように、不正行為の状況とは異なり、ハイ・リスク・クライアントは、マネー・ロンダリングまたはテロリスト資金調達の容疑者ではないかもしれない。ハイ・リスクは、単にクライアントの特性でありうる。例えば、MSB、質屋、自動車売買業者、パイロット、客室乗務員等はしばしば、反マネー・ロンダリング目的および反テロリスト資金調達目的のために、ハイ・リスク・カスタマとして分類されるが、これは、これらのカスタマが、マネー・ロンダリング取引またはテロリスト資金調達を行っていることを意味しない。
【0094】
にもかかわらず、カスタマは、ハイ・リスク・スコアを有しているので、厳密にモニタされ、別のモニタリング方法が適用されうる。したがって、本開示の1つの態様では、カスタマをモニタするために適用されるモニタリング方法を決定するために、カスタマの合計リスク・スコアが使用される。カスタマの合計リスク・スコアがより高い場合、カスタマをモニタするために、より厳密なモニタリング方法が適用される。カスタマの合計リスク・スコアがより低い場合、カスタマをモニタするために、より寛大なモニタリング方法が適用される。
【0095】
言い換えれば、本開示の1つの態様では、カスタマが疑わしいか否かを判定するために、カスタマの合計リスク・スコアは使用されない。代わりに、カスタマの合計リスク・スコアは、カスタマをモニタするためのアルゴリズムまたはアルゴリズムのセットを選択するために使用される。
【0096】
本開示の1つの態様では、同じリスク要因を有するカスタマのグループがともに比較される。例えば、我々は、客室乗務員であるすべてのカスタマをともに比較しうる。本開示の1つの態様では、特定の客室乗務員の合計リスク・スコアが、この比較におけるすべての客室乗務員の合計リスク・スコアの基準よりもはるかに高いのであれば、この特定の客室乗務員は、いくつかの疑いのあるマネー・ロンダリング取引を行ったのかもしれない。その基準は、平均、中央、加重平均、および/または、その他の統計値を備える。
【0097】
疑惑取引の検知を容易にするために、統計学的なアプローチもまた適用されうる。例えば、客室乗務員であるすべてのカスタマの合計リスク・スコアから、中央、分散、および標準偏差が導出されうる。本開示の1つの態様では、特定の客室乗務員の合計リスク・スコアが、すべての客室乗務員の合計リスク・スコアの平均よりも、標準偏差の4倍以上高いのであれば、この特定の客室乗務員は、疑惑取引を実行したのかもしれない。
【0098】
上記の基準「4倍」は単なる一例である。数「4」は、3.75、4.21、10などのような任意の数でありうる。本開示の1つの態様では、特定の客室乗務員の合計リスク・スコアが、すべての客室乗務員の合計リスク・スコアの中央よりも、標準偏差のx倍以上高いのであれば、この特定の客室乗務員は、疑いのあるマネー・ロンダリング取引を実行したのかもしれない。ここで、xは、BSA執行官(または、責任者)によって割り当てられた数である。グループ比較が使用される場合には常に、この統計アプローチが適用されうる。
【0099】
客室乗務員は、単に、エンティティのグループ間での疑わしいマネー・ロンダリング取引を検知するこの方法を例示するための一例である。実際、その他多くのリスク要因が類似目的のために使用されうる。何千ものリスク要因があるので、本開示の1つの態様では、コンピュータ・システムは、同じリスク要因を持つすべてのカスタマを特定するために、ユーザが、任意のリスク要因を選択することを許可する。本開示の1つの態様では、特定のカスタマは、同じリスク要因を持つその他のカスタマの合計リスク・スコアの基準よりもはるかに高い合計リスク・スコアを有するのであれば、疑いのあるマネー・ロンダリング取引を実行していることがありうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。
【0100】
1つのリスク要因の代わりに、リスク要因のグループもまた使用されうる。実際、リスク要因のグループは、検知結果の精度を改善しうる。例えば、職業(例えば、客室乗務員)のリスク要因に加えて、客室乗務員が勤務するフライトの到着国が、マネー・ロンダリング・リスクを検知するために役に立つ別のリスク要因となりうる。例えば、ニューヨークとシカゴとの間のフライトで勤務する客室乗務員は、マイアミとメキシコ・シティとの間のフライトで勤務する別の客室乗務員の取引とは異なる取引を有しうる。マイアミとメキシコシティとの間のフライトで勤務する客室乗務員のサブ・グループを比較するほうが、より正確でありうる。この例では、検知の精度を高めるために、2つのリスク要因、すなわち、フライトの到着/目的都市および職業が考慮される。
【0101】
本開示の1つの態様では、リスク要因のセットが、エンティティのグループを特定するために使用される。特定のエンティティが、同じリスク要因のセットを持つすべてのエンティティの合計リスク・スコアの基準よりもはるかに高い合計リスク・スコアを有しているのであれば、特定のエンティティは、疑わしいマネー・ロンダリング取引を実行したのかもしれない。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。比較を容易にするために、エンティティのグループ間のこのような比較を容易にするために、例えば中央、分散、標準偏差等のようなグループ統計値が導出されうる。その結果、口座における振る舞いの変化がない場合であっても、コンピュータ・システムは、上記アプローチに基づいて、疑わしいマネー・ロンダリング取引を検知しうる。
【0102】
しばしば、このようなエンティティは、その他のエンティティとは非常に異なるので、グループ比較処理からいくつかのエンティティを除外することが有用でありうる。本開示の1つの態様では、コンピュータ・システムは、グループ比較処理に含まれないであろういくつかのエンティティをユーザが選択することを許可する。
【0103】
疑わしいマネー・ロンダリング取引を有しているとして客室乗務員を検知することは単なる一例である。同様の方法は、その他多くの異なる状況に適用されうる。例えば、マネー・サービス・ビジネス(MSB)は、毎日多くのトランザクションを有しており、1つのマネー・ロンダリング・トランザクションは、その他多くの正常なトランザクションの中に隠されてしまうので、通常、銀行またはクレジット会社が、疑わしいマネー・ロンダリング取引またはテロリスト資金調達取引を有するものとしてMSBカスタマを検知することは非常に困難である。
【0104】
本開示の1つの態様では、同じリスク要因のセットを有するMSBのグループを特定するために、(すなわち、第1のリスク要因-ビジネスのタイプに加えて、)さらなるリスク要因(例えば、メキシコ国境近傍)が使用される。特定のMSBが、同じリスク要因のセットを有するすべてのMSBの合計リスク・スコアの基準よりも高い合計リスク・スコアを有しているのであれば、特定のMSBは恐らく、疑いのあるマネー・ロンダリング取引を実行している。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。同様に、例えば中央、分散、標準偏差等のようなグループ統計値が、MSBのグループ間のこのような比較を容易にするために導出されうる。
【0105】
しばしば、MSBは、異なるタイプのオペレーションおよび異なるサイズを有しうるので、MSBのグループを比較することは容易ではない。本開示の1つの態様では、パート・タイムMSBとフル・タイムMSBとは、異なるビジネスの特性を有しうるので、異なる2つのリスク要因が与えられる。本開示の別の態様では、異なるタイプのMSB製品および/またはサービスのおのおに、リスク要因が与えられる。例えば、送金、小切手現金化、両替、プリペイド・カード管理等のおのおのは、これらすべてが同じMSBによって提供されるものの、リスク要因が与えらえる。本開示の1つの態様では、リスクを特定するために、サービスおよび/または製品のタイプを正確に定義するリスク要因のセットが用いられる。
【0106】
本開示の1つの態様では、グループ比較がより効率的になるように、オペレーションのサイズに基づいて、いくつかのリスク要因が調節される。例えば、50の支店を有するMSBは、10の支店を有する別のMSBの、5倍の合計現金トランザクション量を通常有しうる。しばしば、グループ比較を実行するために、これらオペレーションのサイズによって影響を受けるリスク要因は、これらオペレーションのサイズを考慮するように調節されうる。例えば、50の支店を有するMSBの場合、30日間の合計現金トランザクション量が50で除され、グループ比較のために調節されたリスク要因およびリスク・スコアが確立される。支店は、ここでは、オペレーションのサイズを測定するための例として使用される。例えば、カスタマの数、トランザクションの数、従業員の数、資産のサイズ等のようなその他の情報もまた、オペレーションのサイズを測定するために使用されうる。
【0107】
本開示の1つの態様では、オペレーションのサイズに基づいて調節されたリスク要因のセット(「調節済リスク要因」)が、この調節済リスク要因のセットを有するエンティティのグループを特定するために使用される。調節済リスク要因のリスク・スコアは、調節済リスク・スコアと称される。特定のエンティティは、調節済リスク要因の同じセットを有するすべてのエンティティの合計調節済リスク・スコアの基準よりもはるかに高い合計調節済リスク・スコアを有しているのであれば、疑いのあるマネー・ロンダリング取引を実行したかもしれない。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。一般に、本開示の1つの態様では、リスク要因を組み込む検知アルゴリズムはまた、検知アルゴリズムに調節済リスク要因をも組み込むように修正されうる。リスク・スコアを組み込む検知アルゴリズムはまた、検知アルゴリズムに調節済リスク・スコアも組み込むようにも修正されうる。
【0108】
比較を容易にするために、エンティティのグループ間のこのような比較を容易にするために、調節済リスク要因および調節済リスク・スコアに基づいて、例えば中央、分散、標準偏差等のようなグループ統計値が導出されうる。その結果、何れの口座において振る舞いの変化がない場合であっても、コンピュータ・システムは、上記アプローチに基づいて、疑いのあるマネー・ロンダリング取引を検知しうる。
【0109】
MSBは、別のタイプのビジネスとは異なるトランザクション取引を有しうるので、それらのユニークなトランザクション取引に基づいて、MSBをモニタすることがより効率的である。したがって、本開示の1つの態様では、異なるセットのリスク要因を持つエンティティをモニタするために、異なるセットの検知アルゴリズムが使用されうる。本開示の1つの態様では、リスク要因のセットが、このリスク要因のセットを有するエンティティのグループを特定するために使用され、特定のセットの検知アルゴリズムが、このエンティティのグループにおける疑わしいマネー・ロンダリング取引を検知するために使用される。別の視点から見ると、エンティティのグループをモニタするために、エンティティのグループに関連付けられたリスク要因のセットに基づいて、検知アルゴリズムのセットが選択される。
【0110】
本開示の別の態様では、リスク要因のセットが、オペレーションのサイズに基づいて調節され、この調節済リスク要因のセットを有するエンティティのグループを特定するために使用され、このエンティティのグループにおける疑わしいマネー・ロンダリング取引を検知するために、特定のセットの検知アルゴリズムが使用される。別の視点から見ると、エンティティのグループをモニタするために、エンティティのグループに関連付けられた調節済リスク要因のセットに基づいて、検知アルゴリズムのセットが選択される。
【0111】
しばしば、より低いリスクを有するエンティティよりもより近い、より高いリスクを有するエンティティをモニタすることは意味深い。したがって、異なるリスクのレベルを有する異なるエンティティをモニタするために、異なるセットの検知アルゴリズムが使用される。本開示の1つの態様では、エンティティをモニタするために、エンティティの合計リスク・スコアに基づいて、検知アルゴリズムのセットが選択される。本開示の別の態様では、エンティティをモニタするために、エンティティの合計調節済リスク・スコアに基づいて、検知アルゴリズムのセットが選択される。ここで、合計調節済リスク・スコアは、調節済リスク要因のリスク・スコアから取得される。
【0112】
本開示の1つの態様では、MSBが、ありうるマネー・ロンダリング取引を有するとして検知されると、コンピュータ・システムは、検知されたMSBに対して、すべてのMSBの合計リスク・スコアの基準よりもより高い合計リスク・スコアを持たせたトランザクション(または、トランザクションのグループ)を特定しうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。MSBが、ありうるマネー・ロンダリング取引を有するとして検知されると、コンピュータ・システムは、検知されたMSBに対して、すべてのMSBの合計調節済リスク・スコアの基準よりもより高い合計調節済リスク・スコアを持たせたトランザクション(または、トランザクションのグループ)を特定する。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。その結果、マネー・ロンダリング・トランザクション(または、マネー・ロンダリング・トランザクションのグループ)は、このアプローチによって特定されうる。より高いリスク・スコア(または、より高い調節済リスク・スコア)を持つ特定のトランザクション(または、トランザクションのグループ)を特定するこのアプローチは、単にMSBについてではなく、その他のタイプのカスタマについても使用されうる。
【0113】
従来、より高いリスク・スコアは、より高いリスクを意味する。しかしながら、人またはビジネスに対して、より高いリスクについて、より低いリスク・スコアを定義することを禁じるという規則はない。混乱を避けるために、本開示における説明は、より高いリスク・スコアが、より高いリスクを意味するとの慣例に基づく。さらに、リスク・スコアは、負の値でありうる。負のリスク・スコアは、この慣例に基づいて、低減されたリスクを意味する。
【0114】
前述したように、MSBは単なる一例である。例えば質屋、自動車売買業者等のようなその他のタイプのビジネスが、同様にモニタされうる。その結果、リスク要因、リスク・スコア、調節済リスク要因、調節済リスク・スコア、合計リスク・スコア、および合計調節済リスク・スコアは、何れの口座において振る舞いの変化がない場合であっても、疑わしいマネー・ロンダリング取引を検知するために、さまざまな方法において使用されうる。
【0115】
実際、例えば、OCC、FDIC、FRB、NCUA、FinCEN等のような政府機関は、MSBをモニタするために前述したものと類似のアプローチに基づいて、例えば銀行、信用組合、保険会社、株式仲買人等のような金融機関をモニタしうる。異なるリスク要因、リスク・スコア、調節済リスク要因、および調節済リスク・スコアは、このモニタリング目的のために定義されうる。
【0116】
本開示の1つの態様では、コンピュータ・システムは、金融機関が、マネー・ロンダリング事例およびテロリスト資金調達事例に関するSARを提出するための規制要件に準拠しているか否かを判定するために、多くの異なるリスク要因を用いる。例えば、これらのリスク要因は、マネー・ロンダリング事例およびテロリスト資金調達事例に関して提出されたSARの数、金融機関のカテゴリ、金融機関のビジネス・タイプ、金融機関の地理的エリア、金融機関の本社の国、金融機関のビジネスの特性、ビジネスの製品タイプ、ビジネスのサービス・タイプ、ビジネスの構造、金融機関のカスタマ・プロファイル、過去の記録、実行されたトランザクションのタイプ、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、トランザクションの場所、トランザクションの時間、トランザクションの国々、送金トランザクションの送り主、送り主の場所、送り主の国々、送り主の特性、送金トランザクションの受取人、受取人の場所、受取人の国々、受取人の特性、関係、カスタマの社会的地位、カスタマの政治的露出度、送り主の政治的露出度、受取人の政治的露出度、過去のトランザクション等でありうる。実際、何千ものリスク要因が、金融機関のコンプライアンス・リスクを判定するために考慮されうる。
【0117】
本開示の1つの態様では、支店の数は、リスク要因およびリスク・スコアを調節するために用いられる。本開示の別の態様では、リスク要因およびリスク・スコアを調節するために、資産サイズが用いられる。リスク要因およびリスク・スコアを調節するために、その他多くの要因も用いられうる。この現在の例において、「提出されたSARの数」リスク要因は、負の値を有しうる。なぜなら、金融機関によって、より多くのSARが提出されると、金融機関がSARを提出しない機会が減るからである。
【0118】
本開示の1つの態様では、リスク要因のセットが、オペレーションのサイズに基づいて調節され、この調節済リスク要因のセットを有する銀行のグループを特定するために用いられる。特定の銀行は、調節済リスク要因の同じセットを有するすべての銀行の合計調節済リクス・スコアの基準よりもはるかに高い合計調節済リスク・スコアを有しているのであれば、疑わしいマネー・ロンダリング取引および/またはテロリスト資金調達取引を検知し報告するコンプライアンス義務を遂行していないかもしれない。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。比較を容易にするために、例えば中央、分散、標準偏差等のようなグループ統計値が、エンティティのグループ間のこのような比較を容易にするために導出されうる。
【0119】
さらに、異なるリスク要因のセットを有する別の銀行をモニタするために、異なる検知アルゴリズムが用いられうる。本開示の1つの態様では、このリスク要因のセットを有する銀行のグループを特定するために、リスク要因のセットが用いられ、この銀行のグループにおけるコンプライアンス問題における可能な見落としを検知するために、特定の検知アルゴリズムのセットが用いられる。別の視点から見て、本開示の1つの態様では、銀行のグループをモニタするために、銀行のグループに関連付けられたリスク要因のセットに基づいて、検知アルゴリズムのセットが選択される。
【0120】
本開示の別の態様では、リスク要因のセットが、オペレーションのサイズに基づいて調節され、この調節済リスク要因のセットを有する銀行のグループを特定するために使用される。そして、この銀行のグループにおけるコンプライアンス問題における可能な見落としを検知するために、特定の検知アルゴリズムのセットが用いられる。別の視点から見て、検知アルゴリズムのセットは、銀行のグループをモニタするために、銀行のグループに関連付けられた調節済リスク要因のセットに基づいて選択される。
【0121】
上記例では銀行が用いられているが、これら方法の同じセットは、信用組合、株式仲買人、保険会社、その他の金融機関、およびその他のタイプのビジネスをモニタするために用いられうる。さらに、モニタリングする範囲は、反マネー・ロンダリング問題および反テロリスト資金調達問題へのコンプライアンスに制限されていない。実際、このような問題に関連付けられたリスク要因、リスク・スコア、調節済リスク要因、調節済リスク・スコア、および検知アルゴリズムを適切に定義することによって、すべてのタイプのビジネスのすべてのタイプの問題が、本開示に記載された方法によってモニタされうる。
【0122】
MSBはまた、多くの法律および規制に準拠せよとの圧力の下にある。しかしながら、銀行または信用組合とは異なり、MSBは、クライアントが誰かなのかを実際に知らない。典型的なMSBは、そのオフィスへ足を運ぶあらゆるコンシューマにマネー・サービスを提供する。MSBがそのクライアントのすべてから個人情報を収集したとしても、MSBは、マネー・ロンダリング取引を正確に特定することはできないことがありうる。例えば、1人のカスタマが、自分のメキシコのパスポートを使って、午前中にMSBに現金を支払うことによって7,000ドルの1度の送金トランザクションを実行することや、自分のカリフォルニアの運転免許書を使って、午後に同じMSBに現金を支払うことによって、8,000ドルの別の送金トランザクションを実行することが可能である。2つの個人情報ドキュメントが用いられているので、この同じコンシューマは、2人の別の人として見えうる。MSBは、法律によって要求されているような通貨トランザクション・レポートを提出することができないかもしれない。なぜなら、10,000ドルを超える現金が同じコンシューマによって提供されているからである。MSBが複数の支店を有していれば、この状況はより一層複雑化する。なぜなら、同じコンシューマが、別の支店に足を運び、異なる個人情報ドキュメントに基づいてトランザクションを実行しうるからである。
【0123】
本開示の1つの態様では、コンピュータ・システムは、同じコンシューマによって実行されたすべてのトランザクションを特定するために、MSBとのトランザクションを実行したすべてのコンシューマの名前、電話番号、住所、生年月日等を比較する。コンシューマに関連付けられたすべてのトランザクションが特定された後、コンピュータ・システムは、このコンシューマに関連付けられた疑わしいマネー・ロンダリング取引を、このコンシューマに関連付けられたトランザクションに基づいて検知しうる。
【0124】
本開示の1つの態様では、BSA執行官(すなわち、責任者)は、検知された事例を、それが真のマネー・ロンダリング事例であるか否かを判定するために調査する。BSA執行官はまた、新たに検知された事例のコンシューマに関連付けられた過去のすべての事例をも調査する。検知された事例が、疑わしいマネー・ロンダリング事例であることにBSA執行官が合意すると、カスタマ・システムは、BSA執行官が、FinCENにSARを提出することを支援する。SARを提出しないとBSA執行官が決定したのであれば、BSA執行官は、検知された事例を報告しないことに関する決定を正当化するための理由をコンピュータ・システムに入力する。
【0125】
しばしば、銀行は、対応する銀行Aのクライアントからの電信送金を受け取り、この電信送金を、対応する銀行Bの別のクライアントへ再送信する。なぜなら、対応する銀行Aと対応する銀行Bとは、直接的な銀行業務関係を有していないからである。2つの異なる国における銀行は、直接的な銀行業務関係を有していないので、この状況は、しばしば、国際電信送金中に生じる。このタイプの電信送金はしばしば、仲介電信送金と呼ばれる。
【0126】
仲介電信送金サービスを提供する銀行は、非常に高いマネー・ロンダリング・リスクにさらされている。なぜなら、仲介電信送金の送り主と受取人とは、この銀行のカスタマではないからである。さらに、この銀行は、送り主と、電信送金の受取人との真の背景を知らないかもしれない。送り主がテロリスト出資者であり、受取人がテロリストであることが可能である。仲介電信サービスを取り扱う銀行は、知らずに、マネー・ロンダリングおよびテロリスト資金調達のためのチャネルとなりうる。
【0127】
本開示の1つの構成では、コンピュータ・システムは、仲介電信送金のすべての送り主および受取人の名前、住所、国、電話番号、電子メール・アドレス等を比較し、おのおのの送り主およびおのおのの受取人に関連付けられたトランザクションを特定する。本開示の1つの態様では、コンピュータ・システムが、同じ送り主からの異常に多くの電信送金を検知したのであれば、この送り主と受取人は、マネー・ロンダリング取引またはテロリスト資金調達取引に関係しうる。コンピュータ・システムが、同じ送り主からの異常に総額が高い電信送信を検知したのであれば、この送り主と受取人は、マネー・ロンダリング取引に関係しうる。
【0128】
同様に、コンピュータ・システムが、同じ受取人への異常に多くの電信送金を検知したのであれば、この送り主と受取人は、マネー・ロンダリング取引またはテロリスト資金調達取引に関係しうる。コンピュータ・システムが、同じ受取人への異常に総額が高い電信送金を検知したのであれば、この送り主と受取人は、マネー・ロンダリング取引に関係しうる。
【0129】
コンピュータ・システムが、同じ送り主から同じ受取人へ送信される異常な数の電信送金を検知したのであれば、この送り主と受取人は、マネー・ロンダリング取引またはテロリスト資金調達取引に関係しうる。コンピュータ・システムが、同じ送り主から同じ受取人への異常に総額が高い電信送金を検知したのであれば、この送り主と受取人は、マネー・ロンダリング取引またはテロリスト資金調達取引に関係しうる。
【0130】
本開示の1つの態様では、BSA執行官(すなわち、責任者)は、それが真のマネー・ロンダリング事例であるか否かを判定するために、このような検知された事例を調査する。BSA執行官はまた、新たに検知された事例の容疑者に関連付けられた過去のすべての事例を調べる。疑わしいマネー・ロンダリング取引があることにBSA執行官が合意すると、コンピュータ・システムは、BAS執行官がFinCENにSARを提出することを支援する。BSA執行官は、SARを提出しないと決定すると、検知されたこの取引を報告しないとの決定を正当化する理由をコンピュータ・システムに入力する。
【0131】
人口の大部分が急速に老化しているので、自分たちを保護することができない高齢者を保護するために、高齢者虐待報告法(EARA)が最近いくつかの州において確立された。高齢者は、犯人によって騙されるので、犯人にお金を渡すことが非常に頻繁にありうる。したがって、金融機関は、可能な高齢者虐待事例として見えるものを観察し、報告するように、前線の人員を訓練している。この人間ベースのアプローチは、効率的ではない。なぜなら、トランザクションは、遠隔的に行われ、犯人たちは、彼らの動作を巧妙に覆いうるからである。さらに、人間の作業者は、誤ったりミスをしやすい。高齢者虐待事例を検知し報告するために、人間の作業者に依存することは非効率的である。
【0132】
多くのビジネスの場合、カスタマの生年月日情報が、データベース内に格納されている。本開示の1つの態様では、コンピュータ・システムは、生年月日情報を収集し、予め定義された年齢よりも年を取っている高齢者を特定する。コンピュータ・システムは、すべての高齢者のトランザクションをモニタし、これら高齢者の取引におけるあらゆる変化を検知する。
【0133】
例えば、異常に多額の資金が、高齢者の口座から送金されたのであれば、金融機関は、この資金移転の目的の調査を希望しうる。本開示の1つの態様では、異常に大量の小切手が高齢者の口座に預金されたのであれば、金融機関は、高齢者の実際の金銭または資産と引き換えに、高齢者に偽の小切手が与えられたか否かの調査を希望しうる。高齢者の口座において、異常なトランザクション・パターン(例えば、異常な頻度またはボリューム)があったのであれば、金融機関は、このトランザクション(単数または複数)の調査を希望しうる。高齢者の口座残高が急激に減少しているのであれば、金融機関は、この口座に関連付けられたトランザクションの調査を希望しうる。
【0134】
本開示の1つの態様では、リスク要因、リスク・スコア、調節済リスク要因、調節済リスク・スコア、合計リスク・スコア、合計調節済リスク・スコア、統計学的アプローチ、および、先に述べられた検知アルゴリズムを選択する方法が、可能な高齢者虐待事例を検知するために適用されうる。高齢者虐待は、マネー・ロンダリングとは異なるので、高齢者虐待検知のために、異なるセットのリスク要因およびリスク・スコアが使用されうる。例えば、これらのリスク要因は、その人の年齢、その人の性別、その人の所得水準、その人の外観、その人に関する判断、その人の個人的な状況、その人の家族状況、その人の家族構成員、その人の家族構成員の状況、その人の友達、その人の友達の状況、その人の過去の記録、その人のビジネスのカテゴリ、その人の地理的エリア、その人の住所の国、その人の職業、国籍、実行されたトランザクションのタイプ、口座の残高、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、トランザクションの場所、トランザクションの時間、トランザクションの国、送金トランザクションの送り主、送り主の場所、送り主の国、送り主の特性、送金トランザクションの受取人、受取人の場所、受取人の国、受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション、等を含みうる。実際、人の高齢者虐待リスクを判定するために、多くの異なるリスク要因が考慮されうる。
【0135】
例えば、本開示の1つの態様では、同じリスク要因を有する高齢者のグループを特定するために、リスク要因が使用される。特定の高齢者が、同じリスク要因を有するすべての高齢者の合計リスク・スコアの基準よりも高い合計リスク・スコアを有しているのであれば、この特定の高齢者は、潜在的な高齢者虐待の犠牲者になりうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。本開示の別の態様では、リスク要因のセットが、このリスク要因のセットを有する高齢者のグループを特定するために使用される。特定の高齢者が、同じリスク要因のセットを有するすべての高齢者の合計リスク・スコアの基準よりも高い合計リスク・スコアを有しているのであれば、この特定の高齢者は、潜在的な高齢者虐待の犠牲者になりうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。
【0136】
比較を容易にするために、例えば中央、分散、標準偏差等のようなグループ統計値が、エンティティのグループ間のこのような比較を容易にするために導出されうる。その結果、口座における振る舞いの変化がない場合であっても、コンピュータ・システムは未だに、上記アプローチに基づいて、可能な高齢者虐待事例を検知しうる。
【0137】
ビジネスは、多くの場合、すべての規制的なコンプライアンス問題について責任を持つコンプライアンス執行官を有しうる。本開示の1つの態様では、責任者(例えば、コンプライアンス執行官)は、真の高齢者虐待事例が発生したか否かを判定するために、検知された事例を調査する。コンプライアンス執行官はまた、新たに検知された事例の高齢者に関連付けられた過去のすべての事例をも調査する。この事例が、可能な高齢者虐待であることにコンプライアンス執行官が合意すると、コンピュータ・システムは、検知された事例をコンプライアンス執行官が報告する際に支援する。コンプライアンス執行官は、検知された事例を報告しないと決定したのであれば、検知された事例を報告しないとの決定を正当化する理由をコンピュータ・システムに入力する。
【0138】
サーベンス・オクスリー法(SOX)によれば、ある会社(例えば、株式公開会社)は、従業員によって犯される不正行為を防ぐために内部管理モニタリングを実行しなければならない。従来、このような内部管理モニタリングは、ビジネスの財務記録を監査するのに毎年数カ月を費やす人間の作業者(例えば、監査役)によって実行される。人間の作業者は、誤ったり、ミスを犯す傾向にあるので、このような人間ベースのアプローチは、効率的ではない。さらに、財務記録を監査するのには相当な時間を要するので、遅すぎて、犯罪を防止することができないことがありうる。
【0139】
本開示の1つの態様では、コンピュータ・システムは、疑わしい内部不正行為を特定するために、会計一般台帳項目をモニタし、この一般台帳項目に関連するあらゆる異常なパターン(例えば、異常な頻度、ボリューム、加速等)を検知する。例えば、旅費一般台帳項目が、過去の12か月の履歴と比べて今月突然500%までに膨れ上がったのであれば、何人かの従業員が、彼らの権利を悪用し、異常な出費をもたらしているかもしれない。
【0140】
本開示の1つの態様では、コンピュータ・システムは、会計一般台帳項目の現在の値を、過去xか月についての同じ会計一般台帳項目の過去の値の基準と比較する。ここで、値xは、予め定義されている。現在の値が、過去の値の基準よりも、顕著なマージン大きいのであれば、何人かの従業員が、不正行為を犯したのかもしれない。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。一般台帳項目値がなぜ過去の値から導出されたのかを判定するために、さらなる調査が実行されうる。
【0141】
本開示の別の態様では、コンピュータ・システムは、いずれかの変化を検知するために、従業員の現在の取引を、過去の取引と比較する。例えば、融資担当者が、過去の数に比べて異常に多くの融資を発行しているのであれば、この融資担当者の取引は疑わしいかもしれない。融資担当者が、過去の量よりも異常に多い融資量の融資を発行しているのであれば、この融資担当者の取引は疑わしいかもしれない。融資担当者が、過去の総額に比べて、異常に多くの融資総額を発行しているのであれば、この融資担当者の取引は疑わしいかもしれない。
【0142】
しばしば、取引は、取引値と称される値によって測定されうる。例えば、融資担当者の取引は、ローンの数、ローンの最大量、ローンの総額、ローン当たりの平均量、同じカスタマへのローンの数、ローン記録における変更数、同じカスタマとのローン記録における変更数、ローン記録における変更の頻度、同じカスタマとのローン記録における変更の頻度、ローンのタイプ、等によって測定されうる。銀行出納係の取引は、トランザクションの合計数、トランザクションの総額、トランザクションの最大量、トランザクション当たりの平均量、トランザクションのタイプ、出納係とビジネスをトランザクションするカスタマの数、カスタマ毎のトランザクションの平均数、同じカスタマとのトランザクションの数、カスタマ記録における変更数、同じカスタマとのカスタマ記録における変更数、カスタマ記録における変更の頻度、同じカスタマとのカスタマ記録における変更の頻度、等によって測定されうる。本開示の1つの態様では、コンピュータ・システムは、取引の現在値を、同じ取引の過去の値の基準と比較する。現在値が、過去の値の基準よりも顕著なマージン大きいのであれば、この取引を実行した人は、不正行為を犯しているかもしれない。この人が本当に不正行為を犯したのか否かを判定するために、さらなる調査が実行されうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備えうる。
【0143】
本開示の1つの態様では、コンピュータ・システムは、従業員の取引を、このビジネスにおいて同じ役割を持つ他の従業員の取引と比較する。例えば、1人の出納係(または融資担当者等)が、同じ支店の他の出納係(または融資担当者)と非常に異なった振る舞いをするのであれば、この出納係(または融資担当者等)は、いくつかの疑惑取引を行っているのかもしれない。
【0144】
本開示の1つの態様では、コンピュータ・システムは、特定の従業員の取引値を、この特定の従業員と同じ責任を有するすべての従業員の同じ取引のすべての取引値の基準と比較する。特定の従業員の取引値が、同じ責任を有するすべての従業員のすべての取引値の基準から著しく乖離しているのであれば、この特定の従業員は、不正行為を犯したのかもしれない。この従業員が本当に不正行為を犯したのか否かを判定するために、さらなる調査が実行されうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備えうる。
【0145】
1人の従業員が、従業員のグループと比較された場合、先に述べられた客室乗務員の例において使用された統計的アプローチが適用されうる。例えば、従業員に関連付けられたリスク要因の包括的なセットが特定され、リスク・スコアが、各リスク要因に割り当てられる。その結果、おのおのの従業員は、従業員に関連付けられたすべてのリスク・スコアの数学的な変換(例えば、総和)から得られる合計リスク・スコアを有する。
【0146】
従業員に関連付けられた不正行為を検知するためのリスク要因のセットは、例えばマネー・ロンダリングのようなその他のタイプの疑惑取引を検知するためのリスク要因のセットとは異なりうる。例えば、従業員の不正行為を検知するためのリスク要因は、従業員の仕事のタイプ、従業員の教育レベル、従業員の所得レベル、現在の仕事における雇用の長さ、パフォーマンス調査記録、職歴、職歴における各仕事の継続期間、職歴における各仕事の終了の理由、従業員の年齢、従業員の性別、従業員の個人状況、従業員の家族状況、従業員の家族メンバ、従業員の家族メンバの状況、従業員の友人の状況、従業員の過去の記録、実行された仕事のタイプ、実行されたトランザクションの数、実行されたトランザクションの量、トランザクションの最大量、特定のカウンタ・パーティとのトランザクションの数、特定のカウンタ・パーティとのトランザクションの量、重要記録の変更の数、特定のカウンタ・パーティに関連付けられた重要記録の変更の数、従業員の住居の地理的エリア、従業員のオフィスの地理的エリア、従業員の住所の国、国籍、実行されたトランザクションのタイプ、口座の残高、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、トランザクションの場所、トランザクションの時間、トランザクションの国、送金トラザクションの送り主、送り主の場所、送り主の国、送り主の特性、送金トランザクションの受取人、受取人の場所、受取人の国、受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション等を含みうる。実際、従業員の不正リスクを判定するために、数多くのリスク要因が考慮されうる。本開示の1つの態様では、異なるタイプの疑惑取引を検知するために、異なるセットのリスク要因が使用されうる。
【0147】
本開示の1つの態様では、特定の従業員と同じリスク要因を有するすべての従業員の合計リスク・スコアの平均よりも、特定の従業員の合計リスク・スコアが、顕著なマージン高い場合、この特定の従業員は、疑惑取引を行ったのかもしれない。この顕著なマージンは、多くの標準偏差の観点から設定されうる。
【0148】
検知結果の精度を高めるために、1つのリスク要因の代わりに、複数のリクス要因が用いられいる。本開示の1つの態様では、特定の従業員と同じリスク要因のセットを有するすべての従業員の合計リスク・スコアの平均よりも、特定の従業員の合計リスク・スコアが、顕著なマージン高いのであれば、特定の従業員は、いくつかの疑惑取引を行ったのかもしれない。一例において、顕著なマージンは、多くの標準偏差の観点から設定される。
【0149】
実際、特定のエンティティの疑惑取引を特定するために、各エンティティの合計リスク・スコアに基づく統計的アプローチは、エンティティのグループに関連付けられたリスク要因を特定すること、および、各リスク要因にリスク・スコアを適切に割り当てることによって、マネー・ロンダリング、テロリスト資金調達、および従業員不正に加えて、その他多くの状況に適用されうる。
【0150】
本開示の1つの態様では、多くのリスク要因が、エンティティのグループに関連付けられている。リスク要因のおのおのは、リスク・スコアを割り当てられうる。おのおののエンティティは、例えば総和のような数学的な変換に基づいて、合計リスク・スコアを与えられうる。例えば、限定される訳ではないが、その他の可能な数学的な変換は、乗算、除算、減算、平方の総和、総和の平方、上記の組み合わせ、および、リスク・スコアを組み合わせるその他同様な手法を含む。
【0151】
本開示の1つの態様では、特定のエンティティと同じリスク要因を有するすべてのエンティティの合計リスク・スコアの平均よりも、特定のエンティティの合計リスク・スコアが、予め定義されたマージン高いのであれば、この特定のエンティティは、いくつかの疑惑取引を行ったのかもしれない。この予め定義されたマージンは、多くの標準偏差の観点から設定されうる。
【0152】
本開示の別の態様では、特定のエンティティと同じリスク要因のセットを有するすべてのエンティティの合計リスク・スコアの平均よりも、特定のエンティティの合計リスク・スコアが、予め定義されたマージン高いのであれば、この特定のエンティティは、いくつかの疑惑取引を行ったのかもしれない。
【0153】
本開示の1つの態様では、コンピュータ・システムは、特定のエンティティに対して、すべてのエンティティの合計リスク・スコアの平均よりも高い合計リスク・スコアを持たせた1つのトランザクション(または、トランザクションのグループ)を特定する。このようなトランザクション(または、トランザクションのグループ)は、疑惑取引かもしれない。
【0154】
言及した統計的なアプローチは、リスクを管理する単なる1つの手法にすぎない。その他の多くのグループ比較方法も使用されうる。さらに、疑惑取引は、違法または禁止された取引に限定される訳ではないかもしれない。取引は、通常の取引と異なるので、疑わしくなる。それは、無害な、または、恐らくは、良い意思を持つ取引でさえありうる。したがって、検知された事例を報告するか否かの最終判定を行うため、しばしば調査が必要とされる。
【0155】
本開示の1つの態様では、責任者が、新たに検知された事例を、真の犯罪であるか否かを判定するために、調査する。責任者はさらに、新たに検知された事例の容疑者(単数または複数)に関連付けられたすべての過去の事例をも調査する。検知された事例が、起こりうる犯罪であることに責任者が合意した場合、コンピュータ・システムは、責任者が、検知された事例を報告することを支援する。責任者は、検知された事例を報告しないと決定した場合、検知された事例を報告しないとの決定を正当化する理由をコンピュータ・システムに入力する。
【0156】
9/11の悲劇の後に、オンライン・ギャンブルが、マネー・ロンダリング取引およびテロリスト資金調達取引を実行するための手段になり得るので、米国議会は、不正インターネット・ギャンブル規正法(UIGEA)を可決した。不正インターネット・ギャンブル規正法に応じて規制GGが確立された。規制GGによれば、金融機関は、新たなカスタマが、何らかのオンライン・ギャンブル取引を実行するか否かに関して、口座開設処理中に、質問をする必要がある。しかしながら、犯人は、オンライン・ギャンブルが違法であることを知っているので、口座開設処理中に、嘘をつくだろう。その結果、規制GGにおいて定義された「質問」アプローチは単なる形式となった。しかしながら、規制GGは、銀行秘密法の下では、SARを提出するという金融機関の義務を変更しないと特に述べている。
【0157】
言い換えれば、犯人が、口座開設処理中に嘘をつき、オンライン・ギャンブル・ビジネスを実際に実行したのであれば、金融機関は、この事例を、SARによってFinCENへ報告する義務を有する。実際、多くの金融機関は、口座開設処理中に嘘の情報を提供したこれら犯人を検知することも報告することも既に行っていない。本開示の1つの態様では、コンピュータ・システムは、期間中に、すべての資金移転トランザクションの送り主と受取人とを比較する。カスタマが、期間中に、多額の金を、受取人に送り、多額の金を同じ受取人から受け取っているのであれば、そのようなトランザクションは、オンライン・ギャンブラとオンライン・ギャンブル組織との間のギャンブル取引から得られた金に関する支払いおよび賭博資金の預金である可能性がありうる。コンピュータ・システムは、これら事例を、起こりうる違法オンライン・ギャンブル事例として検知する。事例が検知されると、さらなる調査が必要とされる。
【0158】
本開示の1つの態様では、コンピュータ・システムは、カスタマに関連付けられた多額のドルを伴う多くのトランザクションを検知した場合、このカスタマを、可能なオンライン・ギャンブル組織として検知する。なぜなら、オンライン・ギャンブル組織は一般に、多額の金および多くのクライアントを取り扱うからである。コンピュータ・システムは、このような事例を、可能な違法オンライン・ギャンブル事例として検知する。事例が検知されると、さらなる調査が必要とされる。
【0159】
本開示の1つの態様では、コンピュータ・システムは、オンライン・ギャンブル組織の既知の名前のリストを、カスタマに関連付けられた資金移転トランザクションの送り主および受取人と比較する。一致がある場合、カスタマは、オンライン・ギャンブル取引に関係しうる。コンピュータ・システムは、この事例を、可能な違法オンライン・ギャンブル事例として検知する。事例が検知されると、さらなる調査が必要とされる。
【0160】
言及したトランザクション・パターン・モニタリングに加えて、先に述べたグループ比較方法はまた、可能な違法オンライン・ギャンブル取引を検知するために適用されうる。本開示の1つの態様では、オンライン・ギャンブルに関連するすべてのリスク要因が特定される。例えば、これらのリスク要因は、カスタマの精査結果、口座履歴の長さ、カスタマの企業カテゴリ、カスタマのビジネス・タイプ、トランザクションにおけるギャンブル組織との名前一致数、カスタマの地理的エリア、カスタマの本社の国、カスタマのビジネスの特性、ビジネスの製品タイプ、ビジネスのサービス・タイプ、ビジネスの構造、カスタマの職業、国籍、過去の記録、実行されたトランザクションのタイプ、口座の残高、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、チャージ・バックの数、トランザクションの場所、トランザクションの時間、トランザクションの国、送金トラザクションの送り主、送り主の場所、送り主の国、送り主の特性、送金トランザクションの受取人、受取人の場所、受取人の国、受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション等を含みうる。実際、多くの異なるリスク要因が、オンライン・ギャンブリング・リスクを判定するために考慮されうる。この開示で先に説明したように、オペレーションのサイズに基づいて調節済リスク・スコアが適用されうるように、調節済リスク要因も使用されうる。
【0161】
本開示の1つの態様では、リスク要因は、同じリスク要因を有するカスタマのグループを特定するために使用される。特定のカスタマが、同じリスク要因を有するすべてのカスタマの合計リスク・スコアの基準よりも高い合計リスク要因を有している場合、特定のカスタマは、違法オンライン・ギャンブルに関係しうる。本開示の別の態様では、リスク要因のセットが、このリスク要因のセットを有するカスタマのグループを特定するために使用される。特定のカスタマは、リスク要因の同じセットを有するすべてのカスタマの合計リスク・スコアの基準よりも高い合計リスク・スコアを有しているのであれば、違法オンライン・ギャンブルに関係しうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。比較を容易にするために、例えば中央、分散、標準偏差等のようなグループ統計値が、カスタマのグループ間の比較を容易にするために導出されうる。
【0162】
本開示の1つの態様では、責任者(またはBSA執行官)が、検知された事例が、真のオンライン・ギャンブル事例であるか否かを判定するために、検知された事例を調査する。BSA執行官はまた、新たに検知された事例の容疑者に関連付けられた過去のすべての事例をも調査する。検知された事例が、可能な違法オンライン・ギャンブル事例であることにBSA執行官が合意した場合、コンピュータ・システムは、BSA執行官がFinCENへSARを提出するのを支援する。BSA執行官がSARを提出しないと決定した場合、BSA執行官は、検知された事例を報告しないという決定を正当化する理由をコンピュータ・システムに入力する。
【0163】
米国議会は、コンシューマを保護するために、公正かつ正確な信用取引法(FACT法)を可決した。特に、ビジネスは、個人情報盗み取り事例を特定し報告することが期待されている。個人情報盗み取り事例が検知された場合、金融機関は、SARを提出することも期待されている。
【0164】
本開示の1つの態様では、コンピュータ・システムは、コンシューマ・レポート、クレジット凍結の通知、および/または、住所不一致の通知に含まれている不正またはアクティブな義務警告を検知するために、コンシューマ・レポートおよびその他の利用可能な情報をモニタする。疑惑取引が検知されると、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0165】
本開示の1つの態様では、コンピュータ・システムは、過去と一貫性のない取引のパターンや、申請者またはカスタマの通常の取引のパターンを示すコンシューマ・レポートを検知するために、コンシューマ・レポートおよび利用可能な情報をモニタする。例えば、特に、最近確立されたクレジット関係に関する、問い合せの量の最近の顕著な増加、最近確立された異常な数のクレジット関係、クレジットの使用におけるマテリアル変化、または、口座特典の乱用の原因として閉鎖または特定された、金融機関または貸主によって閉鎖された口座は、異常なパターンを示しうる。疑惑取引が検知されると、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0166】
本開示の1つの態様では、コンピュータ・システムは、個人情報のために提供されたドキュメントが警告を受けたように、または、偽造されたように見えるか否かを検知する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0167】
本開示の1つの態様では、コンピュータ・システムは、個人情報における写真または物理的な特徴が、個人情報を示す申請者またはカスタマの外見に一致していないか否かを検知する。疑惑取引事例が検知されると、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0168】
本開示の1つの態様では、コンピュータ・システムは、個人情報におけるその他の情報が、新たな口座を開設している人、または、個人情報を表わしているカスタマによって提供された情報と一致していないか否かを検知する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0169】
本開示の1つの態様では、コンピュータ・システムは、個人情報におけるその他の情報が、例えば署名カードまたは最近の小切手のような金融機関または申請者とともに記録された、すぐにアクセスできる情報と一致していないか否かを検知する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0170】
本開示の1つの態様では、コンピュータ・システムは、申請が警告を受けたようにまたは偽造されたように見えるか、あるいは、破壊および再構築された外見を与えているかを検知する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0171】
本開示の1つの態様では、コンピュータ・システムは、提供された個人識別情報が、金融機関または貸主によって使用されている外部情報ソースと比較された場合に、不整合であるか否かを判定する。例えば、住所が、コンシューマ・レポートにおける住所と一致していない、社会保険番号(SSN)が発行されていない、あるいは、社会保険局の死亡マスタ・ファイルにリストされている。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0172】
本開示の1つの態様では、コンピュータ・システムは、カスタマによって提供されている個人識別情報が、カスタマによって提供されているその他の個人識別情報と一致していないか否かを判定する。例えば、SSN範囲および生年月日の間の相関性が欠如しているかもしれない。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0173】
本開示の1つの態様では、コンピュータ・システムは、提供された個人識別情報が、金融機関または貸主によって使用されている内部ソースまたはサード・パーティ・ソースによって示されているような既知の不正取引に関連付けられているか否かを判定する。例えば、申請上の住所が、不正な申請で提供された住所と同じであるかもしれない。または、申請上の電話番号が、不正な申請で提供された番号と同じであるかもしれない。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0174】
本開示の1つの態様では、コンピュータ・システムは、提供された個人識別情報が、金融機関または貸主によって使用されている内部ソースまたはサード・パーティ・ソースによって示されているような不正取引に一般的に関連付けれたタイプであるか否かを判定する。例えば、申請上の住所が、架空の郵便受けまたは刑務所であるかもしれない。あるいは、電話番号が無効であったり、ページャまたは留守電話応答サービスに関連付けれているかもしれない。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0175】
本開示の1つの態様では、コンピュータ・システムは、提供されている社会保険番号が、口座を開いている他の人、またはその他のカスタマによって発行されたものと同じであるか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0176】
本開示の1つの態様では、コンピュータ・システムは、提供されている住所または電話番号が、異常に多数の、口座を開いている他の人またはその他のカスタマによって発行された口座番号または電話番号と同じであるか、または類似しているかを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0177】
本開示の1つの態様では、コンピュータ・システムは、口座を開いている人またはカスタマが、申請時に、または、申請が不完全であるとの通知に応答して、要求されるすべての個人識別情報を提供していないか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0178】
本開示の1つの態様では、コンピュータ・システムは、提供された個人識別情報が、金融機関または貸主とともに記録された、個人識別情報と一致していないか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0179】
本開示の1つの態様では、コンピュータ・システムは、口座を開いている人またはカスタマが、例えば、財布またはコンシューマ報告から一般的に利用可能になるであろうものを超えた質問に対して挑むための回答のような認証情報を提供することができないか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0180】
本開示の1つの態様では、コンピュータ・システムは、口座の通常ではない使用、または、口座に関連する疑惑取引があるか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0181】
本開示の1つの態様では、コンピュータ・システムは、口座の住所の変更の通知直後に、金融機関または貸主が、新たな、追加の、または交換カードまたは携帯電話を求める要求、または、許可されたユーザの口座における追加を求める要求を受け取ったか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0182】
本開示の1つの態様では、コンピュータ・システムは、新たなリボルビング・クレジット口座が、既知の不正行為のパターンに一般的に関連付けられている手法で使用されているか否かを判定する。例えば、利用可能なクレジットの多くは、(例えば、電子機器または宝石のように)現金に容易に換金可能な現金前払いまたは商品のために使用されるか、または、カスタマは、最初の支払いをしないか、または、最初の支払いをするが、その後の支払をしない。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0183】
本開示の1つの態様では、コンピュータ・システムは、口座が、口座において確立された取引パターンと一致していない手法で使用されているか否かを判定する。例えば、延納または滞納の履歴が無い場合における未納付、利用可能なクレジットの使用時におけるマテリアル増加、購入または消費パターンにおけるマテリアル変化、預金口座に関連する電子資金移転パターンにおけるマテリアル変化、携帯電話口座に関連する通話パターンにおけるマテリアル変化がある。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0184】
本開示の1つの態様では、コンピュータ・システムは、かなり長い期間、非アクティブであった口座が使用されたか否かを(口座のタイプ、使用の予想されるパターン、および、その他の関連する要因を考慮して)判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0185】
本開示の1つの態様では、コンピュータ・システムは、トランザクションが、カスタマの口座に関連して実行され続けていても、カスタマに送られたメールが、配信不可であるとして繰り返し戻されているか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0186】
本開示の1つの態様では、コンピュータ・システムは、金融機関または貸主が、カスタマが紙勘定書を受信していないことを通知されたか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0187】
本開示の1つの態様では、コンピュータ・システムは、金融機関または貸主が、カスタマの口座に関連するトランザクションまたは無許可の課金を通知されたか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0188】
本開示の1つの態様では、コンピュータ・システムは、金融機関または貸主が、カスタマ、個人情報盗み取りの犠牲者、法執行機関、または、個人情報盗み取りに関与する人の不正口座を開設したその他任意の人によって通知されたか否かを判定する。疑惑取引事例が検知された場合、コンピュータ・システムは、検知された事例を、責任者が調査するために利用可能にする。
【0189】
前述したように、トランザクション・パターンをモニタリングすることに加えて、先に記載されたグループ比較方法はまた、起こりうる個人情報盗み取り事例を検知するためにも適用されうる。個人情報盗み取り事例は、2つの主なカテゴリに分類されうる。第1のカテゴリは、犠牲者の口座、金融商品、または個人情報ドキュメントが、取引を実行する詐欺師によって盗まれる事例を含む。そのような状況の下では、先に記載されたように、コンピュータ・システムは、犠牲者の過去の取引から確立されうる、犠牲者の予想される取引から逸脱する取引を検知しうる。
【0190】
第2のカテゴリは、新たな口座を開くために、および/または、いくつかの新たな取引を開始するために、犠牲者の個人情報が盗まれる事例を含む。このような状況の下では、犠牲者は、最初の日から無関係である。犠牲者の過去の真の取引がないので、犠牲者の、予想される取引は、不正防止目的のために正しく確立されることができない。誰かが、犯人の、予想される取引を確立するつもりで、犯人に対して口座開設処理中にいくつかの質問をし、回答を収集することができるが、この質問-回答アプローチは機能しないであろう。なぜなら、犯人は、いかなる警告をもトリガすることなく、予想される取引を確立するための質問に対してどのように回答すればよいかを知っているからである。
【0191】
本開示の1つの態様では、利用可能な過去の真の取引が無い場合に個人情報盗み取りを検知するために、新たな口座または新たなカスタマのすべてのリスク要因が特定される。例えば、これらのリスク要因は、カスタマの精査結果、他のビジネスとのカスタマの以前の記録、カスタマの信用報告記録、カスタマの企業カテゴリ、カスタマのビジネス・タイプ、カスタマの地理的エリア、カスタマの住所の国、カスタマのビジネスの特性、ビジネスの製品タイプ、ビジネスのサービス・タイプ、ビジネスの構造、カスタマの職業、国籍、過去の記録、実行されたトランザクションのタイプ、口座の残高、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、チャージ・バックの数、トランザクションの場所、トランザクションの時間、トランザクションの国、送金トラザクションの送り主、送り主の場所、送り主の国、送り主の特性、送金トランザクションの受取人、受取人の場所、受取人の国、受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション等を含みうる。実際、個人情報盗み取りリスクを判定するために、多くのリスク要因が考慮されうる。
【0192】
本開示の1つの態様では、リスク要因は、同じリスク要因を有する人のグループを特定するために使用される。同じリスク要因を有するすべての人の合計リスク・スコアの基準よりもはるかに高い合計リスク・スコアを特定の人が有するのであれば、この特定の人は、個人情報盗み取り事例に関係しうる。リスク要因のセットは、このリスク要因のセットを有する人のグループを特定するために使用されうる。同じセットのリスク要因を有するすべての人の合計リスク・スコアの基準よりも高い合計リスク・スコアを特定の人が有するのであれば、この特定の人は、個人情報盗み取り事例に関係しうる。この基準は、平均、中央、加重平均、および/または、その他の統計値を備える。比較を容易にするために、例えば中央、分散、標準偏差等のようなグループ統計値が、人のグループ間のこのような比較を容易にするために導出されうる。
【0193】
本開示の1つの態様では、責任者(またはコンプライアンス執行官)は、検知された事例を、本当の個人情報盗み取り事例であるか否かを判定するために調査する。コンプライアンス執行官はまた、新たに検知された事例に関連付けられた過去のすべての事例をも調査する。この事例が、起こりうる個人情報盗み取り事例であることにコンプライアンス執行官が合意すると、コンピュータ・システムは、コンプライアンス執行官が、FinCENにSARを提出することを支援する。コンプライアンス執行官は、SARを提出しないと決定すると、検知された取引を報告しないとの決定を正当化する理由をコンピュータ・システムに入力する。
【0194】
外国資産管理局(OFAC)は、外国資産管理局によって確立されたリストにおける何れかのエンティティとのいずれかのビジネス・トランザクションを有していることは違法であると述べている非常に単純な規則を有している。このリストは一般に“OFACリスト”と称される。この規則は、すべての米国人と、金融機関を含むエンティティとに当てはまる。例えば、ウォル・マートは、この規則の違反によって、OFACによって罰金を科された。最も厳格な規制モニタリング下にある米国の金融機関は通常、この規則に厳密に準拠しなければならない。
【0195】
初めは、それは非常に単純な規則であった。しかしながら、この規則の意味は、過去10年間にわたって、よりはるかに複雑になった。人が自分の名前をミススペル(ミスタイプ、誤発音等を含む)した場合、一般的な問題が生じる。エンティティの名前がミススペルされたがOFACリストにある場合であっても、金融機関は、未だに、このエンティティを、OFACリスト上のエンティティとして特定する(一般に、OFAC一致と称される)義務を有している。
【0196】
自然な質問は、OFACリスト上のオリジナルの名前からどの程度の乖離が、「ミススペリング」として分類されるかである。OFACおよび政府当局は、この質問に答えるいかなる正確なガイダンスも与えていない。審査官または監査役が実行しうる非常に一般的な練習は、ビジネスを試験するためののサンプルとして、「オサマ・ビン・ラディン」のような悪名高い名前を用いることである。一般に、ビジネスは、可能なOFAC一致として、「オサマ・ビン・ラディン」、「オサマ・ラディン」、「オサマ・ラテン」、「ラテン・オサマ」、「ラティン・オサマ」等に関連付けられたすべてのビジネス・トランザクションを特定するようにされている。OFAC名からの乖離の範囲がさらに広くなると、金融機関が、現在の米国大統領の名前である単一用語「オバマ」を、起こりうるOFAC一致として特定するようにされているか否かは疑わしい。このような単純なOFAC規則は、近年、大きな混乱をもたらしたことが容易に分かる。
【0197】
本開示の1つの態様では、偏差の程度を測定するために、「OFAC一致スケール」が使用される。「相対的な相関」(「RC値」)として称される値は、2つの名前の間の類似性を測定するために、OFAC一致スケールによって生成されうる。例えば、名前が、100%のRC値を有するのであれば、OFACリスト上のOFAC名と正確に一致する。名前が、97%のRC値を有するのであれば、OFACリスト上のOFAC名から、1文字または2文字異なりうる。名前が、0%のRC値を有するのであれば、それは、OFACリスト上のすべてのOFAC名とは完全に異なる。
【0198】
本開示の1つの態様では、名前の長さもまた、RC値に影響を与える。例えば、名前が、25の文字を有するOFAC名から、1文字異なっているのであれば、RC値は96%でありうる一方、別の名前は、10の文字を有する別のOFAC名から、たった1文字違っていても、90%のRC値を有しうる。
【0199】
例えば、インターナショナル、法人、有限の会社や組織等のようないくつかの長い単語は、一般に、ビジネス名のために使用され、このような単語もまた、OFAC名リストに存在する。その結果、これらの長い単語は、これらの名前においてこれら長い単語を用いるビジネスについて、より高いRC値を生成する。本開示の1つの態様では、不要な誤った肯定を回避するために、一般に使用されている長い単語が、RC値のインパクトを低減するために、短い単語で置き換えられうる。例えば、単語「インターナショナル」は、“intl.”で置き換えられうる。
【0200】
さらに、いくつかの国々は、「ファースト・ネーム」および「ラスト・ネーム」という記述を用いない。その結果、人がファースト・ネームとラスト・ネームを提供するように要求された場合、この人は、名前の異なる順序を使用しうる。「オサマ・ラディン」は「ラディン・オサマ」となりうる。本開示の1つの態様では、OFAC一致スケールは、可能な「オフ・シーケンス」OFAC一致を識別する。
【0201】
さらに、いくつかの単語は、明確な区別に貢献することなく、いくつかの文化において一般的に使用される。例えば、イスラム文化では、「ビン」は「~の息子」、「ビンチ」は、「~の娘」を意味する。イスラム文化における正式名は、名前に「ビン」または「ビンチ」のいずれかを有する。例えば、イスラム教の父親が名前「ジョン」を持っていれば、彼の娘「メアリー」は「メアリー・ビンチ・ジョン」の正式名を持つだろう。また、彼の息子「デービッド」は正式名「デービッド・ビン・ジョン」を持つだろう。そのような状況の下で、イスラム名において一般的に用いられている単語「ビン」および「ビンチ」は、2つのイスラム名の間で「誤った類似点」を生成するだろう。本開示の1つの態様では、より科学的に正確な結果を提供するために、OFAC一致スケールは、RC値を計算する前に、これらの種類の「重要ではない単語」を除外しうる。しばしば、名前は、発音に基づいて英語に翻訳されうる。したがって、本開示の1つの態様では、OFAC一致スケールは、RC値を決定するために、発音の一致度を測定するべきである。
【0202】
本開示の1つの態様では、金融機関は、OFACチェックを実行する場合に、どのしきい値を用いるのかを決定する。例えば、金融機関が75%のしきい値を使用するのであれば、起こりうるOFAC一致は、名前が75%またはそれよりも高いRC値を有する場合に検知される。おのおのの金融機関は、他の金融機関とは異なるリスク危険度を有しうるので、Xが金融機関Aのための最良のしきい値である一方、Yが金融機関Bのための最良のしきい値であることが非常にありがちである。一般的なガイドラインとして、X値またはY値は、リスク・ベースの原理にしたがって選択される。
【0203】
一般に、金融機関がより高いしきい値を用いると、金融機関が検知する可能なOFAC一致はより低くなる。より多くの誤った肯定が回避されるので、これは、調査処理中の時間を節約する。しかしながら、しきい値が高すぎると、金融機関は、例えば「オサマ・ビン・ラディン」のようなOFAC名前からのありうる派生を見逃しうる可能性がある。しきい値が低すぎると、金融機関は、そのクライアントの多くを、可能なOFAC一致として誤って検知しうる。最良のプラクティスは、「調査すべき多すぎる可能なOFAC一致」と、「ミススペルによって引き起こされる実際のOFAC名派生の見落とし」との間のトレードオフを見つけることである。
【0204】
本開示の1つの態様では、ユーザは、OFACリストから多くのOFAC名をランダムに選択し、これら選択されたOFAC名前からの派生に対してOFAC一致スケールがどのように応答するのかを見つけうる。ユーザは、その後、このテストに基づいて、いつ「可能なOFAC一致」をコールするのかを決定しうる。将来の監査役および審査官が調査するためにこのテスト結果を維持しておくことが望ましい。
【0205】
特定の名前がOFAC名に非常に近い可能性がある。例えば、非常に評判の良いクレジット・カード会社であるアメリカン・エキスプレスは、しばしば、単語「エクスプレス」のために、OFAC一致として誤って検知される。したがって、本開示の1つの態様では、この種の頻繁な誤った肯定を回避するために、ユーザによって除外リストが生成され、これら周知の評判の良いビジネスを、除外リストに含める。除外リスト上のビジネスは、可能なOFAC一致として検知された場合、コンピュータによって自動的に、または、ユーザによってマニュアルで、誤った肯定として分類される。
【0206】
ビジネスは、非常に頻繁に、すべてのOFAC関連事項を取り扱うOFAC執行官を有しうる。本開示の1つの態様では、金融機関のOFAC執行官(すなわち、責任者)が、予め定義されたしきい値を超えるRC値を有する可能なOFAC一致を検知したのであれば、OFAC執行官は、これが真のOFAC一致であるか否かを調査する。OFAC執行官は、これが真の一致であると信じているのであれば、外国資産管理局によって発行されたガイドラインにしたがってこの事例を取り扱うべきである。OFAC規則によれば、いくつかの事例では、OFAC執行官は、OFACリスト上の人が、トランザクションから利益を得ないように、このトランザクションをブロックする必要がありうる。OFAC執行官は、調査後にOFAC一致が誤った肯定であると決定した場合、このようなOFAC一致事例を外国資産管理局へ報告しない理由を正当化する理由をコンピュータ・システムに入力するか、および/または、このトランザクションをブロックするべきではない。
【0207】
米国愛国者法のセクション314(a)は、FinCENによって定期的に公表される314(a)リスト上の名前の一致を検知することを金融機関に要求する。前述したように、コンピュータ・システムは、OFACコンプライアンス問題の取り扱いに類似したアプローチを用いて314(a)コンプライアンス問題を取り扱いうる。
【0208】
しばしば、314(a)リストはまた、例えば個人情報ドキュメント番号、生年月日、住所等のようなさらなる個人識別情報をも含んでいる。本開示の1つの態様では、可能なOFAC一致を検知するための前述した方法に加えて、例えば個人情報ドキュメント番号、住所、および/または、生年月日等のような個人識別情報が、コンピュータ・システムによって使用され、検知された314(a)が真の一致であるか否かが判定される。このアプローチは、314(a)一致処理における誤った肯定を低減しうる。
【0209】
本開示の1つの態様では、金融機関のコンプライアンス執行官(すなわち、責任者)は、予め定義されたしきい値を超えるRC値を有する可能な314(a)一致を検知すると、これが真の314(a)一致であるか否かを調査する。本開示の1つの態様では、コンプライアンス執行官は、それが真の一致であると信じているのであれば、314(a)一致事例をFinCENへ報告する。コンプライアンス執行官は、調査後に、この314(a)一致が誤った肯定であると決定すると、この314(a)一致をFinCENに報告しない理由を正当化する理由をコンピュータ・システムに入力する。
【0210】
本開示の1つの態様では、コンピュータ・システムは、金融機関のコア・データ処理システムから、カスタマ情報およびトランザクション・データを受け取る。コンピュータ・システムは、金融機関の内部または外部にありうるその他のデータ処理システムから、カスタマ情報およびトランザクション・データを受け取る。
【0211】
本開示の1つの態様では、コンピュータ・システムは、前線の人員によって観察された疑惑取引に関する情報を受け取る。コンピュータ・システムは、前線の人員によって入力された情報を受け取りうる。コンピュータ・システムはまた、その他の内部ソースまたは外部ソースによって提供された情報をも受け取りうる。
【0212】
「金融機関」は、説明を容易にするための例として使用されているが、本開示はまた、その他のタイプのビジネスにも当てはまる。一般に、法律および規制に準拠する必要のあるビジネスは、本開示において記載されたようなトランザクション・モニタリング・システムを適用しうる。
【0213】
記載された態様において考慮されているように、多くの可能な組み合わせのうちの1つが、例として以下に記載される。例えばローカル・エリア・ネットワークのようなコンピュータ・ネットワーク600およびトランザクション・モニタリング500のためのコンピュータ・システムは、BAS執行官100、コンプライアンス執行官200、セキュリティ執行官300、およびその他の責任者400が、
図1に図示されるような異なるタイプの法律および規制に準拠することを可能にする。
【0214】
図1のシステム図と組み合わされた
図2のフローチャートに図示されるように、各人は、適用可能な法律および規制にしたがって疑惑取引の検知、および、検知された疑惑取引の報告を行うために、コンピュータ・システム500を使用しうる。これらの法律および規制は少なくとも、米国愛国者法、銀行秘密法(BSA)、公正かつ正確な信用取引法(FACT法)、不正インターネット・ギャンブル規正法(UIGEA)、高齢者虐待報告法(EARA)、サーベンス・オクスリー法(SOX)、外国資産管理局(OFAC)によって設定された規制、金融犯罪是正ネットワーク(FinCEN)によって設定された規則、およびその他の法律および規則、を含む。
【0215】
先ず、コンピュータ・システム500は、コア・データ処理システムおよび/またはビジネスのその他のシステムからカスタマ情報およびトランザクション・データを受け取る(ブロック2001)。カスタマ情報およびトランザクション・データに基づいて、コンピュータ・システム500は、本開示に記載された疑惑取引検知方法のうちの少なくとも1つを用いることによって、新たな疑惑取引事例を検知する(ブロック2002)。
【0216】
さらに、コンピュータ・システム500は、ユーザ(すなわち、BSA執行官100、コンプライアンス執行官200、セキュリティ執行官300、および/または、その他の責任者400)が、ネットワーク600を介して、新たに検知された疑惑取引事例を調査することを支援する(ブロック2003)。コンピュータ・システム500はさらに、ユーザが、コンピュータ・システム500によって以前に検知されたその他の関連する事例を調査することを支援する。この調査処理は、新たに検知された事例が本当に疑惑取引事例であるか否かに関して、ユーザが、より良い判断をすることを助ける。
【0217】
ユーザは、新たに検知された事例を報告するか否かに関する決定を行う(決定ブロック2004)。ユーザが、新たに検知された事例を報告すると決定すれば(YES分岐2005)、コンピュータ・システム500は、ユーザが、検知された事例を報告することを支援する(ブロック2007)。ユーザが、新たに検知された事例を報告しないと決定すると(NO分岐2006)、コンピュータ・システム500は、ユーザが、新たに検知された事例を報告しないとの決定を正当化する理由を入力することを許可する(ブロック2008)。この理由および新たに検知された事例は、将来の参照のために、データベースに格納される。先に説明したように、今日、疑惑取引事例として報告されない事例が、将来においてより多くの証拠が利用可能になると、真の疑惑取引事例の一部になりうる。
【0218】
本明細書に記載された方法は、アプリケーションに依存してさまざまな手段によって実現されうる。例えば、これらの方法は、ハードウェア、ファームウェア、ソフトウェア、あるいはこれらの任意の組み合わせで実現されうる。ハードウェア実装の場合、この処理は、1または複数の特定用途向けIC(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラマブル論理デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロ・コントローラ、マイクロプロセッサ、電子デバイス、本明細書に記載された機能を実行するために設計されたその他の電子ユニット、または、これらの組み合わせ内で実施されうる。
【0219】
ファームウェアおよび/またはソフトウェアによる実現のために、方法は、本明細書に記載された機能を実行するモジュール(例えば、手順、機能等)で実現されうる。本明細書に記載された方法を実現する際に、命令群を実体的に具体化する任意の機械読取可能な媒体が使用されうる。例えば、ソフトウェア・コードは、メモリに格納され、プロセッサによって実行されうる。メモリは、プロセッサ内に、またはプロセッサの外部に実装されうる。本明細書で使用されるように、用語「メモリ」は、長期、短期、揮発性、不揮発性、またはその他のうちの何れかのタイプのメモリを称し、いかなる特定のタイプまたは数のメモリも、メモリが格納される媒体のタイプにも限定されるべきではない。
【0220】
ファームウェアおよび/またはソフトウェアで実現される場合、これら機能は、1または複数の命令群として、または、コンピュータ読取可能な媒体におけるコードとして格納されうる。例は、データ構造で符号化されたコンピュータ読取可能な媒体と、コンピュータ・プログラムで符号化されたコンピュータ読取可能な媒体とを含む。コンピュータ読取可能な媒体は、物理的なコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセスされる任意の利用可能な媒体でありうる。制限ではなく例によって、このようなコンピュータ読取可能な媒体は、RAM、ROM、EEPROM(登録商標)、CD-ROM、DVD、またはその他の光ディスク記憶装置、磁気ディスク記憶装置、またはその他の磁気記憶デバイス、または、命令群またはデータ構造の形式で所望のプログラム・コードを格納するために使用され、かつ、コンピュータによってアクセスされることが可能なその他任意の媒体を備え、本明細書で使用されるようなdiskおよびdiscは、コンパクトdisc(CD)、レーザdisc、光disc、デジタル多用途disc(DVD)、フロッピー(登録商標)disk、およびブルー・レイdiscを含み、diskは通常、データを磁気的に再生する一方、discは、レーザを用いてデータを再生する。前述の組み合わせもまた、コンピュータ読取可能な媒体のスコープ内に含まれるべきである。
【0221】
コンピュータ読取可能な媒体に格納することに加えて、命令群および/またはデータは、通信装置に含まれる送信媒体における信号として提供されうる。例えば、通信装置は、命令群およびデータを示す信号を有するトランシーバを含みうる。これら命令群およびデータは、1または複数のプロセッサに対して、特許請求の範囲で概説された機能を実行させるように構成されている。通信装置は、コンピュータ読取可能な媒体上に、必ずしもすべての命令群および/またはデータを格納するとは限らないかもしれない。
【0222】
本開示に記載された態様は、必要性に基づいて、さまざまなアプリケーションを形成するように構築されうる。本開示が関連する技術分野および技法における熟練者は、記載された構成における変更および変形が、本開示の原理、精神、およびスコープから意味深く逸脱することなく実現されうることを認識しうる。そのような変更および変形は、本開示からの逸脱として解釈されるべきではない。
【手続補正書】
【提出日】2023-10-11
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
マネー・ロンダリング取引を検知するためにカスタマをモニタリングするためのコンピュータに実装される方法であって、
複数のカスタマのうちの1人である前記カスタマのトランザクション情報の少なくとも一部分と背景情報の一部分とに関連付けられたデータのセットを、前記カスタマのマネー・ロンダリング・リスク・スコアに変換することと、
前記マネー・ロンダリング・リスク・スコアに基づいて、前記カスタマのトランザクションに関連するデータをモニタリングするためのモニタリング方法を少なくとも厳密なモニタリング方法および寛大なモニタリング方法から選択することと、前記厳密なモニタリング方法は、前記マネー・ロンダリング・リスク・スコアが前記複数のカスタマにおけるハイ・リスク・カスタマを特定するように定義されたしきい値よりも大きいことに応答して選択され、前記寛大なモニタリング方法は、前記マネー・ロンダリング・リスク・スコアが前記しきい値よりも小さいことに応答して選択され、前記厳密なモニタリング方法は、前記寛大なモニタリング方法とは異なり、
前記カスタマのトランザクション・データから導出されたトランザクション・パターンが前記選択されたモニタリング方法に関連付けられた条件と一致するときに、前記カスタマのトランザクションに関連する前記データの少なくとも一部分を送信することと、
前記マネー・ロンダリング取引を行ったとして前記カスタマを報告するための命令を受信することと、
を備える、コンピュータに実装される方法。
【請求項2】
前記トランザクション情報は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項1に記載のコンピュータに実装される方法。
【請求項3】
前記背景情報は、前記カスタマの企業カテゴリ、前記カスタマのビジネス・タイプ、前記カスタマの地理的エリア、前記カスタマの住所の国、前記カスタマのビジネスの特性、前記ビジネスの製品タイプ、前記ビジネスのサービス・タイプ、前記ビジネスの構造、前記カスタマの職業、前記カスタマの国籍、過去の記録、実行された前記トランザクションのタイプ、口座の残高、資金流入、資金流出、前記トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、前記トランザクションの場所、前記トランザクションの時間、前記トランザクションの国、送金トラザクションの送り主、前記送り主の場所、前記送り主の国、前記送り主の特性、送金トランザクションの受取人、前記受取人の場所、前記受取人の国、前記受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション、マネー・ロンダリング事例およびテロリスト資金調達事例に関して提出された疑惑取引レポート(SAR)の数、第1の金融機関のカテゴリ、前記第1の金融機関のビジネス・タイプ、前記第1の金融機関の地理的エリア、前記第1の金融機関の本社の国、前記第1の金融機関の前記ビジネスの特性、人の年齢、前記人の性別、前記人の所得レベル、前記人の外観、前記人に関する判断、前記人の個人的な状況、前記人の家族状況、前記人の家族構成員、前記人の家族構成員の状況、前記人の友達、前記人の友達の状況、前記人の過去の記録、前記人のビジネスのカテゴリ、前記人の地理的エリア、前記人の住所の国、前記人の職業、従業員の仕事のタイプ、前記従業員の教育レベル、前記従業員の所得レベル、現在の仕事における雇用の長さ、パフォーマンス調査記録、職歴、前記職歴における各雇用の継続期間、前記職歴における各雇用の終了の理由、前記従業員の年齢、前記従業員の性別、前記従業員の個人的な状況、前記従業員の家族状況、前記従業員の家族構成員、前記従業員の家族構成員の状況、前記従業員の友達の状況、前記従業員の過去の記録、実行された仕事のタイプ、トランザクションの最大量、特定のカウンタ・パーティとのトランザクションの数、特定のカウンタ・パーティとのトランザクションの量、重要記録の変更の数、特定のカウンタ・パーティに関連付けられた重要記録の変更の数、従業員の住居の地理的エリア、従業員のオフィスの地理的エリア、前記従業員の前記住所の国、前記カスタマの精査結果、口座履歴の長さ、トランザクションにおけるギャンブル組織との名前一致数、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項1に記載のコンピュータに実装される方法。
【請求項4】
前記カスタマは、個人、組織、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項1に記載のコンピュータに実装される方法。
【請求項5】
前記しきい値は、人、コンピュータ、またはこれらの組み合わせのうちの少なくとも1つによって定義される、請求項1に記載のコンピュータに実装される方法。
【請求項6】
前記厳密なモニタリング方法は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項1に記載のコンピュータに実装される方法。
【請求項7】
前記寛大なモニタリング方法は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項1に記載のコンピュータに実装される方法。
【請求項8】
前記条件は、人、コンピュータ、またはこれらの組み合わせのうちの少なくとも1つによって設定される、請求項1に記載のコンピュータに実装される方法。
【請求項9】
前記カスタマのトランザクションに関連する前記データは、名前、住所、生年月日、個人特定番号、ユーザID、パスワード、納税識別番号、使用される個人情報ドキュメントのタイプ、前記個人情報ドキュメントに関連付けられた個人特定情報番号、国、州、前記個人情報ドキュメントを発行する政府組織および/または民間組織、前記個人情報ドキュメントの有効期限、電話番号、スクリーン名、電子メール・アドレス、写真、指紋、虹彩スキャン、物理的な説明、バイオメトリック情報、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項1に記載のコンピュータに実装される方法。
【請求項10】
前記報告は、疑惑取引レポート(SAR)を備える、請求項1に記載のコンピュータに実装される方法。
【請求項11】
前記金融機関は、銀行、信用組合、マネー・サービス・ビジネス、保険会社、保険代理店、抵当金融会社、株式仲買人、他の金融機関、またはこれらの組み合わせのうちの少なくとも1つを備える、請求項1に記載のコンピュータに実装される方法。
【請求項12】
マネー・ロンダリング取引を検知するためにカスタマをモニタリングするための第1のコンピュータ・システムであって、前記第1のコンピュータ・システムは、
プロセッサと、
前記プロセッサに結合され、前記プロセッサによって実行されたときに、前記第1のコンピュータ・システムに、
複数のカスタマのうちの1人である前記カスタマのトランザクション情報の少なくとも一部分と背景情報の一部分とに関連付けられたデータのセットを、前記カスタマのマネー・ロンダリング・リスク・スコアに変換することと、
前記マネー・ロンダリング・リスク・スコアに基づいて、前記カスタマのトランザクションに関連するデータをモニタリングするためのモニタリング方法を少なくとも厳密なモニタリング方法および寛大なモニタリング方法から選択することと、前記厳密なモニタリング方法は、前記マネー・ロンダリング・リスク・スコアが前記複数のカスタマにおけるハイ・リスク・カスタマを特定するように定義されたしきい値よりも大きいことに応答して選択され、前記寛大なモニタリング方法は、前記マネー・ロンダリング・リスク・スコアが前記しきい値よりも小さいことに応答して選択され、前記厳密なモニタリング方法は、前記寛大なモニタリング方法とは異なり、
前記カスタマのトランザクション・データから導出されたトランザクション・パターンが前記選択されたモニタリング方法に関連付けられた条件と一致するときに、前記カスタマのトランザクションに関連する前記データの少なくとも一部分を送信することと、
前記マネー・ロンダリング取引を行ったとして前記カスタマを報告するための命令を受信することと、
を行わせるように動作可能な命令を記憶するメモリと
を備える、第1のコンピュータ・システム。
【請求項13】
前記トランザクション情報は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項12に記載の第1のコンピュータ・システム。
【請求項14】
前記背景情報は、前記カスタマの企業カテゴリ、前記カスタマのビジネス・タイプ、前記カスタマの地理的エリア、前記カスタマの住所の国、前記カスタマのビジネスの特性、前記ビジネスの製品タイプ、前記ビジネスのサービス・タイプ、前記ビジネスの構造、前記カスタマの職業、前記カスタマの国籍、過去の記録、実行された前記トランザクションのタイプ、口座の残高、資金流入、資金流出、前記トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、前記トランザクションの場所、前記トランザクションの時間、前記トランザクションの国、送金トラザクションの送り主、前記送り主の場所、前記送り主の国、前記送り主の特性、送金トランザクションの受取人、前記受取人の場所、前記受取人の国、前記受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション、マネー・ロンダリング事例およびテロリスト資金調達事例に関して提出された疑惑取引レポート(SAR)の数、第1の金融機関のカテゴリ、前記第1の金融機関のビジネス・タイプ、前記第1の金融機関の地理的エリア、前記第1の金融機関の本社の国、前記第1の金融機関の前記ビジネスの特性、人の年齢、前記人の性別、前記人の所得レベル、前記人の外観、前記人に関する判断、前記人の個人的な状況、前記人の家族状況、前記人の家族構成員、前記人の家族構成員の状況、前記人の友達、前記人の友達の状況、前記人の過去の記録、前記人のビジネスのカテゴリ、前記人の地理的エリア、前記人の住所の国、前記人の職業、従業員の仕事のタイプ、前記従業員の教育レベル、前記従業員の所得レベル、現在の仕事における雇用の長さ、パフォーマンス調査記録、職歴、前記職歴における各雇用の継続期間、前記職歴における各雇用の終了の理由、前記従業員の年齢、前記従業員の性別、前記従業員の個人的な状況、前記従業員の家族状況、前記従業員の家族構成員、前記従業員の家族構成員の状況、前記従業員の友達の状況、前記従業員の過去の記録、実行された仕事のタイプ、トランザクションの最大量、特定のカウンタ・パーティとのトランザクションの数、特定のカウンタ・パーティとのトランザクションの量、重要記録の変更の数、特定のカウンタ・パーティに関連付けられた重要記録の変更の数、従業員の住居の地理的エリア、従業員のオフィスの地理的エリア、前記従業員の前記住所の国、前記カスタマの精査結果、口座履歴の長さ、トランザクションにおけるギャンブル組織との名前一致数、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項12に記載の第1のコンピュータ・システム。
【請求項15】
前記カスタマは、個人、組織、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項12に記載の第1のコンピュータ・システム。
【請求項16】
前記しきい値は、人、コンピュータ、またはこれらの組み合わせのうちの少なくとも1つによって定義される、請求項12に記載の第1のコンピュータ・システム。
【請求項17】
前記厳密なモニタリング方法は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項12に記載の第1のコンピュータ・システム。
【請求項18】
前記寛大なモニタリング方法は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項12に記載の第1のコンピュータ・システム。
【請求項19】
前記条件は、人、コンピュータ、またはこれらの組み合わせのうちの少なくとも1つによって設定される、請求項12に記載の第1のコンピュータ・システム。
【請求項20】
前記カスタマのトランザクションに関連する前記データは、名前、住所、生年月日、個人特定番号、ユーザID、パスワード、納税識別番号、使用される個人情報ドキュメントのタイプ、前記個人情報ドキュメントに関連付けられた個人特定情報番号、国、州、前記個人情報ドキュメントを発行する政府組織および/または民間組織、前記個人情報ドキュメントの有効期限、電話番号、スクリーン名、電子メール・アドレス、写真、指紋、虹彩スキャン、物理的な説明、バイオメトリック情報、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項12に記載の第1のコンピュータ・システム。
【請求項21】
前記報告は、疑惑取引レポート(SAR)を備える、請求項12に記載の第1のコンピュータ・システム。
【請求項22】
前記金融機関は、銀行、信用組合、マネー・サービス・ビジネス、保険会社、保険代理店、抵当金融会社、株式仲買人、他の金融機関、またはこれらの組み合わせのうちの少なくとも1つを備える、請求項12に記載の第1のコンピュータ・システム。
【請求項23】
マネー・ロンダリング取引を検知するための記憶されたプログラム・コードを有する非一時的コンピュータ可読記憶媒体であって、前記プログラム・コードは、プロセッサによって実行され、
複数のカスタマのうちの1人である前記カスタマのトランザクション情報の少なくとも一部分と背景情報の一部分とに関連付けられたデータのセットを、前記カスタマのマネー・ロンダリング・リスク・スコアに変換するためのプログラム・コードと、
前記マネー・ロンダリング・リスク・スコアに基づいて、前記カスタマのトランザクションに関連するデータをモニタリングするためのモニタリング方法を少なくとも厳密なモニタリング方法および寛大なモニタリング方法から選択するためのプログラム・コードと、前記厳密なモニタリング方法は、前記マネー・ロンダリング・リスク・スコアが前記複数のカスタマにおけるハイ・リスク・カスタマを特定するように定義されたしきい値よりも大きいことに応答して選択され、前記寛大なモニタリング方法は、前記マネー・ロンダリング・リスク・スコアが前記しきい値よりも小さいことに応答して選択され、前記厳密なモニタリング方法は、前記寛大なモニタリング方法とは異なり、
前記カスタマのトランザクション・データから導出されたトランザクション・パターンが前記選択されたモニタリング方法に関連付けられた条件と一致するときに、前記カスタマのトランザクションに関連する前記データの少なくとも一部分を送信するためのプログラム・コードと、
前記マネー・ロンダリング取引を行ったとして前記カスタマを報告するための命令を受信するためのプログラム・コードと、
を備える、非一時的コンピュータ可読記憶媒体。
【請求項24】
前記トランザクション情報は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項25】
前記背景情報は、前記カスタマの企業カテゴリ、前記カスタマのビジネス・タイプ、前記カスタマの地理的エリア、前記カスタマの住所の国、前記カスタマのビジネスの特性、前記ビジネスの製品タイプ、前記ビジネスのサービス・タイプ、前記ビジネスの構造、前記カスタマの職業、前記カスタマの国籍、過去の記録、実行された前記トランザクションのタイプ、口座の残高、資金流入、資金流出、前記トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、前記トランザクションの場所、前記トランザクションの時間、前記トランザクションの国、送金トラザクションの送り主、前記送り主の場所、前記送り主の国、前記送り主の特性、送金トランザクションの受取人、前記受取人の場所、前記受取人の国、前記受取人の特性、関係、社会的地位、政治的な露出度、過去のトランザクション、マネー・ロンダリング事例およびテロリスト資金調達事例に関して提出された疑惑取引レポート(SAR)の数、第1の金融機関のカテゴリ、前記第1の金融機関のビジネス・タイプ、前記第1の金融機関の地理的エリア、前記第1の金融機関の本社の国、前記第1の金融機関の前記ビジネスの特性、人の年齢、前記人の性別、前記人の所得レベル、前記人の外観、前記人に関する判断、前記人の個人的な状況、前記人の家族状況、前記人の家族構成員、前記人の家族構成員の状況、前記人の友達、前記人の友達の状況、前記人の過去の記録、前記人のビジネスのカテゴリ、前記人の地理的エリア、前記人の住所の国、前記人の職業、従業員の仕事のタイプ、前記従業員の教育レベル、前記従業員の所得レベル、現在の仕事における雇用の長さ、パフォーマンス調査記録、職歴、前記職歴における各雇用の継続期間、前記職歴における各雇用の終了の理由、前記従業員の年齢、前記従業員の性別、前記従業員の個人的な状況、前記従業員の家族状況、前記従業員の家族構成員、前記従業員の家族構成員の状況、前記従業員の友達の状況、前記従業員の過去の記録、実行された仕事のタイプ、トランザクションの最大量、特定のカウンタ・パーティとのトランザクションの数、特定のカウンタ・パーティとのトランザクションの量、重要記録の変更の数、特定のカウンタ・パーティに関連付けられた重要記録の変更の数、従業員の住居の地理的エリア、従業員のオフィスの地理的エリア、前記従業員の前記住所の国、前記カスタマの精査結果、口座履歴の長さ、トランザクションにおけるギャンブル組織との名前一致数、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項26】
前記カスタマは、個人、組織、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項27】
前記しきい値は、人、コンピュータ、またはこれらの組み合わせのうちの少なくとも1つによって定義される、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項28】
前記厳密なモニタリング方法は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項29】
前記寛大なモニタリング方法は、現金、小切手、電信送金、ATM(現金自動預金支払機)、ACH(自動決済機関)、クレジット・カード、デビット・カード、プリペイド・カード、電子資金移転、口座開設、口座閉鎖、預金、引出、口座残高、クレジット、デビット、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項30】
前記条件は、人、コンピュータ、またはこれらの組み合わせのうちの少なくとも1つによって設定される、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項31】
前記カスタマのトランザクションに関連する前記データは、名前、住所、生年月日、個人特定番号、ユーザID、パスワード、納税識別番号、使用される個人情報ドキュメントのタイプ、前記個人情報ドキュメントに関連付けられた個人特定情報番号、国、州、前記個人情報ドキュメントを発行する政府組織および/または民間組織、前記個人情報ドキュメントの有効期限、電話番号、スクリーン名、電子メール・アドレス、写真、指紋、虹彩スキャン、物理的な説明、バイオメトリック情報、またはこれらの組み合わせのうちの少なくとも1つに関連付けられる、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項32】
前記報告は、疑惑取引レポート(SAR)を備える、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【請求項33】
前記金融機関は、銀行、信用組合、マネー・サービス・ビジネス、保険会社、保険代理店、抵当金融会社、株式仲買人、他の金融機関、またはこれらの組み合わせのうちの少なくとも1つを備える、請求項23に記載の非一時的コンピュータ可読記憶媒体。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0222
【補正方法】変更
【補正の内容】
【0222】
本開示に記載された態様は、必要性に基づいて、さまざまなアプリケーションを形成するように構築されうる。本開示が関連する技術分野および技法における熟練者は、記載された構成における変更および変形が、本開示の原理、精神、およびスコープから意味深く逸脱することなく実現されうることを認識しうる。そのような変更および変形は、本開示からの逸脱として解釈されるべきではない。
以下に、出願当初の特許請求の範囲に記載の事項を、そのまま、付記しておく。
[C1]
反マネー・ロンダリング法および/または規則にビジネスが準拠するのを支援するためのコンピュータ・システムであって、
メモリ・デバイスと、
前記メモリ・デバイスに接続された少なくとも1つのプロセッサとを備え、
前記少なくとも1つのプロセッサは、
複数のリスク要因に基づいて、複数のエンティティのおのおのの合計リスク・スコアを導出し、ここで、前記複数のリスク要因のおのおのがリスク・スコアを割り当てられている、
検知されるエンティティの合計リスク・スコアが、前記複数のエンティティの合計リスク・スコアから導出される基準と、予め定められたマージン異なっている場合、前記エンティティを検知し、
前記複数のエンティティの合計リスク・スコアから導出された基準とは異なる合計リスク・スコアを、前記検知されたエンティティに持たせた少なくとも1つのトランザクションを、ユーザが特定することを支援するように構成された、コンピュータ・システム。
[C2]
前記少なくとも1つのプロセッサはさらに、
前記ユーザが、前記特定された少なくとも1つのトランザクションを報告すると決定した場合、前記特定された少なくとも1つのトランザクションを、疑わしいマネー・ロンダリング取引であるとして、前記ユーザが報告することを支援し、
前記ユーザが、前記特定された少なくとも1つのトランザクションを報告しないと決定した場合、前記決定を正当化するための理由を格納するように構成された、C1に記載の方法。
[C3]
前記リスク要因は、少なくとも、カスタマの企業カテゴリ、前記カスタマのビジネス・タイプ、前記カスタマの地理的エリア、前記カスタマの住所の国、前記カスタマのビジネスの特性、前記ビジネスの製品タイプ、前記ビジネスのサービス・タイプ、前記ビジネスの構造、前記カスタマの職業、国籍、過去の記録、実行されたトランザクションのタイプ、口座の残高、資金流入、資金流出、トランザクション・パターン、トランザクションの数、トランザクションの量、トランザクション・ボリューム、トランザクション頻度、トランザクション派生、前記トランザクションの場所、前記トランザクションの時間、前記トランザクションの国、送金トラザクションの送り主、前記送り主の場所、前記送り主の国、前記送り主の特性、送金トランザクションの受取人、前記受取人の場所、前記受取人の国、前記受取人の特性、関係、社会的地位、政治的な露出度、および/または、過去のトランザクションを含む、C1に記載のコンピュータ・システム。
[C4]
前記少なくとも1つのプロセッサはさらに、前記エンティティがビジネスである場合、前記リスク要因のうちの少なくとも1つを、オペレーションのサイズに部分的に基づいて調節するように構成された、C1に記載のコンピュータ・システム。
[C5]
前記少なくとも1つのプロセッサはさらに、すべてのリスク要因のすべてのリスク・スコアの数学的変換によって、前記合計リスク・スコアを取得するように構成された、C1に記載のコンピュータ・システム。
[C6]
前記数学的変換は、すべてのリスク要因のすべてのリスク・スコアの総和である、C5に記載のコンピュータ・システム。
[C7]
前記予め定められたマージンは、統計的なアプローチおよび/または人間の判断に基づいて部分的に決定される、C1に記載のコンピュータ・システム。
[C8]
前記統計的なアプローチは、前記複数のエンティティのすべての合計リスク・スコアの標準偏差に部分的に基づく、C7に記載のコンピュータ・システム。
[C9]
前記疑わしいマネー・ロンダリング取引が、政府機関に報告される、C1に記載のコンピュータ・システム。
[C10]
前記政府機関は、金融犯罪是正ネットワークである、C9に記載のコンピュータ・システム。
[C11]
前記複数のエンティティの合計リスク・スコアから導出された基準は、前記複数のエンティティの合計リスク・スコアの平均値、平均、中央、加重平均、および/または、統計値を備える、C1に記載の方法。
[C12]
反マネー・ロンダリング法および/または規則にビジネスが準拠するのを支援するためのコンピュータ化された方法であって、
少なくとも1つの共通のリスク要因を有する複数のエンティティを特定することと、
複数のリスク要因に基づいて、前記複数のエンティティのおのおのの合計リスク・スコアを導出することと、ここで、前記複数のリスク要因のおのおのに、リスク・スコアが割り当てられる、
検知されるエンティティの合計リスク・スコアが、前記複数のエンティティの合計リスク・スコアから導出される基準と、予め定められたマージン異なっている場合、コンピュータ・システムによって、前記エンティティを検知することと、
前記特定されたトランザクションが疑わしいマネー・ロンダリング取引であるとの調査をイネーブルするために、前記エンティティの過去の取引および/または関連する事例を提供することとを備える、コンピュータ化された方法。
【外国語明細書】