IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オルガノ株式会社の特許一覧

特開2023-177085電気式脱イオン水製造装置とその運転方法
<>
  • 特開-電気式脱イオン水製造装置とその運転方法 図1
  • 特開-電気式脱イオン水製造装置とその運転方法 図2
  • 特開-電気式脱イオン水製造装置とその運転方法 図3
  • 特開-電気式脱イオン水製造装置とその運転方法 図4
  • 特開-電気式脱イオン水製造装置とその運転方法 図5
  • 特開-電気式脱イオン水製造装置とその運転方法 図6
  • 特開-電気式脱イオン水製造装置とその運転方法 図7
  • 特開-電気式脱イオン水製造装置とその運転方法 図8
  • 特開-電気式脱イオン水製造装置とその運転方法 図9
  • 特開-電気式脱イオン水製造装置とその運転方法 図10
  • 特開-電気式脱イオン水製造装置とその運転方法 図11
  • 特開-電気式脱イオン水製造装置とその運転方法 図12
  • 特開-電気式脱イオン水製造装置とその運転方法 図13
  • 特開-電気式脱イオン水製造装置とその運転方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023177085
(43)【公開日】2023-12-13
(54)【発明の名称】電気式脱イオン水製造装置とその運転方法
(51)【国際特許分類】
   C02F 1/469 20230101AFI20231206BHJP
   B01D 61/48 20060101ALI20231206BHJP
【FI】
C02F1/469
B01D61/48
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022089793
(22)【出願日】2022-06-01
(71)【出願人】
【識別番号】000004400
【氏名又は名称】オルガノ株式会社
(74)【代理人】
【識別番号】100123788
【弁理士】
【氏名又は名称】宮崎 昭夫
(74)【代理人】
【識別番号】100127454
【弁理士】
【氏名又は名称】緒方 雅昭
(72)【発明者】
【氏名】阿部 眞弓
(72)【発明者】
【氏名】佐々木 慶介
(72)【発明者】
【氏名】中村 友綺
【テーマコード(参考)】
4D006
4D061
【Fターム(参考)】
4D006GA17
4D006HA47
4D006JA30B
4D006JA41Z
4D006JA42Z
4D006JA43Z
4D006JA44Z
4D006MA03
4D006MA13
4D006MA14
4D006PA01
4D006PB28
4D006PC02
4D061DA02
4D061DB13
4D061DB18
4D061DC13
4D061DC19
4D061EA09
4D061EB01
4D061EB04
4D061EB13
4D061EB18
4D061EB19
4D061EB39
4D061ED20
4D061FA08
4D061FA09
4D061GC18
(57)【要約】
【課題】EDI装置(電気式脱イオン水製造装置)においてホウ素の除去性能を高める。
【解決手段】ホウ素を含む被処理水が脱塩室23に供給されて被処理水からホウ素を除去するEDI装置10の脱塩室23において、0.1mm以上0.4mm以下の粒径を小粒径とし、0.4mmを超える粒径を大粒径として、被処理水の流れ方向に向かって、大粒径のイオン交換樹脂からなる大粒径層と、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とが混合した混合粒径層とが、混合粒径層の上流側に少なくとも1つの大粒径層が存在するように配置する。さらに、濃縮室24に充填されるイオン交換樹脂の少なくとも一部をカチオン交換樹脂とする。
【選択図】図1
【特許請求の範囲】
【請求項1】
陽極と陰極との間に、前記陽極の側に配置する第1のイオン交換膜と前記陰極の側に配する第2のイオン交換膜からなる1対のイオン交換膜で区画されてイオン交換樹脂が充填された脱塩室と、前記第2のイオン交換膜を介して前記脱塩室に隣接して配置されてイオン交換樹脂が充填された濃縮室とを備える電気式脱イオン水製造装置において、
0.1mm以上0.4mm以下の粒径を小粒径とし、0.4mmを超える粒径を大粒径として、
前記脱塩室において、前記脱塩室における被処理水の流れ方向に向かって、大粒径のイオン交換樹脂からなる大粒径層と、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とが混合した混合粒径層とが配置され、
前記濃縮室に充填されるイオン交換樹脂の少なくとも一部がカチオン交換樹脂であり、
ホウ素を含む被処理水が前記脱塩室に供給されて前記被処理水からホウ素を除去することを特徴とする、電気式脱イオン水製造装置。
【請求項2】
前記濃縮室に充填されるイオン交換樹脂が大粒径のイオン交換樹脂である、請求項1に記載の電気式脱イオン水製造装置。
【請求項3】
前記濃縮室においてアニオン交換樹脂とカチオン交換樹脂とが混合した状態で充填されている、請求項1または2に記載の電気式脱イオン水製造装置。
【請求項4】
アニオン交換樹脂の見かけの体積をA、カチオン交換樹脂の見かけの体積をCとして、前記濃縮室におけるアニオン交換樹脂とカチオン交換樹脂との混合比率A:Cが20:80から60:40の範囲にある、請求項3に記載の電気式脱イオン水製造装置。
【請求項5】
前記脱塩室において前記混合粒径層の上流側に少なくとも1つの前記大粒径層が存在するように前記混合粒径層と前記大粒径層とが配置している、請求項1または2記載の電気式脱イオン水製造装置。
【請求項6】
アニオン交換樹脂からなる前記混合粒径層を前記脱塩室に備える、請求項1または2に記載の電気式脱イオン水製造装置。
【請求項7】
大粒径のアニオン交換樹脂の見かけの体積をLとし、小粒径のアニオン交換樹脂の見かけの体積をSとして、前記混合粒径層において、L:Sが1:3から10:1の範囲内である混合比率で大粒径のアニオン交換樹脂と小粒径のイオン交換樹脂が混合されている、請求項6に記載の電気式脱イオン水製造装置。
【請求項8】
前記脱塩室は、前記1対のイオン交換膜との間に位置する中間のイオン交換膜を備えて該中間のイオン交換膜によって第1小脱塩室及び第2小脱塩室に区画され、前記第1小脱塩室及び前記第2小脱塩室のうちの一方の小脱塩室に前記被処理水が供給されて当該一方の小脱塩室から流出する水が他方の小脱塩室に流入するように、前記第1小脱塩室及び前記第2小脱塩室が連通している、請求項1または2に記載の電気式脱イオン水製造装置。
【請求項9】
第1小脱塩室及び前記第2小脱塩室のうち前記陽極に近い側の小脱塩室にアニオン交換樹脂が充填され、前記陰極に近い側の小脱塩室に大粒径のカチオン交換樹脂が充填されるとともにアニオン交換樹脂からなる前記混合粒径層が配置している、請求項8に記載の電気式脱イオン水製造装置。
【請求項10】
請求項1または2に記載の電気式脱イオン水製造装置の運転方法において、前記脱塩室に供給される前記被処理水における硬度成分の濃度を0.1mg/L以下とすることを特徴とする運転方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気式脱イオン水製造装置とその運転方法とに関する。
【背景技術】
【0002】
半導体装置製造などに用いられる超純水においてホウ素の含有量のさらなる低減が求められているが、水中のホウ素は、被処理水をイオン交換樹脂に通水するという一般的なイオン交換処理では除去しにくい弱酸成分である。そこで、被処理水中のホウ素を除去するために、電気式脱イオン水製造装置(EDI(Electrodeionization)装置)を使用することが試みられている。EDI装置は、電気泳動と電気透析とを組み合わせることによって被処理水から脱イオン水を生成する装置であって、少なくともその脱塩室にはイオン交換樹脂が充填されている。EDI装置は、薬剤によってイオン交換樹脂を再生する処理を不要とするという利点を有する。しかしながらEDI装置であっても、脱塩室に単に通常のイオン交換樹脂を充填させただけでは、ホウ素などの弱酸成分についての十分な除去性能が得られないことがある。
【0003】
通常のイオン交換樹脂はビーズ状あるいは粒状であってその標準的な粒径は0.4mmを超えて1mm程度以下であるが、EDI装置における弱酸成分の除去性能を向上させるために、より粒径の小さなイオン交換樹脂を脱塩室に充填することが提案されている。例えば特許文献1は、平均粒径が150~250μmであるイオン交換樹脂をEDI装置の脱塩室に単床で充填することを開示する。特許文献2は、平均直径が0.2~0.3mmであるイオン交換樹脂を脱塩室に単床で充填することを開示する。特許文献3,4は、上下方向に被処理水が流通する脱塩室において、上下方向での中間となる領域に平均粒径0.1~0.4mmのイオン交換樹脂を充填し、それよりも上側及び下側の領域に平均粒径が0.4mmを超えるイオン交換樹脂を充填することを開示する。
【0004】
ところでEDI装置の運転時において脱塩室の電気抵抗を低下させて脱塩効率を向上させるためには、脱塩室におけるイオン交換樹脂の充填率を制御することが重要である。特許文献5は、脱塩室の電気抵抗を低下させるために、粒径が異なる複数の均一粒径を有するイオン交換樹脂粒子群を混合して脱塩室に充填することを開示する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2016-150304号公報
【特許文献2】特開2017-176968号公報
【特許文献3】特開2019-177327号公報
【特許文献4】特開2020-78772号公報
【特許文献5】特開平10-258289号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
脱塩室に小粒径のイオン交換樹脂を充填してEDI装置におけるホウ素成分の除去性能を高めても、ホウ素濃度を極小量レベルまで除去する場合にはホウ素の除去性能がなお不足することがある。例えばホウ素濃度が10μg/L程度である被処理水からホウ素を除去してホウ素濃度がng/Lレベルである処理水を得ようとするときに、1段のEDI装置ではホウ素の十分な除去を行えずに2段のEDI装置を直列に接続して使用せざるを得ない場合がある。
【0007】
本発明の目的は、ホウ素の除去性能を高めたEDI装置とその運転方法とを提供することにある。
【課題を解決するための手段】
【0008】
本発明のEDI装置(電気式脱イオン水製造装置)は、陽極と陰極との間に、1対のイオン交換膜で区画されてイオン交換樹脂が充填された脱塩室と、脱塩室に隣接して配置されてイオン交換樹脂が充填された少なくとも1つの濃縮室とを備えるEDI装置において、0.1mm以上0.4mm以下の粒径を小粒径とし、0.4mmを超える粒径を大粒径として、脱塩室において、脱塩室における被処理水の流れ方向に向かって、大粒径のイオン交換樹脂からなる大粒径層と、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とが混合した混合粒径層とが配置され、濃縮室に充填されるイオン交換樹脂の少なくとも一部がカチオン交換樹脂であり、ホウ素を含む被処理水が脱塩室に供給されて被処理水からホウ素を除去することを特徴とする。
【0009】
本発明の運転方法は、本発明に基づくEDI装置の運転方法において、脱塩室に供給される被処理水における硬度成分の濃度を0.1mg/L以下とすることを特徴とする。
【発明の効果】
【0010】
本発明によれば、EDI装置におけるホウ素の除去性能を高めることができ、それにより、ホウ素濃度を極小量レベルまで低減させた脱イオン水を得ることが可能になる。
【図面の簡単な説明】
【0011】
図1】本発明の第1の実施形態のEDI装置を示す図である。
図2】ホウ素成分のリークを説明する図である。
図3】第1の実施形態のEDI装置の別の例を示す図である。
図4】(a)~(e)は、脱塩室でのイオン交換樹脂の充填例を示す図である。
図5】本発明の第2の実施形態のEDI装置を示す図である。
図6】第2の実施形態のEDI装置の別の例を示す図である。
図7】第2の実施形態のEDI装置の別の例を示す図である。
図8】純水製造システムの構成を示すフロー図である。
図9】実施例1,2のEDI装置を説明する図である。
図10】比較例1のEDI装置を説明する図である。
図11】比較例2のEDI装置を説明する図である。
図12】比較例3のEDI装置を説明する図である。
図13】比較例4,5のEDI装置を説明する図である。
図14】参考例1,2のEDI装置を説明する図である。
【発明を実施するための形態】
【0012】
次に、本発明の実施の形態について、図面を参照して説明する。一般に電気式脱イオン水製造装置(EDI装置)では、陽極と陰極との間に1対のイオン交換膜で区画された脱塩室が設けられ、脱塩室にはイオン交換樹脂が充填される。そしてEDI装置は、陽極と陰極との間に直流電圧を印加した状態で脱塩室に被処理水が供給されたときに被処理水に対する脱塩(脱イオン)処理を行い、その結果、イオン成分が除去された水が処理水として脱塩室から排出される。脱塩室において被処理水から除去されたイオン成分のうちアニオン成分は、脱塩室において陽極側に設けられているイオン交換膜を介して脱塩室に隣接する区画に移動し、カチオン成分は、脱塩室において陰極側に設けられているイオン交換膜を介して脱塩室に隣接する別の区画に移動する。イオン交換膜を介してイオン成分が脱塩室から移動してくる区画が濃縮室である。本発明においては、イオン交換樹脂の粒径に関し、0.1mm以上0.4mm以下の粒径を小粒径と定義し、0.4mmを超える粒径を大粒径と定義とする。
【0013】
本発明に基づくEDI装置では、被処理水中のホウ素の除去効率を高めるために、脱塩室において、脱塩室における被処理水の流れ方向に向かって、大粒径のイオン交換樹脂からなる大粒径層と、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とが混合した混合粒径層とが配置されている。ビーズ状または粒状のイオン交換樹脂の粒径は、通常、1mm以下であるから、大粒径のイオン交換樹脂として、粒径が0.4mmを超えて1mm以下であるものを使用してもよい。なお、ふるい(篩)を用いてイオン交換樹脂の粒径を測定することもできるが、イオン交換樹脂メーカーのカタログ値を本発明における粒径として使用してもよい。本発明においては、大粒径のアニオン交換樹脂(AER)と小粒径のアニオン交換樹脂とを混合してアニオン交換樹脂の混合粒径層としてもよいし、大粒径のカチオン交換樹脂(CER)と小粒径のカチオン交換樹脂とを混合してカチオン交換樹脂の混合粒径層としてもよい。
【0014】
ここで混合粒径層における大粒径のイオン交換樹脂と小粒径のイオン交換樹脂との混合比率について説明する。大粒径であっても小粒径であってもイオン交換樹脂はビーズ状または粒状であるから、粒子間の空隙も含めた見かけの体積を測定することができる。そこで、混合前の大粒径のイオン交換樹脂の見かけの体積をL、小粒径のイオン交換樹脂の見かけの体積をSとして、混合比率L:Sが、1:3から10:1の間にあることが好ましく、1:1から5:1の間にあることがより好ましい。大粒径のイオン交換樹脂の比率が高すぎるとホウ素などの弱酸成分についての十分な除去性能が得られなくなるので、本発明の効果を達成するためには、L:S=10:1かそれよりも大粒径のイオン交換樹脂の割合が少ないことが必要だと思われる。一方、小粒径のイオン交換樹脂の比率が高すぎると通水差圧の上昇がもたらされる可能性がある。なお、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とを混合して混合粒径層を構成したのちにおいても、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂との混合比率を求めることができる。例えば、脱塩室から混合粒径層を取り出し、ふるいを用いて分級して粒径が0.1mm以上0.4mm以下のイオン交換樹脂と粒径が0.4mmを超えるイオン交換樹脂とに分離し、それぞれの見かけの体積を測定することによって、混合比率L:Sを求めることができる。
【0015】
さらに本発明に基づくEDI装置では、濃縮室にもイオン交換樹脂が充填されており、濃縮室に充填されるイオン交換樹脂の少なくとも一部がカチオン交換樹脂である。カチオン交換樹脂のみを濃縮室に充填してもよいが、被処理水や濃縮室に供給される水にカルシウムやマグネシウムなどの硬度成分が例えば0.05~0.1mg/L含まれているときにEDI装置における印加電圧の上昇が起こりやすいので、濃縮室にはアニオン交換樹脂とカチオン交換樹脂とを混合して充填することが好ましい。アニオン交換樹脂とカチオン交換樹脂とを混合して濃縮室の全体に充填する場合、アニオン交換樹脂の見かけの体積をAとし、カチオン交換樹脂の見かけの体積をCとして、これらのイオン交換樹脂の混合比率A:Cは20:80から60:40の間にあることが好ましく、20:80から50:50の間にあることがより好ましい。アニオン交換樹脂とカチオン交換樹脂とを混合して濃縮室に充填したのちにおいても、上述と同様に、アニオン交換樹脂とカチオン交換樹脂との混合比率A:Cを求めることができる。大粒径のイオン交換樹脂のみを濃縮室に充填してもよい。カチオン交換樹脂を濃縮室に配置したことによる印加電圧の上昇を抑制するためには、後述するようにEDI装置の前段に逆浸透膜装置を配置するなどして、脱塩室に供給される被処理水における硬度成分の濃度が0.1mg/L以下であるようにすることが好ましい。なお、硬度成分の濃度とは、カルシウムとマグネシウムの量を炭酸カルシウム(CaCO)の量に換算したものであり、計算式としては、
硬度[mg/L]=(カルシウム量[mg/L]×2.5)+(マグネシウム量[mg/L×4.1])
によって表される。
【0016】
[第1の実施形態]
図1は、本発明の第1の実施形態のEDI装置10を示している。このEDI装置10では、陽極11を備えた陽極室21と、陰極12を備えた陰極室25との間に、陽極室21の側から順に、濃縮室22、脱塩室23及び濃縮室24が設けられている。陽極室21と濃縮室22はカチオン交換膜(CEM)31を隔てて隣接し、濃縮室22と脱塩室23はアニオン交換膜(AEM)32を隔てて隣接し、脱塩室23と濃縮室24はカチオン交換膜33を隔てて隣接し、濃縮室24と陰極室25はアニオン交換膜34を隔てて隣接している。したがって脱塩室23は、陽極11と陰極12との間で1対のイオン交換膜(ここではアニオン交換膜32及びカチオン交換膜33)によって区画されていることになる。脱塩室23にはイオン交換樹脂が充填されるとともに被処理水が供給され、被処理水を脱塩処理した結果得られる処理水(脱イオン水)が脱塩室23から流出する。ここに示した例では、脱塩室23にはアニオン交換樹脂が充填されている。脱塩室23における被処理水の流れ方向に向かって脱塩室23の内部は2つの領域に区分されており、被処理水の入口側の領域には大粒径のアニオン交換樹脂が充填されて大粒径層を構成し、処理水の出口側の領域には大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂とが混合して充填されて混合粒径層を構成している。図では、アニオン交換樹脂からなる大粒径層を「大粒径AER」と記載し、アニオン交換樹脂からなる混合粒径層を「大・小粒径混合AER」と記載している。図示した例では、大粒径層と混合粒径層との境界は、被処理水の流れ方向に向かって脱塩室23のほぼ中央付近である。
【0017】
さらにEDI装置10では、カチオン交換樹脂が陽極室21内に充填され、アニオン交換樹脂が陰極室25内に充填されている。濃縮室22,24には、図において「AER+CER」と記載するように、アニオン交換樹脂とカチオン交換樹脂とが混合して充填されている。陽極室21及び陰極室25には必ずしもイオン交換樹脂を充填する必要はないが、EDI装置10の運転時に陽極11と陰極12との間に印加すべき直流電圧を低くするために、陽極室21及び陰極室25にもイオン交換樹脂を充填することが好ましい。濃縮室22,24は、濃縮室供給水が供給され、濃縮水を排出する。陰極室25には電極室供給水が供給され、陰極室25に供給された電極室供給水は、陰極室25を通過した後に陽極室21に供給され、陽極室21から電極水として排出される。なお、濃縮室と電極室(陽極室21及び陰極室25)を兼ねる構成とすることもできる。
【0018】
一般的にEDI装置は、[濃縮室|イオン交換膜|脱塩室|イオン交換膜|濃縮室]からなる基本構成を陽極と陰極との間にイオン交換膜を介して複数個並置することができる。このとき、イオン交換膜を挟んで隣接する2つの濃縮室は、その挟まれているイオン交換膜を除去して単一の濃縮室とすることができる。図1に示したEDI装置10では、アニオン交換膜32、脱塩室23、カチオン交換膜33及び濃縮室24が1つの基本構成を形成するものとして、陽極室21に最も近い濃縮室22と陰極室25に接するアニオン交換膜34との間に、この基本構成をN(Nは1以上の整数)個配置することができる。基本構成を複数個並置できることは、図において「×N」の記載によって示されている。
【0019】
次に、図1に示したEDI装置10による脱イオン水(処理水)の製造について説明する。一般的なEDI装置の場合と同様に、濃縮室22,24に濃縮室供給水を通水し、陰極室25に電極室供給水を供給して陰極室25から排出された電極室供給水を陽極室21にも通水するようにし、陽極11と陰極12との間に直流電圧を印加した状態で、脱塩室23に被処理水を通水する。すると、被処理水中のイオン成分が脱塩室23内のイオン交換樹脂に吸着され、電流の作用によって脱塩室内を移動し、隣接する濃縮室へ排出されることで脱イオン化(脱塩)が進行し、脱塩室23から処理水として脱イオン水が流出する。被処理水は脱塩室23においてまず大粒径層を通過し、そこで、強酸成分や、弱酸成分であってもアニオン交換樹脂に比較的吸着しやすい成分が被処理水から除去される。その後、被処理水に含まれるホウ素などの比較的除去しにくい成分は、続いて小粒径のアニオン交換樹脂を含む混合粒径層を通過するときに、アニオン交換樹脂に吸着されて被処理水から除去される。その結果、脱塩室23からは、ホウ素などの弱酸成分も十分に除去された処理水が排出される。通水抵抗は大粒径層よりも混合粒径層の方が大きいが、後述する実施例などからも明らかになるように、脱塩室23における充填率などを制御することにより、通水差圧の増加も許容できる範囲内とすることができる。
【0020】
本実施形態のEDI装置10の脱塩室23において、大粒径層と混合粒径層は1層ずつ設けられていてもよいし、大粒径層と混合粒径層の少なくとも一方が2層以上設けられていてもよい。しかしながら、除去効率の向上のためには、被処理水における比較的除去しやすい成分を除去したのちに比較的除去しにくい成分を除去する構成とすべきであることが好ましいので、本実施形態のEDI装置10では、いずれの混合粒径層に注目してもその混合粒径層の上流側に少なくとも1つの大粒径層が存在するようにしている。すなわち、脱塩室23において被処理水が混合粒径層に通水する前にまず大粒径層を通水するように、大粒径層と混合粒径層とが配置している。脱塩室23における処理水の出口に近い位置に混合粒径層を配置することが好ましい。この場合、処理水の出口に接するように混合粒径層を配置してもよいし、処理水の出口から、被処理水の流れに沿った脱塩室23の長さの25%の範囲内に、混合粒径層の少なくとも一部が含まれるようにしてもよい。脱塩室23には混合粒径層と大粒径層の両方が配置されるが、それらのうちの混合粒径層の割合は、例えば、混合粒径層での被処理水の流れに沿ったイオン交換樹脂の充填高さの総和が、被処理水の流れに沿った脱塩室23の長さの20%以上80%以下であるようなものであることが好ましい。混合粒径層の割合が少なすぎる場合には、ホウ素を含む弱酸成分の除去性能が低下する。小粒径のイオン交換樹脂は大粒径のものよりも一般に高価であるので、混合粒径層の割合が大きすぎる場合には、コストに対する影響を無視できなくなる。本明細書において、大粒径層や混合粒径層における被処理水の流れに沿ったイオン交換樹脂の充填高さのことをその層の充填高さと呼ぶことがある。脱塩室23の長さとは、被処理水の流れに沿った脱塩室23の長さであって脱塩室23においてイオン交換樹脂が設けられている部分の長さをいう。
【0021】
被処理水中のホウ素などの弱酸成分は、混合粒径層を構成するアニオン交換樹脂にイオン交換により吸着した後、アニオンとしてアニオン交換膜32を通過して陽極11側の濃縮室22に移動する。濃縮室22において、アニオン交換膜32を挟んで脱塩室23の混合粒径層に向かい合う位置を流れる水におけるアニオン濃度が低いことが好ましい。また上述したように、脱塩室23において混合粒径層は出口に近い位置に設けられることが好ましい。これらのことから、脱塩室23における出口水の流れと濃縮室22に供給される濃縮室供給水の流れとは向流になっていることが好ましい。
【0022】
次に、脱塩室23からホウ素成分のリークが起こる現象を説明することにより、本実施形態のEDI装置10においてホウ素の除去率を高められることについて説明する。図2は、脱塩室23からのホウ素成分のリークを説明する図である。ここでは、陽極11と陰極12との間に脱塩室23と濃縮室24が交互に配置し、脱塩室23には大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とが混合して充填されて、濃縮室24にはアニオン交換樹脂が単床で充填されているものとする。被処理水中のホウ素成分は、図示右側の脱塩室23においてホウ素を含むアニオンとしてアニオン交換樹脂に捕捉され、アニオン交換膜32を介して陽極11側の濃縮室24に移動する。ホウ素成分がホウ酸(HBO)であるとすれば、ホウ酸は水中で、HBO+HO→H+B(OH) と解離するので、ホウ素を含むアニオンはB(OH) である。ホウ素を含むアニオンが濃縮室24に移動した結果、濃縮室24内のアニオン交換樹脂に、ホウ素を含むアニオンが捕捉される。そして印加されている直流電圧による電場によって、濃縮室24ではこのホウ素を含むアニオンがカチオン交換膜33の近傍にまで移動するが、アニオンであるのでカチオン交換膜33を移動することはできない。したがって、濃縮室24において、その陽極11側に位置しているカチオン交換膜33の近傍に、ホウ素を含むアニオンが濃縮される。また、印加されている直流電圧により、濃縮室24にはその陽極11側の脱塩室23からカチオン交換膜33を介して水素イオン(H)が移動してくる。その結果、濃縮室24においてカチオン交換膜33の近傍の領域のpHが低下する。この領域はホウ素を含むアニオンが濃縮されている領域であるが、水素イオンのために、ホウ素を含むアニオンから水と例えばホウ酸が生じ、濃縮室24においてカチオン交換膜33の近傍にホウ酸を高濃度に含む水の層が形成される。そして中性分子であるホウ酸は、カチオン交換膜33を移動できるので、濃縮室24からカチオン交換膜33を介して脱塩室23へと移動する。結局、ある脱塩室23において被処理水から除去されたホウ素成分が、その脱塩室23より陽極11側にある脱塩室23において被処理水中に再度溶け込むこととなり、脱塩室23から排出される処理水にホウ素成分がリークすることになる。
【0023】
このようなホウ素成分のリークを防ぐためには、濃縮室24において、pHが低下した領域がカチオン交換膜33の近傍に形成されないようにすることが考えられる。そのためには、カチオン交換膜33を介して濃縮室24に移動してきた水素イオンを濃縮室24内で速やかに陰極12の側に移動させることが有効であるので、本発明に基づくEDI装置10では、濃縮室24にカチオン交換樹脂を存在させている。
【0024】
陽極室21から排出される電極水にホウ素成分が含まれるのを許容するのであれば、陽極室21に隣接する濃縮室22(すなわち陽極室21との間に脱塩室23が存在しない濃縮室)には、カチオン交換樹脂を充填しなくてもよい。また、脱塩室23の主として混合粒径層からアニオン交換膜32を介して濃縮室24にホウ素成分が移行するので、濃縮室24においては、アニオン交換膜32を挟んで脱塩室23において混合粒径層となっている領域に対向する領域においてのみカチオン交換樹脂が存在すればよいと考えられる。
【0025】
図3は、第1の実施形態のEDI装置10の別の例を示している。図2に示すEDI装置10は、基本構成を2セット(すなわちN=2)設けた図1に示すEDI装置10において、陽極室21に隣接する濃縮室22にはアニオン交換樹脂のみを充填し、それ以外の濃縮室24(すなわち脱塩室23の陰極12の側でカチオン交換膜33を介してその脱塩室23に隣接する濃縮室24)は、アニオン交換樹脂のみが充填されている領域とカチオン交換樹脂とアニオン交換樹脂とが混合して充填されている領域とに分かれている。濃縮室24においてカチオン交換樹脂とアニオン交換樹脂とが混合して充填されている領域は、脱塩室23において混合粒径層が形成されている領域に対してカチオン交換膜33を挟んで隣接している領域、すなわち、より陰極12側にある脱塩室23からアニオン交換膜32を介してホウ素を含むアニオンが移動してくる領域である。また濃縮室24においてアニオン交換樹脂のみが充填されている領域は、カチオン交換膜33を挟んで脱塩室23において大粒径層が形成されている領域に対向している。図3に示すEDI装置10では、濃縮室24においてその陰極12側にある脱塩室23からホウ素を含むアニオンが移動してくる領域にカチオン交換樹脂が存在するので、その濃縮室24に関して陽極11の側に存在する脱塩室23へのホウ素成分のリークを防ぐことができる。
【0026】
図1及び図3に示すEDI装置10では、アニオン交換樹脂からなる大粒径層が脱塩室23内のその入口側に配置され、アニオン交換樹脂からなる混合粒径層が脱塩室23内のその出口側に配置されている。上述した説明からも明らかなように、脱塩室23におけるイオン交換樹脂の配置は図1及び図3に示されるものに限定されない。図4(a)~(e)は、脱塩室23とその両側のイオン交換膜だけを抜き出して描くことにより、脱塩室23におけるイオン交換樹脂の配置の別の例を示している。図4(a)は、図1に示すEDI装置10における脱塩室23において、脱塩室23の出口に接して大粒径層を小さな充填高さで配置したものであり、混合粒径層は、脱塩室23の入口側の大粒径層と出口側の大粒径層とに挟まれて配置している。図4(a)に示した例では、混合粒径層の充填高さは脱塩室23の長さの約36%となっており、また出口側の大粒径層の充填高さは脱塩室23の長さの約14%となっている。
【0027】
カチオンであるイオン性不純物を除去するために、アニオン交換樹脂だけでなくカチオン交換樹脂(CER)を脱塩室23に充填してもよい。図4(b)に示したものは、脱塩室23内に、その入口側からカチオン交換樹脂からなる大粒径層、アニオン交換樹脂からなる大粒径層、カチオン交換樹脂からなる大粒径層及びアニオン交換樹脂からなる混合粒径層をこの順で配置したものである。各層の充填高さはほぼ同一である。図4(b)に示したものでは、アニオン交換樹脂の陰極12の側での水の解離反応を促進するために、カチオン交換膜33と脱塩室23内のアニオン交換樹脂が接する界面にアニオン交換膜37を配置している。図4(c)に示した脱塩室23は、図4(b)に示した脱塩室23において、2つあるカチオン交換樹脂の大粒径層のうちの出口側の大粒径層を、カチオン樹脂からなる混合粒径層に置き換えたものである。カチオン交換膜33に接して設けられるアニオン交換膜37は必ずしも設けなくてもよい。図4(d)及び図4(e)に示した構成は、それぞれ、図4(b)及び図4(c)の構成からアニオン交換膜37を取り除いたものであり、アニオン交換樹脂がその陰極12側においてカチオン交換膜33と接している。本発明においては、アニオン交換樹脂とカチオン交換樹脂のいずれを混合粒径層としてもよいが、ホウ素の除去を目的とする場合には、アニオン交換樹脂からなる大粒径層及びアニオン交換樹脂からなる混合粒径層の少なくとも一方を脱塩室23に設けることが好ましく、アニオン交換樹脂からなる混合粒径層を設けることが特に好ましい。
【0028】
[第2の実施形態]
本発明に基づくEDI装置では、脱塩室自体をイオン交換膜によって2つの小脱塩室に区画し、一方の小脱塩室に被処理水を供給し、一方の小脱塩室から流出する水を他方の小脱塩室に供給するように構成することができる。他方の小脱塩室から処理水として脱イオン水が得られる。図5に示す本発明の第2の実施形態のEDI装置10は、図1に示すEDI装置10における脱塩室23を中間のイオン交換膜であるアニオン交換膜36によって2つの小脱塩室26,27に区画し、かつ、脱塩室内のイオン交換樹脂の配置を異ならせたものである。アニオン交換膜36を挟んで陽極11に近い側に配置される小脱塩室が第1小脱塩室26であり、陰極12に近い側に配置される小脱塩室が第2小脱塩室27である。被処理水は第1小脱塩室26に供給され、第1小脱塩室26からの出口水が第2小脱塩室27に供給される。第2小脱塩室27からの出口水がEDI装置10からの処理水(脱イオン水)である。脱塩室が入口側の第1小脱塩室26及び出口側の第2小脱塩室27に区画されている場合、脱塩室の長さとは、被処理水の流れに沿った、第1小脱塩室26においてイオン交換樹脂が設けられている部分の長さと第2小脱塩室27においてイオン交換樹脂が設けられている部分の長さとの和を意味する。
【0029】
図5に示したEDI装置10において、第1小脱塩室26における流れの向きと第2小脱塩室27における流れの向きとは相互に逆向き、すなわち向流となっている。また陽極11側の濃縮室22での流れの向きはそれに隣接する第1小脱塩室26の流れの向きと同じであり、両者は並流の関係にある。脱塩室としての出口側である第2小脱塩室27での流れの向きとそれに隣接する濃縮室24での流れの向きは向流の関係にある。第1小脱塩室26には、大粒径層としてアニオン交換樹脂が充填されている。第2小脱塩室27では、その入口側にはカチオン交換樹脂が充填され、出口側にはアニオン交換樹脂が混合粒径層として充填されている。カチオン交換樹脂は、通常、大粒径層として設けられるが混合粒径層であってもよい。第2小脱塩室27においてアニオン交換樹脂の混合粒径層とカチオン交換樹脂との境界となる位置は、第2小脱塩室27の長さのほぼ半分、言い換えれば、脱塩室の出口側から測って脱塩室の長さの約25%である位置である。カチオン交換膜33と第2小脱塩室27内のアニオン交換樹脂とが接触する界面にはアニオン交換膜37が設けられている。アニオン交換膜37を設けずに、第2小脱塩室27内のアニオン交換樹脂がカチオン交換膜33に直接接するようにしてもよい。図5に示したEDI装置10においても、アニオン交換樹脂による混合粒径層を被処理水が通過するので、ホウ素などの弱酸成分を効率よく除去することが可能になる。
【0030】
脱塩室を中間のイオン交換膜により2つの小脱塩室に区画する第2の実施形態においても、混合粒径層における大粒径のイオン交換樹脂と小粒径のイオン交換樹脂との好ましい混合比率や、脱塩室の長さに対する混合粒径層の充填高さの総和の好ましい比率は、第1の実施形態において説明したものと同様である。第2の実施形態においても、混合粒径層を脱塩室全体としての処理水の出口に近い位置に設けることが好ましく、処理水の出口から脱塩室の長さの25%の範囲内に、混合粒径層の少なくとも一部が含まれるようにしてもよい。
【0031】
図6は、第2の実施形態のEDI装置の別の構成例を示している。図6に示すEDI装置10は、図5に示すEDI装置10において、第1小脱塩室26に充填されるアニオン交換樹脂を混合粒径層とし、その代わり、第2小脱塩室27に充填されているアニオン交換樹脂を大粒径層としたものである。
【0032】
図7は、第2の実施形態のEDI装置のさらに別の構成例を示している。図7に示すEDI装置10は、図5に示すEDI装置10において、第1小脱塩室26に充填されるアニオン交換樹脂を混合粒径層としたものである。このEDI装置10では、第2小脱塩室27に充填されるアニオン交換樹脂は大粒径層とされる。
【0033】
以上、本発明に基づくEDI装置について説明したが。EDI装置は、例えば原水から純水あるいは超純水を製造するときに使用できる。図8は、上述したEDI装置10を用いた純水製造システムの構成を示すフロー図である。この図では電極や各イオン交換膜は描かれていない。またこの図は、EDI装置10として第1の実施形態のものを用いているように描かれているが、第2の実施形態のEDI装置10を用いることも可能である。原水が供給される逆浸透膜装置(RO)が設けられており、逆浸透膜装置40の内部には逆浸透膜41が設けられている。逆浸透膜装置40において逆浸透膜41を透過しなかった水(RO濃縮水)には不純物が多く含まれており、RO濃縮水は外部にブローされる。逆浸透膜装置40において逆浸透膜41を透過した水(RO透過水)は、不純物を比較的含まない水であり、被処理水としてEDI装置10の脱塩室23に供給される。RO透過水の一部は濃縮室供給水及び電極室供給水として濃縮室22,24及び陰極室25に供給される。あるいは、濃縮室22,24からホウ素が拡散することも影響を防ぐために、脱塩室23から排出された脱イオン水の一部を濃縮室供給水及び電極室供給水として濃縮室22,24及び陰極室25に供給してもよいし、系外から供給される純水や超純水を濃縮室22,24及び陰極室25に供給してもよい。陽極室21から排出される電極水は外部にブローされ、濃縮室22,24から排出される濃縮水も外部にブローされる。
【0034】
陽極室21に設けられている陽極(図8には不図示)と陰極室25に設けられている陰極(図8には不図示)との間に直流電圧を印加し、被処理水としてRO透過水を脱塩室23に供給することによって、脱塩室23において脱塩処理が行われ、脱塩室23から処理水(脱イオン水)として純水が抽出する。原水中に含まれる弱酸成分、特にホウ素は、逆浸透膜41を透過してRO透過水に含まれやすい。逆浸透膜装置の後段にEDI装置を設けてホウ素などを除去する場合、従来のEDI装置ではホウ素の除去性能が十分ではないのでEDI装置を2段接続することもあるが、上述した各実施形態のEDI装置10を用いることにより、逆浸透膜装置40の後段には1段のEDI装置10を設けるだけで被処理水中のホウ素を十分に除去できる。また、後述の実施例や比較例などから明らかになるように、本発明に基づくEDI装置では脱塩室における通水差圧を小さくできるので、逆浸透膜装置40として、動作圧力が小さな逆浸透膜装置すなわち超低圧逆浸透膜装置ならびに極超低圧逆浸透膜装置を用いることができる。
【0035】
以上説明したように本発明に基づくEDI装置によれば、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とを混合した混合粒径層を脱塩室内に配置し、さらに濃縮室に充填されるイオン交換樹脂の少なくとも一部をカチオン交換樹脂とすることにより、ホウ素成分の除去率を向上させることができ、より高い水質の純水、超純水を得ることが可能になる。EDI装置におけるホウ素成分の除去率が向上することは、EDI装置の前段に設けられる例えば逆浸透膜装置などの小型化や、EDI装置の後段に設けられる例えばイオン交換装置などの小型化を達成することにつながる。
【実施例0036】
次に、実施例、参考例及び比較例によって、本発明をさらに詳しく説明する。以下の説明において、大粒径のイオン交換樹脂と小粒径のイオン交換樹脂とを混合して混合粒径層を構成するときの混合比率をL:Sとして表す。Lは、混合前の大粒径のイオン交換樹脂の見かけの体積であり、Sは、混合前の小粒径のイオン交換樹脂の見かけの体積である。また、以下の実施例及び比較例においては、大粒径のアニオン交換樹脂(AER)として、粒径範囲が0.50~0.65mmであって母体がスチレン系であるゲル型の強塩基性アニオン交換樹脂を使用し、小粒径のアニオン交換樹脂として、粒径範囲が0.28~0.34mmであって母体がスチレン系であるゲル型の強塩基性アニオン交換樹脂を使用した。カチオン交換樹脂(CER)としては、粒径範囲が0.60~0.70mmであって母体がスチレン系であるゲル型の強酸性カチオン交換樹脂を使用した。このカチオン交換樹脂は大粒径のカチオン交換樹脂である。
【0037】
[実施例1]
図5に示すEDI装置10を組み立てた。図9は、実施例1で用いたEDI装置10の要部の構成を示している。濃縮室22,24及び小脱塩室26,27には、いずれも、150mm×300mmの大きさの開口を有して厚さが10mmであるセル(枠体)を使用した。各室のセルにそれぞれイオン交換樹脂を充填し、イオン交換膜を挟んでセルの厚さ方向にこれらのセルを積層することにより、EDI装置10を組み立てた。第2脱塩室27に設けられる混合粒径層には、大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂とをL:Sが5:1になるように混合して充填した。濃縮室22,24には、大粒径のアニオン交換樹脂と大粒径のカチオン交換樹脂とを混合して充填した。ホウ素濃度が10μg/Lである被処理水を100L/hで小脱塩室26,27に順次通水し、濃縮室22,24にはそれぞれ10L/hで供給水を通水し、電流密度が1.1A/dmとなるように陽極11と陰極12との間に直流電圧を印加してEDI装置10を運転した。そして、運転開始から2500時間後において、処理水におけるホウ素濃度を測定してホウ素除去率を算出した。結果を表1に示す。
【0038】
[実施例2]
混合粒径層における大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂との混合比率L:Sが1:1であることを除いては実施例1と同様のEDI装置10を組み立て、実施例1と同様にEDI装置10を運転し、運転開始から2500時間経過した時点でのホウ素除去率を求めた。結果を表1に示す。
【0039】
[比較例1]
実施例1のEDI装置10において、濃縮室22,24にカチオン交換樹脂とアニオン交換樹脂とを混合して充填する代わりに大粒径のカチオン交換樹脂のみを充填し、第2小脱塩室27の混合粒径層の代わりに大粒径のアニオン交換樹脂のみからなる大粒径層を設けたEDI装置10を組み立てた。図10は、比較例1で用いたEDI装置10の要部の構成を示している。実施例1と同様にEDI装置10を運転し、運転開始から2500時間経過した時点でのホウ素除去率を求めた。結果を表1に示す。
【0040】
[比較例2]
比較例1のEDI装置10において、濃縮室22,24にカチオン交換樹脂を単独で充填する代わりに大粒径のアニオン交換樹脂と大粒径のカチオン交換樹脂とを混合して充填したEDI装置10を組み立てた。図11は、比較例2で用いたEDI装置10の要部の構成を示している。実施例1と同様にEDI装置10を運転し、運転開始から2500時間経過した時点でのホウ素除去率を求めた。結果を表1に示す。
【0041】
[比較例3]
比較例1のEDI装置10において、濃縮室22,24にカチオン交換樹脂を単独で充填する代わりに大粒径のアニオン交換樹脂を単独で充填したEDI装置10を組み立てた。図12は、比較例3で用いたEDI装置10の要部の構成を示している。実施例1と同様にEDI装置10を運転し、運転開始から2500時間経過した時点でのホウ素除去率を求めた。結果を表1に示す。
【0042】
[比較例4]
実施例1のEDI装置10において、濃縮室22,24にアニオン交換樹脂とカチオン交換樹脂とを混合して充填する代わりに大粒径のアニオン交換樹脂のみを充填したEDI装置10を組み立てた。このEDI装置の混合粒径層における大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂との混合比率L:Sは5:1である。図13は、比較例4で用いたEDI装置10の要部の構成を示している。実施例1と同様にEDI装置10を運転し、運転開始から2500時間経過した時点でのホウ素除去率を求めた。結果を表1に示す。
【0043】
[比較例5]
混合粒径層における大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂との混合比率L:Sが1:1であることを除いては比較例1と同様のEDI装置10を組み立て、実施例1と同様にEDI装置10を運転し、運転開始から2500時間経過した時点でのホウ素除去率を求めた。結果を表1に示す。
【0044】
【表1】
【0045】
本発明に基づくEDI装置である実施例1,2のEDI装置では、2500時間運転後のホウ素除去率が99.96%であり、高いホウ素除去率を示した。このことから、本発明に基づくEDI装置を1段設けるだけで、処理水におけるホウ素濃度を例えば10ng/L未満とすることができることが分かった。
【0046】
これに対し脱塩室において大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂とを混合して充填しない比較例1~3では、実施例1,2に比べてホウ素の除去率が低下した。比較例1~3において比較すれば、濃縮室にカチオン交換樹脂のみを充填した比較例1が一番高いホウ素除去率を示したが、被処理水や濃縮室供給水に多少なりとも硬度成分が含まれる場合に、印加電圧の上昇が起こる恐れがある。表1には示していないが、比較例1,2では、実施例1,2に比べて運転時間が長くなるにつれて通水差圧が上昇する現象が認められた。一方、濃縮室にアニオン交換樹脂のみを充填した比較例3では、比較例1,2に比べてホウ素除去率が低かった。脱塩室において大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂とを混合して充填した場合においても、比較例4,5に示すように濃縮室にアニオン交換樹脂のみを充填した場合には、ホウ素除去率が向上しなかった。これらのことから、ホウ素除去率の向上のためには、脱塩室の少なくとも一部に大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂とを混合して充填し、かつ、濃縮室に充填されるイオン交換樹脂の少なくとも一部をカチオン交換樹脂とすべきことが分かった。この場合、濃縮室にはアニオン交換樹脂とカチオン交換樹脂とを混合して充填することが好ましいことも分かった。
【0047】
[参考例1]
脱塩室において大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂とを混合して充填したことによる通水差圧の増加について検討した。図1に示すEDI装置10において、濃縮室22,24には大粒径のアニオン交換樹脂のみを充填し、脱塩室23の全域にわたって大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂を混合した混合粒径層を設けたEDI装置10を組み立てた。また、陰極12の側で脱塩室23を区画するイオン交換膜として、脱塩室23側がアニオン交換膜37となるようにアニオン交換膜37とカチオン交換膜33とが重ね合わされたものを使用した。図14は、参考例1で用いたEDI装置10の要部の構成を示している。濃縮室22,24及び脱塩室23には、いずれも、100mm×100mmの大きさの開口を有して厚さが10mmであるセル(枠体)を使用した。各室のセルにそれぞれイオン交換樹脂を充填し、イオン交換膜を挟んでセルの厚さ方向にこれらのセルを積層することにより、EDI装置10を組み立てた。脱塩室23に設けられる混合粒径層には、粒径が0.6~0.7mmである大粒径のアニオン交換樹脂と粒径が0.3mmである小粒径のアニオン交換樹脂とをL:Sが1:1になるように混合して充填した。濃縮室22,24には、粒径が0.6~0.7mmである大粒径のアニオン交換樹脂を充填した。このとき、脱塩室23におけるアニオン交換樹脂の充填率を1.1とした。充填率とは、陽極11と陰極12との間に直流電圧を印加しつつイオン交換樹脂が充填されている脱塩室23に対して通水してイオン交換樹脂を再生状態とし、その後、脱塩室23から取り出されたイオン交換樹脂の自由状態での見かけの体積をその脱塩室23の容積で除算して得られる値のことである。自由状態とは、脱塩室や濃縮室といった空間にイオン交換樹脂が拘束されていない状態を指す。
【0048】
ホウ素濃度が100μg/Lである被処理水を25L/hで脱塩室23に通水し、濃縮室22,24にはそれぞれ5.5L/hで供給水を通水し、電流密度が1.1A/dmとなるように陽極11と陰極12との間に直流電圧を印加してEDI装置10を運転した。そして実施例1と同様に運転開始から2500時間経過した時点でのホウ素除去率と通水差圧とを求めた。結果を表2に示す。
【0049】
[参考例2]
脱塩室23におけるアニオン交換樹脂の充填率を1.2としたこと以外は参考例1と同様にしてEDI装置10を組み立て、参考例1と同様にEDI装置10を運転し、運転開始から2500時間経過した時点でのホウ素除去率と通水差圧とを求めた。結果を表2に示す。
【0050】
【表2】
【0051】
参考例1,2の結果から、大粒径のアニオン交換樹脂と小粒径のアニオン交換樹脂との混合比率L:Sが1:1という小粒径のアニオン交換樹脂の割合がかなり大きい場合であっても通水差圧は小さく、アニオン交換樹脂としての充填率が1.1~1.2の範囲では通水差圧の大きな違いが見られなかった。これらのことから、本発明に基づくEDI装置によれば、通水差圧を十分に低くすることができることが分かった。参考例1,2において混合比率L:Sを1:3とした場合においても、通水差圧の上昇は認められなかった。
【符号の説明】
【0052】
10 EDI装置
11 陽極
12 陰極
21 陽極室
22,24 濃縮室
23 脱塩室
25 陰極室
26,27 小脱塩室
31,33 カチオン交換膜(CEM)
32,34,36,37 アニオン交換膜(AEM)
40 逆浸透膜装置
41 逆浸透膜
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14