IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クオンティニュアム エルエルシーの特許一覧

<>
  • 特開-高電圧半導体スイッチ 図1
  • 特開-高電圧半導体スイッチ 図2
  • 特開-高電圧半導体スイッチ 図3
  • 特開-高電圧半導体スイッチ 図4
  • 特開-高電圧半導体スイッチ 図5A
  • 特開-高電圧半導体スイッチ 図5B
  • 特開-高電圧半導体スイッチ 図6
  • 特開-高電圧半導体スイッチ 図7
  • 特開-高電圧半導体スイッチ 図8
  • 特開-高電圧半導体スイッチ 図9
  • 特開-高電圧半導体スイッチ 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023017746
(43)【公開日】2023-02-07
(54)【発明の名称】高電圧半導体スイッチ
(51)【国際特許分類】
   H03K 17/08 20060101AFI20230131BHJP
   H03K 17/687 20060101ALI20230131BHJP
   H03K 17/082 20060101ALI20230131BHJP
   G06N 10/20 20220101ALI20230131BHJP
【FI】
H03K17/08 C
H03K17/687 A
H03K17/082
G06N10/20
【審査請求】未請求
【請求項の数】3
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022117981
(22)【出願日】2022-07-25
(31)【優先権主張番号】63/225,801
(32)【優先日】2021-07-26
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/859,672
(32)【優先日】2022-07-07
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.WCDMA
2.ブルートゥース
(71)【出願人】
【識別番号】522047446
【氏名又は名称】クオンティニュアム エルエルシー
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】デイヴィッド・エー・ディーン
(72)【発明者】
【氏名】ポール・エム・ワーキング
(72)【発明者】
【氏名】クリストファー・ランガー
【テーマコード(参考)】
5J055
【Fターム(参考)】
5J055AX33
5J055AX52
5J055AX53
5J055AX64
5J055BX16
5J055CX00
5J055DX13
5J055DX14
5J055DX22
5J055DX42
5J055DX52
5J055DX72
5J055DX80
5J055DX83
5J055EX07
5J055EY01
5J055EY10
5J055EY21
5J055FX02
5J055FX05
5J055FX13
5J055FX19
5J055GX01
5J055GX02
(57)【要約】
【課題】高電圧半導体スイッチを提供すること。
【解決手段】高電圧半導体スイッチは1つまたは複数のスイッチサブ回路を備え、各スイッチサブ回路は1つまたは複数のFET回路および電圧シフトトランジスタを備えてよい。高電圧半導体スイッチは、量子計算システムのものなどの動作および環境要件に基づいて構成されてよく、高電圧スイッチはクライオスタットまたは真空チャンバに設置されてよい。
【選択図】図1
【特許請求の範囲】
【請求項1】
高電圧半導体スイッチであって、
1つまたは複数のFET回路および第1の電圧シフトFETを備える第1のスイッチサブ回路であり、前記第1のスイッチサブ回路の第1のFET回路が第1のFETおよび第2のFETを備える、第1のスイッチサブ回路と、
1つまたは複数のFET回路および第2の電圧シフトトランジスタを備える第2のスイッチサブ回路であり、前記第2のスイッチサブ回路の第1のFET回路が第3のFETおよび第4のFETを備える、第2のスイッチサブ回路とを備え、
前記第1のFET、前記第2のFET、前記第3のFET、前記第4のFET、前記第1の電圧シフトFETおよび前記第2の電圧シフトトランジスタの各々がゲート、ドレインおよびソースを備え、
前記第1のFETの前記ゲートおよび前記第2のFETの前記ゲートが前記第1のスイッチサブ回路のゲート端子に接続され、
前記第3のFETの前記ゲートおよび前記第4のFETの前記ゲートが前記第2のスイッチサブ回路のゲート端子に接続され、
前記第1のFETの前記ソース、前記第2のFETの前記ソースおよび前記第1の電圧シフトFETの前記ゲートが接続され、
前記第3のFETの前記ソース、前記第4のFETの前記ソースおよび前記第2の電圧シフトFETの前記ゲートが接続され、
前記高電圧半導体スイッチが、
前記第1のFETの前記ドレインおよび前記第4のFETの前記ドレインに接続される入力端子と、
前記第2のFETの前記ドレインおよび前記第3のFETの前記ドレインに接続される出力端子とを更に備える、高電圧半導体スイッチ。
【請求項2】
前記高電圧半導体スイッチの前記出力端子が量子計算システムのイオントラップの少なくとも1つの電極と電気通信状態にある、請求項1に記載の高電圧半導体スイッチ。
【請求項3】
前記高電圧半導体スイッチが前記量子計算システムのクライオスタットに設置される、請求項2に記載の高電圧半導体スイッチ。
【請求項4】
前記第1のFETおよび前記第2のFETがpチャネルFETであり、前記第3のFETおよび前記第4のFETがnチャネルFETである、請求項1に記載の高電圧半導体スイッチ。
【請求項5】
前記第1のスイッチサブ回路の前記第1のFET回路におけるおよび前記第2のスイッチサブ回路の前記第1のFET回路における各FETがDMOS FETである、請求項1に記載の高電圧半導体スイッチ。
【請求項6】
前記第1のスイッチサブ回路が第2のFET回路を更に備え、前記第1のスイッチサブ回路の前記第1のFET回路および前記第1のスイッチサブ回路の前記第2のFET回路が並列に接続される、請求項1に記載の高電圧半導体スイッチ。
【請求項7】
前記第2のスイッチサブ回路の前記1つまたは複数のFET回路の数に対する前記第1のスイッチサブ回路の前記1つまたは複数のFET回路の数の比率が1より大きい、請求項1に記載の高電圧半導体スイッチ。
【請求項8】
前記高電圧半導体スイッチが、20ケルビン以下まで凍結を最小化するように構成される、請求項1に記載の高電圧半導体スイッチ。
【請求項9】
前記高電圧半導体スイッチが半導体材料へモノリシックに集積される、請求項1に記載の高電圧半導体スイッチ。
【請求項10】
前記第1のスイッチサブ回路および前記第2のスイッチサブ回路の少なくとも1つが少なくとも1つのコンデンサを備え、前記コンデンサが負荷への電荷注入を緩和する、請求項1に記載の高電圧半導体スイッチ。
【請求項11】
高電圧スイッチング回路を駆動する方法であって、
高電圧半導体スイッチを設けるステップであり、前記高電圧半導体スイッチが、
1つまたは複数のFET回路および第1の電圧シフトFETを備える第1のスイッチサブ回路であり、前記第1のスイッチサブ回路の第1のFET回路が第1のFETおよび第2のFETを備える、第1のスイッチサブ回路と、
1つまたは複数のFET回路および第2の電圧シフトトランジスタを備える第2のスイッチサブ回路であり、前記第2のスイッチサブ回路の第1のFET回路が第3のFETおよび第4のFETを備える、第2のスイッチサブ回路とを備え、
前記第1のFET、前記第2のFET、前記第3のFET、前記第4のFET、前記第1の電圧シフトFETおよび前記第2の電圧シフトトランジスタの各々がゲート、ドレインおよびソースを備え、
前記第1のFETの前記ゲートおよび前記第2のFETの前記ゲートが前記第1のスイッチサブ回路のゲート端子に接続され、
前記第3のFETの前記ゲートおよび前記第4のFETの前記ソースが前記第2のスイッチサブ回路のゲート端子に接続され、
前記第1のFETの前記ソース、前記第2のFETの前記ソースおよび前記第1の電圧シフトFETの前記ゲートが接続され、
前記第3のFETの前記ソース、前記第4のFETの前記ソースおよび前記第2の電圧シフトFETの前記ゲートが接続され、
前記高電圧半導体スイッチが、
前記第1のFETの前記ドレインおよび前記第4のFETの前記ドレインに接続される入力端子と、
前記第2のFETの前記ドレインおよび前記第3のFETの前記ドレインに接続される出力端子とを更に備える、ステップと、
前記入力端子に第1の電圧を印加するステップであり、前記入力端子への前記第1の電圧の印加により、
前記第1の電圧信号が、前記第1のFET、前記第2のFET、前記第3のFETおよび前記第4のFETを導通させるイネーブル信号である場合、前記高電圧半導体スイッチの第1および第2の端子に前記第1の電圧を印加することによる前記第1のスイッチサブ回路を導通させる切替え、または
前記第1の電圧が、前記第1のFETか前記第2のFETか前記第1のFETおよび第2のFETかを導通させずかつ前記第3のFETか前記第4のFETか前記第3のFETおよび前記第4のFETかを導通させないディスエーブル信号である場合、前記高電圧半導体スイッチの前記第1および前記第2の端子に前記第1の信号を印加することによる前記第1のスイッチサブ回路を導通させない切替えをもたらす、ステップとを含む、方法。
【請求項12】
前記高電圧半導体スイッチの前記出力端子が量子計算システムのイオントラップの少なくとも1つの電極と電気通信状態にある、請求項11に記載の方法。
【請求項13】
前記高電圧半導体スイッチが前記量子計算システムのクライオスタットに設置される、請求項12に記載の方法。
【請求項14】
前記第1のFETおよび前記第2のFETがpチャネルFETであり、前記第3のFETおよび前記第4のFETがnチャネルFETである、請求項11に記載の方法。
【請求項15】
前記第1のスイッチサブ回路の前記第1のFET回路におけるおよび前記第2のスイッチサブ回路の前記第1のFET回路における各FETがDMOS FETである、請求項11に記載の方法。
【請求項16】
前記第1のスイッチサブ回路が第2のFET回路を更に備え、前記第1のスイッチサブ回路の前記第1のFET回路および前記第1のスイッチサブ回路の前記第2のFET回路が並列に接続される、請求項11に記載の方法。
【請求項17】
前記第2のスイッチサブ回路の前記1つまたは複数のFET回路の数に対する前記第1のスイッチサブ回路の前記1つまたは複数のFET回路の数の比率が1より大きい、請求項11に記載の方法。
【請求項18】
前記高電圧半導体スイッチが、20ケルビン以下まで凍結を最小化するように構成される、請求項11に記載の方法。
【請求項19】
前記高電圧半導体スイッチが半導体材料へモノリシックに集積される、請求項11に記載の方法。
【請求項20】
前記第1のスイッチサブ回路および前記第2のスイッチサブ回路の少なくとも1つが少なくとも1つのコンデンサを備え、前記コンデンサが負荷への電荷注入を緩和する、請求項11に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2021年7月26日に出願された米国仮特許出願第63/225,801号の利益を主張するものであり、同仮出願の全内容が参照によりあらゆる目的で本明細書に組み込まれる。
【0002】
様々な実施形態は、高電圧半導体スイッチに関する。例えば、一部の実施形態は、量子コンピュータの電気スイッチング回路に使用されてイオントラップ電極への信号の流れを制御するものなどの、1つまたは複数の電圧シフトトランジスタを伴う1つまたは複数のFET回路を備える高電圧半導体スイッチに関する。
【背景技術】
【0003】
電界効果トランジスタ(FET)などのトランジスタを使用する電気スイッチング回路は、そのような電気スイッチ回路が使用され得る環境を制限し得る実際的制限を有する。そのような制限は、FETが使用される電気スイッチング回路の構成のためであり得、またはFETの製造のためであり得る。例えば、大規模量子コンピュータに使用するためなど、様々な特殊応用に使用するための電気回路は、とりわけ、従来の回路より高電圧を使用し得る。例えば、従来の電気スイッチング回路は、例えば、5ボルトに固有の上限を有するCMOS技術を使用しており、これでは、例えば、高電圧を必要とし得る量子コンピュータの動作基準を満たすことが可能でない。電気回路の動作基準は、ノイズ要件または遅延要件を含むがこれに限定されない特定の動作基準を満たすことを半導体スイッチに要求することなどの、高められた要件も有し得る。これまでになされた努力、創意工夫および革新を通じ、先行の半導体スイッチの多くの欠陥が、本発明の実施形態に従って構築される解決策を展開することによって解決されており、同実施形態の多くの例が本明細書に詳細に記載される。
【発明の概要】
【発明が解決しようとする課題】
【0004】
実施形態例は、高電圧半導体スイッチのための装置、システム、方法、コンピュータプログラム製品等を提供する。例えば、様々な実施形態は、量子コンピュータのスイッチング回路網におけるイオントラップ電極制御のための高電圧半導体スイッチとして使用するためを含め、量子コンピュータに使用するための装置、システム、方法、コンピュータプログラム製品等を提供する。高電圧半導体スイッチは、本明細書に述べられるように、高電圧半導体スイッチを使用する他の応用にも使用され得る。
【課題を解決するための手段】
【0005】
一実施形態例において、かつ本開示の一態様によれば、高電圧半導体スイッチが第1のスイッチサブ回路および第2のスイッチサブ回路を備える。一部の事例において、第1のスイッチサブ回路は1つまたは複数のFET回路および第1の電圧シフトFETを備え、第1のスイッチサブ回路の第1のFET回路が第1のFETおよび第2のFETを備え、そして第2のスイッチサブ回路は1つまたは複数のFET回路および第2の電圧シフトトランジスタを備え、第2のスイッチサブ回路の第1のFET回路が第3のFETおよび第4のFETを備える。一部の事例において、第1のFET、第2のFET、第3のFET、第4のFET、第1の電圧シフトFETおよび第2の電圧シフトトランジスタの各々はゲート、ドレインおよびソースを備える。一部の事例において、第1のFETのゲートおよび第2のFETのゲートは第1のスイッチサブ回路のゲート端子に接続され、第3のFETのゲートおよび第4のFETのゲートは第2のスイッチサブ回路のゲート端子に接続され、第1のFETのソース、第2のFETのソースおよび第1の電圧シフトFETのゲートが接続され、第3のFETのソース、第4のFETのソースおよび第2の電圧シフトFETのゲートが接続される。一部の事例において、入力端子が第1のFETのドレインおよび第4のFETのドレインに接続され、そして出力端子が第2のFETのドレインおよび第3のFETのドレインに接続される。
【0006】
一実施形態例において、高電圧半導体スイッチの出力端子は量子計算システムのイオントラップに接続される。一実施形態例において、高電圧半導体スイッチは、量子計算システムのクライオスタットに設置される。一実施形態例において、第1のFETおよび第2のFETはpチャネルFETであり、かつ第3のFETおよび第4のFETはnチャネルFETである。一実施形態例において、第1のFET、第2のFET、第3のFETおよび第4のFETはDMOS FETである。一実施形態例において、第1のスイッチサブ回路は第2のFET回路を更に備え、第1のスイッチサブ回路の第1のFET回路および第1のスイッチサブ回路の第2のFET回路は並列に接続される。一実施形態例において、第2のスイッチサブ回路の1つまたは複数のFET回路に対する第1のスイッチサブ回路の1つまたは複数のFET回路の比率が1より大きい。一実施形態例において、第2のスイッチサブ回路の1つまたは複数のFET回路に対する第1のスイッチサブ回路の1つまたは複数のFET回路の比率が1より小さい。一実施形態例において、高電圧半導体スイッチは、20ケルビン以下で凍結しないために構成される。一実施形態例において、高電圧半導体スイッチは半導体材料へモノリシックに集積される。
【0007】
本開示の別の態様によれば、高電圧スイッチング回路を駆動する方法が、第1のスイッチサブ回路および第2のスイッチサブ回路を備える高電圧半導体スイッチを設けるステップを含む。一部の事例において、第1のスイッチサブ回路は1つまたは複数のFET回路および第1の電圧シフトFETを備え、第1のスイッチサブ回路の第1のFET回路が第1のFETおよび第2のFETを備え、そして第2のスイッチサブ回路は1つまたは複数のFET回路および第2の電圧シフトトランジスタを備え、第2のスイッチサブ回路の第1のFET回路が第3のFETおよび第4のFETを備える。一部の事例において、第1のFET、第2のFET、第3のFET、第4のFET、第1の電圧シフトFETおよび第2の電圧シフトトランジスタの各々はゲート、ドレインおよびソースを備える。一部の事例において、第1のFETのゲートおよび第2のFETのゲートは第1のスイッチサブ回路のゲート端子に接続され、第3のFETのゲートおよび第4のFETのソースは第2のスイッチサブ回路のゲート端子に接続され、第1のFETのソース、第2のFETのソースおよび第1の電圧シフトFETのゲートが接続され、第3のFETのソース、第4のFETのソースおよび第2の電圧シフトFETのゲートが接続され、入力端子が第1のFETのドレインおよび第4のFETのドレインに接続され、そして出力端子が第2のFETのドレインおよび第3のFETのドレインに接続される。上記方法は、入力端子に第1の電圧を供給するステップと、高電圧半導体スイッチの第1および第2の端子にイネーブル信号を印加することによって第1のスイッチサブ回路を導通するように切り替え、イネーブル信号が第1のFET、第2のFET、第3のFETおよび第4のFETを導通させるステップと、高電圧半導体スイッチの第1および第2の端子へのディスエーブル信号によって第1のスイッチサブ回路を導通しないように切り替え、ディスエーブル信号が第1のFETか第2のFETか第1のFETおよび第2のFETかを導通させずかつ第3のFETか第4のFETか第3のFETおよび第4のFETかを導通させないステップとを更に含む。
【0008】
このように本発明を一般用語で記載し、ここで添付図面が参照されることになるが、必ずしも一定の比率で描かれているわけではない。
【図面の簡単な説明】
【0009】
図1】一実施形態例に係る量子系コントローラを備える量子計算システム例を例示する概要図である。
図2】量子コンピュータの量子系コントローラ例の概要図である。
図3】一実施形態例に従って使用され得る量子コンピュータシステムの計算エンティティ例の概要図である。
図4】一実施形態例に従って使用され得るスイッチ回路のブロック図である。
図5A】一実施形態例に従って使用され得るFET回路の概要図である。
図5B】一実施形態例に従って使用され得るFET回路の概要図である。
図6】一実施形態例に従って使用され得るスイッチサブ回路の一部分の概要図である。
図7】一実施形態例に従って使用され得るスイッチサブ回路の一部分の概要図である。
図8】一実施形態例に従って使用され得る高電圧半導体スイッチの一部分の概要図である。
図9】一実施形態例に従って使用され得る高電圧半導体スイッチの概要図である。
図10】一実施形態例に従って使用され得る高電圧半導体スイッチの概要図である。
【発明を実施するための形態】
【0010】
ここで本発明が添付図面を参照しつつ以下により完全に記載されることになるが、本発明の全てでなく一部の実施形態が図示されている。実際、本発明は多くの種々の形態で具現化され得、本明細書に記載される実施形態に限定されるとして解釈されるべきでなく、むしろ、これらの実施形態は、本開示が適用可能な法的要件を満足させることになるように提供される。用語「または」(「/」とも表される)は、別段の指示がない限り、本明細書において選言的意味でも連言的意味でも使用される。用語「例示的な」および「例証的な」は、品質水準の指示のない例であるために使用される。用語「略」、「実質的に」および「約」は、別段の指示がない限り、工作および/もしくは製作公差内かつ/またはユーザ測定能力内を指す。同様の数字は、全体を通して同様の要素を指す。
【0011】
実施形態例は、高電圧半導体スイッチのためのシステム、装置、方法、コンピュータプログラム製品等を提供する。例えば、様々な実施形態が、量子計算システムのクライオスタットにあることを含め、量子計算システムに使用するための高電圧半導体スイッチの設計および使用のためのシステム、装置、方法、コンピュータプログラム製品等を提供する。様々な実施形態において、高電圧半導体スイッチは複数のスイッチサブ回路から構成されてよく、その各々が複数のFET回路から構成されてよく、その各々が、本明細書に記載されるように接続される一対のFETから構成されてよい。
【0012】
電気信号を介して情報流を制御する電気回路が1つまたは複数の高電圧半導体スイッチを含んでよい。様々な実施形態において、高電圧半導体スイッチは、本明細書に更に記載されるように、先行技術のスイッチより高電圧で作用および/または動作するように構成される。本明細書に開示される高電圧半導体スイッチの増加した電圧公差および/または動作範囲は、少なくとも部分的に、電圧シフトトランジスタの使用を含むがこれに限定されない、スイッチを備える電気部品の構成のためである。先行技術の半導体スイッチが、+/-5Vより大きく電圧が印加されると動作できなかったのに対して、本明細書に記載される高電圧半導体スイッチは、そのような電圧がFETのゲートに印加されるときに+/-5V範囲を超える電圧で動作する一方で、本明細書に記載される追加の便益も提供し得る。様々な実施形態において、高電圧半導体スイッチは、20Vの大きさを有する電圧(例えば、+/-20V)を使用して信号をオンおよびオフに切り替えるために使用されてよく、そのような電圧を必要とする負荷を駆動するために使用されてよい。様々な実施形態において、そのような電気回路は、量子計算システムのイオントラップへの情報流を制御するために使用される1つまたは複数の高電圧半導体スイッチを含む。量子計算システムに専用ではないが、論理ゲートと同様の信号の分配を可能にする高電圧半導体スイッチの要件および便益は、量子計算システムに関連した実施形態で実証され得る。本明細書において様々な実施形態に記載されるように、高電圧半導体スイッチは、電界効果トランジスタ(FET)などのトランジスタから構成されてよく、そして論理信号と同様の方式で制御されてよい。したがって、本明細書に更に記載されるように、FETから構成される高電圧半導体スイッチは、高電圧信号を制御するスイッチとして使用されてよい。様々な実施形態において、スイッチが駆動する負荷リアクタンスの量がパススルートランジスタのサイズおよび/またはトランジスタ多重度を決定する。
【0013】
FETのようなトランジスタを使用する電気スイッチング回路は、そのような回路が使用される環境による制限を含み得る実際的制限を有する。例えば、量子計算システムに使用される実施形態において、電気スイッチング回路はクライオスタットまたは真空チャンバに設置されてよく、回路に低温度で動作することを要求し得る。そのような制限は、FETが使用される電気回路の構成のためでもあり得、またはFETの製造のためであり得る。例えば、大規模量子コンピュータにおけるものなどの、スイッチング回路網の電気回路は、+/-5Vより大きいなど、従来の回路より高電圧を使用し得る。これらの電気回路の動作基準は、これらの電気回路における半導体スイッチに、温度要件、ノイズ要件および/または遅延要件を含むがこれに限定されない特定の動作基準を満たすことを要求することを含め、高められた要件も有し得る。したがって、高電圧半導体スイッチは、高電圧半導体スイッチが設置されることになる環境に対処するように構成されてよい。
【0014】
様々な実施形態において、高電圧半導体スイッチはASICへ組み込まれてよい。様々な実施形態において、高電圧半導体スイッチはチップへまたは半導体材料へモノリシックに集積されてよく、とりわけ、スペースを節約しかつ/または、モノリシックに集積されていない個別部品を接続することと関連付けられる寄生損失などの損失を低減させ得る。様々な実施形態において、高電圧半導体スイッチは、多くの高次その場スイッチング機能が実現され得るビルディングブロックとしての役目もしてよい。様々な実施形態において、高電圧半導体スイッチは、より大きな電気回路または集積スイッチング回路網の基本演算回路でよい。
【0015】
様々な実施形態において、高電圧半導体スイッチは、両方向にスイッチ電流の等しい伝導を可能にするために2つの並列電界効果トランジスタ(FET)対:1つのpチャネル(別名p型)「FET」対および1つのnチャネル(別名n型)「FET」対から成ってよい。各FET対は、FET対におけるトランジスタの各々のゲート-ソース接合にわたる電圧が閾値を超えないことを保証するために電圧シフトトランジスタに接続されてよい。様々な実施形態において、使用されるFETはpチャネルかnチャネルかでよく、そして各FETはエンハンスメント型かデプレッション型かでよい。当業者によって一般に理解されるように、pチャネルFETは主要な電荷キャリアとして正孔流を使用し、nチャネルFETは主要な電荷キャリアとして電子流を使用し、エンハンスメント型FETはノーマリオフデバイスであり(例えば、ゲートに印加される電圧が0VであるときにFETを通して電流が流れない)、そしてデプレッション型FETはノーマリオンデバイスである(例えば、ゲートに印加される電圧が0VであるときにFETを通して電流が流れる)。
【0016】
様々な実施形態において、MOSFET(金属酸化膜半導体電界効果トランジスタ)が使用されてよいが、他の実施形態は、例えば、DMOSFET(二重拡散金属酸化膜半導体電界効果トランジスタ)、接合型FET(JFET)、金属絶縁体半導体FET(MISFET)、金属半導体(MESFET)、高電子移動度トランジスタ(HEMT)および/またはヘテロ接合FET(HFET)などの他の種類のトランジスタを使用してよい。様々な実施形態において、凍結せずに低温度で動作することを含め、DMOSFETがMOSFETより大きな温度範囲にわたって動作し得るので、DMOSFETが使用されてよい。様々な実施形態において、各個々のFET回路は、実施形態によって必要とされる高バイポーラオフ電圧に耐えるために直列に接続される2つのDMOSFETから構成されてよい。
【0017】
様々な実施形態において、高電圧半導体スイッチを実装する電気回路は、ゲート駆動電圧がユニティゲインソースフォロワ増幅器によって共通の電源電圧から導出されることを含んでよい。高電圧半導体スイッチを実装する電気回路は、電圧シフトトランジスタなど、高電圧補償のための内部フィードバックも含んでよい。FET回路におけるトランジスタのゲートは、イネーブル/ディスエーブルが論理レベル信号を介して達成されるように電圧変換器によって駆動される。様々な実施形態において、高電圧半導体スイッチの1つまたは複数の端子が1つまたは複数の電圧を提供されるように、特定用途向け集積回路(ASIC)に集積アクティブ電力分配が含まれてよい。
【0018】
様々な実施形態において、高電圧半導体スイッチにおけるFETを製造するために、典型的な半導体製作施設またはファウンドリにおいてシリコンオンインシュレータ(SOI)プロセスと共に実行可能な様々な相補型MOS製作技術が使用されてよい。様々な実施形態において、そのようなプロセスには、ドーパント注入、ドライブインアニール、ソース-ドレインおよびゲート電極画定のためのフォトリソグラフィ、SiO2酸化、他の酸化物成膜、ならびにポリSiおよびシリサイド成膜を含むが、これらに限定されない。
【0019】
様々な実施形態において、高電圧半導体スイッチは、イネーブル線が投入制御としての役目をする単極単投半導体ベースのスイッチとしての役目をする。代替の実施形態において、構成には、単極双投(SPDT)スイッチ、二極双投(DPDT)スイッチおよび/またはそれらの派生を含んでよい。DPDT構成は波形分布のために使用され得、そしてそれは、2つのSPSTスイッチのイネーブル線を、一方のSPSTがオンであるときに他方がオフであるように逆構成に連結および/または結合することによって達成され得る。他の実施形態において、同様の実施が高電圧半導体スイッチ構成の追加の変形例となるであろう。
【0020】
様々な実施形態において、スイッチ関連のノイズも緩和されなければならない。半導体ベースのスイッチにおけるスイッチノイズは幾つかの要因により発生する。対象の応用において重要である2つのスイッチ関連のノイズ源が、負荷とパススルートランジスタとの間の容量不均衡からの、および1つのスイッチが、別のスイッチがオンになるときに完全にオフにされるわけではない、スイッチの特定のオン/オフ遷移中の電荷注入である。前者は「スイッチグリッチ」と称されており、負荷とトランジスタゲートとの間の不均衡容量による過剰電荷がオン/オフ遷移中に負荷に置かれると発生する。その結果は、負荷に存在する意図されたレベルを上回る増分的に小さな過剰電圧である。容量不均衡により過剰電荷が移動させられ続けるにつれて、この過剰電圧が連続するスイッチサイクルを通じて蓄積させられ得るため、第1のスイッチサブ回路および第2のスイッチサブ回路の少なくとも1つが少なくとも1つのコンデンサを備え、コンデンサが負荷への電荷注入を緩和する。後者のノイズ源は時にクロックフィードスルーと称される。様々な実施形態において、トランジスタ容量を負荷に一致させる手段としてパススルートランジスタのゲート-ドレイン接合にわたって1つまたは複数のコンデンサを配置することによって、ノイズ緩和が達成され得る。様々な実施形態において、コンデンサは、容量を一致させ、それ故システムにおける負荷への過剰電荷注入を緩和または排除する役目をし得る。複数高電圧半導体スイッチを使用する様々な実施形態において、マルチスイッチ構成においてタイミングシーケンスにタンデムスイッチングイベントが発生しないようにスイッチ遷移をタイミング調整することによって、クロックフィードスルーが緩和され得る。
【0021】
量子コンピュータに関連した実施形態において、例の量子コンピュータのイオントラップアーキテクチャは、数千を超える電極量を所有し得るため、様々なイオン輸送動作のためにグリッド領域を含み得る。これらのイオントラップアーキテクチャは、あらゆる個々の電極に対して割り当てられるワイヤボンドおよび物理的なフィードスルー信号線を必要とする相互接続方式を使用し得る。そのような実施形態において、この規模の電極の要件を満たすために、集積スイッチング回路網が、イオン輸送のために必要な波形を分布させかつトラップへ集積される相互接続を圧縮する役目をし、そしてそのような集積スイッチング回路網は高電圧半導体スイッチの1つまたは複数を使用してよい。様々な実施形態において、高電圧半導体スイッチは、信号フィードスルー、相互接続および寄生損失を最小化する一方で増加した電極数を管理するために、量子計算システムの極低温環境内部に配設されてよい。そのような実施形態において、高電圧半導体スイッチは、大規模イオントラップに基づく量子コンピュータに使用され得る集積スイッチング回路網の一部でよい。
【0022】
様々な実施形態において、高電圧半導体スイッチの回路は、高真空かつ極低温(例えば、300K超から4K未満への温度範囲)環境において動作するのに適合し得る。極低温動作は、相補型FETおよびダイオードのドーピング密度に下限を課す。様々な実施形態において、77Kから4K未満への範囲に及ぶ極低温度は、Si中の自由キャリアに(冷)熱浴によるエネルギーの低下を経験させる。そのようなエネルギーの低下は、ドーパント原子のそれらの最も近いエネルギー帯(アクセプタおよびドナーにとって、それぞれ原子価または伝導)に関する特性イオン化エネルギーを超えるべきでない。そうでなければ、電荷がそれらの親ドーパント原子によって保持され得、そして自由キャリア電荷伝導が消滅されることになり、これはキャリア凍結と称されてよい。そのような実施形態において、ドーパント種とSiエネルギー帯構造との間の対比がドーパントのイオン化エネルギーを決めるので、この要件は、Siに対するドーパント密度および/またはドーパント種に下限を設定する。
【0023】
様々な実施形態において、高電圧半導体スイッチは、図1に描かれる量子計算システム100などの量子計算システムに使用されてよい。図1は、一実施形態例による、量子プロセッサが、複数の原子物体(例えば、原子、イオン等)が閉じ込められる原子物体閉込め装置120(例えば、イオントラップ等)を備える量子計算システム例100の概要図を提供する。様々な実施形態において、量子計算システム100は、計算エンティティ10および量子コンピュータ110を備える。様々な実施形態において、量子コンピュータ110は、量子系コントローラ30および量子プロセッサ115を備える。様々な実施形態において、量子系コントローラ30は、量子プロセッサ115を制御するように構成、プログラム等される。一実施形態例において、量子プロセッサ115は、複数のキュービット(例えば、論理キュービットへ系統化され得るデータキュービット、補助キュービット等)を備える。様々な実施形態において、量子コンピュータ110は、本明細書に記載されるデータベース(図示せず)を含むまたはそれと通信する。例えば、データベースは、1つもしくは複数の有線および/もしくは無線ネットワーク20を介してコントローラ30と通信状態にある1つもしくは複数の計算エンティティ10によって記憶されても、かつ/またはコントローラ30にローカルなメモリによって記憶されてもよい。
【0024】
様々な実施形態において、量子プロセッサ115は、キュービットの量子状態の発展を制御するための手段を備える。例えば、一実施形態例において、量子プロセッサ115は、閉込め装置120(例えば、イオントラップ)を囲むクライオスタットおよび/もしくは真空チャンバ40、1つもしくは複数の操作源60、1つもしくは複数の電圧源50、ならびに/または1つもしくは複数の光学収集システム70を備える。例えば、クライオスタットおよび/または真空チャンバ40は、温度および/または圧力制御チャンバでよい。一実施形態例において、操作源60によって発生される操作信号は、対応する光路66(例えば、66A、66B、66C)を介してクライオスタットおよび/または真空チャンバ40の内部(原子物体閉込め装置120が設置される)に提供される。一実施形態例において、1つまたは複数の操作源60は、1つまたは複数のレーザ(例えば、光レーザ、マイクロ波源等)を備えてよい。様々な実施形態において、1つまたは複数の操作源60は、閉込め装置内の1つまたは複数の原子物体の制御された量子状態発展を操作しかつ/またはもたらすように構成される。様々な実施形態において、原子閉込め装置内の原子物体(例えば、イオントラップ内にトラップされたイオン)は、量子コンピュータ110の量子プロセッサ115のデータキュービットおよび/または補助キュービットとして作用する。例えば、1つまたは複数の操作源60が1つまたは複数のレーザを備える一実施形態例において、レーザは、クライオスタットおよび/または真空チャンバ40内の閉込め装置120内にトラップされた原子物体に1つまたは複数のレーザビームを提供してよい。例えば、操作源60は、原子物体をイオン化するように構成されるレーザビームを発生させかつ/または提供し、量子プロセッサの定められた2状態キュービット空間内の原子物体を初期化し、量子プロセッサの1つまたは複数のキュービットにゲートをかけ、量子プロセッサの1つまたは複数のキュービットの量子状態を読み出す、等してよい。
【0025】
様々な実施形態において、量子コンピュータ110は、キュービットによって(例えば、読出し手順中に)発生される光子を収集および/または検出するように構成される光学収集システム70を備える。光学収集システム70は、1つまたは複数の光学素子(例えば、レンズ、ミラー、導波管、光ファイバケーブル等)および1つまたは複数の光検出器を備えてよい。様々な実施形態において、光検出器は、フォトダイオード、光電子増倍管、電荷結合素子(CCD)センサ、相補型金属酸化膜半導体(CMOS)センサ、微小電気機械システム(MEMS)センサ、および/または量子コンピュータ110のキュービットの期待蛍光波長で光を感知できる他の光検出器でよい。様々な実施形態において、検出器は、1つまたは複数のA/D変換器225(図2を参照)等を介して量子系コントローラ30と電子通信状態にあってよい。
【0026】
様々な実施形態において、量子コンピュータ110は、1つまたは複数の電圧源50を備える。例えば、電圧源50は、複数の電圧ドライバおよび/もしくは電圧源ならびに/または少なくとも1つのRFドライバおよび/もしくは電圧源を備えてよい。電圧源50は、一実施形態例において、閉込め装置120の対応するポテンシャル発生要素(例えば、電極)に電気結合されてよい。電気ポテンシャルを変化させることで、イオンを位置または状態間で移動させ得る。様々な実施形態において、電気ポテンシャルをどのように変化させるかは、一定時間にわたって印加すべき1つまたは複数の電圧を特定する波形によって定められてよい。様々な実施形態において、1つまたは複数の電圧源50は、1つまたは複数の高電圧半導体スイッチを含む回路網を介して電極に結合されてよい。電極に電圧源50を結合する回路網は、高電圧半導体スイッチの1つまたは複数における1つまたは複数のFETのゲートになど、バイアス電圧を提供する回路網も含んでよい。電極に電圧源50を結合する回路網は、高電圧半導体スイッチの1つまたは複数における1つまたは複数のFETのゲートおよび/またはドレインに1つまたは複数の電圧源を接続する回路網も含んでよい。様々な実施形態において、電極に電圧源50を結合する回路網は、クライオスタットおよび/もしくは真空チャンバ40の外側に、クライオスタットおよび/もしくは真空チャンバ40の内側に、またはクライオスタットおよび/もしくは真空チャンバ40の内側にも外側にも設置されてよい。電極に電圧源50を結合する回路網がクライオスタットおよび/または真空チャンバ40に設置される実施形態において、高電圧半導体スイッチはクライオスタットおよび/または真空チャンバ40に設置されてよい。様々な実施形態において、1つまたは複数の高電圧半導体スイッチを含め、電極に電圧源50を結合する回路網は、4ケルビン未満の温度を有し得る、クライオスタットおよび/または真空チャンバにおけるものなど、それらの位置に対する温度で動作することが可能なかつ/または動作するように構成される回路部品から構成されることになる。
【0027】
様々な実施形態において、計算エンティティ10が、ユーザが量子コンピュータ110への入力を(例えば、計算エンティティ10のユーザインタフェースを介して)提供し、そして量子コンピュータ110からの出力を受ける、見る等できるようにするように構成される。計算エンティティ10は、1つもしくは複数の有線もしくは無線ネットワーク20を介してならびに/または直接有線および/もしくは無線通信を介して量子コンピュータ110の量子系コントローラ30と通信状態にあってよい。一実施形態例において、計算エンティティ10は、情報/データ、量子計算アルゴリズムおよび/または回路等を、量子系コントローラ30が理解および/または実装できる計算言語、実行可能命令、コマンドセット等へ変換、構成、形式化等してよい。例えば、コントローラ30は、量子コンピュータ110の適切な部品によって実行されると、量子コンピュータ110による量子回路の実行をもたらすように構成される機械コードレベルコマンドを生成するように構成される。様々な実施形態において、量子回路の実行は、高電圧半導体スイッチの1つまたは複数の端子への電圧を提供および/または制御することを含んでよく、これにより、高電圧半導体スイッチが1つまたは複数の電極にどのように電圧を提供するかを制御し得る。
【0028】
様々な実施形態において、量子系コントローラ30は、電圧源50、クライオスタットおよび/もしくは真空チャンバ40内の温度および圧力を制御するクライオスタットシステムおよび/もしくは真空システム、操作源60、ならびに/またはクライオスタットおよび/もしくは真空チャンバ40内の様々な環境条件(例えば、温度、圧力等)を制御する他のシステムを制御するように構成され、かつ/あるいは閉込め装置内の1つまたは複数の原子物体の量子状態の制御された発展を操作しかつ/またはもたらすように構成される。例えば、量子系コントローラ30は、閉込め装置内の1つまたは複数の原子物体の量子状態の制御された発展により量子回路および/またはアルゴリズムを実行させてよい。例えば、量子系コントローラ30は、コヒーレントシェルビングから成る読出し手順を、場合により量子回路および/またはアルゴリズムを実行することの一部として行わせてよい。追加的に、量子系コントローラ30は、光学収集システム70からかつ量子コンピュータ110のキュービットの量子状態の読出しに対応して入力データを通信および/または受信するように構成される。様々な実施形態において、閉込め装置内に閉じ込められた原子物体は量子コンピュータ110のキュービットとして使用される。
【0029】
様々な実施形態において、量子コンピュータ110は、量子系コントローラ30および量子プロセッサ115を備える。量子系コントローラ30は、量子プロセッサ115の様々な部品を制御するように構成される。
【0030】
様々な実施形態において、量子系コントローラ30は、量子系コントローラ30が光学収集システム70によって捕捉および/または生成された入力データを受信するように構成されるように光学収集システム70と通信状態にある。様々な実施形態において、量子系コントローラ30は、クライオスタットおよび/もしくは真空チャンバ40内の温度および圧力を制御するクライオスタットシステムおよび/もしくは真空システム、冷却システム、ならびに/またはクライオスタットおよび/もしくは真空チャンバ40内の環境条件(例えば、温度、湿度、圧力等)を制御する他のシステムを制御するように更に構成される。
【0031】
図2に図示されるように、様々な実施形態において、量子系コントローラ30は、処理要素205、メモリ210、ドライバコントローラ要素215、通信インタフェース220、アナログデジタル(A/D)変換器要素225等を含む様々な量子系コントローラ要素を備えてよい。様々な実施形態において、量子系コントローラ30は、A/D変換器225を介して光学収集システムによって生成された入力データを受信するように構成される。様々な実施形態において、処理要素205は、本明細書に記載されるように動作するように構成される。
【0032】
様々な実施形態において、処理要素205は、プログラマブル論理デバイス(CPLD)、マイクロプロセッサ、コプロセッシングエンティティ、特定用途向け命令セットプロセッサ(ASIP)、集積回路、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理アレイ(PLA)、ハードウェアアクセラレータ、他の処理要素および/または回路網等などの処理要素から成る。回路網という用語は、完全ハードウェア実施形態またはハードウェアおよびコンピュータプログラム製品の組合せを指し得る。一実施形態例において、量子系コントローラ30の処理要素205はクロックを備えかつ/またはクロックと通信状態にある。
【0033】
様々な実施形態において、メモリ210は、ハードディスク、ROM、PROM、EPROM、EEPROM、フラッシュメモリ、MMC、SDメモリカード、メモリスティック、CBRAM、PRAM、FeRAM、RRAM、SONOS、レーストラックメモリ、RAM、DRAM、SRAM、FPM DRAM、EDO DRAM、SDRAM、DDR SDRAM、DDR2 SDRAM、DDR3 SDRAM、RDRAM、RIMM、DIMM、SIMM、VRAM、キャッシュメモリ、レジスタメモリ等の1つまたは複数などの揮発性および/または不揮発性メモリ記憶装置などの非一時的メモリから成る。様々な実施形態において、メモリ210は、量子アルゴリズムおよび/または回路を実行させるために実行されるべきコマンドのキュー(例えば、実行可能キュー)、量子コンピュータのキュービットに対応するキュービットレコード(例えば、キュービットレコードデータストア、キュービットレコードデータベース、キュービットレコードテーブル等に)、校正表、コンピュータプログラムコード(例えば、1つまたは複数のコンピュータ言語、専用量子系コントローラ言語等で)等を記憶してよい。一実施形態例において、メモリ210に記憶されたコンピュータプログラムコードの少なくとも一部分の実行(例えば、処理要素205による)により、量子系コントローラ30に対して、量子プロセッサ115に量子回路の少なくとも一部分を行い、1つまたは複数のキュービットレジストリを更新する等させるように構成される1つまたは複数のコマンドのセットを生成するための1つまたは複数のステップ、動作、プロセス、手順等を行わせる。一実施形態例において、メモリ210に記憶されたコンピュータプログラムコードの少なくとも一部分の実行により、量子系コントローラ30に1つまたは複数のコマンドを行わせる。
【0034】
様々な実施形態において、ドライバ量子系コントローラ要素215は、1つまたは複数のドライバおよび/または各々1つもしくは複数のドライバを制御するように構成される量子系コントローラ要素を含む。様々な実施形態において、ドライバ量子系コントローラ要素215は、ドライバおよび/またはドライバコントローラを備えてよい。例えば、ドライバコントローラは、量子系コントローラ30によって生成、スケジュールおよび実行される実行可能命令、コマンド等に従って1つまたは複数の対応するドライバを動作させるように構成されてよい。例えば、処理要素205は、第1のドライバによって行われるべき1つまたは複数のコマンドを生成してよい。
【0035】
様々な実施形態において、ドライバコントローラ要素215は、量子系コントローラ30が電圧源50、操作源60、冷却システム、真空システム等を動作させることを可能にする。様々な実施形態において、ドライバは、閉込め装置120のトラッピングポテンシャルを維持および/もしくは制御するために使用される電極に印加される電流および/もしくは電圧の流れを制御するための(例えば、1つもしくは複数の電圧源50を動作させかつ/もしくは制御するように構成される)ドライバ(ならびに/または閉込め装置のポテンシャル発生要素にドライバアクションシーケンスを提供するための他のドライバ)、レーザドライバ(例えば、1つまたは複数の操作源60を動作させかつ/または制御するように構成される)、真空部品ドライバ、クライオスタットおよび/または真空システム部品ドライバ、冷却システムドライバ等でよい。
【0036】
ドライバが電極に印加される電流および/または電圧の流れを制御する様々な実施形態において、ドライバコントローラ要素215は高電圧半導体スイッチを制御してよい。例えば、高電圧半導体スイッチの制御は、FETのゲート、ソースおよび/またはドレインに印加される電圧の差を制御することを含め、FETの1つまたは複数に印加される電圧を制御することによってでよい。様々な実施形態において、電圧の制御は、スイッチング回路網などの高電圧半導体スイッチ(図には描かれず)に接続される付加回路を通してでよく、その一例が、2021年7月1日出願の米国出願第17/305,201号に記載されており、同出願の内容全体が参照により本明細書に組み込まれる。
【0037】
様々な実施形態において、ドライバコントローラ要素215の各々は、システム内のエンドポイント(例えば、操作源60の部品、電圧源50(高周波電圧源、任意波形発生器(AWG)、ダイレクトデジタルシンセサイザ(DDS)および/または他の波形発生器)の部品、冷却および/または真空システムの部品、光学収集システム70の部品等)に相当する。量子コンピュータ110内の各エンドポイントは個々のハードウェア制御を表す。各エンドポイントは、様々な実施形態において、それ自体の容認されたマイクロコマンドのセットを有してよい。例としては、ダイレクトデジタルシンセサイザ(DDS)などの電圧源50、光電子増倍管(PMT)などの光学収集システム70の部品、レーザドライバおよび/もしくは光変調器スイッチなどの操作源60の部品、ならびに/または汎用出力(GPO)を含むが、これに限定されない。DDSに対する個々のコマンドは、それによって発生される制御信号の電力レベル、周波数および位相を設定することを可能にする。PMTインタフェースに対するコマンドには、様々な実施形態において、光子計数開始/停止および計数のリセットを含む。GPOエンドポイントに対するコマンドには、1つまたは複数の出力線を設定および/またはクリアすることを含む。これらの出力線は、量子回路の実行と同期される方式で外部ハードウェアを制御するために使用できる。
【0038】
様々な実施形態において、量子系コントローラ30は、1つまたは複数の光受信機部品(例えば、光学収集システム70の)から信号を通信および/または受信するための手段を備える。例えば、量子系コントローラ30は、1つまたは複数の光受信機部品(例えば、光学収集システム70の光検出器)、校正センサ等から信号を受信するように構成される1つまたは複数のアナログデジタル(A/D)変換器要素225を備えてよい。様々な実施形態において、A/D変換器要素225は、光学収集システム70の1つまたは複数の光受信機部品によって発生された受信信号を変換することによって生成される入力データをメモリ210に書き込むように構成される。
【0039】
様々な実施形態において、量子系コントローラ30は、例えば計算エンティティ10とインタフェースおよび/または通信するための通信インタフェース220を備えてよい。例えば、量子系コントローラ30は、計算エンティティ10から実行可能命令、コマンドセット等を受信し、そして量子コンピュータ110から(例えば、光学収集システム70から)受信される出力および/または同出力を処理した結果を計算エンティティ10に提供するための通信インタフェース220を備えてよい。様々な実施形態において、計算エンティティ10および量子系コントローラ30は、直接有線および/もしくは無線接続を介してならびに/または1つもしくは複数の有線および/もしくは無線ネットワーク20を介して通信してよい。
【0040】
図3は、本開示の実施形態と併せて使用できる計算エンティティ例10を表す例示的な概要図を提供する。様々な実施形態において、計算エンティティ10は、ユーザが量子コンピュータ110への入力を(例えば、計算エンティティ10のユーザインタフェースを介して)提供し、そして量子コンピュータ110からの出力を受ける、見る、分析する等できるようにするように構成される古典(例えば、半導体ベースの)コンピュータである。様々な実施形態において、量子回路が作成および/または実行されるため、高電圧半導体スイッチが有効または無効にされる(例えば、オンまたはオフにされる)ことを必要とし得る結果になる入力をユーザが提供し得るときなど、ユーザが計算エンティティ10を使用して、1つまたは複数の高電圧半導体スイッチを直接的または間接的に制御し得る量子コンピュータ110への入力を提供してよい。例えば、様々な実施形態において、高電圧半導体スイッチは、量子プロセッサ115の一部として使用されるイオントラップの電極への電圧の印加(例えば、電圧源50による)を制御する。理解されるべきであるが、高電圧半導体スイッチの様々な実施形態は、各種の他の応用に使用され得る。
【0041】
図3に図示されるように、計算エンティティ10は、アンテナ312、送信機304(例えば、無線)、受信機306(例えば、無線)および、それぞれ送信機304に信号を提供し、受信機306から信号を受け取る処理要素308を含むことができる。それぞれ送信機304に提供されるおよび受信機306から受け取られる信号には、量子系コントローラ30、他の計算エンティティ10等などの様々なエンティティと通信するために適用可能な無線システムのエアインタフェース規格に従って情報/データを信号伝送することを含み得る。計算エンティティ10は、ネットワークインタフェース320を含むことができ、量子系コントローラ30、他の計算エンティティ10等などの様々なエンティティと通信するために適用可能なネットワークシステムのインタフェース規格に従って信号を提供および信号を受信し得る。
【0042】
これに関しては、計算エンティティ10は、1つまたは複数のエアインタフェース規格、通信プロトコル、変調型およびアクセス型で動作することが可能であり得る。例えば、計算エンティティ10は、ファイバ分散データインタフェース(FDDI)、デジタル加入者回線(DSL)、イーサネット、非同期転送モード(ATM)、フレームリレー、データオーバーケーブルサービスインタフェース仕様(DOCSIS)または任意の他の有線伝送プロトコルなどの、有線データ伝送プロトコルを使用して通信を受信および/または提供するように構成されてよい。同様に、計算エンティティ10は、汎用パケット無線サービス(GPRS)、ユニバーサル移動体通信システム(UMTS)、符号分割多元接続2000(CDMA2000)、CDMA2000 1X(1xRTT)、広帯域符号分割多元接続(WCDMA)、移動通信のためのグローバルシステム(GSM)、GSM進化のための拡張データレート(EDGE)、時分割同期符号分割多元接続(TD-SCDMA)、ロングタームエボリューション(LTE)、進化ユニバーサル地上無線アクセスネットワーク(E-UTRAN)、進化データ最適化(EVDO)、高速パケットアクセス(HSPA)、高速ダウンリンクパケットアクセス(HSDPA)、IEEE802.11(Wi-Fi)、Wi-Fiダイレクト、802.16(WiMAX)、超広帯域(UWB)、赤外線(IR)プロトコル、近距離無線通信(NFC)プロトコル、Wibree、ブルートゥースプロトコル、ワイヤレスユニバーサルシリアルバス(USB)プロトコルおよび/または任意の他の無線プロトコルなどの、各種のプロトコルのいずれかを使用して無線外部通信ネットワーク介して通信するように構成されてよい。計算エンティティ10は、そのようなプロトコルおよび規格を使用して、ボーダーゲートウェイプロトコル(BGP)、動的ホスト構成プロトコル(DHCP)、ドメインネームシステム(DNS)、ファイル転送プロトコル(FTP)、ハイパーテキスト転送プロトコル(HTTP)、HTTPオーバーTLS/SSL/Secure、インターネットメッセージアクセスプロトコル(IMAP)、ネットワークタイムプロトコル(NTP)、簡易メール転送プロトコル(SMTP)、テルネット、トランスポート層セキュリティ(TLS)、セキュアソケットレイヤ(SSL)、インターネットプロトコル(IP)、伝送制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)、データグラム輻輳制御プロトコル(DCCP)、ストリーム制御伝送プロトコル(SCTP)、ハイパーテキストマークアップ言語(HTML)等を用いて通信してよい。
【0043】
これらの通信規格およびプロトコルを介して、計算エンティティ10は、非構造化付加サービス情報/データ(USSD)、ショートメッセージサービス(SMS)、マルチメディアメッセージサービス(MMS)、デュアルトーン多重周波数信号(DTMF)および/または加入者識別モジュールダイヤラ(SIMダイヤラ)などの概念を使用して様々な他のエンティティと通信できる。計算エンティティ10は、そのファームウェア、ソフトウェア(例えば、実行可能命令、アプリケーション、プログラムモジュールを含む)およびオペレーティングシステムへの、例えば変更、アドオンおよび更新をダウンロードすることもできる。
【0044】
計算エンティティ10は、1つまたは複数のユーザ入出力インタフェース(例えば、処理要素308に結合されるディスプレイ316および/またはスピーカ/スピーカドライバならびに処理要素308に結合されるタッチスクリーン、キーボード、マウスおよび/またはマイクロホン)を備えるユーザインタフェースデバイスも備えてよい。例えば、ユーザ出力インタフェースは、計算エンティティ10上で実行しかつ/またはそれを介してアクセス可能で、情報/データの表示または可聴提示をもたらしかつ1つまたは複数のユーザ入力インタフェースを介するそれとの対話のための、アプリケーション、ブラウザ、ユーザインタフェース、インタフェース、ダッシュボード、スクリーン、ウェブページ、ページ、および/または本明細書において互換的に使用される同様の語を提供するように構成されてよい。ユーザ入力インタフェースは、キーパッド318(ハードもしくはソフト)、タッチディスプレイ、音声/言語もしくは動作インタフェース、スキャナ、リーダまたは他の入力デバイスなど、計算エンティティ10がデータを受信できるようにする多数のデバイスのいずれかを備えることができる。キーパッド318を含む実施形態において、キーパッド318は、従来の数字(0~9)および関連キー(#、*)、ならびに計算エンティティ10を動作させるために使用される他のキーを含む(またはその表示を与える)ことができ、かつ英字キーの一式、または英数字キーの一式を提供するために起動され得る一組のキーを含んでよい。入力を提供することに加えて、ユーザ入力インタフェースは、例えば、スクリーンセーバおよび/またはスリープモードなどの或る機能を起動または停止させるために使用できる。そのような入力を通じて、計算エンティティ10は情報/データ、ユーザ対話/入力等を収集できる。
【0045】
計算エンティティ10は、揮発性記憶装置もしくはメモリ322および/または不揮発性記憶装置もしくはメモリ324も含むことができ、それは組み込むことができかつ/または取り外し可能でよい。例えば、不揮発性メモリは、ROM、PROM、EPROM、EEPROM、フラッシュメモリ、MMC、SDメモリカード、メモリスティック、CBRAM、PRAM、FeRAM、RRAM、SONOS、レーストラックメモリ等でよい。揮発性メモリは、RAM、DRAM、SRAM、FPM DRAM、EDO DRAM、SDRAM、DDR SDRAM、DDR2 SDRAM、DDR3 SDRAM、RDRAM、RIMM、DIMM、SIMM、VRAM、キャッシュメモリ、レジスタメモリ等でよい。揮発性および不揮発性記憶装置またはメモリは、計算エンティティ10の機能を実装するために、データベース、データベースインスタンス、データベース管理システムエンティティ、データ、アプリケーション、プログラム、プログラムモジュール、スクリプト、ソースコード、オブジェクトコード、バイトコード、コンパイル済みコード、解釈済みコード、機械コード、実行可能命令等を記憶できる。
【0046】
図4は、一実施形態例に従って使用され得るスイッチ回路のブロック図を提供する。様々な実施形態において、高電圧半導体スイッチ400が1つまたは複数のスイッチサブ回路から構成されてよい。例えば、図4の実施形態は、第1のスイッチサブ回路410Aおよび第2のスイッチサブ回路410Bを備える。様々な実施形態において、スイッチサブ回路410は、1つまたは複数のFET回路420から構成されてよい。図4に描かれる実施形態において、第1のスイッチサブ回路410Aは第1のFET回路420Aから構成され、そして第2のスイッチサブ回路410Bは第2のFET回路420Bから構成される。高電圧半導体スイッチ400、スイッチサブ回路410およびFET回路420の各々の電気部品の様々な実施形態が本明細書に更に述べられるが、抵抗器、コンデンサ、インダクタ、ダイオード、トランジスタ等を含め、高電圧半導体スイッチ400、スイッチサブ回路410およびFET回路420の各々に付加電気部品(描かれず)があってよい。
【0047】
様々な実施形態において、高電圧半導体スイッチ400は、電圧源50の他にイオントラップの電極に高電圧半導体スイッチ400を接続することになる入出力端子を含め、付加電気部品および/または回路(描かれず)を含むことになる。様々な実施形態において、1つの高電圧半導体スイッチ400が電極の全てと接続して(例えば、電気通信状態にあって)よい。代替的に、他の様々な実施形態において、1つの高電圧半導体スイッチ400が単一の電極に接続してよく、または電極の全てでなく一部と接続して(例えば、電気通信状態にあって)よい。本明細書に更に述べられるように、高電圧半導体スイッチ400の制御は、各スイッチサブ回路410および/または更に各FET回路420に印加される電圧を含め、高電圧半導体スイッチ400の入力端子(描かれず)に印加され、その一部がイネーブルまたはディスエーブル信号として作用し得る電圧を制御することによって達成されてよい。
【0048】
図5Aおよび図5Bは各々、高電圧半導体スイッチ400の様々な実施形態例に従って使用され得るFET回路420の異なる実施形態の概要図を提供する。図5Aは、2つのpチャネルFET(例えば、525A、525B)から構成されるFET回路520Aの概要図を提供し、そして図5Bは、2つのpチャネルFET(例えば、525A、525B)および2つのコンデンサ(例えば、529A、529B)から構成されるFET回路520Bの概要図を提供する。様々な例において、コンデンサは、負荷リアクタンスを整合させるために使用されてよい。
【0049】
図5Aおよび図5Bの各々に描かれる実施形態において、第1のFET525Aのゲートは、第2のFET525Bのゲートに接続される他に、ゲートへの電圧が印加されてよい、VGATE530として描かれる端子に向けられる。図5Aおよび図5Bの各々における実施形態に同じく描かれるように、第1のFET525Aのソースは第2のFET525Bのソースに接続される。各FETのドレインは、それぞれの端子に向けられる。例えば、第1のFET525Aのドレインは、FET回路520Aへの入力電圧が印加されてよい、VIN580として描かれる端子に接続され、そして第2のFET525Bのドレインは、FET回路520Aの出力が接続されてよい、VOUT590として描かれる端子に接続される。図5Aおよび図5Bに描かれる実施形態において、各FETをpチャネルFETとして描くが、FETの1つまたは複数がnチャネルFET(図5Aまたは図5Bには描かれず)でもよい。
【0050】
図5Bに描かれる実施形態において、FET回路520Bは、1つまたは複数のコンデンサ529の付加回路網から構成される。例えば、図5Bにおいて、第1のコンデンサ529Aが第1のFET525Aのゲートおよび入力端子VIN580に接続され、そして第2のコンデンサ529Bが第2のFET525Bのゲートおよび出力端子VOUT590に接続され、そしてゲートおよびコンデンサは全て図5Bに描かれるように共に接続される。様々な実施形態において、そのようなコンデンサは、種々の負荷に合わせて高電圧半導体スイッチを調整するために使用されても、かつ/または高電圧半導体スイッチ400の容量を平衡させるために使用されてもよい。例えば、そのようなコンデンサは、スイッチグリッチおよび/または他のスイッチ関連のノイズを低減させるように負荷容量を高電圧半導体スイッチの容量と整合させるように構成されてよい。様々な実施形態において、そのようなコンデンサのサイズは、回路を最適化するように選ばれてよい。例えば、大きなコンデンサ値ほど出力スイッチグリッチ振幅を減少させ得るが、スイッチターンオンおよびターンオフ時間を遅らせもし得る。コンデンサ値の決定は、一例では低精度を許容しつつ速度のために構成され得るなどの、異なって構成され得るシステムにおいてなど、負荷および/または応用に応じて異なり得る。追加の実施形態において、コンデンサは、ACグランドに連結されてよい出力負荷コンデンサ(描かれず)に基づいて構成、調整および/またはサイズ設定されてよい。様々な実施形態(例えば、図4に描かれる実施形態)において、高電圧半導体スイッチ400は2つ以上のFET回路420を有してよく、そして第1のFET回路420Aにおけるコンデンサは第2のFET回路420Bにおけるコンデンサと異なってよい。そのような差異は、そのようなコンデンサからの補償など、全内部容量を平衡させるためでよい。様々な実施形態において、全内部容量のそのような平衡化は、容量不均衡のためであったかもしれない電荷注入を緩和または排除し得る。2つ以上の高電圧半導体スイッチを使用する様々な実施形態において、そのようなコンデンサは、量子系100における電極の負荷などの負荷に合わせて各スイッチを調整するために各高電圧半導体スイッチ間で異なってよい。第1のコンデンサ529Aおよび第2のコンデンサ529Bの各々が個々の電気部品として描かれるのに対して、各々は、直列に、並列にまたは直並列に配置される1つまたは複数の電気部品を表し得る。したがって、図5Bの実施形態は、付加電気部品がどのようにFET回路520に含まれて接続され得るかの一例である。
【0051】
図6は、一実施形態例に従って使用され得るスイッチサブ回路の一部分の概要図を描く。図6に描かれる実施形態のスイッチサブ回路610はスイッチサブ回路410の一実施形態である。スイッチサブ回路610において、上記した方式で接続されるpチャネルの第1のFET625Aおよびpチャネルの第2のFET625Bから構成される単一のFET回路620があり、各FETのゲート同士が接続され、各FETのソース同士が接続され、そして各FETのドレインが入力端子(例えば、VIN680)か出力端子(例えば、VOUT690)かに接続される。図6の実施形態が単一のFET回路620を描くのに対して、図7に描かれる実施形態を含むがこれに限定されず、他の実施形態はスイッチサブ回路に2つ以上のFET回路を含んでよい。追加的に、スイッチサブ回路610は、トランジスタ、コンデンサおよび抵抗器を含むがこれに限定されない、描かれていない付加電気部品を含んでよい。
【0052】
図7は、一実施形態例に従って使用され得るスイッチサブ回路の一部分の概要図を提供する。図6と対照的に、図7に描かれる実施形態は、スイッチサブ回路710の一部分に2つ以上のFET回路(すなわち、第1のFET回路720A1および第2のFET回路720A2)を描き、具体的には2つのFET回路(例えば、720A1、720A2)を描いている。他の様々な実施形態が、3つ以上のFET回路を並列に有してもよい。スイッチサブ回路710は、トランジスタ、コンデンサおよび抵抗器を含むがこれに限定されない、描かれていない付加電気部品を含んでよい。図7に描かれる実施形態において、第1のFET回路720A1および第2のFET回路720A2は並列に接続される。したがって、描かれるように、第1のFET回路720A1の各第1のFET725A1および第2のFET725B1のゲートならびに第2のFET回路720A2の第1のFET725A2および第2のFET725B2のゲートが共に接続され、そしてVGATE730として描かれるゲート電圧入力端子にも接続される。第1のFET回路720A1の第1のFET725A1のドレインおよび第2のFET回路720A2の第1のFET725A2のドレインとして描かれる各FET回路の入力端子は、入力端子VIN780において共に接続される。第1のFET回路720A1の第2のFET725B1のドレインおよび第2のFET回路720A2の第2のFET725B2のドレインとして描かれる各FET回路の出力端子は、出力端子VOUT790において共に接続される。図7に描かれる実施形態は、2つのFET回路(例えば、720A1、720A2)が並列に接続されるスイッチサブ回路710である。様々な実施形態において、1つまたは複数のスイッチサブ回路(例えば、410A、410B)が、並列に接続される2つ以上のFET回路を有してよい。
【0053】
高電圧半導体スイッチ400の様々な実施形態において、或るスイッチサブ回路410におけるFET回路420の数は、或るスイッチサブ回路410におけるFET回路420の数と同じでよく、またはそれとは異なってよい。高電圧半導体スイッチ400の一実施形態例(描かれず)において、第1のスイッチサブ回路410Aは1つの第1のFET回路420Aから構成されてよく、そして第2のスイッチサブ回路410Bは2つのFET回路420(例えば第2のFET回路420Bおよび第3のFET回路(図示せず))から構成されてよい。そのような実施形態において、第1のスイッチサブ回路410AにおけるFET回路420に対する第2のスイッチサブ回路410BにおけるFET回路420の比率は1より大きな数である。例えば、様々な実施形態において、第1のスイッチサブ回路410AにおけるFET回路420の数に対する第2のスイッチサブ回路410BにおけるFET回路420の数の比率は10対1でよく、または167対80でよい。他の様々な実施形態において、第1のスイッチサブ回路410AにおけるFET回路420に対する第2のスイッチサブ回路410BにおけるFET回路420の比率は1より小さくてよい。様々な実施形態において、FET回路420AにおけるFETは全てpチャネルFETでよく、そしてFET回路420BにおけるFETは全てnチャネルFETでよい。全てpチャネルFETを使用する様々な実施形態において、様々なFET回路は、FET回路の各々が高電圧半導体スイッチ400で実装される異なるイネーブル論理で導通し得るように、異なる電圧シフトトランジスタに接続されてよい。様々な実施形態において、スイッチサブ回路410の各々における各FETのサイズは同じサイズでよく、または異なるサイズでよい。FETのサイズはFETのインピーダンスでよく、かつ/またはFETの電圧および/もしくは電流特性でよい。異なってサイズ設定されたFETは、異なるチャネルサイズなどの異なる物理特性を有してよい。
【0054】
様々な実施形態において、FET回路420Aの数に対するFET回路420Bの数の比率は乗数とも称されてよく、そして使用される比率は、負荷に基づいて決定されてよい。これらの実施形態の一部は、高電圧半導体スイッチにおけるFETの各々に対して1つのFETサイズが使用される高電圧半導体スイッチのためでよい。例えば、高電圧半導体スイッチは、より高容量の負荷に対して、より高い比率を有してよい。様々な実施形態において、使用する比率はシミュレーションを介して決定されてよく、または経験的に導出されてよい。比率を決定するためにシミュレーションを使用する様々な実施形態において、シミュレーションは、負荷、高電圧半導体スイッチと負荷との間の電気回路網、負荷に提供されることになる信号、および高電圧半導体スイッチの各電気部品の特定のモデルを分析してよい。そのようなシミュレーションの1つまたは複数を通じて、比率が決定されてよい。様々な実施形態において、比率の決定は所望の応答に基づいてよい。様々な実施形態において、1つのサイズのFETしか使用しないわけではないものなど、前記した比率は、使用されるFETのサイズに対して追加的に調節される必要があってよい。大きなサイズのFETほど大きな負荷の駆動を可能にし得る。高電圧半導体スイッチ内の大きな、または異なるサイズのFETは、比率がFETサイズおよび負荷に鑑みて設定されることを可能にし得、それはインピーダンス整合のための回路を構成するためであり得る。異なってサイズ設定されるFETは、インピーダンス整合に対処する付加電気部品とも関連付けられてよい。
【0055】
様々な実施形態において、高電圧半導体スイッチ400におけるFET回路420の数が多い(または少ない)ほど高電圧半導体スイッチ400を通過する信号の減衰を改善し(または悪化させ)得るが、それは、高電圧半導体スイッチ400を通過する信号の信号遅延も増加させ(または減少させ)得る。様々な実施形態において、FET回路420の数が多いほどFET425の数を増加させ、これにより、大容量が長充放電時間を必要とするため信号遅延を増加させ得るが、ここでFETの数が多いために容量、特に各FETのゲートとソースとの間の容量が大きくなる。したがって、信号が高電圧半導体スイッチ400の入力端子から通る時間から信号が出力端子に到達する時間までは、FET回路425の数を増加(または減少)させることによって増加(または低下)され得る。その上、減衰および信号遅延は、高電圧半導体スイッチを通過する信号の周波数と共に変化し得る。特定の周波数において特定の減衰および/または遅延時間を所望する実施形態において、FET回路425の総数は、所望の減衰および/または遅延時間において特定の比率を達成するように選ばれてよい。様々な実施形態において、FET回路425の総数を決定することは、様々な周波数において信号遅延および減衰に対処するためにシミュレーションされてよい。
【0056】
図8は、一実施形態例に従って使用され得るスイッチ回路の概要図を提供する。様々な実施形態において、高電圧半導体スイッチ800は、2つのスイッチサブ回路(例えば、810A、810B)から構成されてよい。スイッチサブ回路810A、810Bの各々は、1つまたは複数のFET回路(例えば、第1のスイッチサブ回路810Aのための第1のFET回路820A、第2のスイッチサブ回路810Bのための第2のFET回路820B)から構成されてよい。図8において、第1のスイッチサブ回路810Aは第1のFET回路820Aから構成され、そして第2のスイッチサブ回路810Bは第2のFET回路820Bから構成される。図8に描かれるように、第1のFET回路820Aは、ゲート同士が接続されかつソース同士が接続される2つのpチャネルFET(すなわち、第1のFET825Aおよび第2のFET825B)の他にゲートが2つのpチャネルFET(第1のFET825Aおよび第2のFET825B)のソースに接続されるpチャネルFET828Aから構成され、そして第2のFET回路820Bは、ゲート同士が接続されかつソース同士が接続される2つのnチャネルFET(第3のFET825Cおよび第4のFET825D)の他にゲートが2つのnチャネルFET(第3のFET825Cおよび第4のFET825D)のソースに接続されるnチャネルFET828Bから構成される。高電圧半導体スイッチ800の様々な実施形態において、FET828Aおよび828Bは、電圧シフトトランジスタ(例えば、第1の電圧シフトFET828Aおよび第2の電圧シフトFET828B)と称されてよい。第1のFET回路820Aの第1および第2のFET825A、825Bの接続されたゲートはゲート端子VGATE830Aに接続され、そして第2のFET回路820Bの第3および第4のFET825C、825Dの接続されたゲートはゲート端子VGATE830Bに接続される。様々な実施形態において、ゲート端子VGATE830AおよびVGATE830Bは接続されてよく、または代替的に、これらは接続されなくてもよい。第1のFET回路820Aの第1のFET825Aのドレインは入力端子VIN880Aに接続され、そして第2のFET回路820Bの第4のFET825Dのドレインは入力端子VIN880Bに接続される。様々な実施形態において、第1の電圧シフトFET828Aは、そのドレイン端子860Aおよびそのソース端子860Bにおいて高電圧半導体スイッチ800における付加電気部品に接続される。様々な実施形態において、第2の電圧シフトFET828Bは、そのドレイン端子860Cおよびそのソース端子860Dにおいて高電圧半導体スイッチ800における付加電気部品に接続される。様々な実施形態において、入力端子VIN880AおよびVIN880Bは接続されてよく、または代替的に、これらは接続されなくてもよい。第1のFET回路820Aの第2のFET825Bのドレインは出力端子VOUT890に接続され、そして第2のFET回路820Bの第3のFET825Cのドレインも出力端子VOUT890に接続される。代替の実施形態において、第1および第2のFET回路820A、820Bの各々の出力は接続されなくてよく、別々に保たれてよい。様々な実施形態において、第1のスイッチサブ回路810Aは第1のレッグと称されてよく、そして第2のスイッチサブ回路810Bは第2のレッグと称されてよい。2つのレッグを持つ実施形態において、VIN880AおよびVIN880Bが共に接続される場合のそれらからの信号双極性が対称的に伝送される一方で、信号伝送中のオン抵抗を最小化し得る。オフ状態リークは、FET構成のオフ抵抗によって定められ、かつ高電圧半導体スイッチ800の接続されたレッグの各々におけるトランジスタカスケードによって最小化される。
【0057】
様々な実施形態において、FET回路(例えば、820A、820B)におけるFETのゲートとソースとの間の電圧が、これらのFET(例えば、825A、825B、825C、825D)におけるゲート-ソース接合の電圧制限を超えるのを禁止し得る電圧シフトトランジスタとして高電圧半導体スイッチ800を作用させるために、第1および第2の電圧シフトFET828A、828Bのドレインおよびソースの接続は接続されてよい。したがって、様々な実施形態は、電圧変換器によって駆動されて論理レベル信号を介して達成されるイネーブル/ディスエーブルを可能にする伝送ゲートとして高電圧半導体スイッチが作用し得るように高電圧補償のための内部フィードバックを有する。
【0058】
図9は、一実施形態例に従って使用され得る高電圧半導体スイッチ900の概要図を提供する。高電圧半導体スイッチ900は、2つのスイッチサブ回路(例えば、910A、910B)を含む。
【0059】
第1のスイッチサブ回路910Aは、第1のFET回路920Aおよび第1の電圧シフトFET928Aを含む。第1のFET回路920Aは第1のFET925Aおよび第2のFET925Bを含む。第1のFET925Aおよび第2のFET925Bのゲートは接続され、そして第1のFET925Aおよび第2のFET925Bのソースは接続される。第1の電圧シフトFET928Aのゲートは第1および第2のFET925A、925Bのソースに接続される。第1のFET925Aのドレインは電圧入力端子980Aに接続される。第2のFET925Bのドレインは電圧出力端子990に接続される。第1の電圧シフトFET928Aのドレインおよびソースは各々、高電圧半導体スイッチ900における付加電気部品に接続される。描かれないが、第1のスイッチサブ回路910Aは付加電気部品を含んでよい。
【0060】
第2のスイッチサブ回路910Bは、第2のFET回路920Bおよび第2の電圧シフトトランジスタFET928Bを含む。第2のFET回路920Bは第3のFET925Cおよび第4のFET925D(様々な実施形態において第2のスイッチサブ回路910Bの第1のFETおよび第2のFETと称されてよい)を含む。第3および第4のFET925C、925Dのゲートは接続され、そして第3および第4のFET925C、925Dのソースは接続される。第2の電圧シフトFET928Bのゲートは第3および第4のFET925C、925Dのソースに接続される。第4のFET925Dのドレインは電圧入力端子980Bに接続され、これは入力端子980Aと同じまたはそれに接続されてよい。第3のFET925Cのドレインは電圧出力端子990に接続され、これは第1のスイッチサブ回路910Aの第2のFET925Bのドレインにも接続される。第2の電圧シフトFET928Bのドレインおよびソースは各々、高電圧半導体スイッチ900における付加電気部品に接続される。描かれないが、第2のスイッチサブ回路910Bは付加電気部品を含んでよい。
【0061】
図9の実施形態において、高電圧半導体スイッチ900は、第1および第2のスイッチサブ回路910A、910Bにおけるものに加えて付加電気部品を含む。様々な実施形態において、高電圧半導体スイッチ900の付加電気部品は、各スイッチサブ回路を伝送ゲートとして作用させるために、第1および第2のスイッチサブ回路910A、910Bの端子に信号を提供する。図9に描かれるのがトランジスタ930A~930F、935A~935Fおよび抵抗器940A~940Gの付加電気部品であるのに対して、様々な実施形態は描かれない付加電気部品を含んでよい。
【0062】
図9の実施形態において、高電圧半導体スイッチ900は8つの入力端子を有する。入力端子980A、980Bは上に記載されている。様々な実施形態において、入力端子970Aおよび970Bは、それぞれ+20ボルトおよび-20ボルトにバイアスされる。様々な実施形態において、入力端子972Aおよび972Bは、それぞれ+15ボルトおよび-15ボルトにバイアスされる。様々な実施形態において、入力端子975Aおよび975Bは、入力端子975Aおよび入力端子975Bが0Vの電圧差を有し得るまたは5Vの電圧差を有し得るようにイネーブル信号でバイアスされる。様々な実施形態において、入力端子975Aおよび975B間の0Vの電圧差は、スイッチをオフにするために(例えば、スイッチが、VIN980A、980B上の信号をVOUT990に伝送させないときに)使用されてよく、そして入力端子975Aおよび975B間の5Vの電圧差は、スイッチをオンにするために(例えば、スイッチが、VIN980A、980B上の信号をVOUT990に伝送させるときに)使用されてよい。
【0063】
高電圧半導体スイッチ900は、描かれるように、pチャネルFET930A~F、nチャネルFET935A~Fおよび抵抗器940A~Gを含む。
【0064】
入力端子970Aは、nチャネルFET935Eのドレイン、pチャネルFET930Aのソースに、抵抗器940Dの第1の端子に、およびpチャネルFET930Cのソースに接続される。入力端子970Bは、pチャネルFET930Eのドレイン、nチャネルFET935Aのソースに、nチャネルFET935Cのソースに、および抵抗器940Eの第2の端子に接続される。
【0065】
入力端子972Aは、nチャネルFET935Eのゲート、pチャネルFET930Bのゲート、pチャネルFET930Dのゲートに、およびnチャネルの第2の電圧シフトFET928Bのドレインに接続される。入力端子972Bは、pチャネルFET930Eのゲート、nチャネルFET935Bのゲート、pチャネルFET935Dのゲートに、およびpチャネルの第1の電圧シフトFET928Aのドレインに接続される。
【0066】
入力端子975AはnチャネルFET935Fのゲートに接続される。入力端子975BはpチャネルFET930Fのゲートに接続される。
【0067】
pチャネルFET930Aのドレインは、pチャネルFET930Aのゲートの他にpチャネルFET930Cのゲートに接続される。pチャネルFET930Aのドレインは抵抗器940Aの第1の端子にも接続される。
【0068】
抵抗器940Aの第2の端子は、nチャネルFET935Eのソースの他にnチャネルFET935Fのドレインに接続される。nチャネルFET935Fのソースは抵抗器940Cの第1の端子に接続される。
【0069】
nチャネルFET935Aのドレインは、nチャネルFET935Aのゲートの他にnチャネルFET935Cのゲートに接続される。nチャネルFET935Aのドレインは抵抗器940Bの第2の端子にも接続される。
【0070】
抵抗器940Bの第1の端子は、pチャネルFET930Eのソースの他にpチャネルFET930Fのドレインに接続される。pチャネルFET930Fのソースは抵抗器940Cの第2の端子に接続される。
【0071】
抵抗器940Dの第2の端子がpチャネルFET930Bのソースに接続され、そしてpチャネルFET930Bのドレインは、抵抗器940Fの第1の端子におよびpチャネルの第1の電圧シフトFET928Aのソースに接続される。抵抗器940Fの第2の端子が、pチャネルの第1および第2のFET925A、925Bのゲートの他にnチャネルFET935Dのドレインに接続される。nチャネルFET935DのソースはnチャネルFET935Cのドレインに接続される。
【0072】
抵抗器940Eの第1の端子がnチャネルFET935Bのソースに接続され、そしてnチャネルFET935Bのドレインは、抵抗器940Gの第2の端子におよびnチャネルの第2の電圧シフトFET928Bのソースに接続される。抵抗器940Gの第1の端子が、nチャネルの第3および第4のFET925C、925Dのゲートの他にpチャネルFET930Dのドレインに接続される。pチャネルFET930DのソースはpチャネルFET930Cのドレインに接続される。
【0073】
様々な実施形態において、入力端子975Aおよび975Bにはイネーブル信号またはオン信号として+5V差が提供される。オン信号により、第1のFET回路920Aおよび第2のFET回路920Bの各々のFETはオンであり、そしてVIN980A、980Bからの入力信号はVOUT990に伝送される。様々な実施形態において、入力端子975Aおよび975Bにはオフ信号として0V差が提供され、そして第1のFET回路920Aおよび第2のFET回路920Bの各々におけるFETのいずれかがオフであり、そしてVIN980A、980Bからの入力信号はVOUT990に伝送されない。様々な実施形態において、イネーブル信号が5V電圧差でよいのに対して、VINからVOUTに通される信号は、例えば+/-15V以上でよい。
【0074】
追加的に、様々な実施形態において、入力端子975Aおよび975Bにオン信号が提供されると、FET回路(例えば、920A、920B)の接続されたソースの電圧は、VIN980A、980Bへの入力信号に基づいて+/-15V間でよく、FET回路(例えば、920A、920B)の接続されたソースと電圧シフトトランジスタのソースとの間の電圧差は+/-1Vでよく、そしてFET回路(例えば、920A、920B)の接続されたゲート間の差は+/-5Vでよい。様々な実施形態において、入力端子975Aおよび975Bにオフ信号が提供されると、FET回路(例えば、920A、920B)の接続されたゲート間の差が変化して+/-1Vになってよい。
【0075】
例えば、様々な実施形態において、オン信号が提供されると、pチャネルの第1および第2のFET925A、925Bの接続されたソースの電圧は、VIN980Aへの信号に基づいて+/-15V間でよく、pチャネルの第1および第2のFET925A、925Bの接続されたソースと第1の電圧シフトトランジスタ928Aのソースとの間の電圧差は1Vでよく、そしてpチャネルの第1および第2のFET925A、925Bの接続されたゲート間の差は-5Vでよい。そのような実施形態において、入力端子975Aおよび975Bにオフ信号が提供されると、p-チャネルの第1および第2のFET925A、925Bの接続されたゲート間の差は1Vに変化してよい。
【0076】
様々な実施形態において、高電圧半導体スイッチは、DMOSFETを使用することによってなど、高電圧信号で連続的にサイクル動作するように構成されてよい。第1のそのような実施形態において高電圧は+/-17Vでよく、そして第2のそのような実施形態において高電圧は+/-20Vでよい。他のそのような実施形態において、高電圧は、より高くてよい(例えば+/-25Vまたは+/-30V)。高電圧半導体スイッチがクライオスタットおよび/または真空チャンバ40に設置される様々な実施形態において、p型およびn型ドーピング密度は、低温度で発生するキャリア凍結を回避するのに十分に高い一方で、キャリア散乱を招かないように十分に低くもある。凍結とは、イオン化してキャリアを生成するためにドーパントによって必要とされるエネルギーの量が、低温環境において、イオン化するには低すぎる熱エネルギーであり、ドーパントが十分にイオン化されず、したがって十分に作用しなくなることを指し得る。FETが、極低温度など、凍結を経験すると、電子が伝導帯間をジャンプするのに十分なエネルギーを有しない可能性があり、FETが期待どおりに導通するのを妨げ得る。
【0077】
図10は、一実施形態例に従って使用され得る高電圧半導体スイッチ1000の概要図を提供する。高電圧半導体スイッチ1000は、図9の上述の高電圧半導体スイッチ900の例証的な実施形態であり、上記したように、第1のスイッチサブ回路910Aにおける付加コンデンサなどの付加電気部品を含んでよい。図10のこの実施形態例はFET回路1020Aを利用しており、これは、図5Bに描かれるFET回路である。図10における参照番号が図9におけるのと同じ参照番号を含む場合、図9に関する上記の説明が同様に適用可能であり、繰り返されない。
【0078】
図10に描かれるように、第1のスイッチサブ回路1010Aは、第1のFET回路1020Aおよび第1の電圧シフトFET928Aを含む。第1のFET回路1020Aは、第1のFET1025A、第2のFET1025B、第1のコンデンサ1029Aおよび第2のコンデンサ1029Bを含む。第1のFET1025Aおよび第2のFET1025Bのゲートは接続され、そして第1のFET1025Aおよび第2のFET1025Bのソースは接続される。第1の電圧シフトFET928Aのゲートは第1および第2のFET1025A、1025Bのソースに接続される。第1のFET1025Aのドレインは、電圧入力端子980Aにおよび第1のコンデンサ1029Aの第1の側に接続される。第1のコンデンサ1029Aの第2の側は第1のFET1025Aのゲートに接続される。第2のFET1025Bのドレインは、電圧出力端子990におよび第2のコンデンサ1029Bの第1の側に接続される。第2のコンデンサ1029Bの第2の側は第2のFET1025Bのゲートに接続される。第1の電圧シフトFET928Aのドレインおよびソースは各々、高電圧半導体スイッチ1000における付加電気部品に接続される。描かれないが、第1のスイッチサブ回路1010Aは付加電気部品を含んでよい。
【0079】
第1のコンデンサ1029Aおよび第2のコンデンサ1029Bは、図5Bに関して本明細書に記載されるように、種々の負荷に合わせて高電圧半導体スイッチ1000を調整するために使用されても、かつ/または高電圧半導体スイッチ1000の容量を平衡させるために使用されてもよい。コンデンサ1029A、1029Bは、電荷注入を最小化し、したがってスイッチグリッチおよび/または他のスイッチ関連のノイズを低減させるために高電圧半導体スイッチ1000の2つの側間のゲート容量を平衡させるように構成されてよい。
【0080】
本明細書に記載される本発明の多くの変更例および他の実施形態が、上記説明および関連図面に提示される教示の利益を有する本発明に関する当業者に想到されるであろう。それ故、本発明が開示された特定の実施形態に限定されるべきでないこと、ならびに変更例および他の実施形態が添付の特許請求の範囲内に含まれると意図されることが理解されるはずである。本明細書に特定の用語が利用されるが、それらは一般的かつ記述的意味に使用されるだけであり、限定の目的ではない。
【符号の説明】
【0081】
10 計算エンティティ
20 ネットワーク
30 量子系コントローラ
40 クライオスタットおよび/または真空チャンバ
50 電圧源
60 操作源
66 光路
70 光学収集システム
100 量子計算システム
110 量子コンピュータ
115 量子プロセッサ
120 原子物体閉込め装置
205 処理要素
210 メモリ
215 ドライバコントローラ要素
220 通信インタフェース
225 A/D変換器
304 送信機
306 受信機
308 処理要素
312 アンテナ
316 ディスプレイ
318 キーパッド
320 ネットワークインタフェース
322 揮発性メモリ
324 不揮発性メモリ
400 高電圧半導体スイッチ
410A 第1のスイッチサブ回路
410B 第2のスイッチサブ回路
420A 第1のFET回路
420B 第2のFET回路
520A FET回路
520B FET回路
525A 第1のFET
525B 第2のFET
529A 第1のコンデンサ
529B 第2のコンデンサ
530 端子VGATE
580 入力端子VIN
590 出力端子VOUT
610 スイッチサブ回路
620 FET回路
625A 第1のFET
625B 第2のFET
680 入力端子VIN
690 出力端子VOUT
710 スイッチサブ回路
720A1 第1のFET回路
720A2 第2のFET回路
725A1 第1のFET
725B1 第2のFET
725A2 第1のFET
725B2 第2のFET
730 ゲート電圧入力端子VGATE
780 入力端子VIN
790 出力端子VOUT
800 高電圧半導体スイッチ
810A 第1のスイッチサブ回路
810B 第2のスイッチサブ回路
820A 第1のFET回路
820B 第2のFET回路
825A 第1のFET
825B 第2のFET
825C 第3のFET
825D 第4のFET
828A 第1の電圧シフトFET
828B 第2の電圧シフトFET
830A ゲート端子VGATE
830B ゲート端子VGATE
860A ドレイン端子
860B ソース端子
860C ドレイン端子
860D ソース端子
880A 入力端子VIN
880B 入力端子VIN
890 出力端子VOUT
900 高電圧半導体スイッチ
910A 第1のスイッチサブ回路
910B 第2のスイッチサブ回路
920A 第1のFET回路
920B 第2のFET回路
925A 第1のFET
925B 第2のFET
925C 第3のFET
925D 第4のFET
928A 第1の電圧シフトFET
928B 第2の電圧シフトFET
930A~930F、935A~935F トランジスタ
940A~940G 抵抗器
970A、970B、972A、972B、975A、975B 入力端子
980A 電圧入力端子VIN
980B 電圧入力端子VIN
990 電圧出力端子VOUT
1000 高電圧半導体スイッチ
1010A 第1のスイッチサブ回路
1020A 第1のFET回路
1025A 第1のFET
1025B 第2のFET
1029A 第1のコンデンサ
1029B 第2のコンデンサ
図1
図2
図3
図4
図5A
図5B
図6
図7
図8
図9
図10
【手続補正書】
【提出日】2022-09-22
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
高電圧半導体スイッチであって、
1つまたは複数のFET回路および第1の電圧シフトFETを備える第1のスイッチサブ回路であり、前記第1のスイッチサブ回路の第1のFET回路が第1のFETおよび第2のFETを備える、第1のスイッチサブ回路と、
1つまたは複数のFET回路および第2の電圧シフトトランジスタを備える第2のスイッチサブ回路であり、前記第2のスイッチサブ回路の第1のFET回路が第3のFETおよび第4のFETを備える、第2のスイッチサブ回路とを備え、
前記第1のFET、前記第2のFET、前記第3のFET、前記第4のFET、前記第1の電圧シフトFETおよび前記第2の電圧シフトトランジスタの各々がゲート、ドレインおよびソースを備え、
前記第1のFETの前記ゲートおよび前記第2のFETの前記ゲートが前記第1のスイッチサブ回路のゲート端子に接続され、
前記第3のFETの前記ゲートおよび前記第4のFETの前記ゲートが前記第2のスイッチサブ回路のゲート端子に接続され、
前記第1のFETの前記ソース、前記第2のFETの前記ソースおよび前記第1の電圧シフトFETの前記ゲートが接続され、
前記第3のFETの前記ソース、前記第4のFETの前記ソースおよび前記第2の電圧シフトFETの前記ゲートが接続され、
前記高電圧半導体スイッチが、
前記第1のFETの前記ドレインおよび前記第4のFETの前記ドレインに接続される入力端子と、
前記第2のFETの前記ドレインおよび前記第3のFETの前記ドレインに接続される出力端子とを更に備える、高電圧半導体スイッチ。
【請求項2】
前記高電圧半導体スイッチの前記出力端子が量子計算システムのイオントラップの少なくとも1つの電極と電気通信状態にある、請求項1に記載の高電圧半導体スイッチ。
【請求項3】
高電圧スイッチング回路を駆動する方法であって、
高電圧半導体スイッチを設けるステップであり、前記高電圧半導体スイッチが、
1つまたは複数のFET回路および第1の電圧シフトFETを備える第1のスイッチサブ回路であり、前記第1のスイッチサブ回路の第1のFET回路が第1のFETおよび第2のFETを備える、第1のスイッチサブ回路と、
1つまたは複数のFET回路および第2の電圧シフトトランジスタを備える第2のスイッチサブ回路であり、前記第2のスイッチサブ回路の第1のFET回路が第3のFETおよび第4のFETを備える、第2のスイッチサブ回路とを備え、
前記第1のFET、前記第2のFET、前記第3のFET、前記第4のFET、前記第1の電圧シフトFETおよび前記第2の電圧シフトトランジスタの各々がゲート、ドレインおよびソースを備え、
前記第1のFETの前記ゲートおよび前記第2のFETの前記ゲートが前記第1のスイッチサブ回路のゲート端子に接続され、
前記第3のFETの前記ゲートおよび前記第4のFETの前記ソースが前記第2のスイッチサブ回路のゲート端子に接続され、
前記第1のFETの前記ソース、前記第2のFETの前記ソースおよび前記第1の電圧シフトFETの前記ゲートが接続され、
前記第3のFETの前記ソース、前記第4のFETの前記ソースおよび前記第2の電圧シフトFETの前記ゲートが接続され、
前記高電圧半導体スイッチが、
前記第1のFETの前記ドレインおよび前記第4のFETの前記ドレインに接続される入力端子と、
前記第2のFETの前記ドレインおよび前記第3のFETの前記ドレインに接続される出力端子とを更に備える、ステップと、
前記入力端子に第1の電圧を印加するステップであり、前記入力端子への前記第1の電圧の印加により、
前記第1の電圧信号が、前記第1のFET、前記第2のFET、前記第3のFETおよび前記第4のFETを導通させるイネーブル信号である場合、前記高電圧半導体スイッチの第1および第2の端子に前記第1の電圧を印加することによる前記第1のスイッチサブ回路を導通させる切替え、または
前記第1の電圧が、前記第1のFETか前記第2のFETか前記第1のFETおよび第2のFETかを導通させずかつ前記第3のFETか前記第4のFETか前記第3のFETおよび前記第4のFETかを導通させないディスエーブル信号である場合、前記高電圧半導体スイッチの前記第1および前記第2の端子に前記第1の信号を印加することによる前記第1のスイッチサブ回路を導通させない切替えをもたらす、ステップとを含む、方法。
【外国語明細書】