IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オムロン株式会社の特許一覧

特開2023-178206異常検知装置、異常検知方法およびプログラム
<>
  • 特開-異常検知装置、異常検知方法およびプログラム 図1
  • 特開-異常検知装置、異常検知方法およびプログラム 図2
  • 特開-異常検知装置、異常検知方法およびプログラム 図3
  • 特開-異常検知装置、異常検知方法およびプログラム 図4
  • 特開-異常検知装置、異常検知方法およびプログラム 図5
  • 特開-異常検知装置、異常検知方法およびプログラム 図6
  • 特開-異常検知装置、異常検知方法およびプログラム 図7
  • 特開-異常検知装置、異常検知方法およびプログラム 図8
  • 特開-異常検知装置、異常検知方法およびプログラム 図9
  • 特開-異常検知装置、異常検知方法およびプログラム 図10
  • 特開-異常検知装置、異常検知方法およびプログラム 図11
  • 特開-異常検知装置、異常検知方法およびプログラム 図12
  • 特開-異常検知装置、異常検知方法およびプログラム 図13
  • 特開-異常検知装置、異常検知方法およびプログラム 図14
  • 特開-異常検知装置、異常検知方法およびプログラム 図15
  • 特開-異常検知装置、異常検知方法およびプログラム 図16
  • 特開-異常検知装置、異常検知方法およびプログラム 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023178206
(43)【公開日】2023-12-14
(54)【発明の名称】異常検知装置、異常検知方法およびプログラム
(51)【国際特許分類】
   G05B 19/418 20060101AFI20231207BHJP
   G05B 23/02 20060101ALI20231207BHJP
【FI】
G05B19/418 Z
G05B23/02 302S
G05B23/02 302Y
【審査請求】未請求
【請求項の数】13
【出願形態】OL
(21)【出願番号】P 2023058310
(22)【出願日】2023-03-31
(31)【優先権主張番号】P 2022090861
(32)【優先日】2022-06-03
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】中井 隆樹
(72)【発明者】
【氏名】南百▲瀬▼ 勇
【テーマコード(参考)】
3C100
3C223
【Fターム(参考)】
3C100AA03
3C100AA05
3C100AA18
3C100AA29
3C100AA38
3C100AA56
3C100BB15
3C100BB17
3C100BB22
3C100BB31
3C223AA11
3C223BA03
3C223CC02
3C223DD03
3C223EB01
3C223EB02
3C223EB07
3C223FF02
3C223FF04
3C223FF12
3C223FF13
3C223FF17
3C223FF22
3C223FF24
3C223FF35
3C223FF42
3C223GG01
3C223HH03
3C223HH29
(57)【要約】
【課題】生産現場における監視対象の異常の有無を簡易に確認できる異常検知方法を提供する。
【解決手段】異常検知方法は、生産ラインが正常に動作しているときの、生産ラインの状況を示す複数の変数の単位時間ごとの標準値を取得するステップ(1)と、単位時間ごとの複数の変数の実績値を収集するステップ(2)と、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出するステップ(3)と、統計量が基準範囲外であることに応じて、生産ラインに異常が発生していることを検知するステップ(4)と、を備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
生産現場における監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得する取得部と、
前記単位区間における前記複数の変数の実績値を収集する収集部と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知する検知部と、を備える異常検知装置。
【請求項2】
前記複数の変数の中から、前記統計量への影響度の相対的に大きい有効変数を選択する選択部をさらに備える、請求項1に記載の異常検知装置。
【請求項3】
前記選択部は、前記複数の変数を説明変数とし、前記統計量を目的変数とするT法推定モデルの推定精度の向上に有効な変数を前記有効変数として選択する、請求項2に記載の異常検知装置。
【請求項4】
前記単位区間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部をさらに備える、請求項2に記載の異常検知装置。
【請求項5】
前記分析部は、
前記統計量の分散を最大化する2つの主成分を選定し、
前記有効変数と前記統計量との各々における、前記2つの主成分に対する主成分負荷量に基づいて、前記有効変数の前記統計量への影響度を特定する、請求項4に記載の異常検知装置。
【請求項6】
前記取得部は、
前記監視対象の仮想モデルを用いて、生産計画に従って前記監視対象を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位区間の値を前記標準値として取得する、請求項1に記載の異常検知装置。
【請求項7】
前記取得部は、過去に前記監視対象が正常に動作していたときの前記単位区間における前記複数の変数の値を前記標準値として取得する、請求項1に記載の異常検知装置。
【請求項8】
前記統計量は標準SN比である、請求項1に記載の異常検知装置。
【請求項9】
前記監視対象は生産ラインであり、
前記単位区間は単位時間である、請求項1から8のいずれか1項に記載の異常検知装置。
【請求項10】
前記監視対象は、製造装置を含む、請求項1から8のいずれか1項に記載の異常検知装置。
【請求項11】
前記製造装置は、対象動作を繰り返し実行し、
前記単位区間は、前記対象動作が実行されている期間である、請求項10に記載の異常検知装置。
【請求項12】
生産現場における監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得するステップと、
前記単位区間における前記複数の変数の実績値を収集するステップと、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップと、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップと、を備える異常検知方法。
【請求項13】
異常検知方法をコンピュータに実行させるプログラムであって、
前記異常検知方法は、
生産現場における監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得するステップと、
前記単位区間における前記複数の変数の実績値を収集するステップと、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップと、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップと、を含む、プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、異常検知装置、異常検知方法およびプログラムに関する。
【背景技術】
【0002】
生産効率を高めるために、生産ラインの異常を早期に検知することが望まれる。特開2019-177783号公報(特許文献1)は、鉄道車両に設けられた加速度センサから得られる特性データと予め取得された単位データとの間のマハラノビス距離の増加から鉄道車両の乗り心地の悪化を検知する技術を開示している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2019-177783号公報
【特許文献2】特開2003-44115号公報
【非特許文献】
【0004】
【非特許文献1】田村希志臣、「第5回方向判定のできるMTシステム-TS法,T法」、標準化と品質管理、2009年、Vol.62、No.2
【非特許文献2】田口玄一、「目的機能と基本機能(6)-T法による総合予測-」、品質工学、2005年、13巻3号、p.5-10
【非特許文献3】「開発設計段階における品質工学の考え方と活用-試作レス・試験レスによるシステム評価と改善-」、[online]、[2023年3月22日検索]、インターネット<https://foundry.jp/bukai/wp-content/uploads/2012/07/e4806f10b0797ec0932d9317dd92a533.pdf>
【発明の概要】
【発明が解決しようとする課題】
【0005】
生産ラインは多種多様の設備を含み、多数の変数が得られる。そのため、特許文献1に開示の技術を生産ラインに適用した場合、生産ラインの異常の有無を確認するためには、多数の変数の各々について基準と実測値とを比較する必要が生じる。その結果、生産ラインの異常の有無の確認にかかる作業が増大する。
【0006】
本開示は、上記の問題に鑑みてなされたものであり、その目的は、生産現場における監視対象の異常の有無を簡易に確認できる異常検知装置、異常検知方法およびプログラムを提供することである。
【課題を解決するための手段】
【0007】
本開示の一例によれば、異常検知装置は、取得部と、収集部と、算出部と、検知部と、を備える。取得部は、生産現場における監視対象が正常に動作しているときの、単位区間における監視対象の状況を示す複数の変数の標準値を取得する。収集部は、単位区間における複数の変数の実績値を収集する。算出部は、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出する。検知部は、統計量が基準範囲外であることに応じて、監視対象に異常が発生していることを検知する。
【0008】
上記の開示によれば、ユーザは、検知部の結果を確認することにより、生産現場における監視対象の異常の有無を簡易に確認できる。
【0009】
上述の開示において、異常検知装置は、複数の変数の中から、前記統計量への影響度の相対的に大きい有効変数を選択する選択部をさらに備える。
【0010】
上記の開示によれば、ユーザは、選択部による選択結果を確認することにより、有効変数を、監視対象の異常の原因候補として特定できる。その結果、ユーザは、有効変数を調整するように監視対象のメンテナンスや生産計画を見直しなどの対策を早期に実行できる。
【0011】
上述の開示において、選択部は、複数の変数を説明変数とし、統計量を目的変数とするT法推定モデルの推定精度の向上に有効な変数を上記の有効変数として選択する。
【0012】
上記の開示によれば、統計量への影響度の相対的に大きい有効変数を容易に選択できる。
【0013】
上述の開示において、異常検知装置は、単位区間ごとの有効変数の実績値と統計量とを用いた主成分分析を行なう分析部をさらに備える。
【0014】
上記の開示によれば、ユーザは、主成分分析によって得られる主成分負荷量に基づいて、複数の有効変数のうち、統計量への影響度の高い変数を絞り込むことができる。その結果、ユーザは、絞り込まれた変数を調整するように生産ラインのメンテナンスや生産計画を見直しなどの対策を早期に実行できる。
【0015】
上述の開示において、分析部は、統計量の分散を最大化する2つの主成分を選定し、有効変数と統計量との各々における、2つの主成分に対する主成分負荷量に基づいて、有効変数の統計量への影響度を特定する。
【0016】
上記の開示によれば、ユーザは、特定された影響度に基づいて、複数の有効変数のうち、統計量への影響度の高い有効変数を絞り込むことができる。その結果、ユーザは、絞り込まれた有効変数を調整するように監視対象のメンテナンスや生産計画を見直しなどの対策を早期に実行できる。
【0017】
上述の開示において、取得部は、監視対象の仮想モデルを用いて、生産計画に従って監視対象を動作させたときの複数の変数の値のシミュレーションを実行し、シミュレーションにより得られる単位区間の値を標準値として取得する。
【0018】
あるいは、上述の開示において、取得部は、過去に監視対象が正常に動作していたときの単位区間における複数の変数の値を標準値として取得してもよい。
【0019】
上述の開示において、統計量は、例えば標準SN比である。これにより、統計量は、標準値に対する実績値の類似度を適格に表す。
【0020】
上述の開示において、監視対象は生産ラインであり、単位区間は単位時間である。この開示によれば、ユーザは、検知部の結果を確認することにより、生産ラインの異常の有無を簡易に確認できる。
【0021】
上述の開示において、監視対象は製造装置を含む。この開示によれば、ユーザは、検知部の結果を確認することにより、製造装置の異常の有無を簡易に確認できる。
【0022】
上述の開示において、製造装置は、対象動作を繰り返し実行する。単位区間は、対象動作が実行されている期間である。この開示によれば、複数の変数は、対象動作が実行されている期間における製造装置の状況を示す。そのため、ユーザは、製造装置によって繰り返し実行される対象動作ごとに、異常の有無を簡易に確認できる。
【0023】
本開示の別の例によれば、異常検知方法は、第1~第4のステップを備える。第1のステップは、監視対象が正常に動作しているときの、単位区間における前記監視対象の状況を示す複数の変数の標準値を取得するステップである。第2のステップは、単位区間における複数の変数の実績値を収集するステップである。第3のステップは、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出するステップである。第4のステップは、統計量が基準範囲外であることに応じて、監視対象に異常が発生していることを検知するステップである。
【0024】
本開示の別の例によれば、プログラムは、上記の異常検知方法をコンピュータに実行させる。これらの開示によっても、ユーザは、生産現場における監視対象の異常の有無を簡易に確認できる。
【発明の効果】
【0025】
本開示によれば、ユーザは、生産現場における監視対象の異常の有無を簡易に確認できる。
【図面の簡単な説明】
【0026】
図1】実施の形態に係る異常検知装置を含むシステムの構成を示す概略図である。
図2】生産ラインの一例を示す図である。
図3】実施の形態に係る異常検知装置のハードウェア構成の一例を示す模式図である。
図4】実施の形態に係る異常検知装置の機能構成の一例を示す図である。
図5】シミュレーション実行部の処理を説明する図である。
図6】算出部の処理を説明する図である。
図7】有効変数の選択結果の一例を示す図である。
図8】分析部による分析結果の一例を示す図である。
図9】異常検知装置の処理の流れの一例を示すフローチャートである。
図10】変形例1に係る異常検知装置の機能構成を示す図である。
図11】監視対象の製造装置の一例を示す図である。
図12】射出成形動作が実行される期間におけるパラメータの値の推移を示す図である。
図13】射出成形機3の状況を示す複数の変数の標準値および実績値を示す図である。
図14】射出成形動作ごとに算出された統計量の推移を示す図である。
図15】射出成形期間ごとの有効変数の実績値と標準SN比とを用いた主成分分析の結果を示す図である。
図16】監視対象の製造装置の別の例を示す図である。
図17】接合動作ごとに算出された統計量の推移を示す図である。
【発明を実施するための形態】
【0027】
本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
【0028】
§1 適用例
図1を参照して、本発明が適用される場面の一例について説明する。図1は、実施の形態に係る異常検知装置を含むシステムの構成を示す概略図である。図1に示されるように、システム1は、生産現場における監視対象の一例である生産ライン2と、生産ライン2の異常の発生を検知する異常検知装置100と、を備える。異常検知装置100は、生産ライン2と通信可能に接続される。なお、生産現場における監視対象は、生産ライン2に限定されない。
【0029】
異常検知装置100は、生産ライン2が正常に動作しているときの、生産ライン2の状況を示す複数の変数の単位時間ごとの標準値を取得する(ステップ(1))。複数の変数は、生産ライン2を構成する各工程の装置数、人員数、出来高などを含む。複数の変数の標準値は、生産ライン2の標準的な状況を表している。単位時間は、例えば5分である。また、複数の変数の標準値は、単位時間ごとに異なり得る。例えば、生産ライン2の稼働開始直後の単位時間における標準値は、生産ライン2の稼働開始してから数時間経過後の単位時間における標準値と異なり得る。このような場合を考慮して、異常検知装置100は、単位時間ごとに標準値を取得する。
【0030】
次に、異常検知装置100は、生産ライン2の操業が開始されると、単位時間ごとの複数の変数の実績値を収集する(ステップ(2))。そして、異常検知装置100は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出する(ステップ(3))。異常検知装置100は、統計量が基準範囲外であることに応じて、生産ライン2に異常が発生していることを検知する(ステップ(4))。
【0031】
ステップ(3)により、生産ライン2の状況を示す複数の変数の個数が多くても、生産ライン2の標準的な状況に対する現状況の乖離度が1つの統計量で表される。統計量として、例えば標準SN比が採用され得る。ただし、統計量は、標準SN比に限定されず、複数の変数についての標準値と実績値との乖離度を表すパラメータであればよい。標準SN比は、複数の変数についての標準値と実績値との乖離度が大きいほど小さくなる。そのため、標準SN比が低下することは、複数の変数の実績値が標準値から外れていることを意味する。閾値THは、生産ライン2が正常から異常に変化するときの値となるように予め定められる。この場合、基準範囲は、閾値TH以上の範囲である。そのため、標準SN比が基準範囲外(すなわち閾値TH未満)であることは、生産ライン2に何らかの異常が発生していることを意味する。従って、ユーザは、上記のステップ(4)の結果を確認することにより、生産ライン2の異常の有無を簡易に確認できる。
【0032】
§2 具体例
<生産ラインの例>
図2は、生産ラインの一例を示す図である。図2に示される生産ライン2は、切削加工工程21と、部品出荷工程22と、組付工程23と、製品出荷工程24と、を含む。
【0033】
切削加工工程21は、例えば金属片を切削加工することにより、所定形状の金属部品を作製する。切削加工工程21は、1以上の切削装置21aと、タイマー21bと、カウンタ21c,21dと、を備える。
【0034】
1以上の切削装置21aの各々は、正常に動作しているか否かを示す第1信号と、切削加工動作を実施しているか否かを示す第2信号と、金属部品の作製を完了したことを示す第3信号と、を出力する。
【0035】
カウンタ21cは、第1信号に基づいて、切削加工工程21において正常に動作している切削装置21aの個数(以下、「装置数」と称する。)を計測する。
【0036】
タイマー21bは、第2信号に基づいて、単位時間のうち切削加工動作を実施している時間(以下、「切削加工時間」と称する。)を計測する。
【0037】
カウンタ21dは、第3信号に基づいて、単位時間において作製された金属部品の個数(以下、「出来高(切削加工工程)」と称する。)を計測する。
【0038】
部品出荷工程22は、外部から購入された組み付け部品を組付工程23に搬送する。部品出荷工程22は、センサ22aと、自動搬送車(Automatic Guided Vehicle(AGV))22bと、を含む。部品出荷工程22では、作業者が外部から購入された組み付け部品を梱包から取り出す作業が実施された後、自動搬送車22bが組み付け部品を搬送する。
【0039】
センサ22aは、単位時間ごとに、作業者の人数(以下、「人員数(部品出荷工程)」と称する。)を計測する。センサ22aは、例えば画像センサであり、部品出荷工程22を撮像することにより得られた画像を用いて、人員数(部品出荷工程)を計測する。
【0040】
自動搬送車22bは、タイマー22cとカウンタ22dとを有する。タイマー22cは、単位時間における、組み付け部品を搬送している時間(以下、「AGV稼働時間」と称する。)を計測する。カウンタ22dは、単位時間において、搬送完了した組み付け部品の個数(以下、「出来高(部品出荷工程)」と称する。)を計測する。
【0041】
組付工程23は、切削加工工程21によって作製された金属部品に部品出荷工程22から搬送された組み付け部品を組み付けることにより、製品を製造する。組付工程23では、例えば作業者が組み付け作業を実施し、完成した製品がベルトコンベアに置かれる。
【0042】
組付工程23には、単位時間ごとに、切削加工工程21から搬送された金属部品のうち、組み付け部品の組み付け前の金属部品の個数(以下、「仕掛数」と称する。)を計測するセンサ23aが設けられる。センサ23aは、例えば画像センサであり、組み付け部品が組み付けられる前の金属部品が置かれるトレーを撮像することにより得られた画像を用いて、仕掛数を計測する。
【0043】
さらに、組付工程23には、単位時間ごとに、作業者の人数(以下、「人員数(組付工程)」と称する。)を計測するセンサ23bと、単位時間における、製造された製品の個数(以下、「出来高(組付工程)」と称する。)を計測するカウンタ23cと、が設けられる。センサ23bは、例えば画像センサであり、組付工程23を撮像することにより得られた画像を用いて、人員数(組付工程)を計測する。カウンタ23cは、例えば製品が置かれるベルトコンベアに設けられたリミットスイッチである。製品出荷工程24では、製品が梱包され、出荷される。
【0044】
<異常検知装置のハードウェア構成>
図3は、実施の形態に係る異常検知装置のハードウェア構成の一例を示す模式図である。図3に示されるように、異常検知装置100は、典型的には、汎用的なコンピュータアーキテクチャに従う構造を有する。具体的には、異常検知装置100は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)などのプロセッサ101と、メモリ102と、ストレージ103と、表示コントローラ104と、入力インターフェイス105と、通信インターフェイス106と、を含む。これらの各部は、バスを介して、互いにデータ通信可能に接続される。
【0045】
プロセッサ101は、ストレージ103に記憶されている各種のプログラムをメモリ102に展開して実行することで、本実施の形態に従う各種処理を実現する。
【0046】
メモリ102は、典型的には、DRAM(Dynamic Random Access Memory)などの揮発性の記憶装置であり、ストレージ103から読み出されたプログラムなどを記憶する。
【0047】
ストレージ103は、典型的には、ハードディスクトライブなどの不揮発性の磁気記憶装置である。ストレージ103は、プロセッサ101で実行される、異常検知プログラム131およびシミュレーションプログラム132を記憶する。ストレージ103にインストールされる各種のプログラムは、メモリカードなどに格納された状態で流通する。
【0048】
表示コントローラ104は、表示装置70と接続されており、プロセッサ101からの内部コマンドに従って、各種の情報を表示するための信号を表示装置70へ出力する。
【0049】
入力インターフェイス105は、プロセッサ101とキーボード、マウス、タッチパネル、専用コンソールなどの入力装置75との間のデータ伝送を仲介する。すなわち、入力インターフェイス105は、ユーザが入力装置75を操作することで与えられる操作指令を受け付ける。
【0050】
通信インターフェイス106は、プロセッサ101と外部機器(例えば生産ライン2に設けられる各種の機器)との間におけるデータ伝送を仲介する。通信インターフェイス106は、典型的には、イーサネット(登録商標)やUSB(Universal Serial Bus)などを含む。なお、ストレージ103に格納される各種のプログラムは、通信インターフェイス106を介して、配信サーバなどからダウンロードされてもよい。
【0051】
上述のような汎用的なコンピュータアーキテクチャに従う構造を有するコンピュータを利用する場合には、本実施の形態に係る機能を提供するためのアプリケーションに加えて、コンピュータの基本的な機能を提供するためのOS(Operating System)がインストールされていてもよい。この場合には、本実施の形態に係るプログラムは、OSの一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の順序およびタイミングで呼出して処理を実行するものであってもよい。すなわち、本実施の形態に係るプログラム自体は、上記のようなモジュールを含んでおらず、OSと協働して処理が実行される場合もある。
【0052】
なお、代替的に、異常検知プログラム131およびシミュレーションプログラム132の実行により提供される機能の一部もしくは全部を専用のハードウェア回路として実装してもよい。
【0053】
<異常検知装置の機能構成>
図4は、実施の形態に係る異常検知装置の機能構成の一例を示す図である。図4に示されるように、異常検知装置100は、シミュレーション実行部11と、収集部12と、算出部13と、検知部14と、選択部15と、分析部16と、を備える。シミュレーション実行部11は、プロセッサ101(図3参照)がシミュレーションプログラム132を実行することにより実現される。収集部12は、通信インターフェイス106と異常検知プログラム131を実行するプロセッサ101とによって実現される。算出部13、検知部14、選択部15および分析部16は、プロセッサ101が異常検知プログラム131を実行することにより実現される。
【0054】
シミュレーション実行部11は、生産ライン2が正常に動作しているときの、単位時間における生産ライン2の状況を示す複数の変数の標準値を取得する取得部として動作する。具体的には、シミュレーション実行部11は、生産ライン2の仮想モデルに生産計画を示す生産計画データを入力することにより、生産ライン2の状況を示す複数の変数の単位時間(例えば5分)ごとの値をシミュレートする。シミュレーション実行部11は、公知の技術(例えば特開2003-44115号公報(特許文献2))を用いてシミュレーションを実行すればよい。
【0055】
図5は、シミュレーション実行部の処理を説明する図である。仮想モデル2Mは、生産ライン2に応じて予め作成される。仮想モデル2Mは、生産計画を示す各種データの入力に応じて、当該生産計画に従って生産ライン2を稼働させたときの生産ライン2の状況を示す複数の変数の単位時間ごとの値を出力する。図5に示されるように、生産ライン2の状況を示す複数の変数は、「切削加工時間」、「装置数」、「出来高(切削加工工程)」、「AGV稼働時間」、「人員数(部品出荷工程)」、「出来高(部品出荷工程)」、「仕掛数」、「人員数(組付工程)」、「出来高(組付工程)」を含む。
【0056】
仮想モデル2Mは、切削加工工程21に対応する第1モデル21Mと、部品出荷工程22に対応する第2モデル22Mと、組付工程23に対応する第3モデル23Mと、を含む。
【0057】
第1モデル21Mは、切削装置21aの仕様に応じて作成される。第1モデル21Mは、以下のようなパラメータによって定義される。
・切削装置21aが正常に動作するときの切削加工速度、
・1つの金属部品を作製するための切削量、
・金属部品の切削が完了してから次の金属部品の切削を開始するまでの準備時間、など。第1モデル21Mは、動作させる切削装置21aの数、稼働予定期間、停止期間(休憩時間)などを示す生産計画データの入力を受けて、単位時間ごとの切削加工工程21の切削加工時間、装置数および出来高の値を出力する。
【0058】
第2モデル22Mは、自動搬送車22bの仕様および部品出荷工程22における作業者の標準作業の仕様に応じて作成される。第2モデル22Mは、以下のようなパラメータによって定義される。
・作業者が標準作業を実施するときの、1つの組み付け部品を梱包から取り出すのに要する時間、
・作業者が組み付け部品を自動搬送車22bにセットするのに要する時間、
・自動搬送車22bが1つの組み付け部品を組付工程23に搬送するのに要する時間、など。
第2モデル22Mは、部品出荷工程22に配置させる作業者の人数、作業予定期間、作業者の休憩時間などを示す生産計画データの入力を受けて、単位時間ごとの部品出荷工程22のAGV稼働時間、人員数および出来高の値を出力する。
【0059】
第3モデル23Mは、作業者による標準作業の仕様に応じて作成される。第3モデル23Mは、例えば作業者による1つの製品を完成させるための標準作業に要する時間などによって定義される。第3モデル23Mは、組付工程23に配置させる作業者の人数、作業予定期間、休憩時間などを示す生産計画データ、第1モデル21Mの出力データおよび第2モデル22Mの出力データの入力を受けて、単位時間ごとの組付工程23の仕掛数、人員数および出来高の値を出力する。
【0060】
仮想モデル2Mは、各工程において装置および作業者が標準作業を実施することを前提としたモデルである。そのため、シミュレーション実行部11は、仮想モデル2Mから出力される複数の変数の単位時間(例えば1分、5分など)ごとの値を、生産ライン2が正常に動作しているときの当該複数の変数の値(標準値)として取得する。
【0061】
図4に示す収集部12は、生産ライン2から、単位時間(例えば1分、5分など)ごとの生産ライン2の現状況を示す複数の変数の実績値を収集する。具体的には、収集部12は、切削加工工程21のタイマー21b,カウンタ21c,カウンタ21dから、「切削加工時間」,「装置数」,「出来高(切削加工工程)」の単位時間ごとの実績値をそれぞれ収集する。収集部12は、部品出荷工程22のタイマー22c,センサ22a,カウンタ22dから、「AGV稼働時間」,「人員数(部品出荷工程)」,「出来高(部品出荷工程)」の単位時間ごとの実績値をそれぞれ収集する。収集部12は、組付工程23のセンサ23a,センサ23b,カウンタ23cから、「仕掛数」,「人員数(組付工程)」,「出来高(組付工程)」の単位時間ごとの実績値をそれぞれ収集する。
【0062】
算出部13は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量として標準SN比を算出する。標準SN比は、「「開発設計段階における品質工学の考え方と活用-試作レス・試験レスによるシステム評価と改善-」、[online]、[2022年1月4日検索]、インターネット<https://foundry.jp/bukai/wp-content/uploads/2012/07/e4806f10b0797ec0932d9317dd92a533.pdf>」(非特許文献3)に基づいて算出される。
【0063】
図6は、算出部の処理を説明する図である。図6には、複数の変数として、「切削加工時間」,「装置数」,「出来高(切削加工工程)」,「AGV稼働時間」,「人員数(部品出荷工程)」,「出来高(部品出荷工程)」,「仕掛数」,「人員数(組付工程)」,「出来高(組付工程)」を用いる例が示される。算出部13は、シミュレーション実行部11によって算出された複数の変数の標準値に対する収集部12によって収集された複数の変数の実績値の標準SN比を単位時間ごとに算出する。算出部13は、算出された標準SN比の推移を示すグラフ30を表示装置70に表示してもよい。これにより、ユーザは、グラフ30を確認することにより、生産ライン2の状況の推移を把握できる。
【0064】
図4に示す検知部14は、算出部13によって算出された標準SN比を用いて、生産ライン2に異常が発生していることを検知する。標準SN比は、複数の変数についての標準値と実績値との乖離度が大きいほど小さくなる。そのため、検知部14は、標準SN比が基準範囲外(つまり閾値TH未満)であることに応じて、生産ライン2に異常が発生していることを検知する。例えば、図6に示すグラフ30の場合、検知部14は、標準SN比が閾値TH未満となったタイミングTにおいて、生産ライン2に異常が発生していることを検知する。検知部14は、生産ライン2に異常が発生していることを検知したことに応じて、エラー通知を表示装置70に表示してもよい。これにより、ユーザは、生産ライン2に異常が発生していることを確実に把握できる。
【0065】
図4に示す選択部15は、検知部14が異常の発生を検知したことに応じて、複数の変数の中から、標準SN比への影響度の相対的に大きい有効変数を選択する。具体的には、選択部15は、複数の変数を説明変数とし、標準SN比を目的変数とするT法推定モデルの推定精度の向上に有効な変数を有効変数として選択する。これにより、ユーザは、有効変数を生産ライン2の異常の原因候補として選択でき、生産ライン2の異常の解消を早期に実行できる。なお、選択部15は、複数の有効変数を選択してもよい。
【0066】
T法は、統計学者の田口玄一氏によって提供された多変量解析手法の1つであり、複数の説明変数の値から1つの目的変数の値を推定する手法である(非特許文献1参照)。
【0067】
選択部15は、単位時間ごとの複数の変数の実績値と標準SN比の値とを示すデータセットに対してT法のデータ処理を実行することにより、T法推定モデルを生成する。T法のデータ処理は、説明変数ごとに単回帰を行ない、説明変数ごとに加重平均を行なうことにより目的変数の推定値を算出するT法推定モデルを生成する。T法のデータ処理によって得られる推定モデルは、以下の式(1)によって表される。
【0068】
【数1】
【0069】
式(1)において、Xijは、i番目の単位時間におけるj番目の説明変数の規準化処理後の値である。規準化処理は、データセットによって示される変数の値の平均値を差し引く処理である。ηjは、j番目の説明変数のSN比を示す。SN比ηjは、j番目の説明変数の値と目的変数の値との間の線形性を示し、目的変数の値の推定精度を表す。βjは、単回帰の比例定数を示す。Miは、i番目の単位時間の目的変数の規準化処理後の推定値である。
【0070】
例えば、選択部15は、2水準系の直交表を用いて、目的変数の推定精度の向上に有効な有効変数を複数の変数から選択する。選択部15は、例えば非特許文献2に記載の方法を用いて有効変数を選択する。2水準系の直交表を用いた有効変数の選択(「項目選択」とも称される。)により、説明変数(「項目」とも称される。)ごとに、目的変数の推定精度の向上に効果のある説明変数が選択されるとともに、目的変数の推定精度に悪影響のある(推定精度を下げる)説明変数を除外することができる。さらに、2水準系の直交表を用いることにより、項目間で相互作用がある場合の影響を考慮できる。具体的には、非特許文献2に記載の方法によれば、複数の説明変数(項目)の各々について使用するか使用しないかの2水準のいずれかが与えられた直交表が作成され、直交表の各行について総合SN比が算出される。選択部15は、各項目を使用した場合および使用しない場合の総合SN比に基づいて、当該項目の目的変数の推定効果および目的変数の推定に対する悪影響の有無を判断する。選択部15は、判断結果に基づいて、複数の変数から有効変数を選択する。
【0071】
あるいは、選択部15は、2水準系の直交表を用いることなく、複数の変数のうちの2以上の変数の組み合わせを示す複数のパターンを生成してもよい。そして、選択部15は、各パターンによって示される2以上の変数の実績値を説明変数とし、標準SN比を目的変数とするT法推定モデルを生成し、生成したT法推定モデルの総合SN比の大小に基づいて、有効変数を選択してもよい。例えば、選択部15は、総合SN比が最大となるパターンに含まれる変数を有効変数として選択する。
【0072】
図7は、有効変数の選択結果の一例を示す図である。図7に示す例では、「AGC稼働時間」、「装置数」、「人員数(部品出荷)」および「加工時間」が有効変数として選択されている。なお、図7の縦軸は、複数の変数の全てを用いたT法推定モデルにおける各変数のSN比ηjを示す。上述したように、各変数のSN比ηjは、目的変数である標準SN比への影響度の大きさを表す。
【0073】
図4に示す分析部16は、単位時間ごとの有効変数の実績値と標準SN比とを用いた主成分分析(Principal Component Analysis(PCA))を行なう。
【0074】
図8は、分析部による分析結果の一例を示す図である。図8には、単位時間ごとの「AGC稼働時間」、「装置数」、「人員数(部品出荷)」、「加工時間」および「標準SN比」に対する主成分分析の結果が示される。
【0075】
分析部16は、標準SN比の分散を最大化する2つの主成分を選定する。具体的には、分析部16は、寄与率が最大となる第1主成分と、寄与率が2番目に大きい第2主成分とを選択する。
【0076】
あるいは、分析部16は、主成分分析により得られる複数の主成分のうちの2つの主成分の組み合わせごとの散布図を表示装置70に表示し、ユーザから指定された散布図に対応する組み合わせの2つの主成分を選定してもよい。散布図において、単位時間ごとの「AGC稼働時間」、「装置数」、「人員数(部品出荷)」、「加工時間」および「標準SN比」の値から得られる2つの主成分の各々の主成分得点に対応する点がプロットされる。分析部16は、散布図において、各点の表示形式を当該点に対応する標準SN比の値に応じて異ならせてもよい。例えば、分析部16は、標準SN比の値が第1範囲(低範囲)内である点を黒色で表示し、標準SN比の値が第1範囲よりも大きい第2範囲(中範囲)内である点を灰色で表示し、標準SN比の値が第2範囲よりも大きい第3範囲(高範囲)内である点を白色で表示する。これにより、ユーザは、組み合わせごとの散布図を確認し、標準SN比の大小が最も分離されている散布図を選択すればよい。
【0077】
図8に示されるように、分析部16は、選定した2つの主成分のバイプロット40を表示装置70に表示する。バイプロット40では、主成分得点と主成分負荷量とが重ねて表示される。単位時間ごとのデータから得られる2つの主成分の各々の主成分得点に対応する点の表示形式は、上述したように、標準SN比の値に応じて異なる。これにより、選定された2つの主成分を用いることにより、標準SN比の大小が分離されていることが理解される。
【0078】
主成分負荷量は、変数の値と主成分得点との相関関係を示す。主成分負荷量が大きいほど、主成分と変数とが強く相関していることを表す。図8に示されるように、各変数についての主成分負荷量は、ベクトルによって表される。ベクトルv0は、「標準SN比」の主成分負荷量を示す。ベクトルv1は、「AGC稼働時間」の主成分負荷量を示す。ベクトルv2は、「装置数」の主成分負荷量を示す。ベクトルv3は、「人員数(部品出荷)」の主成分負荷量を示す。ベクトルv4は、「切削加工時間」の主成分負荷量を示す。
【0079】
ユーザは、バイプロット40を確認することにより、標準SN比の低下に影響を与えている変数を把握できる。すなわち、ユーザは、ベクトルv1~v4のうち、ベクトルv0と平行な成分の大きいベクトルに対応する変数を、標準SN比の低下に影響を与えている変数として特定できる。例えば、図8に示すバイプロット40において、ユーザは、ベクトルv0の向きと直交しておらず、かつ、大きさが大きいベクトルv1,v4に対応する変数「AGV稼働時間」,「切削加工時間」を、標準SN比の低下に影響を与えている変数として特定できる。
【0080】
標準SN比の低下に影響を与えている変数は、生産ライン2の異常の原因と考えられる。そのため、ユーザは、標準SN比の低下に影響を与えている変数を調整することにより、生産ライン2の異常を解消できる。
【0081】
なお、分析部16は、有効変数と標準SN比との各々における、選定された2つの主成分に対する主成分負荷量に基づいて、有効変数の標準SN比への影響度を特定し、特定した影響度を表示装置70に表示してもよい。具体的には、分析部16は、複数の有効変数の各々について、当該有効変数の主成分負荷量を示すベクトル(図8のv1~v4)と「標準SN比」の主成分負荷量を示すベクトル(図8のベクトルv0)との内積の絶対値を、標準SN比への影響度として算出する。これにより、ユーザは、表示装置70に表示された影響度を確認することにより、標準SN比の低下に影響を与えている変数を容易に特定できる。
【0082】
<異常検知装置の処理の流れ>
図9は、異常検知装置の処理の流れの一例を示すフローチャートである。図9に示されるように、まず、異常検知装置100のプロセッサ101は、生産ライン2が正常に動作しているときの、生産ライン2の状況を示す複数の変数の単位時間ごとの標準値を取得する(ステップS1)。本実施の形態では、プロセッサ101は、生産計画データを仮想モデル2Mに入力することにより、仮想モデル2Mから出力される単位時間ごとの複数の変数の値を上記の標準値として取得する。
【0083】
次に、プロセッサ101は、生産ライン2から、単位時間ごとの複数の変数の実績値を収集する(ステップS2)。プロセッサ101は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す標準SN比を算出する(ステップS3)。プロセッサ101は、標準SN比の推移を示すグラフ30を表示装置70に表示する(ステップS4)。
【0084】
次に、プロセッサ101は、標準SN比が基準範囲外(つまり閾値TH未満)であるか否かを判断する(ステップS5)。標準SN比が基準範囲内(つまり閾値TH以上)である場合(ステップS5でNO)、処理は、ステップS2に戻る。
【0085】
標準SN比が基準範囲外である場合(ステップS5でYES)、プロセッサ101は、生産ライン2に異常が発生していることを通知する(ステップS6)。例えば、プロセッサ101は、エラー通知画面を表示装置70に表示する。
【0086】
次に、プロセッサ101は、複数の変数の実績値を説明変数とし、標準SN比を目的変数とするT法推定モデルの推定精度の向上に有効な有効変数を複数の変数から選択する(ステップS7)。プロセッサ101は、選択結果を示す画面を表示装置70に表示してもよい。有効変数は、標準SN比の推定精度に重要な項目である。そのため、ユーザは、選択結果を確認することにより、有効変数を、生産ライン2の異常の原因候補として特定できる。その結果、ユーザは、有効変数を調整するように生産ライン2のメンテナンスを実行し、生産計画を見直すことができる。
【0087】
次に、プロセッサ101は、単位時間ごとの有効変数の実績値と標準SN比とを用いた主成分分析を行なう(ステップS8)。プロセッサ101は、主成分分析の結果を表示装置70に表示する(ステップS9)。例えば、プロセッサ101は、図8に示すバイプロット40を表示装置70に表示する。あるいは、プロセッサ101は、有効変数と標準SN比との各々における主成分負荷量に基づいて、有効変数の標準SN比への影響度を特定し、特定した影響度を表示装置70に表示してもよい。これにより、ユーザは、複数の有効変数のうち、標準SN比への影響度の高い変数を絞り込むことができる。その結果、ユーザは、絞り込まれた変数を調整するように生産ライン2のメンテナンスを実行できる。例えば、ユーザは、切削加工工程21の切削装置21aのメンテナンスを実行する。あるいは、ユーザは、生産計画を見直してもよい。例えば、ユーザは、組付工程23に配置される作業者の数の調整、切削加工工程21において動作する切削装置21aの数の調整などを実施できる。
【0088】
次に、プロセッサ101は、生産計画の見直しが行なわれたか否かを判断する(ステップS10)。具体的には、プロセッサ101は、新たな生産計画データが入力されたことに応じて、生産計画の見直しが行なわれたと判断する。
【0089】
生産計画の見直しが行なわれた場合(ステップS10でYES)、処理は、ステップS1に戻る。その結果、生産ラインの状況を示す複数の変数の単位時間ごとの標準値が更新される。生産計画の見直しが行なわれていない場合(ステップS10でNO)、処理は、ステップS2に戻る。
【0090】
<変形例1>
図10は、変形例1に係る異常検知装置の機能構成を示す図である。図10に示される異常検知装置100Aは、異常検知装置100と同様のハードウェア構成(図3参照)を備える。図10に示されるように、異常検知装置100Aは、図4に示す異常検知装置100と比較して、シミュレーション実行部11の代わりにデータセット選択部17および実績データベース18を備える点で相違する。データセット選択部17は、プロセッサ101が異常検知プログラム131を実行することにより実現される。実績データベース18は、ストレージ103によって実現される。
【0091】
実績データベース18は、過去に生産ライン2が正常に動作していたときの複数の変数の単位時間ごとの値を示す1以上のデータセットを含む。
【0092】
生産ライン2の動作条件が可変である場合、各データセットには、生産ライン2の動作条件を示す情報が付加されていてもよい。動作条件は、切削加工工程21において動作している切削装置21aの個数、部品出荷工程22に配置されている作業者の数、組付工程23に配置されている作業者の数などを含む。
【0093】
データセット選択部17は、生産ライン2が正常に動作しているときの、単位時間における生産ライン2の状況を示す複数の変数の標準値を取得する取得部として動作する。具体的には、データセット選択部17は、ユーザの指示に応じて、実績データベース18の中から1以上のデータセットを選択する。例えば、ユーザは、実績データベース18の中から、生産ライン2が理想的な状態で動作しているときの1以上のデータセットを指定すればよい。あるいは、各データセットに動作条件を示す情報が付加されている場合、ユーザは、生産計画と一致する動作条件を示す情報が付加されている1以上のデータセットを指定する。
【0094】
データセット選択部17は、選択した1以上のデータセットによって示される、単位時間ごとの複数の変数の値を標準値として取得する。1つのデータセットが選択された場合、データセット選択部17は、当該データセットによって示される値を標準値として取得する。複数のデータセットが選択された場合、データセット選択部17は、複数の変数の各々について、当該複数のデータセットによって示される単位時間ごとの値の代表値(例えば平均値、中央値など)を標準値として取得する。
【0095】
変形例1によれば、データセット選択部17は、過去に生産ライン2が正常に動作していたときの複数の変数の単位時間ごとの値を標準値として取得する。これにより、算出部13によって算出される標準SN比は、正常に動作していたときの生産ライン2の状況と現状況との乖離度を表す。従って、標準SN比が閾値未満であることは、生産ライン2に何らかの異常が発生していることを意味する。その結果、ユーザは、検知部14の検知結果を確認することにより、生産ラインの異常の有無を簡易に確認できる。
【0096】
変形例1における異常検知装置100Aの処理の流れは、図9に示すフローチャートと同様である。なお、データセットに動作条件を示す情報が付加されていない場合、ステップS10が省略され、ステップS9の後に処理がステップS1に戻される。
【0097】
<変形例2>
図1に示す実施の形態において、生産現場の監視対象は、生産ライン2である。しかしながら、監視対象は、生産ライン2に限定されない。例えば、監視対象は、製造装置であってもよい。さらに、図1に示す実施の形態に係る異常検知装置100は、単位時間ごとに、複数の変数の標準値に対する複数の変数の実績値の乖離度を表す統計量を算出するものとした。しかしながら、異常検知装置100は、単位区間ごとに統計量を算出してもよい。単位区間は、例えば、製造装置によって対象動作が実行されている期間である。
【0098】
(製造装置の第1例)
図11は、監視対象の製造装置の一例を示す図である。図11には、監視対象の製造装置として、射出成形機3が示される。射出成形機3は、成形型31と、シリンダー32と、スクリュー33と、ホッパー34と、スクリュー駆動装置35と、センサ群36と、を含む。
【0099】
シリンダー32は、円筒状の部材であり、樹脂が供給される内部空間を有している。ホッパー34は、シリンダー32の内部空間に樹脂を供給する。シリンダー32の内部空間には、スクリュー33が挿入される。スクリュー33の基端部には、スクリュー駆動装置35が接続されている。スクリュー33は、スクリュー駆動装置35による制御によって回転するとともに、シリンダー32の長手方向に移動可能である。センサ群36は、射出成形機3の状況を示す各種のパラメータの値を計測する。
【0100】
射出成形機3は、射出成形動作を繰り返し実行する。射出成形動作は、図11の上部の状態から下部の状態までスクリュー33を移動させることにより、シリンダー32の内部空間に収容された樹脂を成形型31に射出する動作である。
【0101】
図12は、射出成形動作が実行される期間におけるパラメータの値の推移を示す図である。以下、射出成形動作が実行される期間は、「射出成形期間」と称される。図12に示すグラフにおいて、横軸は、射出成形動作の開始時からの経過時間を示し、縦軸は、センサ群36によって計測される各種のパラメータの値を示す。図12に示されるように、センサ群36は、射出成形機3の状況を示すパラメータとして、スクリュー位置、射出圧力および射出速度を計測する。スクリュー位置は、例えば、シリンダー32の先端とスクリュー33の先端との距離D(図11参照)によって表される。図12において、線37は、射出成形期間におけるスクリュー位置の推移を示す。線38は、射出圧力の推移を示す。線39は、射出速度の推移を示す。
【0102】
監視対象が射出成形機3である場合、変形例2に係る異常検知装置は、射出成形機3が正常に動作しているときの、射出成形期間における射出成形機3の状況を示す複数の変数の標準値を取得する。例えば、図4に示すシミュレーション実行部11は、射出成形機3の仮想モデルを用いて、生産計画に従って射出成形機3を動作させたときの複数の変数の値のシミュレーションを実行し、シミュレーションにより得られる射出成形動作における複数の変数の値を標準値として取得する。あるいは、図10に示すデータセット選択部17は、過去に射出成形機3が正常に動作していたときの射出成形期間における複数の変数の値を標準値として取得する。複数の変数は、例えば、射出成形期間の開始からの経過時間がt1,t2,・・・,tnの各々におけるスクリュー位置、射出圧力および射出速度を含む。この場合、複数の変数は、3×n個の変数を含む。
【0103】
監視対象が射出成形機3である場合、収集部12は、射出成形期間ごとに、射出成形機3の状況を示す複数の変数の実績値を取得する。収集部12は、センサ群36から複数の変数の実績値を取得してもよいし、射出成形機3を制御する図示しない制御装置(例えばPLC)から複数の変数の実績値を取得してもよい。
【0104】
図13は、射出成形機3の状況を示す複数の変数の標準値および実績値を示す図である。線37aは、射出成形期間の開始からの経過時間t1,t2,・・・,tnのスクリュー位置(n個の変数)の標準値を表す。線38aは、経過時間t1,t2,・・・,tnの射出圧力(n個の変数)の標準値を表す。線39aは、経過時間t1,t2,・・・,tnの射出速度(n個の変数)の標準値を表す。線37bは、射出成形期間の開始からの経過時間t1,t2,・・・,tnのスクリュー位置(n個の変数)の実績値を表す。線38bは、経過時間t1,t2,・・・,tnの射出圧力(n個の変数)の実績値を表す。線39bは、経過時間t1,t2,・・・,tnの射出速度(n個の変数)の実績値を表す。
【0105】
算出部13、検知部14、選択部15、および分析部16は、図13に示す3×n個の変数の標準値および実績値を用いて、上記の実施の形態において説明した処理を行なう。例えば、図13に示されるように、算出部13は、3×n個の変数の標準値に対する3×n個の変数の実績値の乖離度を表す統計量として標準SN比を算出する。
【0106】
図14は、射出成形動作ごとに算出された統計量の推移を示す図である。図14には、射出成形動作の番号を横軸とし、算出部13によって算出された統計量(標準SN比)を縦軸とするグラフが示される。グラフ中の各点に対応する7桁の数字は、射出成形動作によって製造された製品の番号を表す。標準SN比が基準範囲外(つまり閾値TH未満)であった射出成形動作によって製造された製品には、不良品が多く確認された。このことから、ユーザは、検知部14によるエラー通知に基づいて、不良品の発生の有無を確認できる。
【0107】
図15は、射出成形期間ごとの有効変数の実績値と標準SN比とを用いた主成分分析の結果を示す図である。図15には、分析部16によって選定された2つの主成分PC1,PC2のバイプロットが示される。図15に示すバイプロットにおいて、射出成形動作ごとの、有効変数の実績値から得られる2つの主成分の各々の主成分得点に対応する点がプロットされる。標準SN比が基準範囲内(つまり閾値TH以上)となる射出成形動作に対応する点は、枠線50a内に集中している。これに対し、標準SN比が基準範囲外(つまり閾値TH未満)となる射出成形動作に対応する点は、枠線50b内に集中している。このことから、ユーザは、図15に示すバイプロットを確認することにより、異常が発生していた射出成形動作を容易に特定することができる。
【0108】
さらに、ユーザは、図15に示すバイプロットを確認することにより、異常の発生メカニズムを考察できる。図15に示すバイプロットにおいて、変数「Speed_time_315(経過時間t315における射出速度)」,「Pressure_time_315(経過時間t315における射出圧力)」,「Speed_time_316(経過時間t316における射出速度)」,「Speed_time_317(経過時間t317における射出速度)」,「Cylinder_time_318(経過時間t318におけるスクリュー位置)」にそれぞれ対応するベクトルv10,v11,v12,v13,v14が他の変数に対応するベクトルとは異なる方向を向いている。そのため、ユーザは、経過時間t315~t318付近の射出速度およびスクリュー位置が射出成形機3の異常に大きく寄与していることを把握できる。
【0109】
(製造装置の第2例)
図16は、監視対象の製造装置の別の例を示す図である。図16には、監視対象の製造装置として、実装機4が示される。実装機4は、チャック44と、駆動装置45と、センサ群46と、を含む。
【0110】
チャック44は、バンプ43が付着されたチップ42を保持する。駆動装置45は、超音波の発生制御、チャック44の昇降移動、および、チャック44によるチップ42の保持力の制御を行なう。センサ群46は、実装機4の状況を示す各種のパラメータの値を計測する。
【0111】
図16に示されるように、駆動装置45は、チップ42を保持しているチャック44を下降させる。バンプ43が基板41に接触すると、実装機4は、バンプ43と基板41とを接合させる接合動作を実行する。具体的には、駆動装置45は、超音波を発生させてバンプ43と基板41との接合を促すとともに、荷重をかけながらチャック44をさらに下降させる。バンプ43が所定量まで変形すると、駆動装置45は、超音波の発生を停止するとともに、チャック44によるチップ42の保持力を低下させる。これにより、接合動作が終了する。その後、駆動装置45は、チャック44を上昇させる。実装機4は、チャック44が新たなチップ42を保持するたびに、上記の接合動作を実行する。
【0112】
センサ群46は、実装機4の状況を示すパラメータとして、駆動装置45に印加される電流および電圧と、バンプ43の変形量とを計測する。バンプ43の変形量は、チップ42と基板41との距離によって表される。
【0113】
監視対象が実装機4である場合、変形例2に係る異常検知装置は、実装機4が正常に動作しているときの、接合動作が実行される期間(以下、「接合動作期間」と称する)における実装機4の状況を示す複数の変数の標準値を取得する。例えば、図4に示すシミュレーション実行部11は、実装機4の仮想モデルを用いて、生産計画に従って実装機4を動作させたときの複数の変数の値のシミュレーションを実行し、シミュレーションにより得られる接合動作における複数の変数の値を標準値として取得する。あるいは、図10に示すデータセット選択部17は、過去に実装機4が正常に動作していたときの接合動作期間における複数の変数の値を標準値として取得する。複数の変数は、例えば、接合動作期間の開始からの経過時間がt1,t2,・・・,tmの各々における電圧、電流および変形量を含む。この場合、複数の変数は、3×m個の変数を含む。
【0114】
監視対象が実装機4である場合、収集部12は、接合動作期間ごとに、実装機4の状況を示す複数の変数の実績値を取得する。収集部12は、センサ群46から複数の変数の実績値を取得してもよいし、実装機4を制御する図示しない制御装置(例えばPLC)から複数の変数の実績値を取得してもよい。
【0115】
算出部13、検知部14、選択部15、および分析部16は、3×m個の変数の標準値および実績値を用いて、上記の実施の形態において説明した処理を行なう。例えば、算出部13は、3×m個の変数の標準値に対する3×m個の変数の実績値の乖離度を表す統計量として標準SN比を算出する。
【0116】
図17は、接合動作ごとに算出された統計量の推移を示す図である。図17には、接合動作の番号(実装No.)を横軸とし、算出部13によって算出された統計量(標準SN比)を縦軸とするグラフが示される。標準SN比が基準範囲外(つまり閾値TH未満)であった接合動作によって製造された製品には、不良品が多く確認された。このことから、ユーザは、検知部14によるエラー通知に基づいて、不良品の発生の有無を確認できる。
【0117】
(単位区間の別の例)
上記の例では、単位区間は、製造装置の動作(射出成形動作または接合動作)が実行される期間とした。しかしながら、単位区間は、これに限定されない。例えば、単位区間は、製造装置の物理量が取りうる範囲に含まれる複数の区間の各々であってもよい。
【0118】
例えば、製造装置が図11に示す射出成形機3である場合、スクリュー位置は、図11の上部に示すスクリュー33の位置(距離D1で表される)から図11の下部に示すスクリュー33の位置(距離D2で表される)までの範囲を取りうる。この場合、距離D1~距離D2までの範囲に含まれる複数の区間の各々が単位区間として設定される。例えば、距離DがD1~D3となる区間と、距離DがD3~D2となる区間とが単位区間として設定される。
【0119】
あるいは、生産現場に設置される引張試験機または圧縮試験機から得られる物理量が特定の範囲になる区間が単位区間として設定されてもよい。例えば、応力-ひずみ線図で見られるひずみ量が所定範囲となる区間が単位区間として設定される。あるいは、生産現場において加熱された金属の冷却速度と硬度との関係において、冷却速度が所定範囲となる区間が単位区間として設定されてもよい。
【0120】
§3 付記
以上のように、本実施の形態は以下のような開示を含む。
【0121】
(構成1)
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得する取得部(101,11,17)と、
前記単位時間ごとの前記複数の変数の実績値を収集する収集部(101,12)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部(101,13)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知する検知部(101,14)と、を備える異常検知装置(100,100A)。
【0122】
(構成2)
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2、3,4)の状況を示す複数の変数の標準値を取得する取得部(101,11,17)と、
前記単位区間における前記複数の変数の実績値を収集する収集部(101,12)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出する算出部(101,13)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知する検知部(101,14)と、を備える異常検知装置(100,100A)。
【0123】
(構成3)
前記複数の変数の中から、前記統計量への影響度の相対的に大きい有効変数を選択する選択部(101,15)をさらに備える、構成1または2に記載の異常検知装置。
【0124】
(構成4)
前記選択部(101,15)は、前記複数の変数を説明変数とし、前記統計量を目的変数とするT法推定モデルの推定精度の向上に有効な変数を前記有効変数として選択する、構成3に記載の異常検知装置(100,100A)。
【0125】
(構成5)
前記単位時間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部(101,16)をさらに備える、構成3または4に記載の異常検知装置(100,100A)。
【0126】
(構成6)
前記単位区間ごとの前記有効変数の前記実績値と前記統計量とを用いた主成分分析を行なう分析部(101,16)をさらに備える、構成3または4に記載の異常検知装置(100,100A)。
【0127】
(構成7)
前記分析部(101,16)は、
前記統計量の分散を最大化する2つの主成分を選定し、
前記有効変数と前記統計量との各々における、前記2つの主成分に対する主成分負荷量に基づいて、前記有効変数の前記標準SN比への影響度を特定する、構成5または6に記載の異常検知装置(100,100A)。
【0128】
(構成8)
前記取得部(101,11)は、
前記生産ライン(2)の仮想モデル(2M)を用いて、生産計画に従って前記生産ライン(2)を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位時間ごとの値を前記標準値として取得する、構成1および3から7のいずれかに記載の異常検知装置(100)。
【0129】
(構成9)
前記取得部(101,11)は、
前記監視対象(2,3,4)の仮想モデル(2M)を用いて、生産計画に従って前記監視対象(2,3,4)を動作させたときの前記複数の変数の値のシミュレーションを実行し、
前記シミュレーションにより得られる前記単位区間の値を前記標準値として取得する、構成2から7のいずれかに記載の異常検知装置(100)。
【0130】
(構成10)
前記取得部(101,17)は、過去に前記生産ライン(2)が正常に動作していたときの前記複数の変数の前記単位時間ごとの値を前記標準値として取得する、構成1および3から7のいずれかに記載の異常検知装置(100A)。
【0131】
(構成11)
前記取得部(101,17)は、過去に前記監視対象(2,3,4)が正常に動作していたときの前記単位区間における前記複数の変数の値を前記標準値として取得する、構成2から7のいずれかに記載の異常検知装置(100A)。
【0132】
(構成12)
前記統計量は標準SN比である、構成1から11のいずれかに記載の異常検知装置(100,100A)。
【0133】
(構成13)
前記監視対象は生産ライン(2)であり、
前記単位区間は単位時間である、構成1および3から12のいずれかに記載の異常検知装置(100,100A)。
【0134】
(構成14)
前記監視対象は、製造装置(3,4)を含む、構成2から12のいずれかに記載の異常検知装置(100,100A)。
【0135】
(構成15)
前記製造装置(3,4)は、対象動作を繰り返し実行し、
前記単位区間は、前記対象動作が実行されている期間である、構成14に記載の異常検知装置(100,100A)。
【0136】
(構成16)
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得するステップ(S1)と、
前記単位時間ごとの前記複数の変数の実績値を収集するステップ(S2)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知するステップ(S6)と、を備える異常検知方法。
【0137】
(構成17)
異常検知方法をコンピュータ(101)に実行させるプログラム(131,132)であって、
前記異常検知方法は、
生産ライン(2)が正常に動作しているときの、前記生産ライン(2)の状況を示す複数の変数の単位時間ごとの標準値を取得するステップ(S1)と、
前記単位時間ごとの前記複数の変数の実績値を収集するステップ(S2)と、
前記単位時間ごとに、前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記生産ラインに異常が発生していることを検知するステップ(S6)と、を含む、プログラム(131,132)。
【0138】
(構成18)
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2,3,4)の状況を示す複数の変数の標準値を取得するステップ(S1)と、
前記単位区間における前記複数の変数の実績値を収集するステップ(S2)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップ(S6)と、を備える異常検知方法。
【0139】
(構成19)
異常検知方法をコンピュータに実行させるプログラムであって、
前記異常検知方法は、
生産現場における監視対象(2,3,4)が正常に動作しているときの、単位区間における前記監視対象(2,3,4)の状況を示す複数の変数の標準値を取得するステップ(S1)と、
前記単位区間における前記複数の変数の実績値を収集するステップ(S2)と、
前記複数の変数の前記標準値に対する前記複数の変数の実績値の乖離度を表す統計量を算出するステップ(S3)と、
前記統計量が基準範囲外であることに応じて、前記監視対象に異常が発生していることを検知するステップ(S6)と、を含む、プログラム(131,132)。
【0140】
本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0141】
1 システム、2 生産ライン、2M 仮想モデル、3 射出成形機、4 実装機、11 シミュレーション実行部、12 収集部、13 算出部、14 検知部、15 選択部、16 分析部、17 データセット選択部、18 実績データベース、21 切削加工工程、21M 第1モデル、21a 切削装置、21b,22c タイマー、21c,21d,22d,23c カウンタ、22 部品出荷工程、22M 第2モデル、22a,23a,23b センサ、22b 自動搬送車、23 組付工程、23M 第3モデル、24 製品出荷工程、30 グラフ、31 成形型、32 シリンダー、33 スクリュー、34 ホッパー、35 スクリュー駆動装置、36,46 センサ群、40 バイプロット、41 基板、42 チップ、43 バンプ、44 チャック、45 駆動装置、70 表示装置、75 入力装置、100,100A 異常検知装置、101 プロセッサ、102 メモリ、103 ストレージ、104 表示コントローラ、105 入力インターフェイス、106 通信インターフェイス、131 異常検知プログラム、132 シミュレーションプログラム。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17