(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023178831
(43)【公開日】2023-12-18
(54)【発明の名称】高分子材料のシミュレーション方法
(51)【国際特許分類】
G06F 30/10 20200101AFI20231211BHJP
G16C 60/00 20190101ALI20231211BHJP
G01N 33/44 20060101ALI20231211BHJP
G06F 113/26 20200101ALN20231211BHJP
【FI】
G06F30/10 200
G16C60/00
G01N33/44
G06F113:26
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022091765
(22)【出願日】2022-06-06
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.キュラストメーター
(71)【出願人】
【識別番号】000183233
【氏名又は名称】住友ゴム工業株式会社
(74)【代理人】
【識別番号】100104134
【弁理士】
【氏名又は名称】住友 慎太郎
(74)【代理人】
【識別番号】100156225
【弁理士】
【氏名又は名称】浦 重剛
(74)【代理人】
【識別番号】100168549
【弁理士】
【氏名又は名称】苗村 潤
(74)【代理人】
【識別番号】100200403
【弁理士】
【氏名又は名称】石原 幸信
(74)【代理人】
【識別番号】100206586
【弁理士】
【氏名又は名称】市田 哲
(72)【発明者】
【氏名】安藤 寛太
【テーマコード(参考)】
5B146
【Fターム(参考)】
5B146AA10
5B146DJ11
(57)【要約】
【課題】 互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算することが可能となる。
【解決手段】 高分子材料モデルのシミュレーション方法である。この方法は、第1ポリマーモデル及び第2ポリマーモデルを相分離構造として含む高分子材料モデルを入力する工程S11を含む。さらに、コンピュータが、第1ポリマーモデル及び第2ポリマーモデルの第1濃度分布を計算する第1工程S1と、高分子材料モデルを複数の領域に仮想区分する第2工程S2と、複数の領域それぞれの第1ポリマーモデル及び第2ポリマーモデルの第2濃度分布を計算する第3工程S3と、第2濃度分布に基づいて、複数の領域のうち少なくとも1つの領域の物性を計算する第4工程S4と、複数の領域のうち少なくとも1つの領域の物性から、高分子材料の系全体の物性を計算する第5工程S5とを実行する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算するためのシミュレーション方法であって、
前記高分子材料に基づいて、第1ポリマーモデル及び第2ポリマーモデルを相分離構造として含む数値計算用の高分子材料モデルをコンピュータに入力する工程を含み、
前記コンピュータが、
前記高分子材料モデルの系全体の前記第1ポリマーモデル及び前記第2ポリマーモデルの濃度分布である第1濃度分布を計算する第1工程と、
前記高分子材料モデルを複数の領域に仮想区分する第2工程と、
前記第1濃度分布に基づいて、前記複数の領域それぞれの前記第1ポリマーモデル及び前記第2ポリマーモデルの濃度分布である第2濃度分布を計算する第3工程と、
前記複数の領域それぞれの前記第2濃度分布に基づいて、前記複数の領域のうち少なくとも1つの領域の物性を計算する第4工程と、
前記複数の領域のうち少なくとも1つの領域の物性から、前記高分子材料の系全体の物性を計算する第5工程とを実行する、
高分子材料のシミュレーション方法。
【請求項2】
前記第1工程は、前記高分子材料の自己無撞着場法、高分子の密度汎関数法、一般化乱雑位相近似法、粗視化分子動力学法、及び、散逸粒子動力学法の少なくとも1つに基づいて、前記第1濃度分布を計算する工程を含む、請求項1に記載の高分子材料のシミュレーション方法。
【請求項3】
前記第4工程は、分子動力学法、粗視化分子動力学法、及び、予め定められた経験式の少なくとも1つに基づいて、前記領域の物性を計算する工程を含む、請求項1又は2に記載の高分子材料のシミュレーション方法。
【請求項4】
前記経験式は、FOX式、KWEI式、及び、GORDON-TAYLOR式の少なくとも1つを含む、請求項3に記載の高分子材料のシミュレーション方法。
【請求項5】
前記第5工程は、前記複数の領域のそれぞれの物性を用いて、前記物性のヒストグラムを作成する工程と、
前記ヒストグラムを平滑化する工程と、
平滑化された前記ヒストグラムの物性の最大値を、前記高分子材料の系全体の物性として特定する工程とを含む、請求項1又は2に記載の高分子材料のシミュレーション方法。
【請求項6】
前記第5工程は、前記複数の領域のそれぞれの物性を用いて、有限要素法の解析に必要な入力条件を設定する工程と、
前記入力条件に基づく前記有限要素法の解析を実行して、前記高分子材料の系全体の物性を特定する工程とを含む、請求項1又は2に記載の高分子材料のシミュレーション方法。
【請求項7】
前記高分子材料は、前記第1ポリマー及び前記第2ポリマーとともに添加される添加剤をさらに含み、
前記高分子材料モデルは、添加剤モデルをさらに含み、
前記第1濃度分布は、前記高分子材料モデルの系全体の前記第1ポリマーモデル、前記第2ポリマーモデル及び前記添加剤モデルの濃度分布であり、
前記第2濃度分布は、前記複数の領域それぞれの前記第1ポリマーモデル、前記第2ポリマーモデル及び添加材モデルの濃度分布である、請求項1又は2に記載の高分子材料のシミュレーション方法。
【請求項8】
前記物性は、動的粘弾性特性、ガラス転移温度、引張特性、粘度、加硫特性及び硬度の少なくとも1つを含む、請求項1又は2に記載の高分子材料のシミュレーション方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高分子材料のシミュレーション方法に関する。
【背景技術】
【0002】
2種以上のポリマーを含む高分子材料(ポリマーブレンド)の物性を計算する方法として、分子動力学法、粗視化分子動力学法、その他各種経験式を用いた方法がある(例えば、下記特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
例えば、複数のポリマーが互いに非相溶であるポリマーブレンドの場合、ポリマーブレンドの系全体の物性は、複数のポリマーの濃度分布に大きな影響を受けると考えられる。一方、上記の物性の計算方法は、いずれも、複数のポリマーの濃度分布がポリマーブレンドの系全体に亘ってほぼ均一である状態を仮定したものであることから、非相溶性のポリマーブレンドの物性を予測することは困難であった。
【0005】
本発明は、以上のような実状に鑑み案出されたもので、互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算することが可能なシミュレーション方法を提供することを主たる目的としている。
【課題を解決するための手段】
【0006】
本発明は、互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算するためのシミュレーション方法であって、前記高分子材料に基づいて、第1ポリマーモデル及び第2ポリマーモデルを相分離構造として含む数値計算用の高分子材料モデルをコンピュータに入力する工程を含み、前記コンピュータが、前記高分子材料モデルの系全体の前記第1ポリマーモデル及び前記第2ポリマーモデルの濃度分布である第1濃度分布を計算する第1工程と、前記高分子材料モデルを複数の領域に仮想区分する第2工程と、前記第1濃度分布に基づいて、前記複数の領域それぞれの前記第1ポリマーモデル及び前記第2ポリマーモデルの濃度分布である第2濃度分布を計算する第3工程と、前記複数の領域のそれぞれの前記第2濃度分布に基づいて、前記複数の領域のうち少なくとも1つの領域の物性を計算する第4工程と、前記複数の領域のうち少なくとも1つの領域の物性から前記高分子材料の系全体の物性を計算する第5工程とを実行する、高分子材料のシミュレーション方法である。
【発明の効果】
【0007】
本発明の高分子材料のシミュレーション方法は、上記の工程を採用することにより、互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算することが可能となる。
【図面の簡単な説明】
【0008】
【
図1】本実施形態の高分子材料のシミュレーション方法を実行するためのコンピュータを示す斜視図である。
【
図2】本実施形態のシミュレーション方法の処理手順を示すフローチャートである。
【
図3】第1工程の処理手順を示すフローチャートである。
【
図4】本実施形態の高分子材料モデル入力工程の処理手順を示すフローチャートである。
【
図6】第1ポリマーモデル及び添加剤モデルを示す概念図である。
【
図8】複数の空間領域に区分された高分子材料モデルを示す概念図である。
【
図9】高分子材料の系全体の第1ポリマー、第2ポリマー及び第3ポリマーの濃度分布である。
【
図10】複数の領域14に区分された高分子材料モデル10を示す概念図である。
【
図11】第5工程の処理手順を示すフローチャートである。
【
図13】本発明の他の実施形態の第1工程の処理手順を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態が図面に基づき説明される。図面は、発明の内容の理解を助けるために、誇張表現や、実際の構造の寸法比とは異なる表現が含まれることが理解されなければならない。また、各実施形態を通して、同一又は共通する要素については同一の符号が付されており、重複する説明が省略される。さらに、実施形態及び図面に表された具体的な構成は、本発明の内容理解のためのものであって、本発明は、図示されている具体的な構成に限定されるものではない。
【0010】
本実施形態の高分子材料のシミュレーション方法(以下、単に「シミュレーション方法」ということがある。)は、互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性が計算される。本実施形態のシミュレーション方法には、コンピュータが用いられる。
【0011】
図1は、本実施形態の高分子材料のシミュレーション方法を実行するためのコンピュータ1を示す斜視図である。本実施形態のコンピュータ1は、本体1a、キーボード1b、マウス1c及びディスプレイ装置1dを含んで構成されている。本体1aには、例えば、演算処理装置(CPU)、ROM、作業用メモリ、磁気ディスクなどの記憶装置、及び、ディスクドライブ装置1a1、1a2が設けられている。記憶装置には、本実施形態のシミュレーション方法を実行するためのソフトウェア等が予め記憶されている。
【0012】
[高分子材料]
高分子材料は、互いに非相溶性の第1ポリマー(第1分子鎖)及び第2ポリマー(第2分子鎖)を含むものであれば、特に限定されない。本実施形態の第1ポリマーは、スチレン・ブタジエンゴム(SBR)である。また、本実施形態の第2ポリマーは、ブタジエンゴム(BR)である。なお、第1ポリマー及び第2ポリマーは、このような態様に限定されない。また、高分子材料には、第1ポリマー及び第2ポリマーとは異なる第3ポリマー等がさらに含まれてもよい。第3ポリマー等は、第1ポリマー及び第2ポリマーと互いに非相溶であってもよいし、相溶であってもよい。
【0013】
本実施形態の高分子材料は、第1ポリマー及び第2ポリマーとともに添加される添加剤をさらに含んでいる。添加剤の一例としては、レジンやオイル等が挙げられる。本実施形態の添加剤には、レジンが採用される。
【0014】
[物性]
本実施形態のシミュレーションにおいて、計算される物性は、特に限定されるわけではなく、例えば、高分子材料の解析目的に応じて、適宜選択される。本実施形態の物性には、動的粘弾性特性、ガラス転移温度、引張特性、粘度、加硫特性(例えば、加硫試験機(キュラストメーター)により測定される、誘導時間tC(10)、50%加硫時間tC(50)、及び90%加硫時間tC(90))及び硬度の少なくとも1つが含まれるのが好ましい。これらの物性は、高分子材料の開発や、生産設備の設計等に役立つ。本実施形態では、ガラス転移温度が採用される。
【0015】
ところで、本実施形態のように、第1ポリマー及び第2ポリマーが互いに非相溶である場合、これらのポリマーブレンドである高分子材料の系全体の物性は、第1ポリマー及び第2ポリマーの濃度分布に大きな影響を受けると考えられる。
【0016】
さらに、本実施形態のように、高分子材料に添加剤が添加される場合、高分子材料の系全体の物性は、添加剤の濃度分布(第1ポリマー及び第2ポリマーへの偏り)に、大きな影響を受けると考えられる。
【0017】
一方、従来の計算方法(例えば、分子動力学法など)では、第1ポリマー及び第2ポリマー(本例では、添加剤も含む)の濃度分布が、高分子材料の系全体に亘ってほぼ均一である状態を仮定したものである。このため、ポリマーブレンドである高分子材料の物性を予測することは困難であった。
【0018】
[高分子材料のシミュレーション方法(第1実施形態)]
本実施形態のシミュレーション方法では、第1ポリマー及び第2ポリマー(本例では、添加剤も含む)の濃度分布を考慮して、高分子材料の物性が計算される。
図2は、本実施形態のシミュレーション方法の処理手順を示すフローチャートである。
【0019】
[第1濃度分布を計算(第1工程)]
本実施形態のシミュレーション方法では、先ず、コンピュータ1(
図1に示す)が、高分子材料モデルの系全体の第1ポリマーモデル及び第2ポリマーモデルの濃度分布である第1濃度分布を計算する(第1工程S1)。本実施形態では、粗視化分子動力学法( Coarse-Grained Molecular Dynamics、CGMD法)に基づいて、第1濃度分布が計算される。
図3は、本実施形態の第1工程S1の処理手順を示すフローチャートである。
【0020】
[高分子材料モデルを入力]
本実施形態の第1工程S1では、先ず、高分子材料に基づいて、数値計算用の高分子材料モデルが、コンピュータ1(
図1に示す)に入力される(高分子材料モデル入力工程S11)。本実施形態の高分子材料モデルは、第1ポリマーモデル及び第2ポリマーモデルを相分離構造として含むように設定される。
図4は、本実施形態の高分子材料モデル入力工程S11の処理手順を示すフローチャートである。
図5は、高分子材料モデル10を示す概念図である。
図6は、第1ポリマーモデル2A及び添加剤モデル3を示す概念図である。
【0021】
[第1ポリマーモデルを入力]
本実施形態の高分子材料モデル入力工程S11では、先ず、コンピュータ1(
図1に示す)に、第1ポリマー(本例では、スチレン・ブタジエンゴム)をモデリングした第1ポリマーモデル2Aが入力される(工程S111)。
【0022】
図5及び
図6に示されるように、本実施形態の第1ポリマーモデル2Aは、粗視化モデル(本実施形態では、Kremer-Grestモデル)として定義されている。なお、第1ポリマーモデル2Aは、粗視化モデルに限定されるわけではなく、例えば、全原子モデルやユナイテッドアトムモデル等であってもよい。
【0023】
本実施形態の第1ポリマーモデル2Aは、複数の粒子モデル5と、隣接する粒子モデル5、5間を結合する結合鎖モデル6とを含んで構成されている。本実施形態の第1ポリマーモデル2Aの粒子モデル5は、第1ポリマー(分子鎖)のモノマー又はモノマーの一部分をなす構造単位を置換したものである。これにより、第1ポリマーモデル2Aは、複数個(例えば、10~5000個)の粒子モデル5を含んで構成される。このような置換は、従来の方法に基づいて、適宜行うことができる。
【0024】
図6に示されるように、本実施形態の粒子モデル5は、分子動力学計算において、運動方程式の質点として取り扱われる。即ち、粒子モデル5には、例えば、質量、体積、粒子径D1又は電荷などのパラメータが定義される。
【0025】
本実施形態の結合鎖モデル6は、粒子モデル5、5間に、伸びきり長が設定されたポテンシャルP1によって定義される。本実施形態のポテンシャルP1は、非調和ポテンシャルUch(r)によって定義される。非調和ポテンシャルUch(r)には、上記の特許文献1に記載の式(2)と同様のものが採用される。
【0026】
非調和ポテンシャルU
ch(r)の各定数及び各変数は、第1ポリマー(本例では、スチレン・ブタジエンゴム)の構造に応じて、適宜設定することができる。本実施形態では、例えば、論文1( Kurt Kremer & Gary S. Grest 著「Dynamics of entangled linear polymer melts: A molecular-dynamics simulation」、J. Chem Phys. vol.92, No.8, 15 April 1990)に基づいて、各定数及び各変数が設定される。これにより、粒子モデル5が伸縮自在に拘束された直鎖状の第1ポリマーモデル2Aを定義することができる。第1ポリマーモデル2Aは、コンピュータ1(
図1に示す)に記憶される。
【0027】
[第2ポリマーモデルを入力]
次に、本実施形態の高分子材料モデル入力工程S11では、コンピュータ1(
図1に示す)に、第2ポリマー(本例では、ブタジエンゴム)をモデリングした第2ポリマーモデル2B(
図5に示す)が入力される(工程S112)。
【0028】
図5及び
図6に示されるように、本実施形態の工程S112では、第1ポリマーモデル2Aを入力する工程S111と同様の手順に基づいて、第2ポリマーモデル2Bが設定される。したがって、本実施形態の第2ポリマーモデル2Bは、第1ポリマーモデル2Aと同様に、複数の粒子モデル5と、隣接する粒子モデル5、5間を結合する結合鎖モデル6とを含んで構成されている。
【0029】
本実施形態の第2ポリマーモデル2Bの粒子モデル5は、第2ポリマー(分子鎖)のモノマー又はモノマーの一部分をなす構造単位を置換したものである。本実施形態の第2ポリマーモデル2Bの結合鎖モデル6は、粒子モデル5、5間に、伸びきり長が設定されたポテンシャルP2(図示省略)によって定義される。ポテンシャルP2は、非調和ポテンシャルU
ch(r)によって定義される。非調和ポテンシャルU
ch(r)の各定数及び各変数は、第2ポリマー(本例では、ブタジエン)の構造及び上記の論文1に基づいて適宜設定されうる。これにより、粒子モデル5が伸縮自在に拘束された直鎖状の第2ポリマーモデル2Bを定義することができる。第2ポリマーモデル2Bは、コンピュータ1(
図1に示す)に記憶される。
【0030】
[添加剤モデルを入力]
次に、本実施形態の高分子材料モデル入力工程S11では、コンピュータ1(
図1に示す)に、添加材(本例では、レジン)をモデリングした添加剤モデル3が入力される(工程S113)。
【0031】
図5及び
図6に示されるように、本実施形態の添加剤モデル3は、一つの独立した粒子モデルとして設定されている。なお、添加剤モデル3は、第1ポリマーモデル2Aや第2ポリマーモデル2Bのように、複数の粒子モデルで構成されてもよい。
図6に示されるように、添加剤モデル3は、分子動力学計算において、運動方程式の質点として取り扱われる。即ち、添加剤モデル3には、例えば、質量、体積、粒子径D2又は電荷などのパラメータが定義される。
【0032】
添加剤モデル3の粒子径D2については、適宜設定することができる。本実施形態の粒子径D2は、粒子モデル5の粒子径D1と同一に設定されている。添加剤モデル3は、コンピュータ1(
図1に示す)に記憶される。
【0033】
[セルを入力]
次に、本実施形態の高分子材料モデル入力工程S11では、解析対象の高分子材料の一部に対応する仮想空間であるセル7(
図5に示す)が、コンピュータ1(
図1に示す)に入力される(工程S114)。
【0034】
図5に示されるように、本実施形態のセル7は、互いに向き合う三対の平面7a、7bを有する直方体として定義されている。各平面7a、7bには、周期境界条件が定義されている。このようなセル7では、例えば、一方の平面7aから出て行った第1ポリマーモデル2A及び第2ポリマーモデル2B(本例では、添加剤モデル3を含む)の一部が、反対側の平面7bから入ってくるように計算することができる。したがって、一方の平面7aと、反対側の平面7bとが連続している(繋がっている)ものとして取り扱うことができる。
【0035】
セル7の一辺の各長さL1a、L1b及びL1cは、適宜設定することができる。本実施形態の長さL1a、L1b及びL1cは、第1ポリマーモデル2A及び第2ポリマーモデル2Bの拡がりを示す量である慣性半径(図示省略)の2倍以上が望ましい。これにより、セル7は、分子動力学計算において、周期境界条件による自己のイメージとの衝突の発生を防げるため、第1ポリマーモデル2A及び第2ポリマーモデル2Bの空間的拡がりを適切に計算することができる。また、セル7の大きさは、例えば1気圧で安定な体積に設定される。これにより、セル7は、解析対象の高分子材料の少なくとも一部の体積を定義することができる。セル7は、コンピュータ1(
図1に示す)に記憶される。
【0036】
[セルにポリマーモデルを配置]
次に、本実施形態の高分子材料モデル入力工程S11では、コンピュータ1(
図1に示す)が、セル7に、第1ポリマーモデル2A及び第2ポリマーモデル2Bを配置する(工程S115)。本実施形態では、第1ポリマーモデル2A及び第2ポリマーモデル2Bを相分離構造として含むように、第1ポリマーモデル2A及び第2ポリマーモデル2B(本例では、添加剤モデル3を含む)がセル7に配置される。
【0037】
本実施形態の工程S115では、セル7に、第1ポリマーモデル2A及び第2ポリマーモデル2Bを相分離構造として含むことができれば、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の配置手順は限定されない。本実施形態の工程S115では、DBMC法(Density Biased Monte Carlo)を用いて、複数の第1ポリマーモデル2A、複数の第2ポリマーモデル2B及び複数の添加剤モデル3が、セル7にそれぞれ配置される。DBMC法は、例えば、上記J-OCTAに含まれるCOGNACを用いて計算することができる。
【0038】
[相互作用ポテンシャルを定義]
次に、本実施形態の高分子材料モデル入力工程S11では、
図5に示されるように、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3に、相互作用ポテンシャルP3が定義される(工程S116)。相互作用ポテンシャルP3は、第1ポテンシャルP3a~第6ポテンシャルP3fを含んでいる。
【0039】
第1ポテンシャルP3a(図示省略)は、隣接する一対の第1ポリマーモデル2A、2Aの粒子モデル5、5間に定義される。第2ポテンシャルP3b(図示省略)は、隣接する一対の第2ポリマーモデル2B、2Bの粒子モデル5、5間に定義される。第3ポテンシャルP3c(
図5に示す)は、隣接する一対の添加剤モデル3、3間に定義される。
【0040】
第4ポテンシャルP3d(
図5に示す)は、第1ポリマーモデル2Aの粒子モデル5と第2ポリマーモデル2Bの粒子モデル5との間に定義される。第5ポテンシャルP3e(
図5に示す)は、第1ポリマーモデル2Aの粒子モデル5と、添加剤モデル3との間に定義される。第6ポテンシャルP3f(
図5に示す)は、第2ポリマーモデル2Bの粒子モデル5と、添加剤モデル3との間に定義される。
【0041】
相互作用ポテンシャルP3(第1ポテンシャルP3a~第6ポテンシャルP3f)は、例えば、LJポテンシャルU
LJ(r)を用いて定義することができる。LJポテンシャルU
LJ(r)には、上記の特許文献1に記載の式(1)と同様のものが採用される。LJポテンシャルU
LJ(r)の各定数は、例えば、論文2(S. L. Mayo, B. D. Olafson & W. A. Goddard III 著、「DREIDING: A Generic Force Field for Molecular Simulations」、J. Phys. Chem. 1990, 94, 8897)に基づいて、適宜設定することができる。相互作用ポテンシャルP3(第1ポテンシャルP3a~第6ポテンシャルP3f)は、コンピュータ1(
図1に示す)に記憶される。
【0042】
次に、本実施形態の高分子材料モデル入力工程S11では、コンピュータ1(
図1に示す)が、第1ポリマーモデル2A及び第2ポリマーモデル2Bを対象とする構造緩和を計算する(工程S117)。本実施形態の工程S117では、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3も対象に、構造緩和が計算される。
【0043】
分子動力学計算では、例えば、セル7において、圧力(例えば、1atm)及び温度(例えば、290K~305K)が一定(NPT一定)に保たれる。また、分子動力学計算では、セル7について所定の時間、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3が古典力学に従うものとして、ニュートンの運動方程式が適用される。そして、第1ポリマーモデル2A及び第2ポリマーモデル2Bの粒子モデル5、並びに、添加剤モデル3の動きが、単位時間ステップ毎に追跡される。構造緩和の計算は、例えば、上記J-OCTAに含まれるCOGNACを用いて処理することができる。
【0044】
第1ポリマーモデル2A及び第2ポリマーモデル2Bを対象とする構造緩和の計算により、第1ポリマーモデル2Aと第2ポリマーモデル2Bとの界面構造(相分離構造)を有する高分子材料モデル10が作成されうる。
図7は、高分子材料モデルの部分拡大図である。
図7では、
図5及び
図6に示した添加剤モデル3及び結合鎖モデル6が省略され、第1ポリマーモデル2Aの粒子モデル5が着色されている。この第1ポリマーモデル2A及び第2ポリマーモデル2Bを相分離構造として含む数値計算用の高分子材料モデル10は、コンピュータ1(
図1に示す)に記憶される。
【0045】
[複数の空間領域に区分]
次に、本実施形態の第1工程S1では、高分子材料モデル10が、複数の空間領域に区分される(工程S12)。
図8は、複数の空間領域11に区分された高分子材料モデル10を示す概念図である。
図8では、
図5及び
図7に示した第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3が省略されている。
【0046】
本実施形態の工程S12では、
図8に示されるように、第1ポリマーモデル2Aと第2ポリマーモデル2Bとの界面12(
図7に示す)と交差する方向(本例では、X軸方向)に沿って、高分子材料モデル10を構成するセル7が、複数の空間領域11に区切られている。各空間領域11は、高分子材料モデル10において、X軸、Y軸及びZ軸の座標値で特定される。複数の空間領域11は、コンピュータ1(
図1に示す)に記憶される。
【0047】
[第1濃度分布を求める]
次に、本実施形態の第1工程S1では、複数の空間領域11の第1ポリマーモデル2A及び第2ポリマーモデル2Bの濃度に基づいて、高分子材料モデル10の系全体の第1ポリマーモデル2A及び第2ポリマーモデル2Bの濃度分布である第1濃度分布が求められる(工程S13)。本実施形態の第1濃度分布は、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度分布として求められる。
【0048】
本実施形態の工程S13では、先ず、各空間領域11において、第1ポリマーモデル2Aの粒子モデル5の個数、第2ポリマーモデル2Bの粒子モデル5の個数、及び、添加剤モデル3の個数がそれぞれ集計される。これらの個数の比率(体積分率)は、各空間領域11の第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度分布として求められる。そして、そして、各空間領域11の第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度分布が、空間領域11の配置順(高分子材料の空間位置)に並べられる(プロットされる)ことにより、高分子材料モデル10の系全体の第1濃度分布が求められる。
【0049】
図9は、高分子材料モデル10の系全体の第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度分布である第1濃度分布21を示すグラフである。
図9のグラフにおいて、グラフの縦軸は、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度(体積分率)を示している。一方、横軸は、高分子材料モデル10において、予め定められた方向(本例では、高分子材料モデル10のX軸方向)の空間位置を示している。
【0050】
本実施形態の第1工程S1では、粗視化分子動力学法に基づいて、第1濃度分布21が計算されたが、このような態様に限定されない。例えば、散逸粒子動力学法( Dissipative Particle Dynamics、DPD法)に基づいて、第1濃度分布21が計算されてもよい。この場合、相互作用ポテンシャルP3として、ソフトコアポテンシャルUsoftcoreが定義される。第1濃度分布21は、コンピュータ1(
図1に示す)に記憶される。
【0051】
[複数の領域に仮想区分(第2工程)]
次に、本実施形態のシミュレーション方法では、高分子材料モデル10が複数の領域に仮想区分される(第2工程S2)。領域の区分は、コンピュータ1(
図1に示す)が行ってもよいし、オペレータが行ってもよい。
図10は、複数の領域14に区分された高分子材料モデル10を示す概念図である。
【0052】
本実施形態において、複数の領域14は、高分子材料モデル10のセル7を区切った空間領域11(
図8に示す)とは異なり、高分子材料モデル10を分割した部分モデル(系全体の一部分の系)として構成される。本実施形態では、第1ポリマーモデル2Aと第2ポリマーモデル2Bとの界面12(
図7に示す)と交差する方向(本例では、X軸方向)に沿って、高分子材料モデル10が、複数の領域14に仮想区分されている。なお、領域14は、このような態様に限定されるわけではなく、例えば、Y軸又はZ軸に沿って仮想区分されてもよいし、X軸、Y軸及びZ軸に沿って仮想区分されてもよい。複数の領域14は、コンピュータ1(
図1に示す)に記憶される。
【0053】
[第2濃度分布を計算(第3工程)]
次に、本実施形態のシミュレーション方法では、コンピュータ1(
図1に示す)が、第1濃度分布21に基づいて、複数の領域14それぞれの第1ポリマーモデル2A及び第2ポリマーモデル2Bの濃度分布である第2濃度分布を計算する(第3工程S3)。本実施形態の第2濃度分布は、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度分布として計算される。
【0054】
第2濃度分布は、適宜計算される。本実施形態の第3工程S3では、先ず、
図9に示した第1濃度分布21において、各領域14(
図10に示す)に対応する部分13がそれぞれ特定される。第1濃度分布21の横軸は、
図10に示したセル7のX軸方向の座標値に対応している。このため、各領域14のX軸の座標値(X軸方向の位置)に基づいて、各領域14に対応する部分13が容易に特定される。
【0055】
次に、本実施形態の第3工程S3では、特定された各部分13において、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度分布(体積分率)がそれぞれ特定される。これにより、複数の領域14それぞれの第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度分布である第2濃度分布22が特定(計算)される。
【0056】
各複数の領域14(部分13)の第2濃度分布22において、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の少なくとも1つの濃度(体積分率)が、横軸(X軸方向)に沿って変化する場合がある。このような領域14では、第1ポリマーモデル2Aの濃度(体積分率)の平均値、第2ポリマーモデル2Bの濃度(体積分率)の平均値、及び、添加剤モデル3の濃度(体積分率)の平均値が計算されてもよい。これにより、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3の濃度が一意に特定されうる。第2濃度分布22は、コンピュータ1(
図1に示す)に入力される。
【0057】
[複数の領域の物性を計算(第4工程)]
次に、本実施形態のシミュレーション方法では、コンピュータ1(
図1に示す)が、
図10に示した複数の領域14のそれぞれの第2濃度分布22(
図9に示す)に基づいて、複数の領域14のうち少なくとも1つの領域14の物性を計算する(第4工程S4)。領域14の物性は、第2濃度分布22に基づいて、適宜計算される。本実施形態の第4工程S4では、分子動力学法、粗視化分子動力学法、及び、予め定められた経験式の少なくとも1つに基づいて、領域14の物性を計算する工程が含まれるのが好ましい。
【0058】
[第4工程(分子動力学法)]
分子動力学法に基づいて領域14の物性を計算する工程では、第1ポリマー、第2ポリマー及び添加剤をモデリングした全原子モデル(又は、ユナイテッドアトムモデル)が用いられる。全原子モデルは、従来の手順(例えば、特許文献(特開2020-135375号公報)に記載の手順)に基づいて定義される。
【0059】
分子動力学法に基づいて物性を計算する工程では、先ず、各領域14(
図10に示す)に対応する仮想空間であるセル(図示省略)に、第1ポリマー、第2ポリマー及び添加剤をそれぞれモデリングした全原子モデル(図示省略)が配置される。全原子モデルは、各セルにおいて、複数の領域14のそれぞれの第2濃度分布22(
図9に示す)に基づいて配置される。これにより、複数の領域14をそれぞれモデリングした領域モデル(図示省略)が設定される。
【0060】
次に、各領域モデル(図示省略)において、全原子モデルを対象とする分子動力学法に基づく構造緩和が計算される。これにより、各領域14(
図10に示す)の物性(本例では、ガラス転移温度)がそれぞれ計算される。物性(ガラス転移温度)は、従来の手順(例えば、特許文献(特開2016-070889号公報に記載の手順))に基づいて、適宜計算される。
【0061】
このように、分子動力学法では、全原子モデル(図示省略)を用いて、各領域モデル(図示省略)の物性が計算されるため、例えば、粗視化分子動力学法に比べて、複数の領域14(
図10に示す)のそれぞれの物性を、高い精度で計算することが可能となる。
【0062】
[第4工程(粗視化分子動力学法)]
粗視化分子動力学法に基づいて領域14の物性を計算する工程では、粗視化モデルとして定義された第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3(
図4に示す)が用いられる。
【0063】
粗視化分子動力学法に基づいて物性を計算する工程では、先ず、複数の領域14のそれぞれの第2濃度分布22(
図9に示す)に基づいて、予め定められたセル(図示省略)に、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3が配置される。これにより、複数の領域14(
図10に示す)をそれぞれモデリングした領域モデル(図示省略)が設定される。
【0064】
次に、各領域モデル(図示省略)において、第1ポリマーモデル2A、第2ポリマーモデル2B及び添加剤モデル3を対象とする分子動力学法に基づく構造緩和が計算される。これにより、
図10に示した各領域14の物性(本例では、ガラス転移温度)がそれぞれ計算される。
【0065】
このように、粗視化分子動力学法では、粗視化モデルを用いて、各領域モデル(図示省略)の物性が計算されるため、例えば、全原子モデルが用いられる場合(分子動力学法)に比べて、複数の領域14(
図10に示す)の物性を短時間で計算しうる。
【0066】
なお、粗視化分子動力学法に基づいて領域14の物性を計算する場合には、高分子材料モデル10を分割した部分モデル(系全体の一部分の系)として構成される領域14を用いて、物性が計算されてもよい。これにより、上記の領域モデル(図示省略)の設定が省略されうる。
【0067】
[第4工程(経験式)]
経験式は、
図9に示した第2濃度分布22に基づいて、
図10に示した複数の領域14それぞれの物性を計算するためのものである。経験式は、複数の領域14の物性を計算できれば、特に限定されない。本実施形態の経験式には、FOX式、KWEI式、及び、GORDON-TAYLOR式の少なくとも1つが採用される。
【0068】
FOX式は、下記式(1)に示される。なお、下記式(1)のFOX式では、ガラス転移温度Tgが求められる。
【0069】
【数1】
ここで、
Tg:ガラス転移温度
Tg
1:第1ポリマーのガラス転移温度
Tg
2:第2ポリマーのガラス転移温度
Tg
3:添加剤のガラス転移温度
Φ
1:第1ポリマーの濃度(体積分率)
Φ
2:第2ポリマーの濃度(体積分率)
Φ
3:添加剤の濃度(体積分率)
【0070】
上記式(1)のTg1~Tg3には、第1ポリマーのガラス転移温度、第2ポリマーのガラス転移温度及び添加剤のガラス転移温度がそれぞれ代入される。これらのガラス転移温度は、例えば、後述の構造物性相関(QSPR)に基づいて、第1ポリマー、第2ポリマー及び添加剤の化学構造が入力されることによって容易に求めることができる。
【0071】
上記式(1)のΦ
1~Φ
3には、複数の領域14(
図10に示す)のそれぞれについて、
図9に示した第2濃度分布22(第1ポリマーモデル2Aの濃度、第2ポリマーモデル2Bの濃度及び添加剤モデル3の濃度)がそれぞれ代入される。
【0072】
このように、経験式(本例では、FOX式)に基づいて物性を計算する工程では、複数の領域14(
図10に示す)のそれぞれについて、
図9に示した第2濃度分布22から特定される各濃度Φ
1~Φ
3、及び、各ガラス転移温度Tg
1~Tg
3がそれぞれ代入される。これにより、複数の領域14それぞれの物性(本例では、ガラス転移温度)が計算される。
【0073】
KWEI式、及び、GORDON-TAYLOR式を用いて領域14の物性を計算する場合には、上記式(1)のFOX式の各変数が用いられる。これにより、領域14の物性が計算されうる。
【0074】
第4工程S4では、複数の領域14のうち1つの領域14の物性が、高分子材料の系全体の物性に支配的であることが判断できる場合、一つの領域14の物性のみが計算されてもよい。これにより、物性の計算時間を短縮することができる。なお、このような判断は、適宜実施することができ、例えば、第1ポリマーの物性(ガラス転移温度)と、第2ポリマーの物性(ガラス転移温度)との差が大きい場合に、それらの物性のうち、所定の温度で物性を発現するポリマー(ポリマーモデル)が主として分布する(濃度が最も高い)領域14が、高分子材料の系全体の物性に支配的であると判断される。また、所定の温度は、例えば、高分子材料を用いた製品(例えば、タイヤ等)の使用温度として特定される。領域14の物性は、コンピュータ1(
図1に示す)に記憶される。
【0075】
[高分子材料の系全体の物性を計算(第5工程)]
次に、本実施形態のシミュレーション方法では、コンピュータ1(
図1に示す)が、複数の領域14(
図10に示す)のうち、少なくとも1つの領域14の物性から、高分子材料の系全体の物性を計算する(第5工程S5)。高分子材料の系全体の物性は、領域14の物性から計算されれば、適宜計算することができる。なお、複数の領域14のうち1つの領域14の物性が、高分子材料の系全体の物性に支配的である場合、その物性が、高分子材料の系全体の物性として求められてもよい。
【0076】
本実施形態の第5工程S5では、複数の領域14のそれぞれの物性の移動和に基づいて、高分子材料の系全体の物性が計算される。
図11は、第5工程S5の処理手順を示すフローチャートである。
【0077】
[物性のヒストグラムを作成]
本実施形態の第5工程S5では、コンピュータ1(
図1に示す)が、複数の領域14(
図10に示す)のそれぞれの物性を用いて、物性のヒストグラムを作成する(工程S51)。本実施形態の工程S51では、複数の領域14のそれぞれの物性が、物性の値ごとに集計(カウント)される。これにより、物性のヒストグラムが作成される。
【0078】
図12は、物性のヒストグラムを示すグラフである。物性のヒストグラムは、物性と、その物性が計算された領域の個数(度数)との関係を示している。物性のヒストグラムは、コンピュータ1(
図1に示す)に記憶される。
【0079】
[物性の移動平均を求める]
次に、本実施形態の第5工程S5では、コンピュータ1(
図1に示す)が、ヒストグラムを平滑化する(工程S52)。本実施形態の工程S52では、予め定められた物性の区間に基づいて、その区間をずらしながら物性の合計値(すなわち、移動和)がそれぞれ求められる。これにより、ヒストグラムが平滑化された曲線23が求められる。なお、曲線(平滑化されたヒストグラム)23は、例えば、ガウス関数に基づいて下記式(2)から求められる重みw(n)を、各領域14の物性に乗じることで求められる重み付きの移動和であってもよい。
【0080】
【0081】
図12において、曲線23が破線で示されている。曲線23は、コンピュータ1(
図1に示す)に記憶される。
【0082】
[平滑化されたヒストグラムの物性の最大値を特定]
次に、本実施形態の第5工程S5では、コンピュータ1(
図1に示す)が、平滑化されたヒストグラム(曲線23)の物性の最大値を、高分子材料の系全体の物性を特定する(工程S53)。本実施形態では、曲線23に基づいて、高分子材料の系全体の物性が特定されるため、各領域14の物性の変動を取り除いて、高分子材料の系全体の物性を特定することができる。さらに、本実施形態のように、重み付きの移動和に基づいて、高分子材料の系全体の物性が特定されることで、各領域14で異なる物性を簡便に加味することが可能となる。
【0083】
高分子材料の系全体の物性は、物性のヒストグラムが平滑化された曲線23(
図10に示す)に基づいて、適宜特定される。物性の曲線23のうち、領域数(度数)が最も大きくなるピーク24の物性が、高分子材料の系全体の物性として大きな影響を及ぼすと考えられる。したがって、本実施形態では、物性の曲線23のピーク24の物性が、高分子材料の系全体の物性として特定される。高分子材料の系全体の物性は、コンピュータ1(
図1に示す)に記憶される。
【0084】
このように、本実施形態では、第1ポリマーモデル2A及び第2ポリマーモデル2Bを相分離構造として含む高分子材料モデル10を複数の領域14(
図10に示す)に区分し、複数の領域14それぞれの物性に基づいて、高分子材料の系全体の物性が計算される。したがって、本実施形態のシミュレーション方法では、第1ポリマー及び第2ポリマーが相溶性である(濃度分布が均一)と仮定する従来の方法とは異なり、互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算することができる。
【0085】
高分子材料モデル10が仮想区分される複数の領域14(
図10に示す)の個数は、40~120個が好ましい。複数の領域14の個数が40個以上に設定されることにより、高分子材料モデル10を細かく仮想区分して、複数の領域14のそれぞれの第2濃度分布22(
図9に示す)及び物性が計算されるため、高分子材料の系全体の物性の計算精度が向上する。一方、複数の領域14の個数が120個以下に設定されることにより、第2濃度分布22及び物性の計算対象である領域14の個数が、必要以上に大きくなるのが抑制されるため、計算時間の増大を防ぐことができる。
【0086】
[高分子材料の系全体の物性を評価]
次に、本実施形態のシミュレーション方法では、高分子材料の系全体の物性が、良好か否かが評価される(工程S6)。本実施形態の工程S6では、第5工程S5で計算された高分子材料の系全体の物性に基づいて、コンピュータ1(
図1に示す)が評価してもよいし、オペレータ等が評価してもよい。
【0087】
本実施形態の工程S6では、予め定められた物性の閾値と比較して、高分子材料の系全体の物性が、良好か否かが判断される。閾値は、高分子材料に求められる性能(例えば、耐破壊性能など)に応じて、適宜設定される。
【0088】
工程S6において、高分子材料の系全体の物性が良好であると判断された場合(工程S6で「Yes」)、高分子材料を用いた製品(例えば、タイヤ等)が製造される(工程S7)。一方、工程S7において、高分子材料の系全体の物性が良好ではないと判断された場合(工程S6で「No」)、第1ポリマー、第2ポリマー及び添加剤の配合等が変更され(工程S8)、第1工程S1~工程S6が再度実施される。
【0089】
このように、本実施形態のシミュレーション方法では、高分子材料の系全体の物性が良好になるまで、第1ポリマー、第2ポリマー及び添加剤の配合等が変更される。これにより、本実施形態のシミュレーション方法では、例えば、所望の性能を有する高分子材料を用いて、タイヤなどの製品を、確実に製造することが可能となる。
【0090】
[高分子材料のシミュレーション方法(第2実施形態)]
これまでの実施形態のシミュレーション方法では、第1工程S1において、粗視化分子動力学法、又は、散逸粒子動力学法に基づいて、第1濃度分布21が計算されたが、このような態様に限定されない。例えば、自己無撞着場法、高分子の密度汎関数法、及び、一般化乱雑位相近似法の少なくとも1つに基づいて、第1濃度分布21が計算されてもよい。
【0091】
[第1工程(自己無撞着場法)]
自己無撞着場法(Self-Consistent Field Method 、SCF法)は、第1ポリマー、第2ポリマー及び添加剤の配置のエントロピーを考慮したものである。自己無撞着場法は、例えば、(株)JSOL社製のソフトマテリアル総合シミュレーター(J-OCTA)に含まれるSUSHIを用いて計算することができる。
図13は、本発明の他の実施形態の第1工程S1の処理手順を示すフローチャートである。
【0092】
この実施形態の高分子材料モデル入力工程S11では、自己無撞着場法のパラメータが入力される。パラメータは、第1ポリマーの分子量、第2ポリマーの分子量及び添加剤の分子量が含まれる。さらに、自己無撞着場法の入力値には、χパラメータが含まれる。χパラメータには、第1χパラメータ~第6χパラメータが含まれる。
【0093】
第1χパラメータは、第1ポリマー間のχパラメータである。第2χパラメータは、第2ポリマー間のχパラメータである。第3χパラメータは、添加剤間のχパラメータである。第4χパラメータは、第1ポリマーと第2ポリマーとの間のχパラメータである。第5χパラメータは、第1ポリマーと添加剤との間のχパラメータである。第6χパラメータは、第2ポリマーと添加剤との間のχパラメータである。
【0094】
χパラメータは、従来と同様に、原子団寄与法、モンテカルロ法、分子動力学法又は構造物性相関(QSPR)に基づいて計算することができる。本実施形態では、構造物性相関(QSPR)が用いられる。この構造物性相関(QSPR)では、第1ポリマー、第2ポリマー及び添加剤の化学構造に基づいてSP値(溶解度パラメータ)が求められ、このSP値からχパラメータが計算されうる。χパラメータの計算には、上記のJ-OCTAに含まれるSUSHIが用いられる。
【0095】
この実施形態の高分子材料モデル入力工程S11では、上記のパラメータが入力されることで、高分子材料モデル(図示省略)が定義される。高分子材料モデルは、コンピュータ1(
図1に示す)に記憶される。
【0096】
次に、この実施形態の第1工程S1では、高分子材料モデルの平衡化計算により、第1濃度分布21が求められる(工程S14)。この実施形態の工程S14では、上記のχパラメータを用いた平衡化計算が実施されることで、第1ポリマー、第2ポリマー及び添加剤の第1濃度分布21(
図9に示す)が求められる。
【0097】
このように、自己無撞着場法では、上述のパラメータが設定されることで、第1濃度分布21を計算することができるため、例えば、これまでの実施形態の粗視化分子動力学法及び散逸粒子動力学法に比べて、第1濃度分布21を、容易かつ高い精度で計算することができる。第1濃度分布21は、コンピュータ1(
図1に示す)に記憶される。
【0098】
[第1工程(密度汎関数法及び一般化乱雑位相近似法)]
密度汎関数法( Density Functional Theory 、DFT法 )は、系の自由エネルギーをセグメント密度場の汎関数として記述する方法である。一方、一般化乱雑位相近似法(Generalized Random Phase Approximation、GRPA法)は、Ginzburg-Landau自由エネルギーモデルにRandom Phase Approximationによる理想さの統計を導入したものである。これらの密度汎関数法及び一般化乱雑位相近似法では、自己無撞着場法と同様の手順(
図13に示す)に、第1濃度分布21(
図9に示す)を計算することができる。密度汎関数法及び一般化乱雑位相近似法は、上記のJ-OCTAに含まれるSUSHIを用いて計算することができる。
【0099】
[高分子材料のシミュレーション方法(第3実施形態)]
これまでの実施形態では、第5工程S5において、
図12に示されるように、ヒストグラムを平滑化して、高分子材料の系全体の物性が特定されたが、このような態様に限定されない。例えば、有限要素法に基づく解析を行って、高分子材料の系全体の物性が特定されてもよい。
【0100】
この実施形態の第5工程S5では、先ず、複数の領域14のそれぞれの物性を用いて、有限要素法の解析に必要な入力条件が設定される。入力条件としては、例えば、弾性率とポアソン比等が含まれる。これらの入力条件は、複数の領域14の物性からそれぞれ特定される。
【0101】
次に、この実施形態の第5工程S5では、入力条件に基づく有限要素法の解析を実行して、高分子材料の系全体の物性が特定される。この工程では、先ず、高分子材料の有限要素モデル(図示省略)が作成される。この有限要素モデルは、高分子材料を有限個の要素で離散化したものである。この有限要素モデルの各要素には、入力条件に基づいて、弾性率とポアソン比等が入力される。このような有限要素モデルは、例えば、特許文献(特開2020-135375号公報)に記載に基づいて作成されうる。
【0102】
次に、この実施形態では、有限要素モデルの変形が計算される。この変形計算は、従来と同様に、例えば、市販の有限要素解析アプリケーションソフト(例えば、Dassault Systems社製の「Abaqus」)が用いられる。これにより、高分子材料の系全体の物性が計算される。
【0103】
[高分子材料のシミュレーション方法(第4実施形態)]
これまでの実施形態のシミュレーション方法では、高分子材料モデル10に、添加剤モデル3が含まれる態様が例示されたが、このような態様に限定されない。例えば、高分子材料に添加剤が含まれない場合や、添加剤による物性の影響が小さい場合には、添加剤モデル3が省略されてもよい。この場合、
図9に示した第1濃度分布21及び第2濃度分布22において、添加剤モデル3の濃度(体積分率)が省略される。これにより、この実施形態のシミュレーション方法では、これまでの実施形態と同様に、互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算しつつ、計算時間を短縮することができる。
【0104】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【実施例0105】
図2に示した手順に基づいて、互いに非相溶性の第1ポリマー及び第2ポリマーと、添加剤とを含む高分子材料の物性が計算された(実施例)。実施例の第1工程では、
図3及び
図4に示した処理手順にしたがって、
図5及び
図6に示されるように、第1ポリマーモデル及び第2ポリマーモデルを相分離構造として含む数値計算用の高分子材料モデルが、コンピュータに入力された。
【0106】
次に、実施例の第1工程では、自己無撞着場法に基づいて、
図9に示されるように、高分子材料モデルの系全体の第1ポリマーモデル及び第2ポリマーモデルの濃度分布である第1濃度分布が計算された。次に、実施例では、
図10に示されるように、高分子材料モデルが複数の領域に仮想区分された(第2工程)。次に、実施例では、第1濃度分布に基づいて、
図9に示されるように、複数の領域それぞれの第1ポリマーモデル、第2ポリマーモデル及び添加剤モデルの濃度分布である第2濃度分布が計算された(第3工程)。
【0107】
次に、実施例では、複数の領域のそれぞれについて、第2濃度分布に基づいて、複数の領域それぞれの物性が計算された(第4工程)。第4工程では、上記式(1)のFOX式基づいて、複数の領域の物性(ガラス転移温度)がそれぞれ計算された。
【0108】
次に、実施例では、
図11に示した処理手順に基づいて、複数の領域のそれぞれの物性から高分子材料の系全体の物性が計算された(第5工程)。第5工程では、先ず、複数の領域のそれぞれの物性を用いて、
図12に示されるように、物性のヒストグラムが作成された。次に、第5工程では、ヒストグラムが平滑化され(移動和が求められ)、高分子材料の系全体の物性が特定された。実施例では、移動和において、領域数(度数)が最も大きくなるピークの物性が、高分子材料の系全体の物性が特定された。実施例の仕様は、次のとおりである。
第1ポリマーモデル:
第1ポリマー:スチレン・ブタジエンゴム
鎖長:822
高分子材料モデル(高分子材料)の系全体での濃度(体積分率):0.72
第2ポリマーモデル:
第2ポリマー:ブタジエンゴム
鎖長:561
高分子材料モデル(高分子材料)の系全体での濃度(体積分率):0.24
添加剤モデル:
添加剤:レジン
鎖長:3
高分子材料モデル(高分子材料)の系全体での濃度(体積分率):0.04
複数の領域:80個
物性の移動平均:重み付き移動平均(分散σ=10K)
【0109】
テストの結果、実施例では、第1ポリマーモデル及び第2ポリマーモデルを相分離構造として含む高分子材料モデルを複数の領域に区分し、複数の領域それぞれの物性に基づいて、高分子材料の系全体の物性を計算することができた。したがって、実施例では、第1ポリマー及び第2ポリマーの濃度分布が高分子材料の系全体に亘ってほぼ均一である状態を仮定した従来の計算方法とは異なり、互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算することができた。
【0110】
[付記]
本発明は以下の態様を含む。
【0111】
[本発明1]
互いに非相溶性の第1ポリマー及び第2ポリマーを含む高分子材料の物性を計算するためのシミュレーション方法であって、
前記高分子材料に基づいて、第1ポリマーモデル及び第2ポリマーモデルを相分離構造として含む数値計算用の高分子材料モデルをコンピュータに入力する工程を含み、
前記コンピュータが、
前記高分子材料モデルの系全体の前記第1ポリマーモデル及び前記第2ポリマーモデルの濃度分布である第1濃度分布を計算する第1工程と、
前記高分子材料モデルを複数の領域に仮想区分する第2工程と、
前記第1濃度分布に基づいて、前記複数の領域それぞれの前記第1ポリマーモデル及び前記第2ポリマーモデルの濃度分布である第2濃度分布を計算する第3工程と、
前記複数の領域それぞれの前記第2濃度分布に基づいて、前記複数の領域のうち少なくとも1つの領域の物性を計算する第4工程と、
前記複数の領域のうち少なくとも1つの領域の物性から、前記高分子材料の系全体の物性を計算する第5工程とを実行する、
高分子材料のシミュレーション方法。
[本発明2]
前記第1工程は、前記高分子材料の自己無撞着場法、高分子の密度汎関数法、一般化乱雑位相近似法、粗視化分子動力学法、及び、散逸粒子動力学法の少なくとも1つに基づいて、前記第1濃度分布を計算する工程を含む、本発明1に記載の高分子材料のシミュレーション方法。
[本発明3]
前記第4工程は、分子動力学法、粗視化分子動力学法、及び、予め定められた経験式の少なくとも1つに基づいて、前記領域の物性を計算する工程を含む、本発明1又は2に記載の高分子材料のシミュレーション方法。
[本発明4]
前記経験式は、FOX式、KWEI式、及び、GORDON-TAYLOR式の少なくとも1つを含む、本発明3に記載の高分子材料のシミュレーション方法。
[本発明5]
前記第5工程は、前記複数の領域のそれぞれの物性を用いて、前記物性のヒストグラムを作成する工程と、
前記ヒストグラムを平滑化する工程と、
平滑化された前記ヒストグラムの物性の最大値を、前記高分子材料の系全体の物性として特定する工程とを含む、本発明1ないし4のいずれかに記載の高分子材料のシミュレーション方法。
[本発明6]
前記第5工程は、前記複数の領域のそれぞれの物性を用いて、有限要素法の解析に必要な入力条件を設定する工程と、
前記入力条件に基づく前記有限要素法の解析を実行して、前記高分子材料の系全体の物性を特定する工程とを含む、本発明1ないし4のいずれかに記載の高分子材料のシミュレーション方法。
[本発明7]
前記高分子材料は、前記第1ポリマー及び前記第2ポリマーとともに添加される添加剤をさらに含み、
前記高分子材料モデルは、添加剤モデルをさらに含み、
前記第1濃度分布は、前記高分子材料モデルの系全体の前記第1ポリマーモデル、前記第2ポリマーモデル及び前記添加剤モデルの濃度分布であり、
前記第2濃度分布は、前記複数の領域それぞれの前記第1ポリマーモデル、前記第2ポリマーモデル及び添加材モデルの濃度分布である、本発明1ないし6のいずれかに記載の高分子材料のシミュレーション方法。
[本発明8]
前記物性は、動的粘弾性特性、ガラス転移温度、引張特性、粘度及び硬度の少なくとも1つを含む、本発明1ないし7のいずれかに記載の高分子材料のシミュレーション方法。