IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 河村電器産業株式会社の特許一覧

<>
  • 特開-エネルギーマネージメントシステム 図1
  • 特開-エネルギーマネージメントシステム 図2
  • 特開-エネルギーマネージメントシステム 図3
  • 特開-エネルギーマネージメントシステム 図4
  • 特開-エネルギーマネージメントシステム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023180020
(43)【公開日】2023-12-20
(54)【発明の名称】エネルギーマネージメントシステム
(51)【国際特許分類】
   H04B 3/54 20060101AFI20231213BHJP
   H02M 7/48 20070101ALI20231213BHJP
   H02J 13/00 20060101ALI20231213BHJP
【FI】
H04B3/54
H02M7/48 Z
H02J13/00 B
H02J13/00 301A
【審査請求】未請求
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2022093062
(22)【出願日】2022-06-08
(71)【出願人】
【識別番号】000124591
【氏名又は名称】河村電器産業株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100162640
【弁理士】
【氏名又は名称】柳 康樹
(72)【発明者】
【氏名】石原 孝一
(72)【発明者】
【氏名】山中 佑太
(72)【発明者】
【氏名】平下 英里
【テーマコード(参考)】
5G064
5H770
5K046
【Fターム(参考)】
5G064AA08
5G064AA09
5G064AC09
5G064CB08
5H770AA27
5H770CA05
5H770DA10
5H770DA22
5H770HA04W
5K046AA03
5K046BB05
5K046PS25
(57)【要約】
【課題】電力線通信器の数を低減できるエネルギーマネージメントシステムを提供する。
【解決手段】エネルギーマネージメントシステム100は、交流電路W10と直流電路W20との間に設けられる電力変換器1と、電力変換器1と並列となるように交流電路W10と直流電路W20とを接続するブリッジ回路10と、を備える。また、第1の電力線通信器2と第2の電力線通信器7とが、ブリッジ回路10を介して電力線通信を行う。このように、交流電路W10側の第1の電力線通信器2と、直流電路W20側の第2の電力線通信器7との間の電力線通信が可能となることにより、交流電路W10側と直流電路W20側とを包括的に管理する電力線通信器(親機4)を設けることができる。そのため、交流電路W10側と直流電路W20側のそれぞれに管理用の電力線通信器を設ける必要がなくなる。
【選択図】図1
【特許請求の範囲】
【請求項1】
交流電力が流れる交流電路と、
直流電力が流れる直流電路と、
前記交流電路と前記直流電路との間に設けられる電力変換器と、
前記交流電路に設けられた第1の電力線通信器と、
前記直流電路に設けられた第2の電力線通信器と、
前記電力変換器と並列となるように前記交流電路と前記直流電路とを接続するブリッジ回路と、を備え、
前記第1の電力線通信器と前記第2の電力線通信器とが、前記ブリッジ回路を介して電力線通信を行う、エネルギーマネージメントシステム。
【請求項2】
前記第1の電力線通信器として、親機、及び前記交流電路に設けられた交流機器の監視及び制御の少なくとも一方を行う第1の子機を有し、
前記第2の電力線通信器として、前記直流電路に設けられた直流機器の監視及び制御の少なくとも一方を行う第2の子機を有し、
前記親機は、前記第1の子機及び前記第2の子機と電力線通信を行う、請求項1に記載のエネルギーマネージメントシステム。
【請求項3】
前記直流電路には、複数の太陽光パネル、及びそれぞれの前記太陽光パネルの発電量を測定する複数の計測器が設けられ、
前記第1の電力線通信器として、親機を有し、
前記第2の電力線通信器として、複数の前記計測器の計測結果を取得する子機を有し、
前記親機は、電力線通信によって、前記子機からの各計測器の計測結果を集約する、請求項1又は2に記載のエネルギーマネージメントシステム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エネルギーマネージメントシステムに関する。
【背景技術】
【0002】
従来、太陽光パネルの発電量を計測する計測器と、当該計測器を監視する下位電力線通信器と、下位電力線通信器から電力線通信によって監視結果を受信する上位電力線通信器と、を備えるエネルギーマネージメントシステムが知られていた(例えば、特許文献1参照)。これらの計測器、下位電力線通信器、及び上位電力線通信器は、直流電力が流れる直流電路に設けられる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012-205078号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ここで、エネルギーマネージメントシステムは、直流電力が流れる直流電路も有する。当該直流電路にも直流機器を監視又は制御する下位電力線通信器が設けられる。交流電路側の上位電力線通信器は、直流電路側の下位電力線通信器と電力線通信を行うことができないため、交流電路と直流電路の両方に上位電力線通信器を設ける必要があった。そのため、電力線通信器が増加してしまうという問題があった。
【0005】
本発明は、電力線通信器の数を低減できるエネルギーマネージメントシステムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明に係るエネルギーマネージメントシステムは、交流電力が流れる交流電路と、直流電力が流れる直流電路と、交流電路と直流電路との間に設けられる電力変換器と、交流電路に設けられた第1の電力線通信器と、直流電路に設けられた第2の電力線通信器と、電力変換器と並列となるように交流電路と直流電路とを接続するブリッジ回路と、を備え、第1の電力線通信器と第2の電力線通信器とが、ブリッジ回路を介して電力線通信を行う。
【0007】
本発明に係るエネルギーマネージメントシステムは、交流電路と直流電路との間に設けられる電力変換器と、電力変換器と並列となるように交流電路と直流電路とを接続するブリッジ回路と、を備える。また、第1の電力線通信器と第2の電力線通信器とが、ブリッジ回路を介して電力線通信を行う。このように、交流電路側の第1の電力線通信器と、直流電路側の第2の電力線通信器との間の電力線通信が可能となることにより、交流電路側と直流電路側とを包括的に管理する電力線通信器を設けることができる。そのため、交流電路側と直流電路側のそれぞれに管理用の電力線通信器を設ける必要がなくなる。以上より、電力線通信器の数を低減できる。
【0008】
第1の電力線通信器として、親機、及び交流電路に設けられた交流機器を監視及び制御の少なくとも一方を行う第1の子機を有し、第2の電力線通信器として、直流電路に設けられた直流機器を監視及び制御の少なくとも一方を行う第2の子機を有し、親機は、第1の子機及び第2の子機と電力線通信を行ってよい。この場合、親機は、交流電路側の第1の子機及び直流電路側の第2の子機とを包括的に管理することが可能となる。
【0009】
直流電路には、複数の太陽光パネル、及びそれぞれの太陽光パネルの発電量を測定する複数の計測器が設けられ、第1の電力線通信器として、親機を有し、第2の電力線通信器として、複数の計測器の計測結果を取得する子機を有し、親機は、電力線通信によって、子機から各計測器の計測結果を集約してよい。この場合、交流電路側の親機が、直流電路側の多数の太陽光パネルの発電量を管理することが可能となる。
【発明の効果】
【0010】
本発明によれば、電力線通信器の数を低減できるエネルギーマネージメントシステムを提供することができる。
【図面の簡単な説明】
【0011】
図1】本発明の実施形態に係るエネルギーマネージメントシステムを示すブロック構成図である。
図2図2(a)は子機のブロック構成図、図2(b)は親機のブロック構成図である。
図3】ブリッジ回路のブロック構成図である。
図4】エネルギーマネージメントシステムの一例を示すブロック構成図である。
図5】エネルギーマネージメントシステムの一例を示すブロック構成図である。
【発明を実施するための形態】
【0012】
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
【0013】
図1は、本発明の実施形態に係るエネルギーマネージメントシステム100を示すブロック構成図である。図1に示されるように、エネルギーマネージメントシステム100は、所定の機器を備える管理対象エリア内におけるエネルギーを管理するシステムである。エネルギーマネージメントシステム100は、交流電路W10と、直流電路W20と、電力変換器1と、を備える。交流電路W10は、交流電力が流れる電路である。直流電路W20は、直流電力が流れる電路である。また、電力変換器1は、交流電路W10と直流電路W20との間に設けられ、電力変換を行う機器である。電力変換器1は、直流電力を交流電力に変換し、交流電力を直流電力に変換する。
【0014】
エネルギーマネージメントシステム100は、交流電路W10に設けられた第1の電力線通信器2と、交流機器3と、を備える。交流機器3は、交流電力によって動作する機器である。交流機器3は、例えば照明や空調などである。電力変換器1と交流機器3とは、電路W11を介して接続される。エネルギーマネージメントシステム100は、第1の電力線通信器2として、親機4と、子機6(第1の子機)と、を備える。親機4は、エネルギーマネージメントシステム100内の子機を管理する機器である。親機4は、電路W11から分岐した電路W12に接続される。子機6は、交流機器3を監視及び制御の少なくとも一方を行う機器である。子機6は、電路W11から分岐した電路W13に接続される。
【0015】
エネルギーマネージメントシステム100は、直流電路W20に設けられた第2の電力線通信器7と、直流機器8と、を備える。直流機器8は、直流電力を供給する機器、または直流電力によって動作する機器である。電力変換器1と直流機器8とは、電路W21を介して接続される。エネルギーマネージメントシステム100は、第2の電力線通信器7として、子機9(第2の子機)と、を備える。子機9は、直流機器8を監視及び制御の少なくとも一方を行う機器である。子機9は、電路W21から分岐した電路W22に接続される。
【0016】
ここで、エネルギーマネージメントシステム100内では、電力線通信(PLC通信:Power Line Communication)によって機器間の情報伝達が行われる。電力線通信は、例えば、商用周波数の電力波形に商用周波数と異なる周波数の通信信号を重畳して送信すると共にこの電力波形から異なる周波数の通信信号を分離して受信することによって、電力線を用いて通信信号を送受信する通信方式である。なお、電力線通信は、その周波数帯域により、電波法の適用を受ける場合がある。ただし、本実施形態に係るエネルギーマネージメントシステム100では、屋内及び屋外でも使用でき、なおかつ、ある程度のまとまったデータ転送を実現するために、例えば100KHz~450KHzの周波数帯域の電力線通信を用いてよい。ただし、それ以上、または、それ以下の周波数帯域の電力線通信も利用可能である。例えば、周波数帯域は、10KHz以下としてよいし、2MHz以上としてもよい。また、100KHz~450KHzの周波数帯域の電力線通信を用いるとして、その変調方式も特に限定されず、OFDM方式が採用されてもよいし、DCSK方式が採用されてもよい。交流電路W10における電力線は、主目的として、商用周波数の交流電力を供給するための配線であり、電力線通信を行うに当たってはその伝送路となる。具体的に、子機6と親機4との間では電力線通信が行われる。電力線通信では、AC100VやAC200Vなどの交流電路W10に対して通信信号を重畳することができる。子機6からの通信信号は、電路W13、電路W11、電路W12を介して親機4へ送られる。親機4からの通信信号は、電路W12、電路W11、電路W13を介して子機6へ送られる。
【0017】
更に、電力線通信では、直流電路W20においても、交流同様に通信信号を重畳できる。具体的に、ブリッジ回路10を用いることで、子機9と親機4との間では電力線通信が行われる。エネルギーマネージメントシステム100は、電力変換器1と並列となるように交流電路W10と直流電路W20とを接続するブリッジ回路10を備える。ブリッジ回路10は、電力変換器1付近で電路W11から分岐する電路W31に接続される。また、ブリッジ回路10は、電力変換器1付近で電路W21から分岐する電路W32に接続される。これにより、ブリッジ回路10は、電力変換器1を跨いだ状態にて、電路W31,W32を介して交流電路W10と直流電路W20とを接続する。第1の電力線通信器2と第2の電力線通信器7とが、ブリッジ回路10を介して電力線通信を行う。具体的に、子機9からの通信信号は、電路W22、電路W21、電路W32、ブリッジ回路10、電路W31、電路W11、電路W12を介して親機4へ送られる。親機4からの通信信号は、電路W12、電路W11、電路W31、ブリッジ回路10、電路W32、電路W21、電路W22を介して子機9へ送られる。
【0018】
図2(a)を参照して、子機6,9の詳細なブロック構成について説明する。子機6,9は、通信部11と、処理部12と、記憶部13と、を備える。通信部11は、親機4及び電気機器(交流機器3または直流機器8)と通信を行うユニットである。通信部11は、電気機器からの信号を受信する回路を有する。また、通信部11は、電気機器からの信号を親機4に対する電力線通信の信号に変換するための回路を有する。処理部12は、電気機器の監視及び制御の少なくとも一方の処理を行うユニットである。処理部12は、マイクロプロセッサ、及びその周辺回路などを備えて構成される。
【0019】
記憶部13は、電気機器の監視及び制御の少なくとも一方の処理に必要なプログラム、動作に必要な情報などを記憶するユニットである。記憶部13は、例えばROM(Read Only Memory)などの不揮発性の記憶素子、EEPROM(Electrically Erasable Programmable Read Only Memory)などの書換え可能な不揮発性の記憶素子、及び、ワーキングメモリとなる例えばRAM(Random Access Memory)などの揮発性の記憶素子を備えて構成される。例えば、記憶部13は、エネルギーマネージメントシステム100内における電気機器の位置を示すアドレスを記憶している。
【0020】
図2(b)を参照して、親機4の詳細なブロック構成について説明する。親機4は、通信部21と、処理部22と、記憶部23と、を備える。通信部21は、子機6,9と通信を行うユニットである。通信部21は、子機6,9と電力線通信を行う回路を有する。また、通信部21は、外部の通信機器とクラウドを用いた遠隔通信を行う回路を有する。すなわち、親機4の通信部21は、子機6,9との電力線通信をつかさどるPLC通信部と、クラウド側とのネットワーク通信をつかさどる、LTEなどの無線通信部を含む。処理部22は、親機4全体の動作を制御するユニットである。処理部22は、マイクロプロセッサ、及びその周辺回路などを備えて構成される。処理部22は、各照明及び空調のON/OFFの切替、及び出力の強弱の調整などを制御するための制御情報を演算する。
【0021】
記憶部23は、親機4の動作に必要なプログラム、動作に必要な情報などを記憶するユニットである。記憶部23は、記憶部13で例示したものと同様な記憶素子を備えてよい。例えば、記憶部23は、エネルギーマネージメントシステム100内における親機4、各子機6,9の位置を示すアドレスを互いに紐付けた状態で記憶している。
【0022】
図3を参照して、ブリッジ回路10の詳細なブロック構成について説明する。ブリッジ回路10は、ハイパスフィルタ31Aと、ハイパスフィルタ31Bと、を備える。ハイパスフィルタ31Aは、交流電路W10から電路W31を介して流れてきた電力線通信の信号が畳重された交流電力から、電力線通信の信号だけを取り出して、電路W32を介して直流電路W20へ流す。ハイパスフィルタ31Aは、トランス及び回路によって構成される機器32Aによって構成される。ハイパスフィルタ31Bは、直流電路W20から電路W32を介して流れてきた電力線通信の信号が畳重された直流電力から、電力線通信の信号だけを取り出して、電路W31を介して交流電路W10へ流す。ハイパスフィルタ31Bは、トランス及び回路によって構成される機器32Bによって構成される。機器32Aは電路W31に接続される。機器32Bは電路W32に接続される。機器32Aと機器32Bとは、電路W33を介して接続される。なお、ハイパスフィルタ31Aとハイパスフィルタ31Bとでは構造上の違いはなく、交流側と直流側を逆にしてもブリッジ回路10は機能する。ブリッジ回路10のカットオフ周波数は、商用周波数の50Hz、60Hz以上であり、且つ、PLC使用周波数以下(例えば、低速PLCの場合は10KHz以下)に設定される。
【0023】
図4を参照して、エネルギーマネージメントシステム100の具体的な使用例について説明する。エネルギーマネージメントシステム100の直流電路W20には、直流機器8として複数の太陽光パネル40と、それぞれの太陽光パネル40の発電量を測定する複数の計測器41と、が設けられる。各太陽光パネル40は、電路W21から分岐した電路W23に接続される。それぞれの計測器41は、それぞれの太陽光パネル40に対応する電路W23に設けられる。計測器41は、ストリング単位で太陽光パネル40の発電量を測定することができる。
【0024】
子機9は、複数の計測器41の計測結果を取得する。子機9は、全ての計測器41と電線W30を介して接続される。子機9と複数の計測器41は、接続箱42内にまとめられた状態で収容される。子機9は、取得した計測結果を親機4へ電力線通信によって送信する。これにより、親機4は、電力線通信によって、子機9からの各計測器41の計測結果を集約する。更に、親機4は、集計結果をクラウドCDへ送信する。これにより、ユーザーは、WEB画面上で太陽光パネル40の発電量を確認することができる。
【0025】
図5に示すように、エネルギーマネージメントシステム100が複数の電力変換器1を備える場合がある。例えば、直流電路W20側に複数の接続箱42が並列に設けられている場合、各接続箱42に対して電力変換器1が設けられる。この場合、交流電路W10側に設けられた一台の親機4が、複数組の子機9及び電力変換器1に対して設けられてよい。この場合は、全ての子機9からの測定結果を親機4が一台で集約することができる。この場合、一台の電力変換器1に対して一台のブリッジ回路10が設けられる。
【0026】
次に、本実施形態に係るエネルギーマネージメントシステム100の作用・効果について説明する。
【0027】
本実施形態に係るエネルギーマネージメントシステム100は、交流電路W10と直流電路W20との間に設けられる電力変換器1と、電力変換器1と並列となるように交流電路W10と直流電路W20とを接続するブリッジ回路10と、を備える。また、第1の電力線通信器2と第2の電力線通信器7とが、ブリッジ回路10を介して電力線通信を行う。このように、交流電路W10側の第1の電力線通信器2と、直流電路W20側の第2の電力線通信器7との間の電力線通信が可能となることにより、交流電路W10側と直流電路W20側とを包括的に管理する電力線通信器(親機4)を設けることができる。そのため、交流電路W10側と直流電路W20側のそれぞれに管理用の電力線通信器を設ける必要がなくなる。以上より、電力線通信器の数を低減できる。
【0028】
比較例として、図5のように複数の電力変換器1が設けられる場合であって、ブリッジ回路10が設けられないエネルギーマネージメントシステムについて説明する。この場合、交流電路W10側の親機4とは別に、直流電路W20側に、一台の電力変換器1に対して一台の親機が別途必要となる。あるいは、別系統の直流電路とブリッジするための電路工事が必要となる。これに対し、本実施形態では、直流電路W20側の複数の子機9からの測定結果も、交流電路W10側の一台の親機4で集約することができる。このように、電路工事を不要とし、複数台の電力変換器1に対して一台の親機4が対応可能となる。
【0029】
第1の電力線通信器2として、親機4、及び交流電路W10に設けられた交流機器3を監視及び制御の少なくとも一方を行う子機6(第1の子機)を有し、第2の電力線通信器7として、直流電路W20に設けられた直流機器8を監視及び制御の少なくとも一方を行う子機9(第2の子機)を有し、親機4は、子機6及び子機9と電力線通信を行ってよい。この場合、親機4は、交流電路W10側の子機6及び直流電路W20側の子機9とを包括的に管理することが可能となる。
【0030】
直流電路W20には、複数の太陽光パネル40、及びそれぞれの太陽光パネル40の発電量を測定する複数の計測器41が設けられ、第1の電力線通信器2として、親機4を有し、第2の電力線通信器7として、複数の計測器41の計測結果を取得する子機9を有し、親機4は、電力線通信によって、子機9から各計測器41の計測結果を集約してよい。この場合、交流電路W10側の親機4が、直流電路W20側の多数の太陽光パネル40の発電量を管理することが可能となる。
【0031】
本発明は、上述の実施形態に限定されるものではない。例えば、エネルギーマネージメントシステム100は、一台の親機を有していたが、必要に応じて複数の親機を有していてもよい。また、交流電路W10及び直流電路W20の両方において子機の数も特に限定されない。
【符号の説明】
【0032】
1…電力変換器、2…第1の電力線通信器、3…交流機器、4…親機、6…子機、7…第2の電力線通信器、8…直流機器、9…子機、10…ブリッジ回路、40…太陽光パネル、41…計測器、100…エネルギーマネージメントシステム。
図1
図2
図3
図4
図5