(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023180717
(43)【公開日】2023-12-21
(54)【発明の名称】ガスタービンの制御方法、ガスタービンの制御プログラム、ガスタービンの制御装置、及びガスタービン設備
(51)【国際特許分類】
F02C 9/50 20060101AFI20231214BHJP
F02C 7/057 20060101ALI20231214BHJP
F02C 9/18 20060101ALI20231214BHJP
F02C 9/28 20060101ALI20231214BHJP
【FI】
F02C9/50
F02C7/057
F02C9/18
F02C9/28 C
【審査請求】未請求
【請求項の数】16
【出願形態】OL
(21)【出願番号】P 2022094254
(22)【出願日】2022-06-10
(71)【出願人】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100149548
【弁理士】
【氏名又は名称】松沼 泰史
(74)【代理人】
【識別番号】100162868
【弁理士】
【氏名又は名称】伊藤 英輔
(74)【代理人】
【識別番号】100161702
【弁理士】
【氏名又は名称】橋本 宏之
(74)【代理人】
【識別番号】100189348
【弁理士】
【氏名又は名称】古都 智
(74)【代理人】
【識別番号】100196689
【弁理士】
【氏名又は名称】鎌田 康一郎
(72)【発明者】
【氏名】八田 将佳
(72)【発明者】
【氏名】森本 一毅
(72)【発明者】
【氏名】若園 進
(72)【発明者】
【氏名】山本 智彦
(57)【要約】
【課題】ガスタービンの出力を低くすると共に、吸気量調節機の耐久性の低下を抑え、且つ未燃分の排気量を少なくする。
【解決手段】制御装置は、吸気量制御器と、抽排気量制御器と、を有する。実出力が第二出力から、第二出力より小さい第三出力までの第二出力範囲では、前記吸気量制御器は、実出力が低下しても吸気量が一定になるよう、吸気量を制御する。前記抽排気量制御器は、実出力が低下するに連れて次第に抽排気量が多くなるよう抽排気量を制御する。
【選択図】
図6
【特許請求の範囲】
【請求項1】
空気を圧縮して圧縮空気を生成できる圧縮機と、
前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、
前記燃焼ガスにより駆動可能なタービンと、
を備えるガスタービンの制御方法において、
前記燃焼器に供給する燃料の燃料流量が前記ガスタービンに対する目標出力に応じた流量になるよう、前記燃料流量を制御する燃料制御工程と、
前記圧縮機が吸い込む空気の流量である吸気量が前記ガスタービンの実際の出力である実出力に応じた流量になるよう、前記吸気量を制御する吸気量制御工程と、
前記燃焼器を経ることなく、前記圧縮機からの前記圧縮空気の一部を外部に排気する流量である抽排気量が前記実出力に応じた流量になるよう、前記抽排気量を制御する抽排気量制御工程と、
を実行し、
前記燃料制御工程では、前記目標出力が低下するに連れて次第に前記燃料流量が少なくなるよう、前記燃料流量を制御し、
前記吸気量制御工程は、第一吸気量制御工程と、第二吸気量制御工程と、を含み、
前記抽排気量制御工程は、第一抽排気量制御工程と、第二抽排気量制御工程と、を含み、
前記実出力が、前記ガスタービンの定格出力以下の第一出力から前記第一出力より低い出力である第二出力までの第一出力範囲では、
前記第一吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記吸気量を制御し、
前記第一抽排気量制御工程で、前記抽排気量が0を維持するよう、前記抽排気量を制御し、
前記実出力が、前記第二出力から前記第二出力より低い出力である第三出力までの第二出力範囲では、
前記第二吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力が低下しても前記吸気量が一定になるよう、前記吸気量を制御し、
前記第二抽排気量制御工程で、前記実出力が低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力が前記第三出力になると前記吸気量に対する前記抽排気量の割合が最大になるよう、前記抽排気量を制御する、
ガスタービンの制御方法。
【請求項2】
請求項1に記載のガスタービンの制御方法において、
前記吸気量制御工程は、第三吸気量制御工程を含み、
前記抽排気量制御工程は、第三抽排気量制御工程を含み、
前記実出力が、前記第三出力から前記第三出力より低い出力である第四出力までの第三出力範囲では、
前記第三吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなり、前記ガスタービンの前記実出力が前記第四出力になると前記吸気量が最小になるよう、前記吸気量を制御し、
前記第三抽排気量制御工程で、前記吸気量に対する前記抽排気量の割合が最大を維持するよう、前記抽排気量を制御する、
ガスタービンの制御方法。
【請求項3】
請求項1又は2に記載のガスタービンの制御方法において、
前記第三出力、及び、前記実出力が前記第三出力のときの吸気量である第三吸気量は、以下の第三出力条件下で定められた値である、
前記第三出力条件は、前記抽排気量が最大で、前記タービンから排気された直後の前記燃焼ガスの温度である排気ガス温度が許容最大温度で、前記タービンに流入する前記燃焼ガスの温度が前記燃焼ガス中に含まれる未燃分の濃度が許容最大濃度になるときの温度である、
ガスタービンの制御方法。
【請求項4】
請求項3に記載のガスタービンの制御方法において、
前記第二出力、及び、前記実出力が前記第二出力のときの吸気量である第四吸気量は、以下の第二出力条件下で定められた値である、
前記第二出力条件は、前記第二出力範囲内での前記吸気量の変化傾向が予め定められた変化傾向であって、前記第三吸気量を基点とした変化傾向あり、前記抽排気量が0で、前記タービンから排気された直後の前記燃焼ガスの温度である排気ガス温度が許容最大温度である、
ガスタービンの制御方法。
【請求項5】
請求項1又は2に記載のガスタービンの制御方法において、
前記第二吸気量制御工程では、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記吸気量を制御する、
ガスタービンの制御方法。
【請求項6】
請求項1又は2に記載のガスタービンの制御方法において、
前記第二吸気量制御工程では、前記実出力が低下しても前記吸気量が一定になるよう、前記吸気量を制御する、
ガスタービンの制御方法。
【請求項7】
請求項1又は2に記載のガスタービンの制御方法において、
前記吸気量制御工程、及び前記抽排気量制御工程のそれぞれでは、抽排気制御モードと通常制御モードとのうち、いずれか一方のモードの実行指示を受け付けると、前記一方のモードを実行し、
前記抽排気制御モードでは、
前記第一出力範囲内で、前記第一吸気量制御工程と前記第一抽排気量制御工程とを実行し、
前記第二出力範囲内で、前記第二吸気量制御工程と前記第二抽排気量制御工程とを実行し、
前記通常制御モードでは、
前記ガスタービンの出力が、前記第一出力範囲、及び前記第二出力範囲のいずれの出力範囲でも、
前記吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記吸気量を制御する通常吸気量制御工程を実行し、
前記抽排気量制御工程で、前記抽排気量が0を維持するよう、前記抽排気量を制御する通常抽排気量制御工程を実行する、
ガスタービンの制御方法。
【請求項8】
空気を圧縮して圧縮空気を生成できる圧縮機と、
前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、
前記燃焼ガスにより駆動可能なタービンと、
前記燃焼器に燃料供給可能に前記燃焼器に接続されている燃料ラインと、
前記燃料ラインに設けられ、前記燃料ラインを流れる燃料の流量である燃料流量を調節可能な燃料弁と、
前記燃焼器を経ることなく、前記圧縮機からの前記圧縮空気の一部を外部に排気可能なバイパスラインと、
前記バイパスラインに設けられ、前記バイパスラインを流れる前記圧縮空気の流量である抽排気量を調節可能なバイパス弁と、を備え、
前記圧縮機は、前記圧縮機が吸い込む空気の流量である吸気量を調節できるよう、開閉動作可能なベーンを有する吸気量調節機を備える、
ガスタービンの制御プログラムにおいて、
前記ガスタービンに対する目標出力に応じて、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示する燃料制御工程と、
前記ガスタービンの実際の出力である実出力に応じて、前記ベーンの開閉角度を定めて、定めた前記ベーンの開閉角度になるよう前記吸気量調節機に指示する吸気量制御工程と、
前記実出力に応じて、前記バイパス弁の弁開度を定めて、定めた弁開度になるよう、前記バイパス弁に指示する抽排気量制御工程と、
をコンピュータに実行させ、
前記燃料制御工程では、前記目標出力が低下するに連れて次第に前記燃料流量が少なくなるよう、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示し、
前記吸気量制御工程は、第一吸気量制御工程と、第二吸気量制御工程と、を含み、
前記抽排気量制御工程は、第一抽排気量制御工程と、第二抽排気量制御工程と、を含み、
前記実出力が、前記ガスタービンの定格出力以下の第一出力から前記第一出力より低い出力である第二出力までの第一出力範囲では、
前記第一吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、
前記第一抽排気量制御工程で、前記バイパス弁が閉じているよう、前記バイパス弁に指示し、
前記実出力が、前記第二出力から前記第二出力より低い出力である第三出力までの第二出力範囲では、
前記第二吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力が低下しても前記吸気量が一定になるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、
前記第二抽排気量制御工程で、前記実出力が低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力が前記第三出力になると前記バイパス弁が全開になるよう、前記バイパス弁に指示する、
ガスタービンの制御プログラム。
【請求項9】
空気を圧縮して圧縮空気を生成できる圧縮機と、
前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、
前記燃焼ガスにより駆動可能なタービンと、
前記燃焼器に燃料供給可能に前記燃焼器に接続されている燃料ラインと、
前記燃料ラインに設けられ、前記燃料ラインを流れる燃料の流量である燃料流量を調節可能な燃料弁と、
前記燃焼器を経ることなく、前記圧縮機からの前記圧縮空気の一部を外部に排気可能なバイパスラインと、
前記バイパスラインに設けられ、前記バイパスラインを流れる前記圧縮空気の流量である抽排気量を調節可能なバイパス弁と、を備え、
前記圧縮機は、前記圧縮機が吸い込む空気の流量である吸気量を調節できるよう、開閉動作可能なベーンを有する吸気量調節機を備える、
ガスタービンの制御装置において、
前記ガスタービンに対する目標出力に応じて、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示可能な燃料制御器と、
前記ガスタービンの実際の出力である実出力に応じて、前記ベーンの開閉角度を定めて、定めた前記ベーンの開閉角度になるよう前記吸気量調節機に指示可能な吸気量制御器と、
前記実出力に応じて、前記バイパス弁の弁開度を定めて、定めた弁開度になるよう、前記バイパス弁に指示可能な抽排気量制御器と、
を有し、
前記燃料制御器は、前記目標出力が低下するに連れて次第に前記燃料流量が少なくなるよう、前記目標出力に応じた前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示し、
前記吸気量制御器は、第一吸気量制御工程と、第二吸気量制御工程と、を実行可能であり、
前記抽排気量制御器は、第一抽排気量制御工程と、第二抽排気量制御工程と、を実行可能であり、
前記実出力が、前記ガスタービンの定格出力以下の第一出力から前記第一出力より低い出力である第二出力までの第一出力範囲では、
前記吸気量制御器は、前記第一吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、
前記抽排気量制御器は、前記第一抽排気量制御工程で、前記バイパス弁が閉じているよう、前記バイパス弁に指示し、
前記実出力が、前記第二出力から前記第二出力より低い出力である第三出力までの第二出力範囲では、
前記吸気量制御器は、前記第二吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力が低下しても前記吸気量が一定になるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、
前記抽排気量制御器は、前記第二抽排気量制御工程で、前記実出力が低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力が前記第三出力になると前記バイパス弁が全開になるよう、前記バイパス弁に指示する、
ガスタービンの制御装置。
【請求項10】
請求項9に記載のガスタービンの制御装置において、
前記吸気量制御器は、第三吸気量制御工程を実行可能であり、
前記抽排気量制御器は、第三抽排気量制御工程を実行可能であり、
前記実出力が、前記第三出力から前記第三出力より低い出力である第四出力までの第三出力範囲では、
前記吸気量制御器は、前記第三吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなり、前記ガスタービンの前記実出力が前記第四出力になると前記吸気量が最小になるよう、前記ベーンの開閉角度を前記吸気量調節機に指示し、
前記抽排気量制御器は、前記第三抽排気量制御工程で、前記バイパス弁が全開になっているよう、前記バイパス弁に指示する、
ガスタービンの制御装置。
【請求項11】
請求項9又は10に記載のガスタービンの制御装置において、
前記第三出力、及び、前記実出力が前記第三出力のときの前記ベーンの開閉角度である第三開閉角度は、以下の第三出力条件下で定められた値である、
前記第三出力条件は、前記バイパス弁が全開で、前記タービンから排気された直後の前記燃焼ガスの温度である排気ガス温度が許容最大温度で、前記タービンに流入する前記燃焼ガスの温度が前記燃焼ガス中に含まれる未燃分の濃度が許容最大濃度になるときの温度である、
ガスタービンの制御装置。
【請求項12】
請求項11に記載のガスタービンの制御装置において、
前記第二出力、及び、前記実出力が前記第二出力のときの前記ベーンの開閉角度である第二開閉角度は、以下の第二出力条件下で定められた値である、
前記第二出力条件は、前記第二出力範囲内での前記ベーンの開閉角度の変化傾向が、予め定められた変化傾向であって、前記第三開閉角度を基点とした変化傾向あり、前記バイパス弁が閉で、前記タービンから排気された直後の前記燃焼ガスの温度である排気ガス温度が許容最大温度である、
ガスタービンの制御装置。
【請求項13】
請求項9又は10に記載のガスタービンの制御装置において、
前記吸気量制御器は、前記第二吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示する、
ガスタービンの制御装置。
【請求項14】
請求項9又は10に記載のガスタービンの制御装置において、
前記吸気量制御器は、前記第二吸気量制御工程で、前記実出力が低下しても前記吸気量が一定になるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示する、
ガスタービンの制御装置。
【請求項15】
請求項9又は10に記載のガスタービンの制御装置において、
前記吸気量制御器、及び前記抽排気量制御器のそれぞれは、抽排気制御モードと通常制御モードとのうち、いずれか一方のモードの実行指示を受け付けると、前記一方のモードを実行し、
前記抽排気制御モードでは、
前記第一出力範囲内で、前記吸気量制御器が前記第一吸気量制御工程を実行し、前記抽排気量制御器が前記第一抽排気量制御工程を実行し、
前記第二出力範囲内で、前記吸気量制御器が前記第二吸気量制御工程を実行し、前記抽排気量制御器が前記第二抽排気量制御工程を実行し、
前記通常制御モードでは、
前記ガスタービンの出力が、前記第一出力範囲、及び前記第二出力範囲のいずれの出力範囲でも、
前記吸気量制御器が、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示する通常吸気量制御工程を実行し、
前記抽排気量制御器が、前記バイパス弁が閉じているよう、前記バイパス弁に指示する通常抽排気量制御工程を実行する、
ガスタービンの制御装置。
【請求項16】
請求項9又は10に記載のガスタービンの制御装置と、
前記ガスタービンと、
を備えるガスタービン設備。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ガスタービンの制御方法、ガスタービンの制御プログラム、ガスタービンの制御装置、及びガスタービン設備に関する。
【背景技術】
【0002】
ガスタービンは、空気を圧縮する圧縮機と、圧縮機で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する燃焼器と、燃焼ガスGにより駆動するタービンと、を備えている。圧縮機は、圧縮機ロータと、この圧縮機ロータを覆う圧縮機ケーシングと、吸気量調節機(以下、IGV(inlet guide vane)とする)と、を有する。このIGVは、この圧縮機ケーシングの吸込み口に複数のベーンが設けられ、これら複数のベーンを開閉動作させることで、圧縮機ケーシング内に吸い込まれる空気の流量を調節する。圧縮機ロータには、発電機のロータが接続されている。
【0003】
以上のガスタービンでは、ガスタービンを定格運転しているときよりも、燃焼器に供給する燃料の流量を少なくすると共に、圧縮機が吸い込む空気の流量(以下、吸気量とする)をIGVで少なくすることで、ガスタービンの出力を低くすることができる。
【0004】
しかしながら、近年では、負荷変動に対応するため、ガスタービンを安定運転しつつも、ガスタービンの出力をより低くすることが求められている。
【0005】
このような要求に応える技術として、例えば、以下の特許文献1に記載の技術がある。この技術では、ガスタービンに、圧縮機で生成された圧縮空気の一部を外部に排気可能なバイパス弁を設けている。この技術では、IGVとバイパス弁とを併用して、燃焼器に流入する燃焼用空気の流量を少なくすることで、ガスタービンの出力を低くしている。
【0006】
この技術では、具体的に、ガスタービンの出力を低くする場合、まず、燃料流量を徐々に少なくすると共に、IGVに閉動作させて吸気量を徐々に少なくする。次に、吸気量がある程度少なくなった時点で、バイパス弁を徐々に開ける。このバイパス弁を徐々に開ける過程で、IGVに開動作させて吸気量を徐々に多くする。このバイパス弁を徐々に開ける過程では、燃料流量を変えない。そして、バイパス弁が全開になると、燃料流量を再び徐々に少なくすると共に、IGVに閉動作させて吸気量を再び徐々に少なくする。
【0007】
この技術では、バイパス弁を徐々に開けて、圧縮空気を外部に排気している過程で、IGVを動作させて吸気量を徐々に多くしているので、この過程で、燃焼器に流入する燃焼用空気の流量は変化しない。このため、タービン自体の仕事量は変化しないものの、圧縮機による無駄な仕事量が徐々に増えるため、この過程でも、ガスタービンの出力は低下する。
【先行技術文献】
【特許文献】
【0008】
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記特許文献1に記載の技術では、確かに、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすることができる。
【0010】
しかしながら、上記特許文献1に記載の技術では、ガスタービンの出力を低くする過程で、前述したように、IGVに、閉動作させた後、開動作させ、その後、再び、閉動作させるため、IGVの動作が複雑になり、IGVの耐久性が低下してしまう。
【0011】
また、ガスタービンを低くする過程でもあっても、ガスタービンから、一酸化炭素等の未燃分の排気量をできる限り少なくすることが望まれる。
【0012】
そこで、本開示は、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすると共に、吸気量調節機の耐久性の低下を抑え、且つ未燃分の排気量を少なくすることができる技術を提供することを目的とする。
【課題を解決するための手段】
【0013】
前記目的を達成するための一態様としてのガスタービンの制御方法は、以下のガスタービンに適用される。
このガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、を備える。
このガスタービンの制御方法では、前記燃焼器に供給する燃料の燃料流量が前記ガスタービンに対する目標出力に応じた流量になるよう、前記燃料流量を制御する燃料制御工程と、前記圧縮機が吸い込む空気の流量である吸気量が前記ガスタービンの実際の出力である実出力に応じた流量になるよう、前記吸気量を制御する吸気量制御工程と、前記燃焼器を経ることなく、前記圧縮機からの前記圧縮空気の一部を外部に排気する流量である抽排気量が前記実出力に応じた流量になるよう、前記抽排気量を制御する抽排気量制御工程と、を実行する。前記燃料制御工程では、前記目標出力が低下するに連れて次第に前記燃料流量が少なくなるよう、前記燃料流量を制御する。前記吸気量制御工程は、第一吸気量制御工程と、第二吸気量制御工程と、を含む。前記抽排気量制御工程は、第一抽排気量制御工程と、第二抽排気量制御工程と、を含む。前記実出力が、前記ガスタービンの定格出力以下の第一出力から前記第一出力より低い出力である第二出力までの第一出力範囲では、前記第一吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記吸気量を制御し、前記第一抽排気量制御工程で、前記抽排気量が0を維持するよう、前記抽排気量を制御する。前記実出力が、前記第二出力から前記第二出力より低い出力である第三出力までの第二出力範囲では、前記第二吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力が低下しても前記吸気量が一定になるよう、前記吸気量を制御し、前記第二抽排気量制御工程で、前記実出力が低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力が前記第三出力になると前記吸気量に対する前記抽排気量の割合が最大になるよう、前記抽排気量を制御する。
【0014】
本態様では、ガスタービンの出力を低下させる過程で、燃料流量を徐々に少なくすると共に、吸気量と抽排気量とを共に制御して、燃焼器に流入する圧縮空気の流量を徐々に少なくするので、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすることができる。
【0015】
本態様では、ガスタービンの出力を低下させる過程で、吸気量を少なくさせるものの、吸気量を多くさせない。すなわち、本態様では、ガスタービンの出力を低下させる過程で、吸気量を調節可能な吸気量調節機に、閉動作させるものの、開動作させない。このため、本態様では、吸気量調節機の耐久性の低下を抑えることができる。
【0016】
本態様では、実出力が第二出力から第三出力の範囲では、タービン入口温度が高くなるので、この範囲内で、一酸化炭素等の未燃分の排気量を少なくすることができる。
【0017】
前記目的を達成するための一態様としてのガスタービンの制御プログラムは、以下のガスタービンに適用される。
このガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、前記燃焼器に燃料供給可能に前記燃焼器に接続されている燃料ラインと、前記燃料ラインに設けられ、前記燃料ラインを流れる燃料の流量である燃料流量を調節可能な燃料弁と、前記燃焼器を経ることなく、前記圧縮機からの前記圧縮空気の一部を外部に排気可能なバイパスラインと、前記バイパスラインに設けられ、前記バイパスラインを流れる前記圧縮空気の流量である抽排気量を調節可能なバイパス弁と、を備える。前記圧縮機は、前記圧縮機が吸い込む空気の流量である吸気量を調節できるよう、開閉動作可能なベーンを有する吸気量調節機を備える。
ガスタービンの制御プログラムは、前記ガスタービンに対する目標出力に応じて、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示する燃料制御工程と、前記ガスタービンの実際の出力である実出力に応じて、前記ベーンの開閉角度を定めて、定めた前記ベーンの開閉角度になるよう前記吸気量調節機に指示する吸気量制御工程と、前記実出力に応じて、前記バイパス弁の弁開度を定めて、定めた弁開度になるよう、前記バイパス弁に指示する抽排気量制御工程と、をコンピュータに実行させる。前記燃料制御工程では、前記目標出力が低下するに連れて次第に前記燃料流量が少なくなるよう、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示する。前記吸気量制御工程は、第一吸気量制御工程と、第二吸気量制御工程と、を含む。前記抽排気量制御工程は、第一抽排気量制御工程と、第二抽排気量制御工程と、を含む。前記実出力が、前記ガスタービンの定格出力以下の第一出力から前記第一出力より低い出力である第二出力までの第一出力範囲では、前記第一吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、前記第一抽排気量制御工程で、前記バイパス弁が閉じているよう、前記バイパス弁に指示する。前記実出力が、前記第二出力から前記第二出力より低い出力である第三出力までの第二出力範囲では、前記第二吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力が低下しても前記吸気量が一定になるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、前記第二抽排気量制御工程で、前記実出力が低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力が前記第三出力になると前記バイパス弁が全開になるよう、前記バイパス弁に指示する。
【0018】
本態様の制御プログラムをコンピュータに実行させることにより、前記一態様における制御方法と同様、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすると共に、吸気量調節機の耐久性の低下を抑え、且つ未燃分の排気量を少なくすることができる。
【0019】
前記目的を達成するための一態様としてのガスタービンの制御装置は、以下のガスタービンに適用される。
このガスタービンは、空気を圧縮して圧縮空気を生成できる圧縮機と、前記圧縮空気中で燃料を燃焼させて燃焼ガスを生成できる燃焼器と、前記燃焼ガスにより駆動可能なタービンと、前記燃焼器に燃料供給可能に前記燃焼器に接続されている燃料ラインと、前記燃料ラインに設けられ、前記燃料ラインを流れる燃料の流量である燃料流量を調節可能な燃料弁と、前記燃焼器を経ることなく、前記圧縮機からの前記圧縮空気の一部を外部に排気可能なバイパスラインと、前記バイパスラインに設けられ、前記バイパスラインを流れる前記圧縮空気の流量である抽排気量を調節可能なバイパス弁と、を備える。前記圧縮機は、前記圧縮機が吸い込む空気の流量である吸気量を調節できるよう、開閉動作可能なベーンを有する吸気量調節機を備える。
このガスタービンの制御装置は、前記ガスタービンに対する目標出力に応じて、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示可能な燃料制御器と、前記ガスタービンの実際の出力である実出力に応じて、前記ベーンの開閉角度を定めて、定めた前記ベーンの開閉角度になるよう前記吸気量調節機に指示可能な吸気量制御器と、前記実出力に応じて、前記バイパス弁の弁開度を定めて、定めた弁開度になるよう、前記バイパス弁に指示可能な抽排気量制御器と、を有する。前記燃料制御器は、前記目標出力が低下するに連れて次第に前記燃料流量が少なくなるよう、前記目標出力に応じた前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁に弁開度を指示する。前記吸気量制御器は、第一吸気量制御工程と、第二吸気量制御工程と、を実行可能である。前記抽排気量制御器は、第一抽排気量制御工程と、第二抽排気量制御工程と、を実行可能である。前記実出力が、前記ガスタービンの定格出力以下の第一出力から前記第一出力より低い出力である第二出力までの第一出力範囲では、前記吸気量制御器は、前記第一吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、前記抽排気量制御器は、前記第一抽排気量制御工程で、前記バイパス弁が閉じているよう、前記バイパス弁に指示する。前記実出力が、前記第二出力から前記第二出力より低い出力である第三出力までの第二出力範囲では、前記吸気量制御器は、前記第二吸気量制御工程で、前記実出力が低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力が低下しても前記吸気量が一定になるよう、前記ベーンの開閉角度を定めて、前記ベーンの開閉角度を前記吸気量調節機に指示し、前記抽排気量制御器は、前記第二抽排気量制御工程で、前記実出力が低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力が前記第三出力になると前記バイパス弁が全開になるよう、前記バイパス弁に指示する。
【0020】
本態様では、第一態様における制御方法と同様、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすると共に、吸気量調節機の耐久性の低下を抑え、且つ未燃分の排気量を少なくすることができる。
【0021】
前記目的を達成するための一態様としてのガスタービン設備は、
前記一態様におけるガスタービンの制御装置と、前記ガスタービンと、を備える。
【発明の効果】
【0022】
本開示の一態様では、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすると共に、吸気量調節機の耐久性の低下を抑え、且つ未燃分の排気量を少なくすることができる。
【図面の簡単な説明】
【0023】
【
図1】本開示に係る第一実施形態におけるガスタービン設備の模式的構成図である。
【
図2】本開示に係る第一実施形態における制御装置の機能ブロック図である。
【
図3】本開示に係る第一実施形態における制御装置のハード構成図である。
【
図4】本開示に係る第一実施形態における制御装置が実行する吸気量制御工程での処理内容を示すフローチャートである。
【
図5】本開示に係る第一実施形態における制御装置が実行する抽排気量制御工程での処理内容を示すフローチャートである。
【
図6】本開示に係る第一実施形態におけるガスタービンの出力とIGV開度(又は吸気量)との関係を示すグラフである。
【
図7】本開示に係る第一実施形態におけるガスタービンの出力とバイパス弁開度(又は抽排気量)との関係を示すグラフである。
【
図8】本開示に係る第一実施形態におけるガスタービンの出力と燃料弁開度(又は燃料流量)との関係を示すグラフである。
【
図9】本開示に係る第一実施形態におけるガスタービンの出力と排気温度との関係を示すグラフである。
【
図10】本開示に係る第一実施形態におけるガスタービンの出力とタービン入口温度との関係を示すグラフである。
【
図11】本開示に係る第二実施形態におけるガスタービンの出力とIGV開度(又は吸気量)との関係を示すグラフである。
【
図12】本開示に係る第二実施形態におけるガスタービンの出力とバイパス弁開度(又は抽排気量)との関係を示すグラフである。
【
図13】本開示に係る第二実施形態におけるガスタービンの出力と燃料弁開度(又は燃料流量)との関係を示すグラフである。
【発明を実施するための形態】
【0024】
以下、本発明に係るガスタービンの制御方法、この方法を実行するための制御プログラム、この方法を実行する制御装置、この制御装置を含むガスタービン設備の実施形態について図面を用いて説明する。
【0025】
「ガスタービン設備の第一実施形態」
以下、ガスタービン設備の第一実施形態について、
図1~
図10を参照して説明する。
【0026】
本実施形態のガスタービン設備は、
図1に示すように、ガスタービンGTと、ガスタービンGTの駆動で発電する発電機50と、ガスタービンGT中の制御対象を制御する制御装置100と、を備える。
【0027】
ガスタービンGTは、ガスタービン本体1と、燃料ライン8と、燃料弁8vと、バイパスライン9と、バイパス弁9vと、を備える。
【0028】
ガスタービン本体1は、空気Aを圧縮して圧縮空気CAを生成する圧縮機10と、圧縮空気CA中で燃料Fを燃焼させて燃焼ガスGを生成する燃焼器20と、高温高圧の燃焼ガスGにより駆動するタービン30と、タービン30から排気された燃焼ガスGである排気ガスEGが流れる排気ケーシング40と、を備える。
【0029】
圧縮機10は、軸線Arを中心として回転可能な圧縮機ロータ12と、圧縮機ロータ12を覆う圧縮機ケーシング16と、複数の静翼列15と、吸気量調節機17(以下、IGV(inlet guide vane)とする)17と、を有する。タービン30は、軸線Arを中心として回転可能なタービンロータ32と、タービンロータ32を覆うタービンケーシング36と、複数の静翼列35と、を有する。なお、以下では、軸線Arが延びる方向を軸線方向Da、この軸線Arを中心とした周方向を単に周方向Dcとし、軸線Arに対して垂直な方向を径方向Drとする。また、軸線方向Daの一方側を軸線上流側Dau、その反対側を軸線下流側Dadとする。また、径方向Drで軸線Arに近づく側を径方向内側Dri、その反対側を径方向外側Droとする。
【0030】
圧縮機10は、タービン30に対して軸線上流側Dauに配置されている。また、排気ケーシング40は、タービン30に対して軸線下流側Dadに配置されている。
【0031】
圧縮機ロータ12とタービンロータ32とは、同一軸線Ar上に位置し、互いに接続されてガスタービンロータ2を成す。このガスタービンロータ2には、発電機50のロータが接続されている。発電機50、又は発電機50に接続されている電力線には、発電機50が発電した電力を検知する電力計51が接続されている。ガスタービン本体1は、さらに、中間ケーシング5を備える。この中間ケーシング5は、軸線方向Daで、圧縮機ケーシング16とタービンケーシング36との間に配置されている。圧縮機ケーシング16と中間ケーシング5とタービンケーシング36と排気ケーシング40とは、互いに接続されてガスタービンケーシング6を成す。
【0032】
圧縮機ロータ12は、軸線Arを中心として軸線方向Daに延びるロータ軸13と、このロータ軸13に取り付けられている複数の動翼列14と、を有する。複数の動翼列14は、軸線方向Daに並んでいる。各動翼列14は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼列14の各軸線下流側Dadには、複数の静翼列15のうちのいずれか一の静翼列15が配置されている。各静翼列15は、圧縮機ケーシング16の内側に設けられている。各静翼列15は、いずれも、周方向Dcに並んでいる複数の静翼で構成されている。IGV17は、圧縮機ケーシング16の吸込み口に設けられている複数のベーン17vと、複数のベーン17vを駆動する駆動器17dとを有する。このIGV17は、駆動器17dに複数のベーン17vを開閉動作させることで、圧縮機ケーシング16内に吸い込まれる空気の流量である吸気量を調節できる。
【0033】
タービンロータ32は、軸線Arを中心として軸線方向Daに延びるロータ軸33と、このロータ軸33に取り付けられている複数の動翼列34と、を有する。複数の動翼列34は、軸線方向Daに並んでいる。各動翼列34は、いずれも、周方向Dcに並んでいる複数の動翼で構成されている。複数の動翼列34の各軸線上流側Dauには、複数の静翼列35のうちのいずれか一の静翼列35が配置されている。各静翼列35は、タービンケーシング36の内側に設けられている。各静翼列35は、いずれも、周方向Dcに並んでいる複数の静翼で構成されている。
【0034】
燃料ライン8は、燃料供給源と燃焼器20とを接続して、燃料供給源からの燃料Fを燃焼器20に導くことができる。燃料弁8vは、この燃料ライン8中に設けられ、この燃料ライン8を流れる燃料Fの流量である燃料流量を調節可能である。バイパスライン9の一端は、中間ケーシング5に接続され、バイパスライン9の他端は、例えば、大気開放されている。このため、バイパスライン9は、燃焼器20を経ることなく、圧縮機10から中間ケーシング5内に吐出された圧縮空気CAの一部を外部に排気可能である。バイパス弁9vは、バイパスライン9を流れる圧縮空気CAの流量である抽排気量を調節可能である。
【0035】
制御装置100は、燃料弁8vの開度を制御する燃料制御器110と、IGV17の複数のベーン17vの開閉角度(以下、IGV開度θとする)を制御する吸気量制御器120と、バイパス弁9vの開度を制御する抽排気量制御器130と、を有する。
【0036】
燃料制御器110は、
図2に示すように、外部から、ガスタービンGTの目標出力PWtと、電力計51で検知された電力であるガスタービンGTの実際の出力(以下、実出力PWrとする)とを受け付けることができる。
【0037】
この燃料制御器110は、ガスタービンGTの目標出力PWtとガスタービンGTの実出力PWrとの偏差Δを求める偏差演算器111と、この偏差Δを比例積分処理する比例積分器112と、燃料弁8vに対する制御信号を発生する制御信号発生器119と、を有する。この比例積分器112からの出力が燃料流量である。制御信号発生器119は、燃料制御器110が求めた燃料流量を用いて、燃料弁8vに対する制御信号に作成し、この制御信号を燃料弁8vに送る。
【0038】
吸気量制御器120は、実出力PWrと、各種制御モードの実行指示とを受け付けることができる。各種制御モードとしては、抽排気制御モードと、通常制御モードとがある。吸気量制御器120は、通常制御モードのときのIGV開度θを発生する第一IGV開度発生器121と、抽排気制御モードのときのIGV開度θを発生する第二IGV開度発生器125と、IGV17に対する制御信号を発生する制御信号発生器129と、を有する。
【0039】
第一IGV開度発生器121は、実出力PWrと通常制御モードのときのIGV開度θとの関係を示す関数F1を保持している。第一IGV開度発生器121は、この関数F1を用いて、実出力PWrに対応したIGV開度θを発生する。第二IGV開度発生器125は、実出力PWrと抽排気制御モードのときのIGV開度θとの関係を示す関数F1aを保持している。第二IGV開度発生器125は、この関数F1aを用いて、実出力PWrに対応したIGV開度θを発生する。
【0040】
制御信号発生器129は、第一IGV開度発生器121からのIGV開度θ、及び第二IGV開度発生器125からIGV開度θを用いて、IGV17に対する制御信号に作成し、この制御信号をIGV17に送る。
【0041】
吸気量制御器120は、実出力PWrと、各種制御モードの実行指示とを受け付けることができる。抽排気量制御器130は、通常制御モードのときのバイパス弁9vの弁開度を発生する第一バイパス弁開度発生器131と、抽排気制御モードのときのバイパス弁9vの弁開度を発生する第二バイパス弁開度発生器135と、バイパス弁9vに対する制御信号を発生する制御信号発生器139と、を有する。
【0042】
第一バイパス弁開度発生器131は、バイパス弁9vの弁開度として開度0、つまり閉を発生する。第二バイパス弁開度発生器135は、実出力PWrと抽排気制御モードのときのバイパス弁9vの弁開度との関係を示す関数F2を保持している。第二バイパス弁開度発生器135は、この関数F2を用いて、実出力PWrに対応したバイパス弁9vの開度を発生する。
【0043】
制御信号発生器139は、第一バイパス弁開度発生器131からの弁開度、及び第二バイパス弁開度発生器135から弁開度を用いて、バイパス弁9vに対する制御信号に作成し、この制御信号をバイパス弁9vに送る。
【0044】
なお、以上で説明した関数F1、関数F1a、関数F2については、後述する。
【0045】
制御装置100は、コンピュータである。この制御装置100は、ハードウェア的には、
図3に示すように、コンピュータ本体101と、キーボードやマウス等の入力装置106と、表示装置107と、を有する。コンピュータ本体101は、各種演算を行うCPU(Central Processing Unit)102と、CPU102のワークエリアになるメモリ等の主記憶装置103と、ハードディスクドライブ装置等の補助記憶装置104と、ディスク型記憶媒体Dに対してデータの記憶処理や再生処理を行う記憶・再生装置105dと、入力装置106及び表示装置107の入出力インタフェース105aと、装置インタフェース105bと、ネットワークNを介して外部と通信するための通信インタフェース105cと、を有する。
【0046】
装置インタフェース105bには、電力計51と、燃料弁8vと、バイパス弁9vと、IGV17の駆動器17dとが信号線等を介して接続されている。
【0047】
補助記憶装置104には、制御プログラム104p等が予め格納されている。この制御プログラム104pは、例えば、記憶・再生装置105dを介して、ディスク型記憶媒体Dから補助記憶装置104に取り込まれる。なお、制御プログラム104pは、通信インタフェース105cを介して外部の装置から補助記憶装置104に取り込まれてもよい。制御装置100の各機能部、つまり、燃料制御器110、吸気量制御器120、及び抽排気量制御器130は、いずれも、CPU102が補助記憶装置104に格納されている制御プログラム104pを実行することで機能する。
【0048】
次に、以上で説明したガスタービンGTの基本的な動作について、簡単に説明する。圧縮機10は、空気Aを吸い込んで、この空気Aを圧縮して圧縮空気CAを生成する。この際、圧縮機10が吸い込む空気Aの流量である吸気量は、IGV17により調節される。圧縮機10からの圧縮空気CAは、中間ケーシング5を介して、燃焼器20内に流入する。但し、圧縮機10からの圧縮空気CAの一部は、中間ケーシング5、バイパスライン9及びバイパス弁9vを介して外部に排気されることもある。また、燃焼器20には、燃料ライン8及び燃料弁8vを介して、外部から燃料Fが供給される。燃焼器20は、圧縮空気CA中で燃料Fを燃焼させて、高温且つ高圧の燃焼ガスGを生成する。この燃焼ガスGは、タービン30に送られ、タービン30を駆動する。すなわち、タービンロータ32が回転する。この結果、発電機50が発電する。タービン30から排気された燃焼ガスGは、排気ガスEGとして外部に排気される、又は、図示されていない排熱回収ボイラに流入する。
【0049】
次に、
図4及び
図5に示すフローチャートに従って、制御装置100の動作、この制御装置100の動作に伴うガスタービンGTの動作について説明する。なお、
図4及び
図5に示すフローチャートは、ガスタービンGTの出力を定格出力以下の出力範囲内で、ガスタービンGTを運転するときの制御装置100の動作を示している。また、
図4は、制御装置100の吸気量制御器120が実行する吸気量制御工程S10での処理内容を示し、
図5は、制御装置100の抽排気量制御器130が実行する抽排気量制御工程S20での処理内容を示す。
【0050】
図4のフローチャートに示すように、吸気量制御工程S10では、まず、吸気量制御器120が、現在指示されている制御モードが何かを判断する(モード判断工程S11)。現在指示されている制御モードが通常制御モードである場合には、吸気量制御器120は、通常制御モードS12を実行する。吸気量制御器120は、この通常制御モードS12で通常吸気量制御工程S13を実行する。通常吸気量制御工程S13では、吸気量制御器120の第一IGV開度発生器121が、関数F1を用いて、実出力PWrに対応したIGV開度θを発生する。この関数F1は、
図6のグラフ中の破線で示すように、ガスタービンの出力の低下に伴って、IGV開度θが次第に小さくなり、つまりIGV17が次第に閉じて吸気量が少なくなるよう設定されている。制御信号発生器129は、第一IGV開度発生器121からのIGV開度θを用いて、制御信号に作成し、この制御信号をIGV17に送る。
【0051】
なお、
図6のグラフで、横軸はガスタービンの出力を示し、縦軸はIGV開度(吸気量)を示す。また、
図6~
図10のグラフ中のPW1はガスタービンの定格出力以下の第一出力PW1を示し、PW2は第一出力PW1より低い出力である第二出力PW2を示し、PW3は第二出力PW2より低い出力である第三出力PW3を示し、PW4は第三出力PW3より低い出力である第四出力PW4を示す。また、これらのグラフ中のR1は第一出力PW1から第二出力PW2までの出力範囲である第一出力範囲R1を示し、これらのグラフ中のR2は第二出力PW2から第三出力PW3までの出力範囲である第二出力範囲R2を示し、これらのグラフ中のR3は第三出力PW3から第四出力PW4までの出力範囲である第三出力範囲R3を示す。
【0052】
吸気量制御器120は、モード判断工程S11で、現在指示されている制御モードが抽排気制御モードであると判断した場合、抽排気制御モードS15を実行する。吸気量制御器120は、この抽排気制御モードS15で、ガスタービンの実出力がいずれの出力範囲内であるかを判断する(出力範囲判断工程S16)。吸気量制御器120は、実出力が第一出力範囲R1内の場合、第一吸気量制御工程S17を実行する。第一吸気量制御工程S17では、吸気量制御器120の第二IGV開度発生器125が、関数F1aを用いて、第一出力範囲R1内の実出力PWrに対応したIGV開度θを発生する。この関数F1aは、
図6のグラフ中の実線で示すように、第一出力範囲R1内では、実出力の低下に伴って、IGV開度θが次第に小さくなり、つまりIGV17が次第に閉じて吸気量が少なくなるよう設定されている。なお、通常制御モードS12で使用する関数F1の実出力とIGV開度θとの関係と、抽排気制御モードS15で使用する関数F1aの実出力とIGV開度θとの関係とは、第一出力範囲R1内で同じである。制御信号発生器129は、第二IGV開度発生器125からのIGV開度θを用いて、制御信号に作成し、この制御信号をIGV17に送る。
【0053】
また、吸気量制御器120は、出力範囲判断工程S16で、ガスタービンの実出力が第二出力範囲R2内であると判断した場合、第二吸気量制御工程S18を実行する。第二吸気量制御工程S18では、吸気量制御器120の第二IGV開度発生器125が、関数F1aを用いて、第二出力範囲R2内の実出力PWrに対応したIGV開度θを発生する。この関数F1aは、
図6のグラフ中の実線で示すように、第二出力範囲R2内では、実出力が低下しても、IGV開度θが一定で、つまり吸気量が一定になるよう設定されている。制御信号発生器129は、第二IGV開度発生器125からのIGV開度θを用いて、制御信号に作成し、この制御信号をIGV17に送る。
【0054】
また、吸気量制御器120は、出力範囲判断工程S16で、ガスタービンの実出力が第三出力範囲R3内であると判断した場合、第三吸気量制御工程S19を実行する。第三吸気量制御工程S19では、吸気量制御器120の第二IGV開度発生器125が、関数F1aを用いて、第三出力範囲R3内の実出力PWrに対応したIGV開度θを発生する。この関数F1aは、
図6のグラフ中の実線で示すように、第三出力範囲R3内では、実出力の低下に伴って、IGV開度θが次第に小さくなり、つまりIGV17が次第に閉じて吸気量が少なくなり、且つ実出力が第四出力PW4になると、IGV開度θが最小になり、つまりIGV17が閉じて吸気量が最小になるよう設定されている。制御信号発生器129は、第二IGV開度発生器125からのIGV開度θを用いて、制御信号に作成し、この制御信号をIGV17に送る。
【0055】
図5のフローチャートに示すように、抽排気量制御工程S20では、まず、抽排気量制御器130が、現在指示されている制御モードが何かを判断する(モード判断工程S21)。現在指示されている制御モードが通常制御モードである場合には、抽排気量制御器130は、通常制御モードS22を実行する。抽排気量制御器130は、この通常制御モードS22で通常抽排気量制御工程S23を実行する。通常抽排気量制御工程S23では、抽排気量制御器130の第一バイパス弁開度発生器131が、バイパス弁9vの弁開度として開度0、つまり閉を発生する。制御信号発生器139は、第一バイパス弁開度発生器131からのバイパス弁9vの弁開度を用いて、制御信号に作成し、この制御信号をバイパス弁9vに送る。よって、通常制御モードS22では、実出力が如何なる値でも、バイパス弁9vは閉状態に維持される。
【0056】
抽排気量制御器130は、モード判断工程S21で、現在指示されている制御モードが抽排気制御モードであると判断した場合、抽排気制御モードS25を実行する。抽排気量制御器130は、この抽排気制御モードS25で、ガスタービンの実出力がいずれの出力範囲内であるかを判断する(出力範囲判断工程S26)。ガスタービンの実出力が第一出力範囲R1内の場合、抽排気量制御器130は、第一抽排気量制御工程S27を実行する。第一抽排気量制御工程S27では、抽排気量制御器130の第二バイパス弁開度発生器135が、関数F2を用いて、第一出力範囲R1内の実出力PWrに対応したバイパス弁9vの弁開度を発生する。この関数F2は、
図7のグラフ中の実線で示すように、第一出力範囲R1内では、バイパス弁9vの弁開度として開度0、つまり閉を発生する。制御信号発生器139は、第二バイパス弁開度発生器135からの弁開度を用いて、制御信号に作成し、この制御信号をバイパス弁9vに送る。よって、第一抽排気量制御工程S27では、第一出力範囲R1内で実出力が如何なる値でも、バイパス弁9vは閉状態に維持される。
【0057】
また、抽排気量制御器130は、出力範囲判断工程S26で、ガスタービンの実出力が第二出力範囲R2内であると判断した場合、第二抽排気量制御工程S28を実行する。第二抽排気量制御工程S28では、抽排気量制御器130の第二バイパス弁開度発生器135が、関数F2を用いて、第二出力範囲R2内の実出力PWrに対応したバイパス弁9vの開度を発生する。この関数F2は、
図7のグラフ中の実線で示すように、第二出力範囲R2内では、実出力が低下に伴って、バイパス弁9vの弁開度が次第に大きくなり、つまり抽排気量が次第に多くなり、且つ、実出力が第三出力PW3になると、バイパス弁9vが全開になるよう設定されている。制御信号発生器139は、第二バイパス弁開度発生器135からの弁開度を用いて、制御信号に作成し、この制御信号をバイパス弁9vに送る。よって、実出力が第三出力PW3になると、バイパス弁9vが全開になり、吸気量に対する抽排気量の割合が最大になる。
【0058】
また、抽排気量制御器130は、出力範囲判断工程S26で、ガスタービンの実出力が第三出力範囲R3内であると判断した場合、第三抽排気量制御工程S29を実行する。第三抽排気量制御工程S29では、抽排気量制御器130の第二バイパス弁開度発生器135が、関数F2を用いて、第三出力範囲R3内の実出力PWrに対応したバイパス弁9vの弁開度を発生する。この関数F2は、
図7のグラフ中の実線で示すように、第三出力範囲R3内では、バイパス弁9vの弁開度として全開を発生する。制御信号発生器139は、第二バイパス弁開度発生器135からの弁開度を用いて、制御信号に作成し、この制御信号をバイパス弁9vに送る。よって、第三抽排気量制御工程S29では、第三出力範囲R3内で実出力が如何なる値でも、バイパス弁9vは全開状態に維持される。つまり、第三出力範囲R3内で実出力が如何なる値でも、吸気量に対する抽排気量の割合が最大に維持される。
【0059】
燃料制御器110は、燃料制御工程S30を実行する。燃料制御工程S30では、燃料制御器110の偏差演算器111が、外部からの目標出力PWtと電力計51からの実出力PWrとの偏差Δを求める。次に、燃料制御器110の比例積分器112がこの偏差Δに対して比例積分処理を行う。制御信号発生器119は、比例積分器112からの出力を用いて、燃料弁8vの弁開度を示す制御信号を作成し、この制御信号を燃料弁8vに送る。このように、燃料制御工程S30では、燃料制御器110が、目標出力PWtと実出力PWrとの偏差に応じて燃料流量を定め、この燃料流量に応じた弁開度を燃料弁8vに指示する。従って、燃料弁8vの弁開度は、目標出力PWtの低下に伴って次第に小さくなる、言い換えると、燃料流量は、
図8のグラフ中の実線で示すように、目標出力PWtの低下に伴って次第に少なくなる。
【0060】
この燃料制御器110は、制御モードの種類やガスタービンの実出力の範囲に関わらず、同じ制御を実行する。つまり、燃料制御器110は、制御モードの種類やガスタービンの実出力の範囲に関わらず、目標出力PWtと実出力PWrとの偏差に応じて燃料流量を定め、この燃料流量に応じた弁開度を燃料弁8vに指示する。但し、ガスタービンの実出力が第二出力範囲R2内であるときの実出力の変化に対する燃料流量の変化の割合である流量変化率は、
図8のグラフ中の実線で示すように、ガスタービンの実出力が第一出力範囲R1及び第三出力範囲R3内であるときの同流量変化率より小さい。これは、ガスタービンの実出力が第二出力範囲R2のときと、ガスタービンの実出力が第一出力範囲R1及び第三出力範囲R3内のときとで、吸気量及び抽排気量が異なるからである。
【0061】
次に、
図9を用いて、通常制御モード及び抽排気制御モードにおいて、燃料弁8v、IGV17及びバイパス弁9vを以上のように制御した場合における、タービン30から排気され排気ケーシング内に流入した燃焼ガスGである排気ガスEGの温度の変化について説明する。
【0062】
通常制御モードを実行した場合でも抽排気制御モードを実行した場合でも、
図9に示すように、排気ガス温度は、実出力が定格出力から第四出力PW4の間、許容最大温度を維持する。排気ガス温度に関する許容最大温度は、排気ガス温度がこの許容最大温度よりも高くなると、ガスタービンを構成する部品が損傷する可能性が高くなるとして予め定めた温度である。実出力が第四出力PW4のとき、IGV開度θは最小の開度であり、バイパス弁9vは全開である。このため、実出力が第四出力PW4よりも低くなっても、燃焼器20に流入する圧縮空気CAの流量を少なくすることができない。一方で、燃焼器20に流入する燃料流量は、目標出力PWtが第四出力PW4より低くなっても、目標出力PWtの低下に伴って次第に少なくなる。よって、実出力が第四出力PW4より低くなると、排気ガス温度は、実出力の低下に伴って次第に低くなる。
【0063】
次に、
図10を用いて、抽排気制御モードにおいて、燃料弁8v、IGV17及びバイパス弁9vを以上のように制御した場合における、タービン30の入口における燃焼ガスGの温度(以下、タービン入口温度とする)の変化について説明する。
【0064】
通常制御モードを実行した場合でも抽排気制御モードを実行した場合でも、タービン入口温度は、基本的に、実出力の低下に伴って、次第に低下する。但し、実出力が第二出力範囲R2内の場合、実出力の低下に伴うタービン入口温度の低下の割合である温度変化率は、実出力が第一出力範囲R1内及び第三出力範囲R3内の場合の温度変化率よりも小さくなる。
【0065】
ところで、タービン入口温度は、以上で説明したように、実出力の低下に伴って、次第に低下する。一方、排気ガス温度は、実出力が定格出力から第四出力PW4の間、許容最大温度を維持する。これは、燃料弁8v、IGV17及びバイパス弁9vを以上のように制御すること、及び、実出力の低下に伴ってタービン30内の燃焼ガスGの膨張率が小さくなり、タービン入口温度の低下に対して排気ガス温度が低下にくくなっていることに、起因する。
【0066】
次に、バイパス弁9vが閉のときのタービン入口温度とバイパス弁9vが全開のときのタービン入口温度の違いについて説明する。
【0067】
ここで、バイパス弁9vが閉のときの実出力とバイパス弁9vが全開のときの実出力とが同じで、バイパス弁9vが閉のときの排気ガス温度とバイパス弁9vが全開のときの排気ガス温度とが同じとする。
【0068】
以上の条件下で、バイパス弁9vが閉のとき、タービン30単体の出力を300MWとする。また、圧縮機10はタービン30の動作で動作するため、圧縮機10の消費出力を100MW、言い換えると圧縮機10の出力を-100MWとする。この結果、ガスタービンの実出力は、200MW(=300-100)になる。
【0069】
バイパス弁9vが全開のとき、圧縮機10が生成した圧縮空気CAを外部に排気して、圧縮機10は無駄に仕事をしている。このため、以上の条件下で、バイパス弁9vが全開の圧縮機10の消費出力は、バイパス弁9vが閉のときの圧縮機10の消費出力よりも大きくなる。そこで、このときの圧縮機10の消費出力を150MW、言い換えると圧縮機10の出力を-150MWとする。このときのガスタービンの実出力をバイパス弁9vが閉のときの実出力と同じ200MWにするためには、タービン30単体の出力が350MW(=200+150)である必要がある。
【0070】
以上のことから、バイパス弁9vが全開のときの排気ガス温度とバイパス弁9vが閉のときの排気ガス温度が同じ場合、バイパス弁9vが全開のときのタービン30単体の出力(350MW)は、バイパス弁9vが閉のときのタービン30単体の出力(300MW)より高くなることが理解である。このため、このとき、バイパス弁9vが全開のときのタービン入口温度は、バイパス弁9vが閉のときのタービン入口温度より高い必要がある。
【0071】
よって、以上の条件下では、バイパス弁9vが全開のときのタービン入口温度は、バイパス弁9vが閉のときのタービン入口温度よりも高くなる。
【0072】
抽排気制御モードで、実出力が第一出力範囲R1内のとき、バイパス弁9vは閉であるため、このときのタービン入口温度は、
図10のグラフ中で、バイパス弁9vが閉のときのタービン入口温度線TiC上の温度になる。また、抽排気制御モードで、実出力が第三出力範囲R3内のとき、バイパス弁9vは全開であるため、このときのタービン入口温度は、
図10のグラフ中で、バイパス弁9vが全開のときのタービン入口温度線TiO上の温度になる。実出力が第三出力範囲R3のときの排気ガス温度は、
図9を用いて説明したように、実出力が第一出力範囲R1のときの排気ガス温度と同じである。よって、先に説明した理由で、バイパス弁9vが全開のときのバイパス入口温度線TiO上で実出力が出力PWxのときのタービン入口温度Tioは、バイパス弁9vが閉のときのバイパス入口温度線TiC上で実出力がPWxのタービン入口温度Ticよりも高くなる。
【0073】
実出力が第二出力PW2のときのタービン入口温度Ti2は、バイパス弁9vが閉のときのタービン入口温度線TiC上の温度である。また、実出力が第三出力PW3のときのタービン入口温度Ti3は、バイパス弁9vが全開のときのタービン入口温度線TiO上の温度である。タービン入口温度は、前述したように、タービン30の実出力の低下に伴って、次第に低下する。このため、バイパス弁9vを閉のままにしておくと、実出力が第三出力PW3ときのタービン入口温度は、実出力が第三出力PW3より高い第二出力PW2のときのタービン入口温度Ti2よりも、確実に低くなる。しかしながら、バイパス弁9vが全開で実出力が第三出力PW3ときのタービン入口温度Ti3は、実出力が同じであれば、バイパス弁が閉のときよりタービン入口温度が高くなるタービン入口温度線TiO上の温度である。このため、実出力が第三出力PW3ときのタービン入口温度Ti3は、実出力が第三出力PW3より高い第二出力PW2のときのタービン入口温度Ti2に対して、あまり低くならない。
【0074】
よって、第二出力PW2と第三出力PW3との間の第二出力範囲R2内での温度変化率は、前述したように、第一出力範囲R1内での温度変化率よりも小さくなる。言い換えると、バイパス弁9vが開き始めてからバイパス弁9vが全開になるまでの温度変化率は、バイパス弁9vが全閉のときの温度変化率よりも小さくなる。
【0075】
次に、抽排気制御モードのときに、実出力とIGV開度θ(又は吸気量)との関係を定める関数F1aの作成方法について説明する。
【0076】
関数F1aを作成する際には、以下の第三出力条件で、第三出力PW3の値、及び、実出力が第三出力PW3のときのIGV開度である第三開閉角度の値又はそのときの吸気量である第三吸気量の値を定める。つまり、
図6のグラフ中の運転点P3における出力の値、及びIGV開度又は吸気量の値を定める。
【0077】
この第三出力条件は、
a.バイパス弁9vが全開である。言い換えると、抽排気量が最大である。
b.排気ガス温度が許容最大温度である。
c.タービン30に流入する燃焼ガスGの温度、つまりタービン入口温度が、燃焼ガスG中に含まれる未燃分の濃度が許容最大濃度になるときの温度である。
【0078】
第三出力条件中の条件b及び条件cにより、タービン30の入口における燃焼ガスGの温度、及び、タービン30の出口における燃焼ガスGの温度が定まっていることになる。よって、これらの温度により、タービン30単体での出力の値が定まる。タービン30単体での出力の値が定まると、燃焼器20に流入させる圧縮空気CAの流量が定まる。燃焼器20に流入させる圧縮空気CAの流量が定まると、第三出力条件中の条件aにより、IGV開度の値である第三開閉角度、又はそのときの吸気量である第三吸気量が定まる。つまり、点P3におけるIGV開度又は吸気量の値が定まる。タービン30単体での出力の値、及びIGV開度の値が定まると、ガスタービンの出力の値が定まる。つまり、点P3における第三出力PW3の値が定まる。
【0079】
次に、以下の第二出力条件で、第二出力PW2の値、及び、実出力が第二出力PW2のときのIGV開度である第二開閉角度の値又はそのときの吸気量である第二吸気量の値を定める。つまり、
図6のグラフ中の運転点P2における出力の値、及びIGV開度又は吸気量の値を定める。
【0080】
この第二出力条件は、
a.第二出力範囲R2内でのIGV開度の変化傾向が予め定めた変化傾向で、且つ点P3を基点にした変化傾向である。言い換えると、第二出力範囲R2内での吸気量の変化傾向が予め定めた変化傾向で、且つ点P3を基点にした変化傾向である。
b.バイパス弁9vが閉である。言い換えると、抽排気量が0である。
c.排気ガス温度が許容最大温度である。
【0081】
本実施形態で、第二出力範囲R2内でのIGV開度は、ガスタービンの出力が変化しても、一定である。よって、第二出力条件中の条件aは、点P3を通って、第二出力範囲R2内でIGV開度は一定である、ということである。このため、点P2におけるIGV開度である第二開閉角度は、点P3におけるIGV開度になる。言い換えると、点P2における吸気量である第二吸気量は、点P3における吸気量になる。点P2におけるIGV開度が定まると、第二出力条件中の条件bにより、燃焼器20に流入する圧縮空気CAの流量が定まる。燃焼器20に流入する圧縮空気CAの流量が定まると、タービン30単体での出力の値が定まる。タービン30単体での出力の値、及びIGV開度の値が定まると、ガスタービンの出力の値が定まる。つまり、点P2における第二出力PW2の値が定まる。
【0082】
以上のように、点P3及び点P2のそれぞれにおけるガスタービンの出力及びIGV開度(ベーン17vの開閉角度)が定まると、第一出力範囲R1内及び第三出力範囲R3内での実出力の変化に対するIGV開度の変化傾向を定めると、関数F1aが定まる。
【0083】
次に、本実施形態の抽排気制御モードを実行した場合の効果を説明するために、比較例について説明する。
【0084】
比較例では、
図6のグラフ中の二点破線で示すように、IGV開度θが実出力の変化に伴って変化する、とする。具体的に、実出力が定格出力から、この定格出力よりも低い出力である出力PWxまでの間、IGV開度θは、実出力の低下に伴って、次第に小さくなり、つまりIGV17が次第に閉じて吸気量が少なくなる、とする。なお、出力PWxは、前述の第二出力PW2よりも低く且つ第三出力PW3よりも高い出力である。出力PWxから、この出力PWxよりも低い出力である第三出力PW3までの間、IGV開度θは、実出力の低下に伴って、次第に大きくなり、つまりIGV17が次第に開いて吸気量が多くなる、とする。また、第三出力PW3から、この第三出力PW3よりも低い出力である第四出力PW4までの間、IGV開度θは、実出力の低下に伴って、次第に小さくなり、つまりIGV17が次第に閉じて吸気量が少なくなり、且つ、実出力が第四出力PW4になると、IGV開度θが最小になり、つまりIGV17が閉じて吸気量が最小になる、とする。
【0085】
また、比較例では、
図7のグラフ中の二点破線で示すように、バイパス弁9vの弁開度が実出力の変化に伴って変化する、とする。具体的に、実出力が定格出力から出力PWxまでの間、バイパス弁9vの弁開度は、0、つまりバイパス弁9vが閉を維持する、とする。出力PWxから第三出力PW3までの間、バイパス弁9vの弁開度は、実出力の低下に伴って、バイパス弁9vの弁開度が次第に大きくなり、つまり抽排気量が次第に多くなり、且つ、実出力が第三出力PW3になると、バイパス弁9vが全開になる、とする。実出力が第三出力PW3以下の場合、バイパス弁9vは全開を維持する、とする。
【0086】
また、比較例では、
図8のグラフ中の二点破線で示すように、燃料弁8vの開度が目標出力PWtの変化に伴って変化する、とする。具体的に、目標出力PWtが定格出力から出力PWxまでの間、燃料弁8vの開度は、目標出力PWtの低下に伴って次第に小さくなる、言い換えると、燃料流量は、目標出力PWtの低下に伴って次第に少なくなる、とする。また、目標出力PWtが出力PWxから第三出力PW3までの間、燃料弁8vの開度は変化せず、言い換えると、燃料流量は、変化しない、とする。また、目標出力PWtが第三出力PW3以下の場合、燃料弁8vの開度は、目標出力PWtの低下に伴って次第に小さくなる、言い換えると、燃料流量は、目標出力PWtの低下に伴って次第に少なくなる、とする。
【0087】
以上のように、比較例では、特許文献1に記載の技術のように、ガスタービンの出力を低くする場合、まず、燃料流量を徐々に少なくすると共に、IGV17に閉動作させて吸気量を徐々に少なくする。次に、吸気量がある程度少なくなった時点で、バイパス弁9vを徐々に開ける。このバイパス弁9vを徐々に開ける過程で、IGV17に開動作させて吸気量を徐々に多くする。このバイパス弁9vを徐々に開ける過程では、燃料流量を変えない。そして、バイパス弁9vが全開になると、燃料流量を再び徐々に少なくすると共に、IGV17に閉動作させて吸気量を再び徐々に少なくする。
【0088】
比較例において、燃料弁8v、IGV17及びバイパス弁9vを以上のように制御した場合、
図9に示すように、排気ガス温度は、定格出力から第四出力PW4の間、許容最大温度を維持する。
【0089】
比較例において、燃料弁8v、IGV17及びバイパス弁9vを以上のように制御した場合、
図10に示すように、タービン入口温度は、
図10のグラフ中の二点破線で示すように変化する。具体的に、比較例においても、タービン入口温度は、基本的に、タービン30の実出力の低下に伴って、次第に低下する。但し、実出力が出力PWxから第三出力PW3の範囲内の場合、実出力の低下に伴うタービン入口温度の低下の割合である温度変化率は、実出力が第一出力範囲R1内及び第三出力範囲R3内の場合、温度変化率よりも小さくなる。
【0090】
比較例においても、第三出力PW3の値、及び実出力が第三出力PW3のときのIGV開度(ベーン17vの開閉角度)の値は、前述した第三出力条件に基づいて定まる。よって、第三出力PW3の値は、本実施形態における第三出力PW3の値に一致する。また、実出力が第三出力PW3のときのIGV開度の値も、本実施形態で、実出力が第三出力PW3のときのIGV開度の値に、一致する。
【0091】
また、比較例において、出力PWxの値、及び実出力が出力PWxのときのIGV開度の値は、前述した第二出力条件に基づいて定まる。この第二出力条件中の条件aを比較例に当てはめると、この条件aは、実出力が第三出力PW3から出力PWxの範囲内でのIGV開度の変化傾向が予め定めた変化傾向で、且つ点P3を基点にした変化傾向である、という条件になる。なお、点P3とは、実出力が第三出力PW3であり、且つそのときのIGV開度を示す運転点である。比較例で、実出力が第三出力PW3から出力PWxの範囲内でのIGV開度は、実出力の低下に伴って次第に大きくなる。このため、点P3を基点にすると、IGV開度は、実出力が高まるにつれて次第に小さくなり、つまり、実出力が高まるにつれてIGV17が次第に閉じて吸気量が少なくなる。よって、比較例で、実出力が第三出力PW3から出力PWxの範囲内でのIGV開度の変化傾向は、
図6のグラフ中で、点P3を基点として右肩上がりの変化傾向になる。
【0092】
この条件aに、第二出力条件中の条件b,cを追加して、比較例での出力PWxの値を定めると、この出力PWxの値は、第二出力PW2と第三出力PW3との間の値になる。また、比較例で実出力が出力PWxのときのIGV開度の値を定めると、このときのIGV開度の値は、本実施形態で実出力が第二出力PW2のときのIGV開度の値より小さくなる。
【0093】
タービン入口温度は、前述したように、バイパス弁9vが閉のとき、実出力の低下に伴って次第に低下する。言い換えると、タービン入口温度は、バイパス弁9vが開き始めるまでは、実出力の低下に伴って次第に低下する。本実施形態でバイパス弁9vが開き始めるときの実出力は、比較例でバイパス弁9vが開き始めるときの実出力Pwxよりも高い第二出力PW2である。このため、本実施形態でバイパス弁9vが開き始めるタービン入口温度は、比較例でバイパス弁9vが開き始めるときのタービン入口温度よりも高い。また、比較例で、バイパス弁9vが全開になったときの運転点は、本実施形態で、バイパス弁9vが全開になったときの運転点と同じ点P3である。このため、比較例で、バイパス弁9vが全開になったときのタービン入口温度は、本実施形態で、バイパス弁9vが全開になったときのタービン入口温度と同じである。
【0094】
よって、実出力が第二出力PW2から第三出力PW3の範囲では、タービン入口温度が比較例よりも本実施形態の方が高くなる。
【0095】
以上のように、本実施形態では、比較例と同様、ガスタービンの出力を低下させる過程で、燃料流量を徐々に少なくすると共に、IGV17とバイパス弁9vとを併用して、燃焼器20に流入する圧縮空気CAの流量を徐々に少なくするので、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすることができる。
【0096】
比較例では、ガスタービンの出力を低下させる過程で、IGV17に、閉動作させた後、開動作させ、その後、再び、閉動作させる。一方、本実施形態では、ガスタービンの出力を低下させる過程で、IGV17に、閉動作させるものの、開動作させない。このため、本実施形態では、比較例よりも、IGV17の動作が複雑でなくなり、IGV17の耐久性の低下を抑えることができる。
【0097】
また、本実施形態では、実出力が第二出力PW2から第三出力PW3の範囲では、タービン入口温度を比較例よりも高くなるので、この範囲内で、一酸化炭素等の未燃分の排気量を少なくすることができる。
【0098】
「ガスタービン設備の第二実施形態」
以下、ガスタービン設備の第二実施形態について、
図11~
図13を参照して説明する。
【0099】
第一実施形態では、抽排気制御モードのとき、第二出力範囲R2内で、実出力が変化に対してIGV開度θを一定に維持している。一方、本実施形態では、抽排気制御モードのとき、
図11に示すように、第二出力範囲R2内で、実出力の低下に伴ってIGV開度θが次第に小さくなる、つまりIGV17が次第に閉じて吸気量が少なくなる。本実施形態におけるガスタービン設備は、第一実施形態におけるガスタービン設備と係る点で異なっており、その他の点では同じである。このため、本実施形態におけるガスタービン設備のハード構成は、
図1及び
図2に示す、第一実施形態におけるガスタービン設備のハード構成と同じである。
【0100】
本実施形態では、前述したように、第二出力範囲R2内で、実出力の低下に伴ってIGV開度θが次第に小さくなる。このため、前述の第二出力条件で、本実施形態における第二出力PW2aの値、及び、実出力がこの第二出力PW2aのときのIGV開度(ベーン17vの開閉角度)の値を定めると、本実施形態おける第二出力PW2aの値は、第一実施形態における第二出力PW2の値よりも、高くなる。
【0101】
このように、第一出力範囲R1と第二出力範囲R2との境目の出力である第二出力が、第一実施形態に対して本実施形態で変わるため、本実施形態における第一出力範囲R1aが第一実施形態における第一出力範囲R1と変わると共に、本実施形態における第二出力範囲R2aが第一実施形態における第二出力範囲R2と変わる。
【0102】
本実施形態では、抽排気制御モードのとき、
図12に示すように、第一実施形態と同様、実出力が第二出力PW2aになると、バイパス弁9vを開け始める。そして、バイパス弁9vの開度も、第一実施形態と同様、第二出力範囲R2a内で、実出力の低下に伴って大きくなるよう制御される。
【0103】
また、本実施形態でも、第一実施形態と同様、燃料制御器110が、制御モードの種類やガスタービンの実出力の範囲に関わらず、目標出力PWtと実出力PWrとの偏差に応じて燃料流量を定め、この燃料流量に応じた弁開度を燃料弁8vに指示する。また、ガスタービンの実出力が第二出力範囲R2a内であるときの実出力の変化に対する燃料流量の変化の割合である流量変化率も、第一実施形態と同様、
図13のグラフ中の実線で示すように、ガスタービンの実出力が第一出力範囲R1a及び第三出力範囲R3内であるときの同流量変化率より小さい。
【0104】
以上のように、本実施形態でも、第一実施形態と同様、ガスタービンの出力を低下させる過程で、燃料流量を徐々に少なくすると共に、IGV17とバイパス弁9vとを併用して、燃焼器20に流入する圧縮空気CAの流量を徐々に少なくするので、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすることができる。
【0105】
また、本実施形態でも、第一実施形態と同様、ガスタービンの出力を低下させる過程で、IGV17に、閉動作させるものの、開動作させないため、IGV17の耐久性の低下を抑えることができる。
【0106】
また、本実施形態でも、第一実施形態と同様、実出力が第二出力PW2aから第三出力PW3の範囲では、タービン入口温度が比較例より高くなるので、この範囲内で、一酸化炭素等の未燃分の排気量を少なくすることができる。
【0107】
「変形例」
以上の各実施形態では、ガスタービンの実出力が第三出力PW3より低出力の範囲内のときに、一酸化炭素濃度を低く保つためバイパス弁9vを全開に維持する。しかしながら、例えば、ガスタービンの実出力が第三出力PW3になった以降、しばらくの間、バイパス弁9vを全開に維持し、その後、バイパス弁9vを閉じてもよい。また、例えば、ガスタービンの実出力が第三出力PW3より低出力の範囲内では、この範囲内の全域でバイパス弁9vを閉じてもよい。このように、バイパス弁9vを閉じておくと、この範囲内でガスタービン効率が向上する。
【0108】
また、本開示は、以上で説明した各実施形態及び変形例に限定されるものではない。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲において、種々の追加、変更、置き換え、部分的削除等が可能である。
【0109】
「付記」
以上の実施形態におけるガスタービンの制御方法は、例えば、以下のように把握される。
【0110】
(1)第一態様におけるガスタービンの制御方法は、以下のガスタービンに適用される。
このガスタービンは、空気Aを圧縮して圧縮空気CAを生成できる圧縮機10と、前記圧縮空気CA中で燃料Fを燃焼させて燃焼ガスGを生成できる燃焼器20と、前記燃焼ガスGにより駆動可能なタービン30と、を備える。
このガスタービンの制御方法では、前記燃焼器20に供給する燃料Fの燃料流量が前記ガスタービンに対する目標出力PWtに応じた流量になるよう、前記燃料流量を制御する燃料制御工程S30と、前記圧縮機10が吸い込む空気Aの流量である吸気量が前記ガスタービンの実際の出力である実出力PWrに応じた流量になるよう、前記吸気量を制御する吸気量制御工程S10と、前記燃焼器20を経ることなく、前記圧縮機10からの前記圧縮空気CAの一部を外部に排気する流量である抽排気量が前記実出力に応じた流量になるよう、前記抽排気量を制御する抽排気量制御工程S20と、を実行する。前記燃料制御工程S30では、前記目標出力PWtが低下するに連れて次第に前記燃料流量が少なくなるよう、前記燃料流量を制御する。前記吸気量制御工程S10は、第一吸気量制御工程S17と、第二吸気量制御工程S18と、を含む。前記抽排気量制御工程S20は、第一抽排気量制御工程S27と、第二抽排気量制御工程S28と、を含む。前記実出力が、前記ガスタービンの定格出力以下の第一出力PW1から前記第一出力PW1より低い出力である第二出力PW2までの第一出力範囲R1では、前記第一吸気量制御工程S17で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、前記吸気量を制御し、前記第一抽排気量制御工程S27で、前記抽排気量が0を維持するよう、前記抽排気量を制御する。前記実出力が、前記第二出力PW2から前記第二出力PW2より低い出力である第三出力PW3までの第二出力範囲R2では、前記第二吸気量制御工程S18で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力PWrが低下しても前記吸気量が一定になるよう、前記吸気量を制御し、前記第二抽排気量制御工程S28で、前記実出力PWrが低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力PWrが前記第三出力PW3になると前記抽排気量が最大になるよう、前記抽排気量を制御する。
【0111】
本態様では、ガスタービンの出力を低下させる過程で、燃料流量を徐々に少なくすると共に、吸気量と抽排気量とを共に制御して、燃焼器20に流入する圧縮空気CAの流量を徐々に少なくするので、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすることができる。
【0112】
本態様では、ガスタービンの出力を低下させる過程で、吸気量を少なくさせるものの、吸気量を多くさせない。すなわち、本態様では、ガスタービンの出力を低下させる過程で、吸気量を調節可能な吸気量調節機17に、閉動作させるものの、開動作させない。このため、本態様では、吸気量調節機17の耐久性の低下を抑えることができる。
【0113】
本態様では、実出力が第二出力PW2から第三出力PW3の範囲では、タービン入口温度が高くなるので、この範囲内で、一酸化炭素等の未燃分の排気量を少なくすることができる。
【0114】
(2)第二態様におけるガスタービンの制御方法は、
前記第一態様におけるガスタービンの制御方法において、前記吸気量制御工程S10は、第三吸気量制御工程S19を含む。前記抽排気量制御工程S20は、第三抽排気量制御工程S29を含む。前記実出力が、前記第三出力PW3から前記第三出力PW3より低い出力である第四出力PW4までの第三出力範囲R3では、前記第三吸気量制御工程S19で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなり、前記ガスタービンの前記実出力PWrが前記第四出力PW4になると前記吸気量が最小になるよう、前記吸気量を制御し、前記第三抽排気量制御工程S29で、前記吸気量に対する前記抽排気量の割合が最大を維持するよう、前記抽排気量を制御する。
【0115】
(3)第三態様におけるガスタービンの制御方法は、
前記第一態様又は前記第二態様におけるガスタービンの制御方法において、前記第三出力PW3、及び、前記実出力PWrが前記第三出力PW3のときの吸気量である第三吸気量は、以下の第三出力条件下で定められた値である。前記第三出力条件は、前記抽排気量が最大で、前記タービン30から排気された直後の前記燃焼ガスGの温度である排気ガス温度が許容最大温度で、前記タービン30に流入する前記燃焼ガスGの温度が前記燃焼ガスG中に含まれる未燃分の濃度が許容最大濃度になるときの温度である。
【0116】
(4)第四態様におけるガスタービンの制御方法は、
前記第三態様におけるガスタービンの制御方法において、前記第二出力PW2、及び、前記実出力PWrが前記第二出力PW2のときの吸気量である第四吸気量は、以下の第二出力条件下で定められた値である。前記第二出力条件は、前記第二出力範囲R2内での前記吸気量の変化傾向が予め定められた変化傾向であって、前記第三吸気量を基点とした変化傾向あり、前記抽排気量が0で、前記タービン30から排気された直後の前記燃焼ガスGの温度である排気ガス温度が許容最大温度である。
【0117】
(5)第五態様におけるガスタービンの制御方法は、
前記第一態様から前記第四態様のうちのいずれか一態様におけるガスタービンの制御方法において、前記第二吸気量制御工程S18では、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、前記吸気量を制御する。
【0118】
(6)第六態様におけるガスタービンの制御方法は、
前記第一態様から前記第四態様のうちのいずれか一態様におけるガスタービンの制御方法において、前記第二吸気量制御工程S18では、前記実出力PWrが低下しても前記吸気量が一定になるよう、前記吸気量を制御する。
【0119】
(7)第七態様におけるガスタービンの制御方法は、
前記第一態様から前記第六態様のうちのいずれか一態様におけるガスタービンの制御方法において、前記吸気量制御工程S10、及び前記抽排気量制御工程S20のそれぞれでは、抽排気制御モードと通常制御モードとのうち、いずれか一方のモードの実行指示を受け付けると、前記一方のモードを実行する。前記抽排気制御モードでは、前記第一出力範囲R1内で、前記第一吸気量制御工程S17と前記第一抽排気量制御工程S27とを実行し、前記第二出力範囲R2内で、前記第二吸気量制御工程S18と前記第二抽排気量制御工程S28とを実行する。前記通常制御モードでは、前記ガスタービンの出力が、前記第一出力範囲R1、及び前記第二出力範囲R2のいずれの出力範囲でも、前記吸気量制御工程S10で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、前記吸気量を制御する通常吸気量制御工程S13を実行し、前記抽排気量制御工程S20で、前記抽排気量が0を維持するよう、前記抽排気量を制御する通常抽排気量制御工程S23を実行する。
【0120】
以上の実施形態におけるガスタービンの制御プログラムは、例えば、以下のように把握される。
【0121】
(8)第八態様におけるガスタービンの制御プログラムは、以下のガスタービンに適用される。
このガスタービンは、空気Aを圧縮して圧縮空気CAを生成できる圧縮機10と、前記圧縮空気CA中で燃料Fを燃焼させて燃焼ガスGを生成できる燃焼器20と、前記燃焼ガスGにより駆動可能なタービン30と、前記燃焼器20に燃料供給可能に前記燃焼器20に接続されている燃料ライン8と、前記燃料ライン8に設けられ、前記燃料ライン8を流れる燃料Fの流量である燃料流量を調節可能な燃料弁8vと、前記燃焼器20を経ることなく、前記圧縮機10からの前記圧縮空気CAの一部を外部に排気可能なバイパスライン9と、前記バイパスライン9に設けられ、前記バイパスライン9を流れる前記圧縮空気CAの流量である抽排気量を調節可能なバイパス弁9vと、を備える。前記圧縮機10は、前記圧縮機10が吸い込む空気Aの流量である吸気量を調節できるよう、開閉動作可能なベーン17vを有する吸気量調節機17を備える。
このガスタービンの制御プログラム104pは、前記ガスタービンに対する目標出力PWtに応じて、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁8vに弁開度を指示する燃料制御工程S30と、前記ガスタービンの実際の出力である実出力PWrに応じて、前記ベーン17vの開閉角度を定めて、定めた前記ベーン17vの開閉角度になるよう前記吸気量調節機17に指示する吸気量制御工程S10と、前記実出力PWrに応じて、前記バイパス弁9vの弁開度を定めて、定めた弁開度になるよう、前記バイパス弁9vに指示する抽排気量制御工程S20と、をコンピュータに実行させる。前記燃料制御工程S30では、前記目標出力PWtが低下するに連れて次第に前記燃料流量が少なくなるよう、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁8vに弁開度を指示する。前記吸気量制御工程S10は、第一吸気量制御工程S17と、第二吸気量制御工程S18と、を含む。前記抽排気量制御工程S20は、第一抽排気量制御工程S27と、第二抽排気量制御工程S28と、を含む。前記実出力PWrが、前記ガスタービンの定格出力以下の第一出力PW1から前記第一出力PW1より低い出力である第二出力PW2までの第一出力範囲R1では、前記第一吸気量制御工程S17で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーン17vの開閉角度を定めて、前記ベーン17vの開閉角度を前記吸気量調節機17に指示し、前記第一抽排気量制御工程S27で、前記バイパス弁9vが閉じているよう、前記バイパス弁9vに指示する。前記実出力PWrが、前記第二出力PW2から前記第二出力PW2より低い出力である第三出力PW3までの第二出力範囲R2では、前記第二吸気量制御工程S18で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力PWrが低下しても前記吸気量が一定になるよう、前記ベーン17vの開閉角度を定めて、前記ベーン17vの開閉角度を前記吸気量調節機17に指示し、前記第二抽排気量制御工程S28で、前記実出力PWrが低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力PWrが前記第三出力PW3になると前記バイパス弁9vが全開になるよう、前記バイパス弁9vに指示する。
【0122】
本態様の制御プログラムをコンピュータに実行させることにより、第一態様における制御方法と同様、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすると共に、吸気量調節機17の耐久性の低下を抑え、且つ未燃分の排気量を少なくすることができる。
【0123】
以上の実施形態におけるガスタービンの制御装置は、例えば、以下のように把握される。
(9)第九態様におけるガスタービンの制御装置は、以下のガスタービンに適用される。
このガスタービンは、空気Aを圧縮して圧縮空気CAを生成できる圧縮機10と、前記圧縮空気CA中で燃料Fを燃焼させて燃焼ガスGを生成できる燃焼器20と、前記燃焼ガスGにより駆動可能なタービン30と、前記燃焼器20に燃料供給可能に前記燃焼器20に接続されている燃料ライン8と、前記燃料ライン8に設けられ、前記燃料ライン8を流れる燃料Fの流量である燃料流量を調節可能な燃料弁8vと、前記燃焼器20を経ることなく、前記圧縮機10からの前記圧縮空気CAの一部を外部に排気可能なバイパスライン9と、前記バイパスライン9に設けられ、前記バイパスライン9を流れる前記圧縮空気CAの流量である抽排気量を調節可能なバイパス弁9vと、を備える。前記圧縮機10は、前記圧縮機10が吸い込む空気Aの流量である吸気量を調節できるよう、開閉動作可能なベーン17vを有する吸気量調節機17を備える。
このガスタービンの制御装置100は、前記ガスタービンに対する目標出力PWtに応じて、前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁8vに弁開度を指示可能な燃料制御器110と、前記ガスタービンの実際の出力である実出力PWrに応じて、前記ベーン17vの開閉角度を定めて、定めた前記ベーン17vの開閉角度になるよう前記吸気量調節機17に指示可能な吸気量制御器120と、前記実出力PWrに応じて、前記バイパス弁9vの弁開度を定めて、定めた弁開度になるよう、前記バイパス弁9vに指示可能な抽排気量制御器130と、を有する。前記燃料制御器110は、前記目標出力PWtが低下するに連れて次第に前記燃料流量が少なくなるよう、前記目標出力に応じた前記燃料流量を定めて、定めた前記燃料流量になるよう前記燃料弁8vに弁開度を指示する。前記吸気量制御器120は、第一吸気量制御工程S17と、第二吸気量制御工程S18と、を実行可能である。前記抽排気量制御器130は、第一抽排気量制御工程S27と、第二抽排気量制御工程S28と、を実行可能である。前記実出力PWrが、前記ガスタービンの定格出力以下の第一出力PW1から前記第一出力PW1より低い出力である第二出力PW2までの第一出力範囲R1では、前記吸気量制御器120は、前記第一吸気量制御工程S17で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーン17vの開閉角度を定めて、前記ベーン17vの開閉角度を前記吸気量調節機17に指示し、前記抽排気量制御器130は、前記第一抽排気量制御工程S27で、前記バイパス弁9vが閉じているよう、前記バイパス弁9vに指示する。前記実出力PWrが、前記第二出力PW2から前記第二出力PW2より低い出力である第三出力PW3までの第二出力範囲R2では、前記吸気量制御器120は、前記第二吸気量制御工程S18で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、又は、前記実出力PWrが低下しても前記吸気量が一定になるよう、前記ベーン17vの開閉角度を定めて、前記ベーン17vの開閉角度を前記吸気量調節機17に指示し、前記抽排気量制御器130は、前記第二抽排気量制御工程S28で、前記実出力PWrが低下するに連れて次第に前記抽排気量が多くなり、前記ガスタービンの前記実出力PWrが前記第三出力PW3になると前記バイパス弁9vが全開になるよう、前記バイパス弁9vに指示する。
【0124】
本態様では、第一態様における制御方法と同様、ガスタービンを安定運転しつつ、ガスタービンの出力を低くすると共に、吸気量調節機17の耐久性の低下を抑え、且つ未燃分の排気量を少なくすることができる。
【0125】
(10)第十態様におけるガスタービンの制御装置は、
前記第九態様におけるガスタービンの制御装置において、前記吸気量制御器120は、第三吸気量制御工程S19を実行可能である。前記抽排気量制御器130は、第三抽排気量制御工程S29を実行可能である。前記実出力PWrが、前記第三出力PW3から前記第三出力PW3より低い出力である第四出力PW4までの第三出力範囲R3では、前記吸気量制御器120は、前記第三吸気量制御工程S19で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなり、前記ガスタービンの前記実出力PWrが前記第四出力PW4になると前記吸気量が最小になるよう、前記ベーン17vの開閉角度を前記吸気量調節機17に指示し、前記抽排気量制御器130は、前記第三抽排気量制御工程S29で、前記バイパス弁9vが全開になっているよう、前記バイパス弁9vに指示する。
【0126】
(11)第十一態様におけるガスタービンの制御装置は、
前記第九態様又は前記第十態様におけるガスタービンの制御装置100において、前記第三出力PW3、及び、前記実出力PWrが前記第三出力PW3のときの前記ベーン17vの開閉角度である第三開閉角度は、以下の第三出力条件下で定められた値である。前記第三出力条件は、前記バイパス弁9vが全開で、前記タービン30から排気された直後の前記燃焼ガスGの温度である排気ガス温度が許容最大温度で、前記タービン30に流入する前記燃焼ガスGの温度が前記燃焼ガスG中に含まれる未燃分の濃度が許容最大濃度になるときの温度である。
【0127】
(12)第十二態様におけるガスタービンの制御装置は、
前記第十一態様におけるガスタービンの制御装置100において、前記第二出力PW2、及び、前記実出力PWrが前記第二出力PW2のときの前記ベーン17vの開閉角度である第二開閉角度は、以下の第二出力条件下で定められた値である。前記第二出力条件は、前記第二出力範囲R2内での前記ベーン17vの開閉角度の変化傾向が、予め定められた変化傾向であって、前記第三開閉角度を基点とした変化傾向あり、前記バイパス弁9vが閉で、前記タービン30から排気された直後の前記燃焼ガスGの温度である排気ガス温度が許容最大温度である。
【0128】
(13)第十三態様におけるガスタービンの制御装置は、
前記第九態様から前記第十二態様のうちのいずれか一態様におけるガスタービンの制御装置100において、前記吸気量制御器120は、前記第二吸気量制御工程S18で、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーン17vの開閉角度を定めて、前記ベーン17vの開閉角度を前記吸気量調節機17に指示する。
【0129】
(14)第十四態様におけるガスタービンの制御装置は、
前記第九態様から前記第十二態様のうちのいずれか一態様におけるガスタービンの制御装置100において、前記吸気量制御器120は、前記第二吸気量制御工程S18で、前記実出力PWrが低下しても前記吸気量が一定になるよう、前記ベーン17vの開閉角度を定めて、前記ベーン17vの開閉角度を前記吸気量調節機17に指示する。
【0130】
(15)第十五態様におけるガスタービンの制御装置は、
前記第九態様から前記第十四態様のうちのいずれか一態様におけるガスタービンの制御装置100において、前記吸気量制御器120、及び前記抽排気量制御器130のそれぞれは、抽排気制御モードと通常制御モードとのうち、いずれか一方のモードの実行指示を受け付けると、前記一方のモードを実行する。前記抽排気制御モードでは、前記第一出力範囲R1内で、前記吸気量制御器が前記第一吸気量制御工程S17を実行し、前記抽排気量制御器130が前記第一抽排気量制御工程S27を実行し、前記第二出力範囲R2内で、前記吸気量制御器が前記第二吸気量制御工程S18を実行し、前記抽排気量制御器130が前記第二抽排気量制御工程S28を実行する。前記通常制御モードでは、前記ガスタービンの出力が、前記第一出力範囲R1、及び前記第二出力範囲R2のいずれの出力範囲でも、前記吸気量制御器120が、前記実出力PWrが低下するに連れて次第に前記吸気量が少なくなるよう、前記ベーン17vの開閉角度を定めて、前記ベーン17vの開閉角度を前記吸気量調節機17に指示する通常吸気量制御工程S13を実行し、前記抽排気量制御器130が、前記バイパス弁9vが閉じているよう、前記バイパス弁9vに指示する通常抽排気量制御工程S23を実行する。
【0131】
以上の実施形態におけるガスタービン設備は、例えば、以下のように把握される。
(16)第十六態様におけるガスタービン設備は、
前記第九態様から前記第十五態様のうちのいずれか一態様におけるガスタービンの制御装置100と、前記ガスタービンと、を備える。
【符号の説明】
【0132】
1:ガスタービン本体
2:ガスタービンロータ
5:中間ケーシング
6:ガスタービンケーシング
8:燃料ライン
8v:燃料弁
9:バイパスライン
9v:バイパス弁
10:圧縮機
12:圧縮機ロータ
13:ロータ軸
14:動翼列
15:静翼列
16:圧縮機ケーシング
17:吸気量調節機(IGV)
17v:ベーン
17d:駆動器
20:燃焼器
30:タービン
32:タービンロータ
33:ロータ軸
34:動翼列
35:静翼列
36:タービンケーシング
40:排気ケーシング
50:発電機
51:電力計
100:制御装置
101:コンピュータ本体
102:CPU
103:主記憶装置
104:補助記憶装置
104p:制御プログラム
105a:入出力インタフェース
105b:装置インタフェース
105c:通信インタフェース
105d:記憶・再生装置
106:入力装置
107:表示装置
110:燃料制御器
111:偏差演算器
112:比例積分器
119:制御信号発生器
120:吸気量制御器
121:第一IGV開度発生器
125:第二IGV開度発生器
129:制御信号発生器
130:抽排気量制御器
131:第一バイパス弁開度発生器
135:第二バイパス弁開度発生器
139:制御信号発生器
A:空気
CA:圧縮空気
F:燃料
EG:排気ガス
Ar:軸線
Da:軸線方向
Dau:軸線上流側
Dad:軸線下流側
Dc:周方向
Dr:径方向