IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田自動織機の特許一覧

<>
  • 特開-電池温調装置 図1
  • 特開-電池温調装置 図2
  • 特開-電池温調装置 図3
  • 特開-電池温調装置 図4
  • 特開-電池温調装置 図5
  • 特開-電池温調装置 図6
  • 特開-電池温調装置 図7
  • 特開-電池温調装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023183630
(43)【公開日】2023-12-28
(54)【発明の名称】電池温調装置
(51)【国際特許分類】
   H01M 10/617 20140101AFI20231221BHJP
   H01M 10/613 20140101ALI20231221BHJP
   H01M 10/615 20140101ALI20231221BHJP
   H01M 10/6556 20140101ALI20231221BHJP
   H01M 10/6569 20140101ALI20231221BHJP
   H01M 10/625 20140101ALI20231221BHJP
   F28F 9/26 20060101ALI20231221BHJP
   F25B 5/02 20060101ALI20231221BHJP
【FI】
H01M10/617
H01M10/613
H01M10/615
H01M10/6556
H01M10/6569
H01M10/625
F28F9/26
F25B5/02 510Q
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022097239
(22)【出願日】2022-06-16
(71)【出願人】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】大西 徹
(72)【発明者】
【氏名】浅野 紘輔
【テーマコード(参考)】
3L065
5H031
【Fターム(参考)】
3L065FA15
5H031KK08
(57)【要約】
【課題】各電池の温度のばらつきを抑制すること。
【解決手段】冷凍サイクル11は、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒との熱交換を行う仕切壁74を更に備える。電池冷却モードでは、液状態となった冷媒が第1主流路52から各第1個別流路51にそれぞれ分配されるため、液化した冷媒が各電池熱交換器15に均等に分配され易くなる。電池暖機モードでは、気液二相状態となった冷媒が第2主流路62から各第2個別流路61にそれぞれ分配されるため、気液二相状態となった冷媒が各電池熱交換器15に分配される。各電池熱交換器15内を流れる冷媒と各電池20との温度差が維持されるため、各電池20全体が均一に暖機される。
【選択図】図1
【特許請求の範囲】
【請求項1】
冷媒を圧縮して吐出する圧縮機と、
外部流体と冷媒との熱交換を行う外部流体熱交換器と、
冷媒を減圧する膨張弁と、
複数の電池それぞれに対応して配置されるとともに前記各電池と冷媒との熱交換を行う複数の電池熱交換器と、を有する冷凍サイクルを備え、
前記各電池熱交換器は、第1ポートと、第2ポートと、をそれぞれ有し、
前記冷凍サイクルは、
前記各第1ポートにそれぞれ接続される複数の第1個別流路と、
前記複数の第1個別流路と前記外部流体熱交換器とを接続する第1主流路と、
前記各第2ポートにそれぞれ接続される複数の第2個別流路と、
前記複数の第2個別流路と前記圧縮機とを接続する第2主流路と、を有し、
前記各第1個別流路には、前記膨張弁がそれぞれ設けられており、
前記冷凍サイクルは、前記各電池を冷却する電池冷却モードと、前記各電池を暖機する電池暖機モードと、に切換可能であり、
前記電池冷却モードでは、前記圧縮機から吐出された冷媒が、前記外部流体熱交換器にて外部流体に放熱するとともに、前記第1主流路を流れて前記各第1個別流路に分配され、前記各膨張弁で減圧されるとともに、前記各電池熱交換器の前記第1ポートを介して前記各電池熱交換器の内部を流れることで、前記各電池熱交換器にて前記各電池から吸熱し、前記各電池熱交換器の前記第2ポートを介して前記各第2個別流路へ排出され、前記第2主流路に合流して前記圧縮機へ還流され、
前記電池暖機モードでは、前記圧縮機から吐出された冷媒が、前記第2主流路を流れて前記各第2個別流路に分配され、前記各電池熱交換器の前記第2ポートを介して前記各電池熱交換器の内部を流れることで、前記各電池熱交換器にて前記各電池に放熱するとともに、前記各電池熱交換器の前記第1ポートを介して前記各第1個別流路へ排出され、前記各膨張弁で減圧されるとともに前記第1主流路に合流し、前記外部流体熱交換器に供給されることで、前記外部流体熱交換器にて前記外部流体から吸熱し、前記圧縮機へ還流される電池温調装置であって、
前記冷凍サイクルは、前記第1主流路を流れる冷媒と前記第2主流路を流れる冷媒との熱交換を行う冷媒熱交換器を更に備えることを特徴とする電池温調装置。
【請求項2】
前記複数の電池熱交換器は、一方向に並んで配置されており、
前記第1主流路は、前記複数の電池熱交換器の並設方向に延びるとともに前記各第1個別流路が接続される第1延在流路を有し、
前記第2主流路は、前記複数の電池熱交換器の並設方向に延びるとともに前記各第2個別流路が接続される第2延在流路を有し、
前記冷媒熱交換器は、前記第1延在流路を流れる冷媒と前記第2延在流路を流れる冷媒との熱交換を行うように構成されていることを特徴とする請求項1に記載の電池温調装置。
【請求項3】
前記冷凍サイクルは、前記第1延在流路及び前記第2延在流路が形成された延在配管を備え、
前記延在配管は、前記第1延在流路と前記第2延在流路とを仕切る仕切壁を有し、
前記仕切壁は、前記第1延在流路を流れる冷媒と前記第2延在流路を流れる冷媒との熱交換を行う前記冷媒熱交換器であることを特徴とする請求項2に記載の電池温調装置。
【請求項4】
前記複数の電池熱交換器は、一方向に並んで配置されており、
前記第1主流路は、
前記複数の電池熱交換器の並設方向に延びるとともに前記各第1個別流路が接続される第1延在流路と、
前記第1延在流路と前記外部流体熱交換器とを接続する第1接続流路と、を有し、
前記第2主流路は、
前記複数の電池熱交換器の並設方向に延びるとともに前記各第2個別流路が接続される第2延在流路と、
前記第2延在流路と前記圧縮機とを接続する第2接続流路と、を有し、
前記冷媒熱交換器は、前記第1接続流路を流れる冷媒と前記第2接続流路を流れる冷媒との熱交換を行うように構成されていることを特徴とする請求項1に記載の電池温調装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電池温調装置に関する。
【背景技術】
【0002】
従来から、冷凍サイクルを用いて複数の電池を温調する電池温調装置が、例えば特許文献1に知られている。冷凍サイクルは、圧縮機と、外部流体熱交換器と、膨張弁と、複数の電池熱交換器と、を有している。圧縮機は、冷媒を圧縮して吐出する。外部流体熱交換器は、外部流体と冷媒との熱交換を行う。膨張弁は、冷媒を減圧する。複数の電池熱交換器は、複数の電池それぞれに対応して配置されている。そして、各電池熱交換器は、各電池と冷媒との熱交換を行う。これにより、各電池が予め定められた設定温度に調節される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2020-167131号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
このような電池温調装置においては、冷凍サイクルが、各電池を冷却する電池冷却モードと、各電池を暖機する電池暖機モードと、に切換可能である。このように、電池温調装置は、各電池を冷却することで各電池を予め定められた設定温度に調節したり、各電池を暖機することで各電池を予め定められた設定温度に調節したりする。しかしながら、各電池の温度にばらつきが生じてしまうという問題がある。
【課題を解決するための手段】
【0005】
上記課題を解決する電池温調装置は、冷媒を圧縮して吐出する圧縮機と、外部流体と冷媒との熱交換を行う外部流体熱交換器と、冷媒を減圧する膨張弁と、複数の電池それぞれに対応して配置されるとともに前記各電池と冷媒との熱交換を行う複数の電池熱交換器と、を有する冷凍サイクルを備え、前記各電池熱交換器は、第1ポートと、第2ポートと、をそれぞれ有し、前記冷凍サイクルは、前記各第1ポートにそれぞれ接続される複数の第1個別流路と、前記複数の第1個別流路と前記外部流体熱交換器とを接続する第1主流路と、前記各第2ポートにそれぞれ接続される複数の第2個別流路と、前記複数の第2個別流路と前記圧縮機とを接続する第2主流路と、を有し、前記各第1個別流路には、前記膨張弁がそれぞれ設けられており、前記冷凍サイクルは、前記各電池を冷却する電池冷却モードと、前記各電池を暖機する電池暖機モードと、に切換可能であり、前記電池冷却モードでは、前記圧縮機から吐出された冷媒が、前記外部流体熱交換器にて外部流体に放熱するとともに、前記第1主流路を流れて前記各第1個別流路に分配され、前記各膨張弁で減圧されるとともに、前記各電池熱交換器の前記第1ポートを介して前記各電池熱交換器の内部を流れることで、前記各電池熱交換器にて前記各電池から吸熱し、前記各電池熱交換器の前記第2ポートを介して前記各第2個別流路へ排出され、前記第2主流路に合流して前記圧縮機へ還流され、前記電池暖機モードでは、前記圧縮機から吐出された冷媒が、前記第2主流路を流れて前記各第2個別流路に分配され、前記各電池熱交換器の前記第2ポートを介して前記各電池熱交換器の内部を流れることで、前記各電池熱交換器にて前記各電池に放熱するとともに、前記各電池熱交換器の前記第1ポートを介して前記各第1個別流路へ排出され、前記各膨張弁で減圧されるとともに前記第1主流路に合流し、前記外部流体熱交換器に供給されることで、前記外部流体熱交換器にて前記外部流体から吸熱し、前記圧縮機へ還流される電池温調装置であって、前記冷凍サイクルは、前記第1主流路を流れる冷媒と前記第2主流路を流れる冷媒との熱交換を行う冷媒熱交換器を更に備える。
【0006】
例えば、電池冷却モードでは、第1主流路を流れる冷媒が、冷媒熱交換器を介して第2主流路を流れる冷媒によって冷却される。よって、外部流体熱交換器にて放熱されて第1主流路を流れる冷媒を、各膨張弁で減圧される前に十分に液化させることができる。したがって、液状態となった冷媒を第1主流路から各第1個別流路にそれぞれ分配することができるため、液化した冷媒が各電池熱交換器に均等に分配され易くなる。その結果、各電池の温度のばらつきを抑制することができる。
【0007】
例えば、電池暖機モードでは、第2主流路を流れる冷媒が、冷媒熱交換器を介して第1主流路を流れる冷媒によって冷却される。これにより、第2主流路を流れる冷媒を気液二相状態の冷媒とすることができる。したがって、気液二相状態となった冷媒を第2主流路から各第2個別流路にそれぞれ分配することができるため、気液二相状態となった冷媒を各電池熱交換器に分配することができる。気液二相状態では、冷媒の温度は等温状態となるため、冷媒の温度は一定となる。したがって、各電池熱交換器内を流れる冷媒と各電池との温度差が維持されるため、各電池全体を均一に暖機することができる。その結果、各電池の温度のばらつきを抑制することができる。
【0008】
上記電池温調装置において、前記複数の電池熱交換器は、一方向に並んで配置されており、前記第1主流路は、前記複数の電池熱交換器の並設方向に延びるとともに前記各第1個別流路が接続される第1延在流路を有し、前記第2主流路は、前記複数の電池熱交換器の並設方向に延びるとともに前記各第2個別流路が接続される第2延在流路を有し、前記冷媒熱交換器は、前記第1延在流路を流れる冷媒と前記第2延在流路を流れる冷媒との熱交換を行うように構成されているとよい。
【0009】
第1延在流路は、第1主流路における各第1個別流路が接続される部分であるため、第1主流路において、複数の電池熱交換器の並設方向に必然的に延びる部分である。第2延在流路は、第2主流路における各第2個別流路が接続される部分であるため、第2主流路において、複数の電池熱交換器の並設方向に必然的に延びる部分である。そこで、第1延在流路を流れる冷媒と第2延在流路を流れる冷媒とを冷媒熱交換器を介して熱交換可能とした。これによれば、スペースを有効活用しつつも、第1主流路を流れる冷媒と第2主流路を流れる冷媒とを効率良く熱交換することができる。
【0010】
上記電池温調装置において、前記冷凍サイクルは、前記第1延在流路及び前記第2延在流路が形成された延在配管を備え、前記延在配管は、前記第1延在流路と前記第2延在流路とを仕切る仕切壁を有し、前記仕切壁は、前記第1延在流路を流れる冷媒と前記第2延在流路を流れる冷媒との熱交換を行う前記冷媒熱交換器であるとよい。
【0011】
これによれば、例えば、第1延在流路を形成する配管と、第2延在流路を形成する配管とがそれぞれ別部材である場合に比べると、コンパクトな構成とすることができる。そして、第1延在流路を流れる冷媒と第2延在流路を流れる冷媒とが、延在配管の仕切壁を介して熱交換可能であるため、第1延在流路を流れる冷媒と第2延在流路を流れる冷媒との熱交換を容易に行うことができる。
【0012】
上記電池温調装置において、前記複数の電池熱交換器は、一方向に並んで配置されており、前記第1主流路は、前記複数の電池熱交換器の並設方向に延びるとともに前記各第1個別流路が接続される第1延在流路と、前記第1延在流路と前記外部流体熱交換器とを接続する第1接続流路と、を有し、前記第2主流路は、前記複数の電池熱交換器の並設方向に延びるとともに前記各第2個別流路が接続される第2延在流路と、前記第2延在流路と前記圧縮機とを接続する第2接続流路と、を有し、前記冷媒熱交換器は、前記第1接続流路を流れる冷媒と前記第2接続流路を流れる冷媒との熱交換を行うように構成されているとよい。
【0013】
例えば、第1延在流路と第2延在流路との間のスペースに制約がある場合を考える。この場合であっても、第1接続流路を流れる冷媒と第2接続流路を流れる冷媒とを冷媒熱交換器を介して熱交換可能とすることで、第1主流路を流れる冷媒と第2主流路を流れる冷媒との熱交換を行うことができる。
【発明の効果】
【0014】
この発明によれば、各電池の温度のばらつきを抑制することができる。
【図面の簡単な説明】
【0015】
図1】実施形態における電池温調装置の全体構成を模式的に示す図である。
図2】電池温調装置の一部分を拡大して示す断面図である。
図3】比較例における冷媒の比エンタルピと圧力との関係を表したモリエル線図である。
図4】実施形態における冷媒の比エンタルピと圧力との関係を表したモリエル線図である。
図5】比較例における冷媒の比エンタルピと圧力との関係を表したモリエル線図である。
図6】実施形態における冷媒の比エンタルピと圧力との関係を表したモリエル線図である。
図7】別の実施形態における電池温調装置の全体構成を模式的に示す図である。
図8】別の実施形態における電池温調装置の全体構成を模式的に示す図である。
【発明を実施するための形態】
【0016】
以下、電池温調装置を具体化した一実施形態を図1図6にしたがって説明する。本実施形態の電池温調装置は、例えば、車両に搭載されている。
<電池温調装置10の全体構成>
図1に示すように、電池温調装置10は、冷凍サイクル11を備えている。電池温調装置10は、冷凍サイクル11を用いて、複数の電池20を冷却したり、暖機したりする。電池20は、電池セルである角型電池20aを複数有している。電池20は、各角型電池20aの厚み方向がそれぞれ一致した状態で各角型電池20aが互いに並設されることにより構成されている。各角型電池20aは、例えば、リチウムイオン電池やニッケル水素電池である。複数の電池20は、複数の角型電池20aの並設方向に対して直交する方向に並んで配置されている。そして、複数の電池20が、例えば、図示しないハウジング内に収容されることにより、1つの電池パックとしてパッケージ化されている。
【0017】
冷凍サイクル11は、圧縮機12と、外部流体熱交換器13と、複数の膨張弁14と、複数の電池熱交換器15と、を有している。圧縮機12は、低温低圧の冷媒を圧縮して高温高圧の冷媒を吐出する。外部流体熱交換器13は、外部流体である外気と冷媒との熱交換を行う。各膨張弁14は、冷媒を減圧する。複数の電池熱交換器15は、複数の電池20それぞれに対応して配置されている。よって、複数の電池熱交換器15は、複数の電池20の並設方向と同一方向に並んで配置されている。したがって、複数の電池熱交換器15は、一方向に並んで配置されている。各電池熱交換器15は、各電池20と冷媒との熱交換を行う。なお、冷凍サイクル11は、図示しないアキュムレータを有している。アキュムレータは、圧縮機12へのガス状の冷媒の流出を許容し、且つ圧縮機12への液状の冷媒の流出を阻止する。
【0018】
<電池熱交換器15の構成>
各電池熱交換器15は、第1ヘッダ31と、第1チューブ32と、中間ヘッダ33と、第2チューブ34と、第2ヘッダ35と、を有している。第1ヘッダ31は、第1ポート41を有している。第2ヘッダ35は、第2ポート42を有している。したがって、各電池熱交換器15は、第1ポート41と、第2ポート42と、をそれぞれ有している。
【0019】
第1チューブ32と第2チューブ34とは、複数の電池熱交換器15の並設方向に並んで配置されている。第1チューブ32と第2チューブ34とは互いに平行に延びている。第1チューブ32及び第2チューブ34は、電池20との熱交換を行う。第1チューブ32の第1端は、第1ヘッダ31の内部に連通している。第1チューブ32の第2端は、中間ヘッダ33の内部に連通している。第2チューブ34の第1端は、第2ヘッダ35の内部に連通している。第2チューブ34の第2端は、中間ヘッダ33の内部に連通している。中間ヘッダ33は、第1チューブ32の第2端と第2チューブ34の第2端同士を接続している。
【0020】
<冷凍サイクル11の詳細構成>
冷凍サイクル11は、複数の第1個別流路51と、第1主流路52と、複数の第2個別流路61と、第2主流路62と、を有している。複数の第1個別流路51は、各第1ポート41にそれぞれ接続されている。各第1個別流路51には、膨張弁14がそれぞれ設けられている。複数の第2個別流路61は、各第2ポート42にそれぞれ接続されている。
【0021】
第1主流路52は、第1延在流路53と、第1接続流路54と、を有している。第1延在流路53は、複数の電池熱交換器15の並設方向に延びている。第1延在流路53には、各第1個別流路51が接続されている。第1接続流路54は、第1延在流路53と外部流体熱交換器13とを接続している。したがって、第1主流路52は、複数の第1個別流路51と外部流体熱交換器13とを接続している。
【0022】
第2主流路62は、第2延在流路63と、第2接続流路64と、を有している。第2延在流路63は、複数の電池熱交換器15の並設方向に延びている。第2延在流路63には、各第2個別流路61が接続されている。第2接続流路64は、第2延在流路63と圧縮機12とを接続している。したがって、第2主流路62は、複数の第2個別流路61と圧縮機12とを接続している。
【0023】
<延在配管70>
図2に示すように、冷凍サイクル11は、延在配管70を備えている。延在配管70は、配管本体71と、複数の第1配管72と、複数の第2配管73と、を有している。配管本体71は、直線状に延びる配管である。延在配管70は、配管本体71の延在方向が複数の電池熱交換器15の並設方向と同一方向となるように、複数の電池熱交換器15に対して配置されている。
【0024】
配管本体71には、第1延在流路53及び第2延在流路63が形成されている。したがって、延在配管70には、第1延在流路53及び第2延在流路63が形成されている。第1延在流路53と第2延在流路63とは、延在配管70の内部を互いに平行に延びている。第1延在流路53と第2延在流路63とは、延在配管70の内部で、延在配管70の一部である仕切壁74によって仕切られている。したがって、延在配管70は、第1延在流路53と第2延在流路63とを仕切る仕切壁74を有している。
【0025】
仕切壁74は、第1延在流路53と第2延在流路63との間で熱交換を行う。そして、第1延在流路53を流れる冷媒と第2延在流路63を流れる冷媒とが仕切壁74を介して熱交換可能になっている。よって、仕切壁74は、第1延在流路53を流れる冷媒と第2延在流路63を流れる冷媒との熱交換を行う冷媒熱交換器である。したがって、冷凍サイクル11は、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒との熱交換を行う冷媒熱交換器を更に備えている。冷媒熱交換器は、第1延在流路53を流れる冷媒と第2延在流路63を流れる冷媒との熱交換を行うように構成されている。
【0026】
複数の第1配管72は、配管本体71に接続されている。複数の第1配管72は、配管本体71の延在方向で等間隔置きに配置されている。各第1配管72の内部は、第1延在流路53に接続されている。各第1配管72の内部は、第1個別流路51である。各第1配管72には、膨張弁14が設けられている。そして、各第1配管72は、各電池熱交換器15の第1ヘッダ31の第1ポート41に接続されている。
【0027】
複数の第2配管73は、配管本体71に接続されている。複数の第2配管73は、配管本体71の延在方向で等間隔置きに配置されている。各第2配管73の内部は、第2延在流路63に接続されている。各第2配管73の内部は、第2個別流路61である。そして、各第2配管73は、各電池熱交換器15の第2ヘッダ35の第2ポート42に接続されている。なお、第1延在流路53は、第1接続流路54を形成する配管に接続されるとともに、第2延在流路63は、第2接続流路64を形成する配管に接続されている。
【0028】
<制御部16>
図1に示すように、電池温調装置10は、制御部16を備えている。制御部16は、冷凍サイクル11を、各電池20を冷却する電池冷却モードと、各電池20を暖機する電池暖機モードと、に切り換える。したがって、冷凍サイクル11は、各電池20を冷却する電池冷却モードと、各電池20を暖機する電池暖機モードと、に切換可能である。
【0029】
冷凍サイクル11は、四方弁17を備えている。四方弁17は、電磁弁である。四方弁17は、制御部16と電気的に接続されている。四方弁17は、制御部16からの制御信号を受信する。そして、四方弁17は、制御部16からの制御信号に基づいて、第1切換状態と、第2切換状態と、に切換可能である。四方弁17は、電池冷却モードでは、制御部16によって、第1切換状態に切り換えられる。四方弁17は、電池暖機モードでは、制御部16によって、第2切換状態に切り換えられる。
【0030】
四方弁17は、第1切換状態となると、図1において矢印R1で示すように、圧縮機12から吐出された冷媒を外部流体熱交換器13に向けて流す。一方で、四方弁17は、第2切換状態となると、図1において矢印R2で示すように、圧縮機12から吐出された冷媒を各電池熱交換器15の第2ヘッダ35に向けて流す。
【0031】
<電池冷却モード>
電池冷却モードでは、圧縮機12から吐出された冷媒が、外部流体熱交換器13にて外気に放熱する。外部流体熱交換器13にて外気に放熱した冷媒は、第1主流路52を流れて各第1個別流路51に分配される。各第1個別流路51に分配された冷媒は、各膨張弁14で減圧される。各膨張弁14で減圧された冷媒は、各電池熱交換器15の第1ポート41を介して各電池熱交換器15の内部を流れる。各電池熱交換器15を流れる冷媒は、各電池熱交換器15にて各電池20から吸熱する。各電池熱交換器15にて各電池20から吸熱した冷媒は、各電池熱交換器15の第2ポート42を介して各第2個別流路61へ排出される。各第2個別流路61へ排出された冷媒は、第2主流路62に合流して圧縮機12へ還流される。
【0032】
<電池暖機モード>
電池暖機モードでは、圧縮機12から吐出された冷媒が、第2主流路62を流れて各第2個別流路61に分配される。各第2個別流路61に分配された冷媒は、各電池熱交換器15の第2ポート42を介して各電池熱交換器15の内部を流れる。冷媒は、各電池熱交換器15の内部を流れることで、各電池熱交換器15にて各電池20に放熱する。各電池熱交換器15にて各電池20に放熱した冷媒は、各電池熱交換器15の第1ポート41を介して各第1個別流路51へ排出される。各第1個別流路51へ排出された冷媒は、各膨張弁14で減圧される。各膨張弁14で減圧された冷媒は、第1主流路52に合流し、外部流体熱交換器13に供給される。冷媒は、外部流体熱交換器13に供給されることで、外部流体熱交換器13にて外気から吸熱し、圧縮機12へ還流される。
【0033】
[実施形態の作用]
次に、本実施形態の作用について説明する。
図3図4図5及び図6では、冷媒の比エンタルピと圧力との関係を表したモリエル線図を示している。図3図4図5及び図6において、横軸は、冷媒の比エンタルピであり、縦軸は、冷媒の圧力である。図3図4図5及び図6に示すように、上方に膨らむように延びる曲線において、その頂点である臨界点CPよりも左側に描かれた曲線は飽和液線L1であり、臨界点CPよりも右側に描かれた曲線は飽和蒸気線L2である。飽和液線L1及び飽和蒸気線L2によって囲われた領域は、冷媒が気液二相状態である二相域A1である。飽和液線L1よりも左側の領域は、冷媒が液状態である液域A2である。飽和蒸気線L2よりも右側の領域は、冷媒がガス状態であるガス域A3である。
【0034】
図3に示す実線L10は、電池冷却モードにおいて、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒とが仕切壁74を介して熱交換可能になっていない場合の冷凍サイクル11の状態を比較例として示している。図3に示す状態点a10は、外部流体熱交換器13にて放熱されて第1主流路52を流れる冷媒の状態を示している。状態点a10は、飽和液線L1上に存在している。したがって、電池冷却モードにおいて、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒とが仕切壁74を介して熱交換可能になっていない場合、第1主流路52を流れる冷媒は、気液二相状態である。
【0035】
図4に示す実線L11は、電池冷却モードにおいて、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒とが仕切壁74を介して熱交換可能になっている場合の冷凍サイクル11の状態を示している。図4に示す状態点a11は、外部流体熱交換器13にて放熱されて第1主流路52を流れる冷媒の状態を示している。状態点a11は、液域A2に存在している。
【0036】
電池冷却モードでは、第1主流路52を流れる冷媒が、仕切壁74を介して第2主流路62を流れる冷媒によって冷却される。よって、外部流体熱交換器13にて放熱されて第1主流路52を流れる冷媒は、各膨張弁14で減圧される前に十分に液化されることで、液状態となっている。したがって、液状態となった冷媒が第1主流路52から各第1個別流路51にそれぞれ分配されるため、液化した冷媒が各電池熱交換器15に均等に分配され易くなる。その結果、各電池20の温度のばらつきが抑制されている。
【0037】
図5に示す実線L20は、電池暖機モードにおいて、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒とが仕切壁74を介して熱交換可能になっていない場合の冷凍サイクル11の状態を比較例として示している。図5に示すように、圧縮機12から吐出された冷媒は、ガス状態で各電池熱交換器15に流れ込む。そして、冷媒は、各電池熱交換器15の内部を流れることで、各電池熱交換器15にて各電池20に放熱する。これにより、各電池熱交換器15の内部を流れる冷媒は、各電池熱交換器15の内部の途中で気液二相状態となる。
【0038】
図6に示す実線L21は、電池暖機モードにおいて、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒とが仕切壁74を介して熱交換可能になっている場合の冷凍サイクル11の状態を示している。図6に示すように、圧縮機12から吐出された冷媒は、気液二相状態で各電池熱交換器15に流れ込む。
【0039】
電池暖機モードでは、第2主流路62を流れる冷媒が、仕切壁74を介して第1主流路52を流れる冷媒によって冷却される。これにより、第2主流路62を流れる冷媒は気液二相状態の冷媒となっている。したがって、気液二相状態となった冷媒が第2主流路62から各第2個別流路61にそれぞれ分配されるため、気液二相状態となった冷媒が各電池熱交換器15に分配される。気液二相状態では、冷媒の温度は等温状態となるため、冷媒の温度は一定となる。したがって、各電池熱交換器15内を流れる冷媒と各電池20との温度差が維持されるため、各電池20全体が均一に暖機される。その結果、各電池20の温度のばらつきが抑制されている。
【0040】
[実施形態の効果]
上記実施形態では以下の効果を得ることができる。
(1)冷凍サイクル11は、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒との熱交換を行う仕切壁74を更に備える。
【0041】
例えば、電池冷却モードでは、第1主流路52を流れる冷媒が、仕切壁74を介して第2主流路62を流れる冷媒によって冷却される。よって、外部流体熱交換器13にて放熱されて第1主流路52を流れる冷媒を、各膨張弁14で減圧される前に十分に液化させることで、液状態とすることができる。したがって、液状態となった冷媒を第1主流路52から各第1個別流路51にそれぞれ分配することができるため、液化した冷媒が各電池熱交換器15に均等に分配され易くなる。その結果、各電池20の温度のばらつきを抑制することができる。
【0042】
例えば、電池暖機モードでは、第2主流路62を流れる冷媒が、仕切壁74を介して第1主流路52を流れる冷媒によって冷却される。これにより、第2主流路62を流れる冷媒を気液二相状態の冷媒とすることができる。したがって、気液二相状態となった冷媒を第2主流路62から各第2個別流路61にそれぞれ分配することができるため、気液二相状態となった冷媒を各電池熱交換器15に分配することができる。気液二相状態では、冷媒の温度は等温状態となるため、冷媒の温度は一定となる。したがって、各電池熱交換器15内を流れる冷媒と各電池20との温度差が維持されるため、各電池20全体を均一に暖機することができる。その結果、各電池20の温度のばらつきを抑制することができる。
【0043】
(2)第1延在流路53は、第1主流路52における各第1個別流路51が接続される部分であるため、第1主流路52において、複数の電池熱交換器15の並設方向に必然的に延びる部分である。第2延在流路63は、第2主流路62における各第2個別流路61が接続される部分であるため、第2主流路62において、複数の電池熱交換器15の並設方向に必然的に延びる部分である。そこで、第1延在流路53を流れる冷媒と第2延在流路63を流れる冷媒とを仕切壁74を介して熱交換可能とした。これによれば、スペースを有効活用しつつも、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒とを効率良く熱交換することができる。
【0044】
(3)冷凍サイクル11は、第1延在流路53及び第2延在流路63が形成された延在配管70を備えている。延在配管70は、第1延在流路53と第2延在流路63とを仕切る仕切壁74を有している。仕切壁74は、第1延在流路53を流れる冷媒と第2延在流路63を流れる冷媒との熱交換を行う冷媒熱交換器である。これによれば、例えば、第1延在流路53を形成する配管と、第2延在流路63を形成する配管とがそれぞれ別部材である場合に比べると、コンパクトな構成とすることができる。そして、第1延在流路53を流れる冷媒と第2延在流路63を流れる冷媒とが、延在配管70の仕切壁74を介して熱交換可能であるため、第1延在流路53を流れる冷媒と第2延在流路63を流れる冷媒との熱交換を容易に行うことができる。
【0045】
[変更例]
なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
【0046】
図7に示すように、冷凍サイクル11は、延在配管70を備えていなくてもよい。そして、冷凍サイクル11は、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒との熱交換を行う冷媒熱交換器80を、延在配管70とは別に備えていてもよい。
【0047】
図8に示すように、冷凍サイクル11は、延在配管70を備えていなくてもよい。そして、冷凍サイクル11は、例えば、第1接続流路54を流れる冷媒と第2接続流路64を流れる冷媒との熱交換を行うように構成された冷媒熱交換器81を備えていてもよい。このような場合、例えば、第1接続流路54を形成する配管と、第2接続流路64を形成する配管とが二重に構成された二重配管とすることで、両配管同士が熱交換可能になっている。例えば、第1延在流路53と第2延在流路63との間のスペースに制約がある場合を考える。この場合であっても、第1接続流路54を流れる冷媒と第2接続流路64を流れる冷媒とを冷媒熱交換器81を介して熱交換可能とすることで、第1主流路52を流れる冷媒と第2主流路62を流れる冷媒との熱交換を行うことができる。
【0048】
○ 実施形態において、各電池熱交換器15は、第1ヘッダ31と、第1チューブ32と、中間ヘッダ33と、第2チューブ34と、第2ヘッダ35と、を有している構成であったが、これに限らない。各電池熱交換器15は、第1ポート41と、第2ポート42と、をそれぞれ有していればよい。そして、複数の電池熱交換器15は、複数の電池20それぞれに対応して配置されるとともに各電池20と冷媒との熱交換を行うことが可能であれば、その具体的な構成は特に限定されるものではない。
【0049】
○ 実施形態において、電池熱交換器15の数は特に限定されるものではない。電池熱交換器15の数は、電池20の数に応じて適宜変更される。
○ 実施形態において、外部流体熱交換器13は、例えば、外部流体である冷却水と冷媒との熱交換を行うことが可能である構成であってもよい。
【符号の説明】
【0050】
10…電池温調装置、11…冷凍サイクル、12…圧縮機、13…外部流体熱交換器、14…膨張弁、15…電池熱交換器、20…電池、41…第1ポート、42…第2ポート、51…第1個別流路、52…第1主流路、53…第1延在流路、54…第1接続流路、61…第2個別流路、62…第2主流路、63…第2延在流路、64…第2接続流路、70…延在配管、74…冷媒熱交換器である仕切壁、80,81…冷媒熱交換器。
図1
図2
図3
図4
図5
図6
図7
図8