IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パイオニア株式会社の特許一覧

<>
  • 特開-情報処理装置 図1
  • 特開-情報処理装置 図2
  • 特開-情報処理装置 図3
  • 特開-情報処理装置 図4
  • 特開-情報処理装置 図5
  • 特開-情報処理装置 図6
  • 特開-情報処理装置 図7
  • 特開-情報処理装置 図8
  • 特開-情報処理装置 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023184590
(43)【公開日】2023-12-28
(54)【発明の名称】情報処理装置
(51)【国際特許分類】
   G08G 1/14 20060101AFI20231221BHJP
   G16Y 10/40 20200101ALI20231221BHJP
   G16Y 20/20 20200101ALI20231221BHJP
   G16Y 40/10 20200101ALI20231221BHJP
【FI】
G08G1/14 A
G16Y10/40
G16Y20/20
G16Y40/10
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2023183223
(22)【出願日】2023-10-25
(62)【分割の表示】P 2022108248の分割
【原出願日】2016-11-30
(71)【出願人】
【識別番号】000005016
【氏名又は名称】パイオニア株式会社
(74)【代理人】
【識別番号】100107331
【弁理士】
【氏名又は名称】中村 聡延
(72)【発明者】
【氏名】鎌田 喬浩
(57)【要約】
【課題】車両の走行により得られた情報に基づいて、駐車場の混雑度を推定する。
【解決手段】情報処理装置は、移動体から駐車位置を含む位置情報を取得し、道路外領域に進入した複数の移動体の位置情報に基づいて、道路外領域に存在する駐車場に関する駐車場情報を推定する。推定部は、駐車位置に基づいて、駐車場全体の混雑度を推定する。
【選択図】図9
【特許請求の範囲】
【請求項1】
移動体から駐車位置を含む位置情報を取得する取得部と、
道路外領域に進入した複数の移動体の位置情報に基づいて、前記道路外領域に存在する
駐車場に関する駐車場情報を推定する推定部と、
を備え、
前記推定部は、前記駐車位置に基づいて、前記駐車場の全体の混雑度を推定する情報処
理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、駐車場に関する情報を収集する技術に関する。
【背景技術】
【0002】
駐車場情報の配信において、駐車場の満空情報を配信する場合がある。満空情報を生成する場合、従来手法では、駐車場に設置されている入退場を管理する管理装置が駐車可能台数、入場台数、退場台数の情報に基づいて生成を行なっていた。しかしながら、上記のような管理装置が存在しない駐車場では、駐車場の満空情報を生成することが出来ず、満空情報等の駐車場の混雑状況の配信が行なえないといった問題があった。
【0003】
特許文献1は、駐車場の周囲を通りかかった車両のうち、車両の速度が所定の閾値以上減速し、かつ、当該車両が前記駐車場の入り口を通過した場合は、当該駐車場が満車であると判定する手法を記載している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2015-184820号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載されている技術はあくまで、駐車場を通りかかったユーザの判断によって決まってしまうため、正確さという点では課題があった。また、上記の技術で判別できるのは満空状態であり、満空状態以外の、駐車場の混み具合についての推定は行なえなかった。加えて、駐車場内での駐車位置による混雑具合についても言及されていなかった。
【0006】
本発明の解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、車両の走行により得られた情報に基づいて、駐車場の混雑度を推定することを目的とする。
【課題を解決するための手段】
【0007】
請求項1に記載の発明は、情報処理装置であって、移動体から駐車位置を含む位置情報を取得する取得部と、道路外領域に進入した複数の移動体の位置情報に基づいて、前記道路外領域に存在する駐車場に関する駐車場情報を推定する推定部と、を備え、前記推定部は、前記駐車位置に基づいて、前記駐車場の全体の混雑度を推定する。
【図面の簡単な説明】
【0008】
図1】実施例に係る情報処理システムの構成を示す。
図2】プローブデータの一例を示す。
図3】駐車場データの一例を示す。
図4】駐車場領域推定処理のフローチャートである。
図5】駐車場同定処理、及び、推定処理のフローチャートである。
図6】道路外走行を説明する図である。
図7】駐車場領域の推定方法を説明する図である。
図8】複数の走行面から駐車場領域を推定する例を示す。
図9】混雑度の推定処理のフローチャートである。
【発明を実施するための形態】
【0009】
本発明の1つの好適な実施形態では、情報処理装置は、移動体から駐車位置を含む位置情報を取得する取得部と、道路外領域に進入した複数の移動体の位置情報に基づいて、前記道路外領域に存在する駐車場に関する駐車場情報を推定する推定部と、を備え、前記推定部は、前記駐車位置に基づいて、前記駐車場の全体の混雑度を推定する。
【0010】
上記の情報処理装置は、移動体から駐車位置を含む位置情報を取得し、道路外領域に進入した複数の移動体の位置情報に基づいて、道路外領域に存在する駐車場に関する駐車場情報を推定する。ここで、推定部は、駐車位置に基づいて、駐車場全体の混雑度を推定する。この情報処理装置によれば、道路外領域における移動体の駐車位置を分析することにより、駐車場における混雑度を推定することができる。
【0011】
上記の情報処理装置の一態様では、前記推定部は、前記駐車位置の分布の集中度に基づいて、前記混雑度を推定する。この態様では、駐車位置の分布の集中度により、混雑度が推定される。具体的には、集中度が高い場合は混雑度が低いと推定され、集中度が低い場合は混雑度が高いと推定される。
【0012】
上記の情報処理装置の他の一態様では、前記推定部は、前記駐車位置の標準偏差楕円の面積に基づいて前記集中度を算出する。好適な例では、前記推定部は、前記駐車位置を複数のエリアに分割し、領域ごとに前記標準偏差楕円の面積を求めることにより、エリアごとの混雑度を推定する。他の好適な例では、前記推定部は、前記駐車場の全体における駐車位置に基づいて、複数のエリアごとの混雑度を推定する。
【0013】
上記の情報処理装置の他の一態様では、前記取得部は、前記移動体から、前記位置情報に対応する時間情報を取得し、前記推定部は、時間帯ごとに前記混雑度を推定する。この態様では、時間帯毎に駐車場の混雑度を推定することができる。
【0014】
本発明の他の好適な実施形態では、情報処理装置により実行される情報処理方法は、移動体から、駐車位置を含む位置情報を取得する取得工程と、道路外領域に進入した複数の移動体の位置情報に基づいて、前記道路外領域に存在する駐車場に関する駐車場情報を推定する推定工程と、を備え、前記推定工程は、前記駐車位置に基づいて、前記駐車場の全体の混雑度を推定する。この情報処理方法によれば、道路外領域における移動体の駐車位置を分析することにより、駐車場における混雑度を推定することができる。
【0015】
本発明の他の好適な実施形態では、コンピュータを備える情報処理装置により実行されるプログラムは、移動体から、駐車位置を含む位置情報を取得する取得部、道路外領域に進入した複数の移動体の位置情報に基づいて、前記道路外領域に存在する駐車場に関する駐車場情報を推定する推定部、として前記コンピュータを機能させ、前記推定部は、前記駐車位置に基づいて、前記駐車場の全体の混雑度を推定する。このプログラムをコンピュータで実行することにより、上記の情報処理装置を実現することができる。このプログラムは記憶媒体に記憶して取り扱うことができる。
【実施例0016】
以下、図面を参照して本発明の好適な実施例について説明する。
[システム構成]
図1(A)は、本発明を適用した情報処理システムの構成を示す。情報処理システムは、サーバ10と、車両3に搭載されたナビゲーション装置20とを含む。サーバ10とナビゲーション装置20とは無線通信可能に構成されている。なお、図1においては説明の便宜上1つの車両3のみが示されているが、実際には多数の車両3がサーバ10と通信する。
【0017】
図1(B)は、サーバ10の構成を示す。サーバ10は、通信部11と、制御部12と、地図データベース(以下、「データベース」を「DB」と記す。)13と、プローブDB14とを備える。
【0018】
通信部11は、ナビゲーション装置20からプローブデータを受信する。プローブデータは、車両3の走行に伴い、ナビゲーション装置20により生成される。地図DB13は、地図データを記憶している。地図データとしては、道路に対応するリンクを示すリンクデータや交差点に対応するノードデータに加えて、駐車場に関する駐車場データが記憶されている。プローブDB14は、多数のナビゲーション装置20から受信したプローブデータを記憶している。
【0019】
制御部12は、サーバ10の全体を制御する。制御部12は、CPUなどのコンピュータにより構成され、予め用意されたプログラムを実行することにより所定の処理を実行する。具体的に、制御部12は、プローブデータをナビゲーション装置20から受信する処理、プローブDB14に蓄積されたプローブデータに基づいて、駐車場領域を推定する処理などを実行する。
【0020】
[プローブデータ]
次にプローブデータについて説明する。図2は、プローブデータの一例を示す。プローブデータは、車両3の走行に伴ってナビゲーション装置20により所定時間毎(例えば数秒毎)に生成されるものであり、図2の例は所定時間毎に生成された複数の地点におけるプローブデータを示している。図示のように、プローブデータは、「走行距離」、「緯度」、「経度」、「日時」、「速度」、「進行方向」、「道路種別」及び「バックフラグ」を含む。
【0021】
「走行距離」は、車両3の走行距離であり、オドメータによる積算走行距離が使用される。「緯度」及び「経度」は、車両3の位置の緯度及び経度を示す。「日時」は各プローブデータが生成された日時を示す。「速度」は、測定時における車両3の速度を示す。「進行方向」は測定時における車両3の進行方向を示す。なお、進行方向は、北方向を0度とした方位により示される。
【0022】
「道路種別」は、車両3が走行している道路の種類を示す情報であり、高速道路が「1」、有料道路が「2」、国道が「3」、県道が「4」、市道が「5」と決められている。なお、本実施例では、ナビゲーション装置20は、車両3が道路外のエリアを走行しているときには、道路種別を「-1」に設定する。よって、道路種別が「-1」である場合、車両3は道路外を走行していることになる。
【0023】
「バックフラグ」は、車両3がバック(後進)しているか否かを示すフラグである。バックフラグ「0」は前進を示し、「1」はバック(後進)を示す。なお、バックフラグは、車両3のギアがバック位置にあるか否かに基づいて生成される。
【0024】
[駐車場データ]
次に、駐車場データについて説明する。図3は、駐車場データの一例を示す。駐車場データは、駐車場の入口毎に用意される。よって、1つの駐車場に複数の入口がある場合には、1つの駐車場について複数の駐車場データが用意される。図示のように、駐車場データは、「ID」、「緯度」、「経度」、「方位」及び「名称」を含む。
【0025】
「ID」は、駐車場の入口を一意に示す識別番号である。「緯度」及び「経度」は、その駐車場入口の緯度及び経度である。「方位」は、駐車場入口から車両3が進入する際の進行方向を示す。例えば、その駐車場の入口が北向きである場合、車両3はその駐車場の北側から南方向へ進行して進入するので、その入口の方位は南方向の方位となる。なお、この例では方位は北を0度とした角度により示されている。
【0026】
「名称」は、その駐車場の名称である。なお、図3の例では、駐車場の入口毎に駐車場データを用意しているが、その代わりに、駐車場毎に駐車場データを用意しても良い。但し、その場合でも、駐車場データには駐車場の入口の緯度、経度及び方位を含める。即ち、その駐車場の入口(複数ある場合にはそれぞれ)の位置及び方位を示す情報を含めるものとする。
【0027】
[駐車場領域取得処理]
次に、駐車場領域取得処理について説明する。駐車場領域取得処理は、サーバ10により実行され、多数の車両3から得たプローブデータに基づいて、駐車場の領域を推定する処理である。この処理は、主としてサーバ10の制御部12により実行される。なお、実際には、制御部12を構成するCPU等のコンピュータが、予め用意されたプログラムを実行することにより実現される。
【0028】
まず、サーバ10は、多数の車両3から、無線通信によりプローブデータを受信する(ステップS10)。サーバ10は、受信したプローブデータを、プローブDB14に蓄積する。
【0029】
次に、サーバ10は、駐車場同定を行う(ステップS11)。駐車場同定処理は、プローブデータと、地図データ中の駐車場データから駐車場を同定する処理である。駐車場同定処理の詳細を図5(A)に示す。まず、サーバ10は、プローブデータに基づいて、道路外走行の開始地点を検出する(ステップS21)。
【0030】
図6は、道路外走行を説明する図である。図示のように複数の道路が交差しており、南北に延びる道路と東西に延びる道路により複数の区画(敷地)が形成されているものとする。車両マークXは、プローブデータにより示される車両3の位置を示す。白抜きの車両マークXは県道上の位置を示し、この位置におけるプローブデータは道路種別として「4(県道)」を含む。斜めのハッチングが付された車両マークXは市道上の位置を示し、この位置におけるプローブデータは道路種別として「5(市道)」を含む。また、黒塗りの車両マークXは道路外の位置を示し、この位置におけるプローブデータは道路種別として「-1(道路外)」を含む。
【0031】
いま、図示のように車両3が道路R3(県道)を西方向に走行し、道路R2と道路R3の交差点を左折して道路R2(市道)に入り、さらに左折して駐車場のある区画50に進入し、駐車場内を走行して最終的に車両3を西方向に向けて駐車させたとする(破線62参照)。この場合、サーバ10は、図6に示す走行軌跡を示すプローブデータを参照し、道路種別が最初に「-1(道路外)」になった地点(図6における破線61の地点)を道路外走行の開始地点と判定する。
【0032】
次に、サーバ10は、地図DB13内の駐車場データを参照し、ステップS21で得られた道路外走行の開始地点の座標から所定の閾値範囲内に入口を有する駐車場を検索する(ステップS22)。そして、サーバ10は、検索により得られた複数の駐車場のうち、入口の方位が道路外走行の開始地点における車両3の進行方向と一致し、かつ、道路外走行の開始地点と最も近い入口を有する駐車場を特定する(ステップS23)。そして、処理は、図4に示すメインルーチンへ戻る。
【0033】
次に、サーバ10は、ステップS11の駐車場同定処理で、駐車場が同定できたか否か、即ち、該当する駐車場が見つかったか否かを判定する(ステップS12)。該当する駐車場が見つからなかった場合(ステップS12:No)、サーバ10は、今回得られたプローブデータが示す駐車場が未だ地図DB13に登録されていないと判断し、その駐車場を地図DB13に登録する(ステップS13)。具体的には、サーバ10は、新たな駐車場データを生成して地図DB13に登録する。この際、新たな駐車場データにおいては、新たなIDが付与され、道路外走行の開始地点の座標が「緯度」及び「経度」に設定され、道路外走行の開始地点における車両3の進行方向が「方位」に設定され、道路外走行の開始始点に最も近い施設などの名称が「名称」に設定される。
【0034】
こうして、ステップS13で駐車場が新規に登録された場合、又は、ステップS12で駐車場が同定できたと判定された場合、サーバ10は、プローブデータから、道路外走行データを抽出し、プローブDB14内に保存する(ステップS14)。図2の例では、道路種別が「-1」となっている地点のデータが、道路外走行データとして保存される。
【0035】
次に、サーバ10は、道路外走行データを利用して、推定処理を実行する(ステップS15)。図5(B)は、推定処理のフローチャートである。まず、サーバ10は、同一の駐車場について得られた道路外走行データをプローブDB14から取得する(ステップS31)。次に、サーバ10は、各道路外走行データに基づいて、走行面を生成する(ステップS32)。ここで、「走行面」とは、道路外走行データに含まれる座標を中心とした一定距離を持つ面である。いま、道路外走行データが図7(A)に示す軌跡42を有すると仮定すると、サーバ10は、図7(B)に模式的に示すように、軌跡42に対して標準的な車両の車幅程度の幅を持たせた走行面44を生成する。サーバ10は、道路外走行データの各々について、このような走行面44を生成する。
【0036】
そして、サーバ10は、ステップS32で生成した複数の走行面44を空間的に結合し、駐車場領域を推定する(ステップS33)。図8は、複数の走行面44から駐車場領域を推定する例を示し、同一の駐車場で得られた複数の走行面44が示されている。この例においては、車両3がある程度直線的に移動している領域と、車両3が方向転換などを行って駐車している領域とが区別できる。よって、サーバ10は、車両3が方向転換して駐車している領域を駐車領域51と推定し、車両3がある程度直線的に移動している領域を走行領域52bと推定する。なお、図8の例では、2つの駐車領域51a、51bが得られ、それぞれに対応する2つの走行領域52a、52bが得られている。
【0037】
なお、一般的に車両を駐車する際には、駐車位置まではある程度の速度で移動するが、方向転換などを行って車両を駐車させる際には車両の速度は十分に低い。よって、車両3の位置座標のみならず、道路外走行データにおける車速も加味して、駐車領域51と走行領域52とを区別してもよい。
【0038】
また、こうして得られた1つ又は複数の駐車領域51と、1つ又は複数の走行領域52とを結合することにより、駐車場全体の形状を推定することができる。図8の例では、駐車場の全体形状はおよそ破線48で示す形状となる。こうして、駐車場領域が推定されると、駐車場領域推定処理は終了する。
【0039】
以上のように、本実施例によれば、複数の車両のプローブデータ、即ち、走行履歴に基づいて駐車場領域を推定することができる。また、駐車場領域の全体形状に加えて、駐車場領域内の走行領域と駐車領域を区別することもできる。
【0040】
[混雑度の推定]
次に、駐車場領域内における駐車位置の分布に基づいて駐車場の混雑度を推定する手法について説明する。車両の駐車位置を時間帯ごとに分割することにより、時間帯毎の駐車位置の分布が得られる。基本的に、駐車場が空いている場合、運転者は駐車場内の利便性の高いエリアに車両を駐車する傾向がある。例えば、店舗などの施設に併設された駐車場では、施設に近いエリアから駐車スペースが埋まっていくことが多い。一方、駐車場が混雑している場合には、利便性の高いエリアは既に埋まっていることが多いため、運転者はそれ以外のエリア、即ちランダムに発生する空きスペースに車両を駐車せざるを得ない。その結果、車両の駐車位置はランダム性が高くなり、駐車場全体に分散する傾向がある。従って、駐車場内における車両の駐車位置の分布を分析し、車両の駐車位置が一部のエリアに集中している場合には駐車場は空いていると推定することができる。一方、車両の駐車位置が駐車場全体に分散している場合には駐車場は混雑していると推定することができる。
【0041】
図9は、車両の駐車位置に基づいて混雑度を分析する処理のフローチャートである。この処理は、サーバ10により行われる。まず、サーバ10は、車両3のナビゲーション装置20からプローブデータを受信する(ステップS41)。
【0042】
次に、サーバ10は、プローブデータから、時間帯毎に車両3の駐車位置の座標を取得する(ステップS42)。例えば、サーバ10は、一日を朝、昼、夜の3つに分割し、各時間帯毎に、車両の駐車位置の座標を取得する。そして、サーバ10は、取得した駐車位置の座標に基づいて駐車位置の集中度を算出し、時間帯毎の混雑度を推定する(ステップS43)。そして、処理は終了する。これにより、時間帯毎に駐車場の混雑度を得ることができる。
【0043】
次に、駐車位置の集中度の算出方法を説明する。駐車位置の集中度は以下の第1~第3のいずれかの方法により算出することができる。
【0044】
(第1の方法)
集中度を算出する第1の方法は、標準偏差楕円を利用する。即ち、サーバ10は、ステップS42で得られた駐車位置の座標に基づいて標準偏差楕円を求め、その所定割合の面積を算出する。例えば、標準偏差楕円の90%の面積を求める。基本的に、駐車位置が集中している場合には標準偏差楕円の面積は小さくなり、駐車位置が分散している場合には標準偏差楕円の面積は大きくなる。よって、サーバ10は、標準偏差楕円の所定割合の面積を所定の閾値と比較し、閾値より小さい場合には集中度が高い、即ち、駐車場は空いていると推定し、閾値より大きい場合には集中度が低い、即ち、駐車場は混雑していると推定する。こうして、時間帯毎の駐車位置の座標に基づいて、時間帯毎の混雑度を推定することができる。
【0045】
なお、上記の例では、1つの閾値を使用して駐車場の混雑度を「空いている」と「混雑している」の2つに分類したが、2つ以上の閾値を使用して駐車場の混雑度を3レベル以上に分類しても良い。例えば、2つの閾値を使用し、駐車場の混雑度を「空いている」、「普通」、「混雑している」の3レベルに分類しても良い。
【0046】
なお、標準偏差楕円の面積を利用する方法は、1つの駐車場全体において1か所への集中度を算出する手法であるため、1つの駐車場全体に集中地点が複数ある場合にはそのままでは適用することはできない。但し、駐車場全体を複数の駐車エリアに分割し、各駐車エリア毎に標準偏差楕円の面積を算出すれば、1つの駐車場全体において複数の場所に駐車位置が集中するような場合にも適用可能である。
【0047】
(第2の方法)
集中度を算出する第2の方法は、空間解析手法の1つである最近隣距離法を用いる。最近隣距離法は、点の分布を分散型、集中型という観点から分類する手法であり、複数の点の分布から「平均最近隣距離W」を求める。ここで、平均最近隣距離Wとは、各点から最も近い点までの距離の平均値であり、以下の式で求められる。
【数1】
【0048】
ここで、各分布への分類基準として、点が面積Sの平面上でランダムに分布している(一様ポアソン分布に従っている)場合を考える。このときの平均最近隣距離Wの期待値は、
【数2】
である。
【0049】
そこで、
【数3】
と判断すればよい。なお、この手法は1つの駐車場内に複数の集中地点が存在する場合でも適用することができる。
【0050】
(第3の方法)
集中度を算出する第3の方法は、空間解析手法の1つであるK-関数法を用いる。K-関数法は、最近隣距離法では判別のつかない分布を識別するための手法であり、複数の点の分布から、以下の式によりK-関数K(h)を求める。
【数4】
【0051】
K-関数を用いると、どのくらいのスケール(空間的な範囲)で点が集中・分散しているかを判断することができる。点がランダムに分布している場合、K-関数の期待値は、
【数5】
である。
【0052】
従って、半径hの円という程度のスケールにおいて、
【数6】
と判断すればよい。なお、この手法は1つの駐車場内に複数の集中地点が存在する場合でも適用することができる。
【0053】
なお、上記の例では、時間帯として1日を朝、昼、夜に分割しているが、本発明の適用はこれには限られない。例えば、1日を昼と夜に分割してもよいし、1時間毎に分割してもよい。また、1週間を月曜日から日曜日の7日間に分割してもよい。さらには、1年を月単位で分割してもよいし、1年を四季で分割してもよい。本発明における「時間帯」とは、このようにある期間を時間で分割する場合のみならず、曜日や月の単位で分割する場合も含む概念である。
【0054】
また、上記の例では、時間帯毎に混雑度を推定しているが、時間帯を限定せずに混雑度を推定しても良い。
【符号の説明】
【0055】
3 車両
10 サーバ
12 制御部
13 地図DB
14 プローブDB
20 ナビゲーション装置
図1
図2
図3
図4
図5
図6
図7
図8
図9