(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023020524
(43)【公開日】2023-02-09
(54)【発明の名称】燃料電池ガスケット用エチレン共重合体組成物、当該組成物からなる燃料電池用ガスケット
(51)【国際特許分類】
H01M 8/0284 20160101AFI20230202BHJP
C08L 23/08 20060101ALI20230202BHJP
C08F 10/02 20060101ALI20230202BHJP
C09K 3/10 20060101ALI20230202BHJP
【FI】
H01M8/0284
C08L23/08
C08F10/02
C09K3/10 Z
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2021125925
(22)【出願日】2021-07-30
(71)【出願人】
【識別番号】000005887
【氏名又は名称】三井化学株式会社
(74)【代理人】
【識別番号】110001070
【氏名又は名称】弁理士法人エスエス国際特許事務所
(72)【発明者】
【氏名】石井 雄二
(72)【発明者】
【氏名】有野 恭巨
【テーマコード(参考)】
4H017
4J002
4J100
5H126
【Fターム(参考)】
4H017AA04
4H017AB07
4H017AC19
4H017AE05
4J002BB05W
4J002BB05X
4J002BB14W
4J002BB14X
4J002BB15W
4J002BB15X
4J002FD010
4J002FD020
4J002FD030
4J002FD140
4J002FD150
4J002FD320
4J002GJ02
4J002GQ00
4J100AA02P
4J100AA03Q
4J100AR18R
4J100AR22R
4J100AS11R
4J100AS15R
4J100AS21R
4J100AS25R
4J100CA05
4J100CA06
4J100DA01
4J100DA04
4J100DA09
4J100DA15
4J100DA31
4J100DA47
4J100DA48
4J100DA50
4J100DA51
4J100FA10
4J100JA03
4J100JA43
5H126AA13
5H126BB02
5H126GG18
5H126JJ05
(57)【要約】
【課題】本発明の目的は、流動性、加硫速度および耐熱老化性などの耐久性が改良された燃料電池ガスケット用エチレン共重合体組成物を得ることにある。
【解決手段】本発明は、エチレン(A)と、炭素原子数3~20のα-オレフィン(B)と、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(C)とに由来する構成単位を有し、かつ、特定の要件を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(S)0~50質量部と、
エチレン[A1]に由来する構造単位と、炭素数4~20のα-オレフィン[A2]に由来する構造単位と、非共役ポリエン[A3]に由来する構造単位とを有し、特定の要件を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(A)100~50質量部と、を含有する〔但し、共重合体(S)と共重合体(A)との合計を100質量部とする。〕ことを特徴とする燃料電池ガスケット用エチレン共重合体組成物に係る。
[化1]
【選択図】なし
【特許請求の範囲】
【請求項1】
エチレン(A)と、炭素原子数3~20のα-オレフィン(B)と、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(C)とに由来する構成単位を有し、かつ、下記要件(i)~(vi)を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(S)100~20質量部と、
エチレン[A1]に由来する構造単位と、炭素数4~20のα-オレフィン[A2]に由来する構造単位と、非共役ポリエン[A3]に由来する構造単位とを有し、下記(1)~(3)の要件を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(A)0~80質量部と、を含有する〔但し、共重合体(S)と共重合体(A)との合計を100質量部とする。〕ことを特徴とする燃料電池ガスケット用エチレン共重合体組成物:
【化1】
〔エチレン・α-オレフィン・非共役ポリエン共重合体(S)の要件〕
(i)エチレン(A)に由来する構成単位と、α-オレフィン(B)に由来する構成単位とのモル比[(A)/(B)]が、40/60~99.9/0.1である;
(ii)非共役ポリエン(C)に由来する構成単位の質量分率が、共重合体(S)100質量%中、0.07質量%~10質量%である;
(iii)共重合体(S)の重量平均分子量(Mw)と、非共役ポリエン(C)に由来する構成単位の重量分率((C)の重量分率(重量%))と、非共役ポリエン(C)の分子量((C)の分子量)とが、下記式(1)を満たす;
4.5≦Mw×(C)の質量分率/100/(C)の分子量≦40・・・式(1)
(iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η*(ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η*(ω=100)(Pa・sec)との比P(η*(ω=0.1)/η*(ω=100))と、極限粘度[η]と、前記非共役ポリエン(C)に由来する構成単位の質量分率((C)の質量分率)とが、下記式(2)を満たす;
P/([η]
2.9)≦(C)の質量分率×6・・・式(2)
(v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布;Mw/Mn)が4~80の範囲にある;
(vi)前記数平均分子量(Mn)が30,000以下である。
〔エチレン・α-オレフィン・非共役ポリエン共重合体(A)の要件〕
(1)エチレン[A1]に由来する構造単位と、炭素数4~20のα-オレフィン[A2]に由来する構造単位とのモル比〔[A1]/[A2]〕が、40/60~90/10であり、
(2)非共役ポリエン[A3]に由来する構造単位の含有割合が、[A1]、[A2]および[A3]に由来する構造単位の合計を100モル%として、0.1~6.0モル%であり、
(3)下記式(i)で表されるB値が、1.20以上である。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
[ここで[E]、[X]および[Y]は、それぞれ、エチレン[A1]、炭素数4~20のα-オレフィン[A2]、および非共役ポリエン[A3]に由来する構造単位のモル分率を示し、[EX]はエチレン[A1]-炭素数4~20のα-オレフィン[A2]ダイアッド連鎖分率を示す。]
【請求項2】
前記共重合体(A)における炭素数4~20のα-オレフィン[A2]に由来する構造単位が、1-ブテンに由来する構造単位を含む請求項1に記載の燃料電池ガスケット用共重合体組成物。
【請求項3】
前記共重合体(S)における非共役ポリエン(C)が、5-ビニル-2-ノルボルネンに由来する構造単位を含む請求項1または2に記載の燃料電池ガスケット用共重合体組成物。
【請求項4】
前記共重合体(S)と前記共重合体(A)の合計100質量部当たり、さらに有機過酸化物1~30質量部を含むことを特徴とする、請求項1~3のいずれかに記載の燃料電池ガスケット用共重合体組成物。
【請求項5】
請求項1~4のいずれかに記載の燃料電池ガスケット用共重合体組成物を用いて得られる燃料電池用ガスケット。
【請求項6】
燃料電池用ガスケットが、架橋体である請求項5に記載の燃料電池用ガスケット。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池ガスケット用エチレン共重合体組成物およびその用途に関する。
【背景技術】
【0002】
エチレン・プロピレン共重合体(EPM、EPR)およびエチレン・プロピレン・ジエン共重合体(EPDM)などのエチレン・α-オレフィン共重合体エラストマーは、その分子構造の主鎖に不飽和結合を有しないため、汎用の共役ジエンゴムと比べ、耐熱老化性、耐候性、耐オゾン性に優れ、自動車用部品、電線用材料、電子・電気部品、建築土木資材、工業材部品等の用途に広く用いられている。
【0003】
EPDMを用いてシール用ゴム成形体を得ることが知られている(例えば、特許文献1)。シール用ゴム成形体であるシールパッキンは、自動車、産業機械、電子部品等様々な用途で用いられているが、自動車や産業機械等は寒冷地でも使用されるため、シールパッキンには、常温での機械強度に加えて、低温特性も要求される。
【0004】
また、特許文献2には、低温特性および機械強度(強度・伸び)を両立したシールパッキンを形成することが可能な燃料電池ガスケット用エチレン共重合体組成物として、B値が、1.20以上であるエチレン[A]に由来する構造単位、炭素数4~20のα-オレフィン[B]に由来する構造単位、および非共役ポリエン[C]に由来する構造単位を含むエチレン・α-オレフィン・非共役ポリエン共重合体を含有する燃料電池ガスケット用エチレン共重合体組成物が提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2000/59962号
【特許文献2】特開2017-075293号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
燃料電池自動車(FCV)の燃料電池ガスケットは、FCスタック内での水素と酸素、水の漏れを防止するゴム部品であり、低温特性に加え、優れた耐久性が求められており、また、更なる生産性向上に向け流動性の向上、加硫時間の短縮化が図れる燃料電池ガスケット用組成物が、要望されている。
【0007】
本発明の目的は、流動性、加硫速度および耐熱老化性などの耐久性が改良された燃料電池ガスケット用エチレン共重合体組成物を得ることにある。
【課題を解決するための手段】
【0008】
本発明は、エチレン(A)と、炭素原子数3~20のα-オレフィン(B)と、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(C)とに由来する構成単位を有し、かつ、下記要件(i)~(vi)を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(S)100~20質量部と、
エチレン[A1]に由来する構造単位と、炭素数4~20のα-オレフィン[A2]に由来する構造単位と、非共役ポリエン[A3]に由来する構造単位とを有し、下記(1)~(3)の要件を満たすエチレン・α-オレフィン・非共役ポリエン共重合体(A)0~80質量部と、を含有する〔但し、共重合体(S)と共重合体(A)との合計を100質量部とする。〕ことを特徴とする燃料電池ガスケット用エチレン共重合体組成物に係る。
【0009】
【0010】
〔エチレン・α-オレフィン・非共役ポリエン共重合体(S)の要件〕
(i)エチレン(A)に由来する構成単位と、α-オレフィン(B)に由来する構成単位とのモル比[(A)/(B)]が、40/60~99.9/0.1である;
(ii)非共役ポリエン(C)に由来する構成単位の質量分率が、共重合体(S)100質量%中、0.07質量%~10質量%である;
(iii)共重合体(S)の重量平均分子量(Mw)と、非共役ポリエン(C)に由来する構成単位の重量分率((C)の重量分率(重量%))と、非共役ポリエン(C)の分子量((C)の分子量)とが、下記式(1)を満たす;
4.5≦Mw×(C)の質量分率/100/(C)の分子量≦40・・・式(1)
(iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η*(ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η*(ω=100)(Pa・sec)との比P(η*(ω=0.1)/η*(ω=100))と、極限粘度[η]と、前記非共役ポリエン(C)に由来する構成単位の質量分率((C)の質量分率)とが、下記式(2)を満たす;
P/([η]2.9)≦(C)の質量分率×6・・・式(2)
(v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布;Mw/Mn)が4~80の範囲にある;
(vi)前記数平均分子量(Mn)が30,000以下である。
【0011】
〔エチレン・α-オレフィン・非共役ポリエン共重合体(A)の要件〕
(1)エチレン[A1]に由来する構造単位と、炭素数4~20のα-オレフィン[A2]に由来する構造単位とのモル比〔[A1]/[A2]〕が、40/60~90/10であり、
(2)非共役ポリエン[A3]に由来する構造単位の含有割合が、[A1]、[A2]および[A3]に由来する構造単位の合計を100モル%として、0.1~6.0モル%であり、
(3)下記式(i)で表されるB値が、1.20以上である。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
[ここで[E]、[X]および[Y]は、それぞれ、エチレン[A1]、炭素数4~20のα-オレフィン[A2]、および非共役ポリエン[A3]に由来する構造単位のモル分率を示し、[EX]はエチレン[A1]-炭素数4~20のα-オレフィン[A2]ダイアッド連鎖分率を示す。]
【発明の効果】
【0012】
本発明の燃料電池ガスケット用エチレン共重合体組成物は架橋速度(加硫速度)が速く、且つ、流動性が良好であり、当該共重合体組成物を架橋して得られる燃料電池ガスケットは、圧縮永久歪み、耐熱老化性が優れるため、燃料電池ガスケットを製造する際の生産性および製品の耐久性(長寿命化)を改善することができる。
【発明を実施するための形態】
【0013】
<エチレン・α-オレフィン・非共役ポリエン共重合体(S)>
本発明の燃料電池ガスケット用エチレン共重合体組成物の主成分であるエチレン・α-オレフィン・非共役ポリエン共重合体(S)〔以下、「共重合体(S)」と略記する場合がある。〕は、エチレン(A)と、炭素原子数3~20のα-オレフィン(B)と、下記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(C)とに由来する構成単位を有し、かつ、下記要件(i)~(vi)を満たすエチレン・α-オレフィン・非共役ポリエン共重合体である。
【0014】
【0015】
(i)エチレン(A)に由来する構成単位と、α-オレフィン(B)に由来する構成単位とのモル比[(A)/(B)]が、40/60~99.9/0.1である;
(ii)非共役ポリエン(C)に由来する構成単位の質量分率が、共重合体(S)100質量%中、0.07質量%~10質量%である;
(iii)共重合体(S)の重量平均分子量(Mw)と、非共役ポリエン(C)に由来する
構成単位の重量分率((C)の重量分率(重量%))と、非共役ポリエン(C)の分子量((C)の分子量)とが、下記式(1)を満たす;
4.5≦Mw×(C)の質量分率/100/(C)の分子量≦40・・・式(1)
(iv)レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η*(ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η*(ω=100)(Pa・sec)との比P(η*(ω=0.1)/η*(ω=100))と、極限粘度[η]と、前記非共役ポリエン(C)に由来する構成単位の質量分率((C)の質量分率)とが、下記式(2)を満たす;
P/([η]2.9)≦(C)の質量分率×6・・・式(2)
(v)ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布;Mw/Mn)が4~80の範囲にある;
(vi)前記数平均分子量(Mn)が30,000以下である。
【0016】
本発明に係る共重合体(S)は、上記(A)、(B)、(C)に由来する構造単位に加えて、さらに上記一般式(I)および(II)からなる群から選ばれる部分構造を分子中に1つのみ含む非共役ポリエン(D)に由来する構成単位を有していてもよい。
【0017】
炭素原子数3~20のα-オレフィン(B)としては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセンなどが挙げられる。これらのうち、プロピレン、1-ブテン、1-ヘキセン、1-オクテンなどの炭素原子数3~8のα-オレフィンが好ましく、特にプロピレンが好ましい。このようなα-オレフィンは、原料コストが比較的安価であり、得られるエチレン・α-オレフィン・非共役ポリエン共重合体が優れた機械的性質を示し、さらにゴム弾性を持った成形体を得ることができるため好ましい。これらのα-オレフィンは一種単独で用いても、二種以上を用いてもよい。
【0018】
本発明に係る共重合体(S)は、少なくとも1種の炭素原子数3~20のα-オレフィン(B)に由来する構成単位を含んでおり、2種以上の炭素原子数3~20のα-オレフィン(B)に由来する構成単位を含んでいてもよい。
【0019】
上記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(C)としては、5-ビニル-2-ノルボルネン(VNB)、ノルボルナジエン、1,4-ヘキサジエン、ジシクロペンタジエンなどが挙げられる。これらのうちでは、入手容易性が高く、ヒドロシリル架橋が良好で、重合体組成物の耐熱性が向上しやすいことから非共役ポリエン(C)がVNBを含むことが好ましく、非共役ポリエン(C)がVNBであることがより好ましい。非共役ポリエン(C)は一種単独で用いても、二種以上を用いてもよい。
【0020】
本発明に係る共重合体(S)は、エチレン(A)、炭素原子数3~20のα-オレフィン(B)および前記非共役ポリエン(C)に由来する構成単位に加えて、さらに、前記一般式(I)および(II)からなる群から選ばれる部分構造を分子中に1つのみ含む非共役ポリエン(D)に由来する構成単位を含んでいてもよい。
【0021】
このような非共役ポリエン(D)としては、5-エチリデン-2-ノルボルネン(ENB)、5-メチレン-2-ノルボルネン、5-(2-プロペニル)-2-ノルボルネン、5-(3-ブテニル)-2-ノルボルネン、5-(1-メチル-2-プロペニル)-2-ノルボルネン、5-(4-ペンテニル)-2-ノルボルネン、5-(1-メチル-3-ブテニル)-2-ノルボルネン、5-(5-ヘキセニル)-2-ノルボルネン、5-(1-メチル-4-ペンテニル)-2-ノルボルネン、5-(2,3-ジメチル-3-ブテニル)-2-ノルボルネン、5-(2-エチル-3-ブテニル)-2-ノルボルネン、5-(6-ヘプテニル)-2-ノルボルネン、5-(3-メチル-5-ヘキセニル)-2-ノルボルネン、5-(3,4-ジメチル-4-ペンテニル)-2-ノルボルネン、5-(3-エチル-4-ペンテニル)-2-ノルボルネン、5-(7-オクテニル)-2-ノルボルネン、5-(2-メチル-6-ヘプテニル)-2-ノルボルネン、5-(1,2-ジメチル-5-ヘキセニル)-2-ノルボルネン、5-(5-エチル-5-ヘキセニル)-2-ノルボルネン、5-(1,2,3-トリメチル-4-ペンテニル)-2-ノルボルネンなどが挙げられる。これらのうちでは、入手容易性が高く、ヒドロシリル架橋時の架橋速度を制御しやすく、良好な機械物性が得られやすいことからENBが好ましい。非共役ポリエン(D)は一種単独で用いても、二種以上を用いてもよい。
【0022】
本発明に係る共重合体(S)が、前記一般式(I)および(II)からなる群から選ばれる部分構造を分子中に1つのみ含む非共役ポリエン(D)に由来する構成単位を含む場合、その割合は本発明の目的を損なわない範囲において特に限定されるものではないが、通常、0~20質量%、好ましくは0~8質量%、より好ましくは0.01~8質量%程度の質量分率で含む(ただし、(A)、(B)、(C)、(D)の重量分率の合計を100質量%とする)。
【0023】
〈要件(i)〉
要件(i)は、本発明に係わる共重合体(S)中のエチレン/α-オレフィンのモル比が40/60~99.9/0.1を満たすことを特定するものであり、このモル比は好ましくは50/50~90/10、より好ましくは55/45~85/15、さらに好ましくは55/45~78/22を満たすことが望ましい。本発明に係るエチレン・α-オレフィン・非共役ポリエン共重合体(S)を含む燃料電池ガスケット用エチレン共重合体組成物を架橋して得られる燃料電池ガスケットは優れたゴム弾性を示し、機械的強度、耐熱老化性に優れたものとなるため好ましい。
【0024】
なお、エチレン・α-オレフィン・非共役ポリエン共重合体(S)中のエチレン量(エチレン(A)に由来する構成単位の含量)およびα-オレフィン量(α-オレフィン(B)に由来する構成単位の含量)は、13C-NMRにより求めることができる。
【0025】
〈要件(ii)〉
要件(ii)は、本発明に係わるエチレン・α-オレフィン・非共役ポリエン共重合体(S)中において、非共役ポリエン(C)に由来する構成単位の質量分率が、エチレン・α-オレフィン・非共役ポリエン共重合体(S)100質量%中(すなわち全構成単位の質量分率の合計100質量%中)、0.07~10質量%の範囲であることを特定するものである。この非共役ポリエン(C)に由来する構成単位の質量分率は、好ましくは0.1~8.0質量%、より好ましくは0.5~5.0質量%であることが望ましい。
【0026】
本発明に係る共重合体(S)が、要件(ii)を満たすと、本発明に係る燃料電池ガスケット用エチレン共重合体組成物は、流動性、加硫速度が良好で、得られる燃料電池ガスケットは、優れたゴム弾性を示し、機械的強度、耐熱老化性に優れたものとなるため好ましい。
なお、共重合体(S)中の非共役ポリエン(C)量(非共役ポリエン(C)に由来する構成単位の含量)は、13C-NMRにより求めることができる。
【0027】
〈要件(iii)〉
要件(iii)は、本発明に係る共重合体(S)において、エチレン・α-オレフィン・非共役ポリエン共重合体の重量平均分子量(Mw)と、共重合体中における非共役ポリエン(C)に由来する構成単位の質量分率((C)の質量分率:質量%)と、非共役ポリエン(C)の分子量((C)の分子量)とが、次の関係式(1)を満たすことを特定するものである。
4.5≦Mw×(C)の質量分率/100/(C)の分子量≦40・・・式(1)
【0028】
本発明に係る共重合体(S)が、要件(iii)を満たす場合、VNBなどの非共役ポリエン(C)に由来する構造単位の含有量が適切であって、本発明に係る燃料電池ガスケット用エチレン共重合体組成物を用いて燃料電池ガスケットを製造した場合には、架橋速度に優れ、架橋後の燃料電池ガスケットが優れた機械特性を示すものとなるため好ましい。
【0029】
本発明に係る共重合体(S)は、より好ましくは、下記関係式(1')を満たすことが望ましい。
4.5≦Mw×(C)の質量分率/100/(C)の分子量≦35・・・式(1')
なお、共重合体(S)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の数値として求めることができる。
【0030】
本発明に係る共重合体(S)は、「Mw×(C)の質量分率/100/(C)の分子量」が前記式(1)あるいは(1')を満たす場合には架橋程度が適切となり、これを用いることにより機械的物性と耐熱老化性とにバランスよく優れた燃料電池ガスケットを製造することができる。「Mw×(C)の質量分率/100/(C)の分子量」が少なすぎる場合には、架橋性が不足して架橋速度が遅くなることなることがあり、また多すぎる場合には過度に架橋を生じて得られる燃料電池ガスケットの機械的物性が悪化する場合がある。
【0031】
〈要件(iv)〉
要件(iv)は、本発明に係る共重合体(S)の、レオメーターを用いて線形粘弾性測定(190℃)により得られた、周波数ω=0.1rad/sでの複素粘度η*
(ω=0.1)(Pa・sec)と、周波数ω=100rad/sでの複素粘度η*
(ω=100)(Pa・sec)との比P(η*
(ω=0.1)/η*
(ω=100))と、極限粘度[η]と、前記非共役ポリエン(C)に由来する構成単位の質量分率((C)の質量分率:質量%)とが、下記式(2)を満たすことを特定するものである。
P/([η]2.9)≦(C)の質量分率×6・・・式(2)
【0032】
ここで、周波数ω=0.1rad/sでの複素粘度η*
(ω=0.1)と、周波数ω=100rad/sでの複素粘度η*
(ω=100)との比P(η*
(ω=0.1)/η*
(ω=100))は、粘度の周波数依存性を表すものであって、式(2)の左辺にあたるP/([η]2.9)は、短鎖分岐や分子量などの影響はあるものの、長鎖分岐が多い場合に高い値を示す傾向がある。一般に、エチレン・α-オレフィン・非共役ポリエン共重合体では、非共役ポリエンに由来する構成単位を多く含むほど、長鎖分岐を多く含む傾向があるが、本発明に係る共重合体(S)は、従来公知のエチレン・α-オレフィン・非共役ポリエン共重合体よりも長鎖分岐が少ないことにより上記式(2)を満たすことができると考えられる。本発明において、P値は、粘弾性測定装置Ares(Rheometric Scientific社製)を用い、190℃、歪み1.0%、周波数を変えた条件で測定を行って求めた、0.1rad/sでの複素粘度と、100rad/sでの複素粘度とから、比(η*比)を求めたものである。
【0033】
本発明に係る共重合体(S)は、好ましくは、下記式(2')を満たす。
P/([η]2.9)≦(C)の質量分率×5.7・・・式(2')
なお、極限粘度[η]は、135℃のデカリン中で測定される値を意味する。
【0034】
〈要件(v)〉
本発明に係る共重合体(S)は、ゲルパーミエイションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)と数平均分子量(Mn)との比(分子量分布;Mw/Mn)が4~80、好ましくは3~70の範囲にある。
【0035】
〈要件(vi)〉
本発明に係る共重合体(S)は、前記数平均分子量(Mn)が30,000以下、好ましくは200~28,000の範囲にある。
【0036】
本発明に係る共重合体(S)は、極限粘度[η]が好ましくは0.1~5dL/g、より好ましくは0.5~5.0dL/g、さらに好ましくは0.7~4.0dL/gであることが望ましい。
【0037】
<エチレン・α-オレフィン・非共役ポリエン共重合体(S)の製造>
本発明に係るエチレン・α-オレフィン・非共役ポリエン共重合体(S)は、エチレン(A)と、炭素原子数3~20のα-オレフィン(B)と、前記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に2つ以上含む非共役ポリエン(C)と、必要に応じて前記一般式(I)および(II)からなる群から選ばれる部分構造を合計で分子中に1つのみ2含む非共役ポリエン(D)とからなるモノマーを共重合してなる共重合体である。
【0038】
本発明に係る共重合体(S)は、前記の要件(i)および(ii)、好ましくは(iii)~(v)を満たす限りにおいて、どのような製法で調製されてもよいが、メタロセン化合物の存在下にモノマーを共重合して得られたものであることが好ましく、メタロセン化合物を含む触媒系の存在下にモノマーを共重合して得られたものであることがより好ましい。
【0039】
本発明に係る共重合体(S)は、具体的には、例えば、国際公開第2015/122495号パンフレット記載のメタロセン触媒に記載の方法を採用することにより製造することができる。
【0040】
<エチレン・α-オレフィン・非共役ポリエン共重合体(A)>
本発明の燃料電池ガスケット用エチレン共重合体組成物の副成分であるエチレン・α-オレフィン・非共役ポリエン共重合体(A)〔以下、「共重合体(A)」と略記する場合がある。〕は、エチレン[A]に由来する構造単位、少なくとも1種類の炭素数4~20のα-オレフィン[B]に由来する構造単位、および少なくとも1種の非共役ポリエン[C]に由来する構造単位を含み、下記要件(1)~(4)を満たす。
【0041】
〈要件(1)〉
エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60~90/10であり、
〈要件(2)〉
非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1~6.0モル%であり、
〈要件(3)〉
下記式(i)で表されるB値が、1.20以上である。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・(i)
[ここで[E]、[X]および[Y]は、それぞれ、エチレン[A]、炭素数4~20のα-オレフィン[B]、および非共役ポリエン[C]のモル分率を示し、[EX]はエチレン[A]-炭素数4~20のα-オレフィン[B]ダイアッド連鎖分率を示す。]
【0042】
炭素数4~20のα-オレフィン[B]としては、側鎖の無い直鎖の構造を有する、炭素数4の1-ブテンからはじまり、炭素数9の1-ノネンや炭素数10の1-デセンを経て、炭素数19の1-ノナデセン、炭素数20の1-エイコセン、並びに側鎖を有する4-メチル-1-ペンテン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンなどが挙げられる。
【0043】
これらのα-オレフィン[B]は単独で、または2種以上組み合わせて用いることができる。これらの中では、炭素数4~10のα-オレフィンが好ましく、特に1-ブテン、1-ヘキセン、1-オクテンなどが好ましく、特に1-ブテンが好適である。
【0044】
α-オレフィンがプロピレンであるエチレン・プロピレン・非共役ポリエン共重合体は、低温でのゴム弾性が不充分であるので、用途が限定される場合がある。一方、エチレン・α-オレフィン・非共役ポリエン共重合体(A)は、炭素数4~20のα-オレフィン[B]に由来する構造単位を有しているので、低温でのゴム弾性に優れている。
【0045】
非共役ポリエン[C]としては、具体的には、1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン等の鎖状非共役ジエン;シクロヘキサジエン、ジシクロペンタジエン、メチルテトラヒドロインデン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン等の環状非共役ジエン;2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン、1,3,7-オクタトリエン、1,4,9-デカトリエン、4,8-ジメチル-1,4,8-デカトリエン、4-エチリデン-8-メチル-1,7-ノナジエン等のトリエンが挙げられる。
【0046】
これらの非共役ポリエン[C]は単独で、または2種以上組み合わせて用いることができる。
これらの中でも、1,4-ヘキサジエンなどの鎖状非共役ジエン、5-エチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネンなどの環状非共役ジエンが好ましく、中でも環状非共役ジエンが好ましく、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネンが特に好ましい。
【0047】
本発明に係るエチレン・α-オレフィン・非共役ポリエン共重合体(A)としては、以下を挙げることができる。
エチレン・1-ブテン・1,4-ヘキサジエン共重合体、
エチレン・1-ペンテン・1,4-ヘキサジエン共重合体、
エチレン・1-ヘキセン・1,4-ヘキサジエン共重合体、
エチレン・1-へプテン・1,4-ヘキサジエン共重合体、
エチレン・1-オクテン・1,4-ヘキサジエン共重合体、
エチレン・1-ノネン・1,4-ヘキサジエン共重合体、
エチレン・1-デセン・1,4-ヘキサジエン共重合体、
エチレン・1-ブテン・1-オクテン・1,4-ヘキサジエン共重合体、
エチレン・1-ブテン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-ペンテン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-ヘキセン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-へプテン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-オクテン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-ノネン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-デセン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-ブテン・1-オクテン・5-エチリデン-2-ノルボルネン共重合体、
エチレン・1-ブテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、
エチレン・1-ペンテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、
エチレン・1-ヘキセン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、
エチレン・1-へプテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、
エチレン・1-オクテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、
エチレン・1-ノネン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、
エチレン・1-デセン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体、
エチレン・1-ブテン・1-オクテン・5-エチリデン-2-ノルボルネン・5-ビニル-2-ノルボルネン共重合体。
【0048】
エチレン・α-オレフィン・非共役ポリエン共重合体(A)は、必要に応じて1種類、または2種類以上が用いられる。
【0049】
〈要件(1)〉
エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比〔[A]/[B]〕が、40/60~90/10、好ましくは40/60~80/20、より好ましくは45/55~70/30、特に好ましくは50/50~70/30の範囲にある。
エチレン[A]に由来する構造単位と、α-オレフィン[B]に由来する構造単位とのモル比が上記範囲にあると、低温でのゴム弾性と常温での引張強度とのバランスに優れるエチレン系共重合体が得られる。
【0050】
〈要件(2)〉
非共役ポリエン[C]に由来する構造単位の含有量が、[A]、[B]および[C]の構造単位の合計を100モル%として、0.1~6.0モル%、好ましくは0.1~4.0モル%、より好ましくは0.5~3.0モル%の範囲にある。
非共役ポリエン[C]に由来する構造単位が上記範囲にあると、充分な架橋性および柔軟性を有するエチレン系共重合体が得られる。
【0051】
〈要件(3)〉
B値が1.20以上、好ましくは1.20~1.80、特に好ましくは1.22~1.40の範囲にある。
B値が1.20未満のエチレン系共重合体は、低温での圧縮永久ひずみが大きくなり、低温でのゴム弾性と常温での引張強度とのバランスに優れたエチレン系共重合体が得られない虞がある。
【0052】
なお、B値は、共重合体中における共重合モノマー連鎖分布のランダム性を示す指標であり、上記式(i)中の[E]、[X]、[Y]、[EX]は、13C-NMRスペクトルを測定し、J. C.Randall [Macromolecules, 15, 353 (1982)]、J. Ray [Macromolecules, 10, 773 (1977)]らの報告に基づいて求めることができる。
【0053】
本発明に係るエチレン・α-オレフィン・非共役ポリエン共重合体(A)は、好ましくは、100℃におけるムーニー粘度ML(1+4)100℃が5~100、より好ましくは10~90、特に好ましくは10~70の範囲にある。
【0054】
ムーニー粘度が上記範囲にあると、良好な後処理(リボンハンドリング性)を示すと共に優れたゴム物性を有するエチレン・α-オレフィン・非共役ポリエン共重合体(A)が得られる。
【0055】
《エチレン・α-オレフィン・非共役ポリエン共重合体(A)の製造方法》
本発明に係る共重合体(A)は、以下の製造方法で得ることができる。
具体的には、(a)下記一般式[I]で表される遷移金属化合物(以下「架橋メタロセン化合物」ともいう。)と、(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、(b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とを含むオレフィン重合触媒の存在下において、エチレン、炭素数4~20のα-オレフィンおよび非共役ポリエンを共重合することにより製造し得る。
【0056】
【0057】
(式[I]において、Yは炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、
Mはチタン原子、ジルコニウム原子またはハフニウム原子であり、
R1、R2、R3、R4、R5およびR6は水素原子、炭素数1~20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、
R1からR6までの隣接した置換基は互いに結合して環を形成していてもよく、
Qはハロゲン原子、炭素数1~20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から同一のまたは異なる組合せで選ばれ、
nは1~4の整数であり、
jは1~4の整数である。)
【0058】
<架橋メタロセン化合物(a)>
架橋メタロセン化合物(a)は、上記一般式[I]で表される。式[I]中のY、M、R1~R6、Qおよびjを以下に説明する。
【0059】
(Y、M、R1~R6、Q、nおよびj)
Yは、炭素原子、ケイ素原子、ゲルマニウム原子およびスズ原子から選ばれ、好ましくは炭素原子である。
【0060】
Mは、チタン原子、ジルコニウム原子またはハフニウム原子であり、好ましくはハフニウム原子である。
【0061】
R1、R2、R3、R4、R5およびR6は、水素原子、炭素数1~20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよい。また、R1からR6までの隣接した置換基は互いに結合して環を形成していてもよく、互いに結合していなくてもよい。
【0062】
ここで、炭素数1~20の炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20の環状飽和炭化水素基、炭素数2~20の鎖状不飽和炭化水素基、炭素数3~20の環状不飽和炭化水素基が例示される。また、R1からR6までの隣接した置換基が互いに結合して環を形成する場合であれば、炭素数1~20のアルキレン基、炭素数6~20のアリーレン基等が例示される。
【0063】
炭素数1~20のアルキル基としては、直鎖状飽和炭化水素基であるメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基など、分岐状飽和炭化水素基であるイソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、t-アミル基、ネオペンチル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-ジプロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基、シクロプロピルメチル基などが例示される。アルキル基の炭素数は好ましくは1~6である。
【0064】
炭素数3~20の環状飽和炭化水素基としては、環状飽和炭化水素基であるシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルネニル基、1-アダマンチル基、2-アダマンチル基など、環状飽和炭化水素基の水素原子が炭素数1~17の炭化水素基で置き換えられた基である3-メチルシクロペンチル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、4-シクロヘキシルシクロヘキシル基、4-フェニルシクロヘキシル基などが例示される。環状飽和炭化水素基の炭素数は好ましくは5~11である。
【0065】
炭素数2~20の鎖状不飽和炭化水素基としては、アルケニル基であるエテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-メチルエテニル基(イソプロペニル基)など、アルキニル基であるエチニル基、1-プロピニル基、2-プロピニル基(プロパルギル基)などが例示される。鎖状不飽和炭化水素基の炭素数は好ましくは2~4である。
【0066】
炭素数3~20の環状不飽和炭化水素基としては、環状不飽和炭化水素基であるシクロペンタジエニル基、ノルボルニル基、フェニル基、ナフチル基、インデニル基、アズレニル基、フェナントリル基、アントラセニル基など、環状不飽和炭化水素基の水素原子が炭素数1~15の炭化水素基で置き換えられた基である3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、4-エチルフェニル基、4-t-ブチルフェニル基、4-シクロヘキシルフェニル基、ビフェニリル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,4,6-トリメチルフェニル基(メシチル基)など、直鎖状炭化水素基または分岐状飽和炭化水素基の水素原子が炭素数3~19の環状飽和炭化水素基または環状不飽和炭化水素基で置き換えられた基であるベンジル基、クミル基などが例示される。環状不飽和炭化水素基の炭素数は好ましくは6~10である。
【0067】
炭素数1~20のアルキレン基としては、メチレン基、エチレン基、ジメチルメチレン基(イソプロピリデン基)、エチルメチレン基、1-メチルエチレン基、2-メチルエチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、n-プロピレン基などが例示される。アルキレン基の炭素数は好ましくは1~6である。
【0068】
炭素数6~20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、4,4′-ビフェニリレン基などが例示される。アリーレン基の炭素
数は好ましくは6~12である。
【0069】
アリール基としては、前述した炭素数3~20の環状不飽和炭化水素基の例と一部重複するが、芳香族化合物から誘導された置換基であるフェニル基、1-ナフチル基、2-ナフチル基、アントラセニル基、フェナントレニル基、テトラセニル基、クリセニル基、ピレニル基、インデニル基、アズレニル基、ピロリル基、ピリジル基、フラニル基、チオフェニル基などが例示される。アリール基としては、フェニル基または2-ナフチル基が好ましい。
【0070】
前記芳香族化合物としては、芳香族炭化水素および複素環式芳香族化合物であるベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、ピレン、インデン、アズレン、ピロール、ピリジン、フラン、チオフェンなどが例示される。
【0071】
置換アリール基としては、前述した炭素数3~20の環状不飽和炭化水素基の例と一部重複するが、前記アリール基が有する1以上の水素原子が炭素数1~20の炭化水素基、アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基により置換されてなる基が挙げられ、具体的には3-メチルフェニル基(m-トリル基)、4-メチルフェニル基(p-トリル基)、3-エチルフェニル基、4-エチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、ビフェニリル基、4-(トリメチルシリル)フェニル基、4-アミノフェニル基、4-(ジメチルアミノ)フェニル基、4-(ジエチルアミノ)フェニル基、4-モルフォリニルフェニル基、4-メトキシフェニル基、4-エトキシフェニル基、4-フェノキシフェニル基、3,4-ジメトキシフェニル基、3,5-ジメトキシフェニル基、3-メチル-4-メトキシフェニル基、3,5-ジメチル-4-メトキシフェニル基、3-(トリフルオロメチル)フェニル基、4-(トリフルオロメチル)フェニル基、3-クロロフェニル基、4-クロロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、5-メチルナフチル基、2-(6-メチル)ピリジル基などが例示される。また、置換アリール基としては、後述する「電子供与性基含有置換アリール基」も挙げられる。
【0072】
ケイ素含有基としては、炭素数1~20の炭化水素基において、炭素原子がケイ素原子で置き換えられた基であるトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のアルキルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、t-ブチルジフェニルシリル基等のアリールシリル基、ペンタメチルジシラニル基、トリメチルシリルメチル基などが例示される。アルキルシリル基の炭素数は1~10が好ましく、アリールシリル基の炭素数は6~18が好ましい。
【0073】
窒素含有基としては、アミノ基、ニトロ基、N-モルフォリニル基や、上述した炭素数1~20の炭化水素基またはケイ素含有基において、=CH-構造単位が窒素原子で置き換えられた基、-CH2-構造単位が炭素数1~20の炭化水素基が結合した窒素原子で置き換えられた基、または-CH3構造単位が炭素数1~20の炭化水素基が結合した窒素原子またはニトリル基で置き換えられた基であるジメチルアミノ基、ジエチルアミノ基、ジメチルアミノメチル基、シアノ基、ピロリジニル基、ピペリジニル基、ピリジニル基などが例示される。窒素含有基としては、ジメチルアミノ基、N-モルフォリニル基が好ましい。
【0074】
酸素含有基としては、水酸基や、上述した炭素数1~20の炭化水素基、ケイ素含有基または窒素含有基において、-CH2-構造単位が酸素原子またはカルボニル基で置き換えられた基、または-CH3構造単位が炭素数1~20の炭化水素基が結合した酸素原子で置き換えられた基であるメトキシ基、エトキシ基、t-ブトキシ基、フェノキシ基、トリメチルシロキシ基、メトキシエトキシ基、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、t-ブトキシメチル基、1-ヒドロキシエチル基、1-メトキシエチル基、1-エトキシエチル基、2-ヒドロキシエチル基、2-メトキシエチル基、2-エトキシエチル基、n-2-オキサブチレン基、n-2-オキサペンチレン基、n-3-オキサペンチレン基、アルデヒド基、アセチル基、プロピオニル基、ベンゾイル基、トリメチルシリルカルボニル基、カルバモイル基、メチルアミノカルボニル基、カルボキシ基、メトキシカルボニル基、カルボキシメチル基、エトカルボキシメチル基、カルバモイルメチル基、フラニル基、ピラニル基などが例示される。酸素含有基としては、メトキシ基が好ましい。
【0075】
ハロゲン原子としては、第17族元素であるフッ素、塩素、臭素、ヨウ素などが例示される。
ハロゲン含有基としては、上述した炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基または酸素含有基において、水素原子がハロゲン原子によって置換された基であるトリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などが例示される。
【0076】
Qは、ハロゲン原子、炭素数1~20の炭化水素基、アニオン配位子および孤立電子対で配位可能な中性配位子から、同一のまたは異なる組合せで選ばれる。
ハロゲン原子および炭素数1~20の炭化水素基の詳細は、上述のとおりである。Qがハロゲン原子である場合は、塩素原子が好ましい。Qが炭素数1~20の炭化水素基である場合は、該炭化水素基の炭素数は1~7であることが好ましい。
【0077】
アニオン配位子としては、メトキシ基、t-ブトキシ基、フェノキシ基などのアルコキシ基、アセテート、ベンゾエートなどのカルボキシレート基、メシレート、トシレートなどのスルホネート基などを例示することができる。
【0078】
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、テトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタンなどのエーテル化合物などを例示することができる。
【0079】
nは1~4の整数である。
jは1~4の整数であり、好ましくは2である。
なお、式[I]に関する上記の例示は、以下の記載においても同様に適用される。
【0080】
上記一般式[I]で表される架橋メタロセン化合物(a)に含まれる2,3,6,7-テトラメチルフルオレニル基は、2、3、6および7位に四つの置換基を有するために電子的な効果が大きく、これにより高い重合活性で、かつ高分子量のエチレン・α-オレフィン・非共役ポリエン共重合体(A)を生成するものと推測される。一方、概して非共役ポリエンはα-オレフィンに比して嵩高くなるため、これを重合する重合触媒、特に重合活性点となるメタロセン化合物の中心金属近傍は嵩高くない方が非共役ポリエンの共重合性能向上に繋がると推測される。2,3,6,7-テトラメチルフルオレニル基に含まれる四つのメチル基は、他の炭化水素基等に比べて嵩高くないため、このことが高い非共役ポリエン共重合性能に寄与しているものと考えられる。以上より、特に2,3,6,7-テトラメチルフルオレニル基を含む上記一般式[I]で表される架橋メタロセン化合物が、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)の高い分子量と、高い非共役ポリエン共重合性能と、高い重合活性とを同時に高いレベルでバランス良く実現するものと推測される。
【0081】
上記一般式[I]で表される架橋メタロセン化合物(a)において、nは1であることが好ましい。このような架橋メタロセン化合物(a-1)は、下記一般式[V]で表わされる。
【0082】
【0083】
(式[V]において、Y、M、R1、R2、R3、R4、R5、R6、Qおよびjの定義等は上述のとおりである。)
【0084】
該架橋メタロセン化合物(a-1)は、上記一般式[I]におけるnが2~4の整数である化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン・α-オレフィン・非共役ポリエン共重合体(A)の製造コストが低減されるという利点が得られる。さらに、該架橋メタロセン化合物(a-1)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)の高分子量化という利点も得られる。
【0085】
上記一般式[I]で表される架橋メタロセン化合物(a-1)において、R1、R2、R3およびR4は全て水素原子であることが好ましい。このような架橋メタロセン化合物(a-2)は、下記一般式[VI]で表わされる。
【0086】
【0087】
(式[VI]において、Y、M、R5、R6、Qおよびjの定義等は上述のとおりである。)
【0088】
該架橋メタロセン化合物(a-2)は、上記一般式[V]におけるR1、R2、R3およびR4のいずれか一つ以上が水素原子以外の置換基で置換された化合物に比べ、製造工程が簡素化され、製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン/α-オレフィン/非共役ポリエン共重合体の製造コストが低減されるという利点が得られる。さらに、該架橋メタロセン化合物(a-2)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、重合活性の向上および生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)の高分子量化という利点も得られる。また同時に、非共役ポリエンの共重合性能の向上という利点も得られる。
【0089】
上記一般式[VI]で表される架橋メタロセン化合物(a-2)において、Yは炭素原子であることがさらに好ましい。このような架橋メタロセン化合物(a-3)は、下記一般式[VII]で表わされる。
【0090】
【0091】
(式[VII]において、M、R5、R6、Qおよびjの定義等は上述のとおりである。)
該架橋メタロセン化合物(a-3)は、例えば下式[VIII]のような簡便な方法で合成することが可能である。
【0092】
【0093】
(式[VIII]において、M、R5、R6の定義等は上述のとおりである。)
【0094】
上記式[VIII]において、R5およびR6は水素原子、炭素数1~20の炭化水素基、アリール基、置換アリール基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよい置換基であるが、一般式R5-C(=O)-R6で表される、このような条件を満たす種々のケトンが一般の試薬メーカーより市販されているため、該架橋メタロセン化合物(a-3)の原料の入手が容易である。また、仮にこのようなケトンが市販されていない場合でも、例えばOlahらによる方法[Heterocycles, 40, 79 (1995)]などにより、該ケトンは容易に合成することが可能である。このように、該架橋メタロセン化合物(a-3)は、上記一般式[V]におけるYがケイ素原子、ゲルマニウム原子およびスズ原子から選ばれる化合物に比べ製造工程が簡素かつ容易であり、製造コストがさらに低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレ系共重合体の製造コストが低減されるという利点が得られる。さらに、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)のさらなる高分子量化という利点も得られる。
【0095】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6はアリール基および置換アリール基から選ばれる基であることが好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、重合活性のさらなる向上および生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)のさらなる高分子量化という利点が得られる。また同時に、非共役ポリエンの共重合性能の向上という利点も得られる。
【0096】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6はアリール基および置換アリール基から選ばれる同一の基であることがさらに好ましい。R5およびR6をこのように選択することにより、該架橋メタロセン化合物の合成工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン系共重合体の製造コストが低減されるという利点が得られる。
【0097】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は同一の置換アリール基であることがさらに好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)のさらなる高分子量化という利点が得られる。
【0098】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は、アリール基の水素原子の一つ以上をハメット則の置換基定数σが-0.2以下の電子供与性置換基で置換してなる置換アリール基であって、該電子供与性置換基を複数個有する場合にはそれぞれの該電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外の、炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基を有していてもよく、該置換基を複数個有する場合にはそれぞれの置換基は同一でも異なっていてもよい置換アリール基(以下「電子供与性基含有置換アリール基」ともいう。)であることが好ましい。該架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)のさらなる高分子量化という利点が得られる。
【0099】
ハメット則の置換基定数σが-0.2以下の電子供与性基は、以下のように定義および例示される。ハメット則はベンゼン誘導体の反応または平衡に及ぼす置換基の影響を定量的に論ずるために1935年L. P. Hammettにより提唱された経験則であるが、これは今日広く妥当性が認められている。ハメット則で求められた置換基定数にはベンゼン環のパラ位に置換した際のσpおよびメタ位に置換した際のσmがあり、これらの値は多くの一般的な文献に見出すことができる。例えば、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]には非常に広範な置換基について詳細な記載がなされている。ただし、これらの文献に記載されているσpおよびσmは、同じ置換基であっても文献によって値が僅かに異なる場合がある。本発明ではこのような状況によって生じる混乱を回避するために、記載のある限りの置換基においてはHanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された値をハメット則の置換基定数σpおよびσmと定義する。本発明においてハメット則の置換基定数σが-0.2以下の電子供与性基とは、該電子供与性基がフェニル基のパラ位(4位)に置換している場合はσpが-0.2以下の電子供与性基であり、フェニル基のメタ位(3位)に置換している場合はσmが-0.2以下の電子供与性基である。また、該電子供与性基がフェニル基のオルト位(2位)に置換している場合、またはフェニル基以外のアリール基の任意の位置に置換している場合は、σpが-0.2以下の電子供与性基である。
【0100】
ハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基としては、p-アミノ基(4-アミノ基)、p-ジメチルアミノ基(4-ジメチルアミノ基)、p-ジエチルアミノ基(4-ジエチルアミノ基)、m-ジエチルアミノ基(3-ジエチルアミノ基)などの窒素含有基、p-メトキシ基(4-メトキシ基)、p-エトキシ基(4-エトキシ基)などの酸素含有基、p-t-ブチル基(4-t-ブチル基)などの三級炭化水素基、p-トリメチルシロキシ基(4-トリメチルシロキシ基)などのケイ素含有基などを例示することができる。尚、本発明で定義されるハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性置換基は、HanschおよびTaftによる文献[Chem. Rev., 91, 165 (1991)]のTable 1(168-175頁)に記載された置換基に限定されない。該文献に記載のない置換基であっても、ハメット則に基いて測定した場合の置換基定数σpまたはσmがその範囲となるであろう置換基は、本発明で定義するハメット則の置換基定数σpまたはσmが-0.2以下の電子供与性基に含まれる。このような置換基としては、p-N-モルフォリニル基(4-N-モルフォリニル基)、m-N-モルフォリニル基(3-N-モルフォリニル基)などを例示することができる。
【0101】
電子供与性基含有置換アリール基において、該電子供与性置換基が複数個置換している場合それぞれの電子供与性置換基は同一でも異なっていてもよく、該電子供与性置換基以外に炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基が置換していてもよく、該置換基が複数個置換している場合それぞれの置換基は同一でも異なっていてもよいが、一つの置換アリール基に含まれる該電子供与性置換基および該置換基の各々のハメット則の置換基定数σの総和は-0.15以下であることが好ましい。このような置換アリール基としては、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)などが例示される。
【0102】
電子供与性基含有置換アリール基が有してもよい炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基としては、上述したこれらの原子または置換基の具体例を挙げることができる。
【0103】
本出願人は、種々の架橋メタロセン化合物(a)について鋭意検討した結果、上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6を、特にハメット則の置換基定数σが-0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する際、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)の分子量がさらに高くなる。
【0104】
架橋メタロセン化合物(a-3)のような有機金属錯体触媒によるオレフィンの配位重合においては、触媒の中心金属上でオレフィンが繰り返し重合することにより、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)を含むオレフィン重合体の分子鎖が生長し(生長反応)、該オレフィン重合体の分子量が増大することが知られている。一方、連鎖移動と呼ばれる反応において、オレフィン重合体の分子鎖が触媒の中心金属から解離することにより、該分子鎖の生長反応が停止し、従って該オレフィン重合体の分子量の増大も停止することも知られている。以上より、オレフィン重合体の分子量は、それを生成する有機金属錯体触媒に固有の、生長反応の頻度と連鎖移動反応の頻度との比率によって特徴づけられる。即ち、生長反応の頻度と連鎖移動反応の頻度との比が大きいほど生成するオレフィン重合体の分子量は高くなり、逆に小さいほど分子量は低くなるという関係である。ここで、それぞれの反応の頻度はそれぞれの反応の活性化エネルギーから見積もることができ、活性化エネルギーが低い反応はその頻度が高く、逆に活性化エネルギーが高い反応はその頻度が低いと見做すことができると考えられる。一般に、オレフィン重合における生長反応の頻度は連鎖移動反応の頻度に比して十分に高い、即ち生長反応の活性化エネルギーは連鎖移動反応の活性化エネルギーに比して十分に低いことが知られている。従って、連鎖移動反応の活性化エネルギーから生長反応の活性化エネルギーを減じた値(以下、ΔEC)は正となり、この値が大きいほど連鎖移動反応の頻度に比して生長反応の頻度が大きくなり、結果生成するオレフィン重合体の分子量が高くなることが推定される。このようにして行うオレフィン重合体の分子量の推定の妥当性は、例えばLaineらの計算結果によっても裏付けられている[Organometallics, 30, 1350 (2011)]。
【0105】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)においては、R5およびR6を、特にハメット則の置換基定数σが-0.2以下の電子供与性置換基が一つ以上置換した電子供与性基含有置換アリール基とした場合に、上記ΔECが増大し、該架橋メタロセン化合物(a-3)を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する際に、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)の分子量が高くなるものと推測される。
【0106】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6に含まれる電子供与性置換基は、窒素含有基および酸素含有基から選ばれる基であることがさらに好ましい。
【0107】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は、上記電子供与性置換基としての窒素含有基および酸素含有基から選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、原料となる種々のベンゾフェノンが一般の試薬メーカーより市販されているため原料の入手が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン・α-オレフィン・非共役ポリエン共重合体(A)の製造コストが低減されるという利点が得られる。
【0108】
ここで、上記電子供与性置換基としての窒素含有基および酸素含有基から選ばれる基を含む置換フェニル基としては、o-アミノフェニル基(2-アミノフェニル基)、p-アミノフェニル基(4-アミノフェニル基)、o-(ジメチルアミノ)フェニル基(2-(ジメチルアミノ)フェニル基)、p-(ジメチルアミノ)フェニル基(4-(ジメチルアミノ)フェニル基)、o-(ジエチルアミノ)フェニル基(2-(ジエチルアミノ)フェニル基)、p-(ジエチルアミノ)フェニル基(4-(ジエチルアミノ)フェニル基)、m-(ジエチルアミノ)フェニル基(3-(ジエチルアミノ)フェニル基)、o-メトキシフェニル基(2-メトキシフェニル基)、p-メトキシフェニル基(4-メトキシフェニル基)、o-エトキシフェニル基(2-エトキシフェニル基)、p-エトキシフェニル基(4-エトキシフェニル基)、o-N-モルフォリニルフェニル基(2-N-モルフォリニルフェニル基)、p-N-モルフォリニルフェニル基(4-N-モルフォリニルフェニル基)、m-N-モルフォリニルフェニル基(3-N-モルフォリニルフェニル基)、o,p-ジメトキシフェニル基(2,4-ジメトキシフェニル基)、m,p-ジメトキシフェニル基(3,4-ジメトキシフェニル基)、p-(ジメチルアミノ)-m-メトキシフェニル基(4-(ジメチルアミノ)-3-メトキシフェニル基)、p-(ジメチルアミノ)-m-メチルフェニル基(4-(ジメチルアミノ)-3-メチルフェニル基)、p-メトキシ-m-メチルフェニル基(4-メトキシ-3-メチルフェニル基)、p-メトキシ-m,m-ジメチルフェニル基(4-メトキシ-3,5-ジメチルフェニル基)などが例示される。
【0109】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6は、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基および酸素含有基から選ばれる基を含む置換フェニル基であることがさらに好ましい。例えば上記式[VIII]のような方法に従って合成する場合、該基がオルト位に置換した場合に比べて合成が容易となり、製造工程が簡素化され、さらに製造コストが低減され、ひいてはこの架橋メタロセン化合物を用いることでエチレン系共重合体の製造コストが低減されるという利点が得られる。
【0110】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての窒素含有基を含む置換フェニル基である場合、該窒素含有基は下記一般式[II]で表される基であることがさらに好ましい。
【0111】
【0112】
(式[II]において、R7およびR8は水素原子、炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、互いに結合して環を形成していてもよく、Nの右に描かれた線はフェニル基との結合を表す。)
【0113】
R7およびR8としての炭素数1~20の炭化水素基、ケイ素含有基、酸素含有基およびハロゲン含有基としては、上述したこれらの置換基の具体例を挙げることができる。
このような架橋メタロセン化合物(a-4)は、下記一般式[IX]で表わされる。
【0114】
【0115】
(式[IX]において、M、Qおよびjの定義等は上述のとおりである。R7、R8およびR10は水素原子、炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる置換基であり、それぞれ同一でも異なっていてもよく、R7、R8およびR10のうちの隣接した置換基は互いに結合して環を形成していてもよく、NR7R8はハメット則の置換基定数σが-0.2以下の窒素含有基であり、該窒素含有基が複数個存在する場合にはそれぞれの窒素含有基は互いに同一でも異なっていてもよく、nは1~3の整数であり、mは0~4の整数である。)
【0116】
上記一般式[VII]で表される架橋メタロセン化合物(a-3)において、R5およびR6が、上記Yとしての炭素原子との結合に対するメタ位および/またはパラ位に上記電子供与性置換基としての酸素含有基を含む置換フェニル基である場合、該酸素含有基は下記一般式[III]で表される基であることがさらに好ましい。
【0117】
【0118】
(式[III]において、R9は水素原子、炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基から選ばれる原子または置換基であり、Oの右に描かれた線はフェニル基との結合を表す。)
【0119】
R9としての炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基およびハロゲン含有基としては、上述したこれらの置換基の具体例を挙げることができる。
このような架橋メタロセン化合物(a-5)は、下記一般式[X]で表わされる。
【0120】
【0121】
(式[X]において、M、Qおよびjの定義等は上述のとおりである。R9およびR10は水素原子、炭素数1~20の炭化水素基、ケイ素含有基、窒素含有基、酸素含有基、ハロゲン原子およびハロゲン含有基から選ばれる原子または置換基であり、それぞれ同一でも異なっていてもよく、R10の隣接した置換基は互いに結合して環を形成していてもよく、OR9はハメット則の置換基定数σ-0.2以下の酸素含有基であり、該酸素含有基が複数個存在する場合にはそれぞれの酸素含有基は互いに同一でも異なっていてもよく、nは1~3の整数であり、mは0~4の整数である。)
【0122】
上記一般式[I]で表される架橋メタロセン化合物(a)、上記一般式[V]で表される架橋メタロセン化合物(a-1)、上記一般式[VI]で表される架橋メタロセン化合物(a-2)、上記一般式[VII]で表される架橋メタロセン化合物(a-3)、上記一般式[IX]で表される架橋メタロセン化合物(a-4)または上記一般式[X]で表される架橋メタロセン化合物(a-5)において、Mはハフニウム原子であることがさらに好ましい。Mがハフニウム原子である上記架橋メタロセン化合物を含むオレフィン重合触媒の存在下でエチレンと炭素数が4以上のα-オレフィンと非共役ポリエンとを共重合する場合、生成するエチレン・α-オレフィン・非共役ポリエン共重合体(A)のさらなる高分子量化、および非共役ポリエンの共重合性能の向上という利点が得られる。
【0123】
(架橋メタロセン化合物(a)の例示等)
このような架橋メタロセン化合物(a)としては、
[ジメチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-n-ブチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロペンチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[シクロペンチリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[シクロヘキシリデン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-1-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ-2-ナフチルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-n-ヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-シクロヘキシルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-t-ブチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3,4-ジメトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-メトキシ-3,4-ジメチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-エトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フェノキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリメチルシロキシ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス{3-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-N-モルフォリニルフェニル)(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス{4-(トリメチルシリル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ビス(3-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-クロロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(3-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス(4-フルオロフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{3-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ビス{4-(トリフルオロメチル)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メチルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-メトキシフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル{4-(ジメチルアミノ)フェニル}メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[メチル(4-N-モルフォリニルフェニル)メチレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジエチルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジシクロヘキシルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルシリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジ(4-メチルフェニル)シリレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[ジメチルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、[ジフェニルゲルミレン(η5-シクロペンタジエニル)(η5-2,3,6,7-テトラメチルフルオレニル)]ハフニウムジクロリド、
[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)エチレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-3-(η5-2,3,6,7-テトラメチルフルオレニル)プロピレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)-1,1,2,2-テトラメチルシリレン]ハフニウムジクロリド、[1-(η5-シクロペンタジエニル)-2-(η5-2,3,6,7-テトラメチルフルオレニル)フェニレン]ハフニウムジクロリド、および、これらの化合物のハフニウム原子をジルコニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物などが例示されるが、架橋メタロセン化合物(a)はこれらの例示に限定されない。
【0124】
〈架橋メタロセン化合物の製造方法〉
上記架橋メタロセン化合物は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。製造方法として例えば、J.Organomet.Chem.,63,509(1996)、本出願人による出願に係る公報であるWO2006/123759号公報、WO01/27124号公報、特開2004-168744号公報、特開2004-175759号公報、特開2000-212194号公報等記載の方法により製造することができる。
【0125】
〈架橋メタロセン化合物をエチレン・α-オレフィン・非共役ポリエン共重合体(A)用触媒に供する際の好ましい形態〉
次に上記架橋メタロセン化合物を、エチレン・α-オレフィン・非共役ポリエン共重合体(A)用触媒(オレフィン重合触媒)として用いる場合の好ましい形態について説明する。
【0126】
架橋メタロセン化合物をオレフィン重合触媒成分として用いる場合、触媒は、
(a)前記一般式[I]で表される架橋メタロセン化合物と、
(b)(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)架橋メタロセン化合物(a)と反応してイオン対を形成する化合物、から選ばれる少なくとも1種の化合物と、
さらに必要に応じて、
(c)粒子状担体とから構成される。
【0127】
以下、各成分について具体的に説明する。
〈(b-1)有機金属化合物〉
本発明で用いられる(b-1)有機金属化合物として、具体的には下記一般式[VII]~[IX]のような周期律表第1、2族および第12、13族の有機金属化合物が用いられる。
【0128】
(b-1a)一般式 Ra
mAl(ORb)n Hp Xq ・・・[VII]
【0129】
(式[VII]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数が1~15、好ましくは1~4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミニウム化合物。
【0130】
このような化合物として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどのトリアルキルアルミニウム、トリシクロアルキルアルミニウム、イソブチルアルミニウムジクロリド、ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、メチルアルミニウムジクロリド、ジメチルアルミニウムクロリド、ジイソブチルアルミニウムハイドライドを例示することができる。
【0131】
(b-1b)一般式 M2AlRa
4 ・・・[VIII]
【0132】
(式[VIII]中、M2はLi、NaまたはKを示し、Raは炭素数が1~15、好ましくは1~4の炭化水素基である。)で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。
【0133】
このような化合物として、LiAl(C2H5)4、LiAl(C7H15)4などを例示することができる。
【0134】
(b-1c)一般式 RaRbM3 ・・・[IX]
【0135】
(式[IX]中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素数が1~15、好ましくは1~4の炭化水素基を示し、M3はMg、ZnまたはCdである。)で表される周期律表第2族または第12族金属を有するジアルキル化合物。
【0136】
上記の有機金属化合物(b-1)の中では、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn-オクチルアルミニウムなどの有機アルミニウム化合物が好ましい。また、このような有機金属化合物(b-1)は、1種単独で用いてもよいし2種以上組み合わせて用いてもよい。
【0137】
〈(b-2)有機アルミニウムオキシ化合物〉
本発明で用いられる(b-2)有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。
【0138】
従来公知のアルミノキサンは、例えば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
【0139】
なお該アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
【0140】
アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
【0141】
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、中でも、トリメチルアルミニウム、トリイソブチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
【0142】
また本発明で用いられる(b-2)有機アルミニウムオキシ化合物の一態様であるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算でベンゼン100重量%に対して通常10重量%以下、好ましくは5重量%以下、特に好ましくは2重量%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であるものが好ましい。
【0143】
本発明で用いられる(b-2)有機アルミニウムオキシ化合物としては、下記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
【0144】
【0145】
(式[X]中、R1は炭素数が1~10の炭化水素基を示し、R2~R5は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素数が1~10の炭化水素基を示す。)
【0146】
前記一般式[X]で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式[XI]で表されるアルキルボロン酸と、
R1-B(OH)2 …[XI]
(式[XI]中、R1は前記一般式[X]におけるR1と同じ基を示す。)
有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、-80℃~室温の温度で1分~24時間反応させることにより製造できる。
【0147】
前記一般式[XI]で表されるアルキルボロン酸の具体的なものとしては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。
【0148】
これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
【0149】
このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記(b-1a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
【0150】
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。上記のような(b-2)有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられる。
【0151】
〈(b-3)遷移金属化合物(a)と反応してイオン対を形成する化合物〉
上記架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b-3)(以下、「イオン化イオン性化合物」という。)としては、特表平1-501950号公報、特表平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP-5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。このようなイオン化イオン性化合物(b-3)は、1種単独でまたは2種以上組み合せて用いられる。
【0152】
具体的には、ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である)で示される化合物が挙げられ、たとえばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどが挙げられる。
【0153】
イオン性化合物としては、たとえば下記一般式[XII]で表される化合物が挙げられる。
【0154】
【0155】
(式[XII]中、R1+としては、H+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。R2~R5は、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基または置換アリール基である。)
【0156】
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
【0157】
前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;
N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N,2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;
ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
【0158】
前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
【0159】
R1+としては、カルボニウムカチオン、アンモニウムカチオンなどが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
【0160】
またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩などを挙げることもできる。
【0161】
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(N、N-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3、5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。
【0162】
N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N,2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
【0163】
ジアルキルアンモニウム塩として具体的には、たとえばジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
【0164】
さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式[XIII]または[XIV]で表されるホウ素化合物などを挙げることもできる。
【0165】
【0166】
【0167】
ボラン化合物として具体的には、たとえば
デカボラン;
ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;
トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
【0168】
カルボラン化合物として具体的には、たとえば4-カルバノナボラン、1,3-ジカルバノナボラン、6,9-ジカルバデカボラン、ドデカハイドライド-1-フェニル-1,3-ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン、2,7-ジカルバウンデカボラン、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1-カルバデカボレート、トリ(n-ブチル)アンモニウム-1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム-6-カルバデカボレート、トリ(n-ブチル)アンモニウム-7-カルバウンデカボレート、トリ(n-ブチル)アンモニウム-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウム-2,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル―7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩;
トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
【0169】
ヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素および錫から選ばれる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子からなっている。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジン酸、ゲルマノタングストバナジン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、およびこれらの酸の塩、例えば周期表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等の有機塩が使用できるが、この限りではない。
【0170】
(b-3)イオン化イオン性化合物の中では、上述のイオン性化合物が好ましく、その中でもトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートがより好ましい。
(b-3)イオン化イオン性化合物は、1種単独でまたは2種以上組み合せて用いられる。
【0171】
上記一般式[I]で表される遷移金属化合物(a)を触媒とする場合、トリイソブチルアルミニウムなどの有機金属化合物(b-1)、メチルアルミノキサンなどの有機アルミニウムオキシ化合物(b-2)またはトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどのイオン化イオン性化合物(b-3)を併用すると、エチレン・α―オレフィン・非共役ポリエン共重合体の製造に際して非常に高い重合活性を示す。
【0172】
また、上記オレフィン重合用触媒は、上記遷移金属化合物(a)と、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(b)とともに、必要に応じて担体(c)を用いることもできる。
【0173】
〈(c)担体〉
本発明で、必要に応じて用いられる(c)担体は、無機化合物または有機化合物であって、顆粒状ないしは微粒子状の固体である。
【0174】
このうち無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土、粘土鉱物またはイオン交換性層状化合物が好ましい。
多孔質酸化物として、具体的にはSiO2、Al2O3、MgO、ZrO、TiO2、B2O3、CaO、ZnO、BaO、ThO2など、またはこれらを含む複合物または混合物を使用、例えば天然または合成ゼオライト、SiO2-MgO、SiO2-Al2O3、SiO2-TiO2、SiO2-V2O5、SiO2-Cr2O3、SiO2-TiO2-MgOなどを使用することができる。これらのうち、SiO2および/またはAl2O3を主成分とするものが好ましい。このような多孔質酸化物は、種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、粒径が10~300μm、好ましくは20~200μmであって、比表面積が50~1000m2/g、好ましくは100~700m2/gの範囲にあり、細孔容積が0.3~3.0cm3/gの範囲にあることが望ましい。このような担体は、必要に応じて100~1000℃、好ましくは150~700℃で焼成して使用される。
【0175】
無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2等が用いられる。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコールなどの溶媒に無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させたものを用いることもできる。
粘土は、通常粘土鉱物を主成分として構成される。また、イオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有するイオンが交換可能なものである。大部分の粘土鉱物はイオン交換性層状化合物である。また、これらの粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。
【0176】
また、粘土、粘土鉱物またはイオン交換性層状化合物として、粘土、粘土鉱物、また、六方細密パッキング型、アンチモン型、CdCl2型、CdI2型などの層状の結晶構造を有するイオン結晶性化合物などを例示することができる。このような粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、ウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどが挙げられ、イオン交換性層状化合物としては、α-Zr(HAsO4)2・H2O、α-Zr(HPO4)2、α-Zr(KPO4)2・3H2O、α-Ti(HPO4)2、α-Ti(HAsO4)2・H2O、α-Sn(HPO4)2・H2O、γ-Zr(HPO4)2、γ-Ti(HPO4)2、γ-Ti(NH4PO4)2・H2Oなどの多価金属の結晶性酸性塩などが挙げられる。
【0177】
このような粘土、粘土鉱物またはイオン交換性層状化合物は、水銀圧入法で測定した半径20Å以上の細孔容積が0.1cc/g以上のものが好ましく、0.3~5cc/gのものが特に好ましい。ここで、細孔容積は、水銀ポロシメーターを用いた水銀圧入法により、細孔半径20~30000Åの範囲について測定される。
半径20Å以上の細孔容積が0.1cc/gより小さいものを担体として用いた場合には、高い重合活性が得られにくい傾向がある。
【0178】
粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理として具体的には、酸処理、アルカリ処理、塩類処理、有機物処理などが挙げられる。酸処理は、表面の不純物を取り除くほか、結晶構造中のAl、Fe、Mgなどの陽イオンを溶出させることによって表面積を増大させる。アルカリ処理では粘土の結晶構造が破壊され、粘土の構造の変化をもたらす。また、塩類処理、有機物処理では、イオン複合体、分子複合体、有機誘導体などを形成し、表面積や層間距離を変えることができる。
【0179】
イオン交換性層状化合物は、イオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した状態の層状化合物であってもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常、ピラーと呼ばれる。また、このように層状化合物の層間に別の物質を導入することをインターカレーションという。インターカレーションするゲスト化合物としては、TiCl4、ZrCl4などの陽イオン性無機化合物、Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3などの金属アルコキシド(Rは炭化水素基など)、[Al13O4(OH)24]7+、[Zr4(OH)14]2+、[Fe3O(OCOCH3)6]+などの金属水酸化物イオンなどが挙げられる。これらの化合物は単独でまたは2種以上組み合わせて用いられる。また、これらの化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4などの金属アルコキシド(Rは炭化水素基など)などを加水分解して得た重合物、SiO2などのコロイド状無機化合物などを共存させることもできる。また、ピラーとしては、上記金属水酸化物イオンを層間にインターカレーションした後に加熱脱水することにより生成する酸化物などが挙げられる。
【0180】
粘土、粘土鉱物、イオン交換性層状化合物は、そのまま用いてもよく、またボールミル、ふるい分けなどの処理を行った後に用いてもよい。また、新たに水を添加吸着させ、あるいは加熱脱水処理した後に用いてもよい。さらに、単独で用いても、2種以上を組み合わせて用いてもよい。
【0181】
これらのうち、好ましいものは粘土または粘土鉱物であり、特に好ましいものはモンモリロナイト、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母である。
有機化合物としては、粒径が10~300μmの範囲にある顆粒状ないしは微粒子状固体を挙げることができる。具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンなどの炭素数が2~14のα-オレフィンを主成分として生成される。(共)重合体またはビニルシクロヘキサン、スチレンを主成分として生成される(共)重合体、およびそれらの変成体を例示することができる。
【0182】
本発明に使用されるオレフィン重合用触媒は、架橋メタロセン化合物(a)と、(b-1)有機金属化合物、(b-2)有機アルミニウムオキシ化合物、および(b-3)イオン化イオン性化合物から選ばれる少なくとも1種の化合物(b)と、必要に応じて用いられる担体(c)を含むこともできる。
【0183】
〈エチレン・α―オレフィン・非共役ポリエン共重合体用触媒の存在下でモノマー類を重合する方法〉
エチレン、炭素数4~20のα-オレフィン、及び非共役ポリエンを共重合させる際、重合触媒を構成する各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
(1)前記化合物(a)を単独で重合器に添加する方法。
(2)前記化合物(a)および前記化合物(b)を任意の順序で重合器に添加する方法。
(3)前記化合物(a)を前記担体(c)に担持した触媒成分、前記化合物(b)を任意の順序で重合器に添加する方法。
(4)前記化合物(b)を前記担体(c)に担持した触媒成分、前記化合物(a)を任意の順序で重合器に添加する方法。
(5)前記化合物(a)と前記化合物(b)とを前記担体(c)に担持した触媒成分を重合器に添加する方法。
【0184】
上記(2)~(5)の各方法においては、化合物(a)、化合物(b)、担体(c)の少なくとも2つは予め接触されていてもよい。
【0185】
化合物(b)が担持されている上記(4)、(5)の各方法においては、必要に応じて担持されていない化合物(b)を、任意の順序で添加してもよい。この場合化合物(b)は、担体(c)に担持されている化合物(b)と同一でも異なっていてもよい。
【0186】
また、上記の担体(c)に化合物(a)が担持された固体触媒成分、担体(c)に化合物(a)および化合物(b)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに、触媒成分が担持されていてもよい。
【0187】
エチレン・α-オレフィン・非共役ポリエン共重合体(A)の製造方法では、上記のようなエチレン・α-オレフィン・非共役ポリエン共重合体用触媒の存在下に、エチレン、炭素数4~20のα-オレフィン、および非共役ポリエンを共重合することによりエチレン・α-オレフィン・非共役ポリエン共重合体(A)を製造し得る。
【0188】
本発明では、溶液(溶解)重合、懸濁重合などの液相重合法または気相重合法のいずれにおいても実施可能である。
【0189】
液相重合法において用いられる不活性炭化水素媒体として具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上組み合わせて用いることができる。また、オレフィン自身を溶媒として用いることもできる。
【0190】
上記のような共重合体用触媒を用いて、エチレンなどの重合を行うに際して、化合物(a)は、反応容積1リットル当り、通常10-12~10-2モル、好ましくは10-10~10-8モルになるような量で用いられる。
【0191】
化合物(b-1)は、化合物(b-1)と、化合物(a)中の全遷移金属原子(M)とのモル比〔(b-1)/M〕が通常0.01~50000、好ましくは0.05~10000となるような量で用いられる。化合物(b-2)は、化合物(b-2)中のアルミニウム原子と、化合物(a)中の全遷移金属(M)とのモル比〔(b-2)/M〕が、通常10~50000、好ましくは20~10000となるような量で用いられる。化合物(b-3)は、化合物(b-3)と、化合物(a)中の遷移金属原子(M)とのモル比〔(b-3)/M〕が、通常1~20、好ましくは1~15となるような量で用いられる。
【0192】
また、このような共重合体用触媒を用いたエチレンなど重合温度は、通常-50~+200℃、好ましくは0~+200℃の範囲、より好ましくは、+80~+200℃の範囲であり、用いる共重合体用触媒系の到達分子量、重合活性によるが、より高温(+80℃以上)であることが生産性の観点から望ましい。
【0193】
重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。
【0194】
得られるエチレン系重合体の分子量は、重合系内に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、使用する化合物(b)の量により調節することもできる。具体的には、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等が挙げられる。水素を添加する場合、その量はオレフィン1kgあたり0.001~100NL程度が適当である。
【0195】
<燃料電池ガスケット用エチレン共重合体組成物>
本発明の燃料電池ガスケット用エチレン共重合体組成物は、上記エチレン・α-オレフィン・非共役ポリエン共重合体(S)100~20質量部、好ましくは95~50質量部と、上記エチレン・α-オレフィン・非共役ポリエン共重合体(A)0~80質量部、好ましくは5~50質量部〔但し、共重合体(S)と共重合体(A)との合計を100質量部とする。〕を含む。
【0196】
本発明の燃料電池ガスケット用エチレン共重合体組成物が、上記共重合体(S)単独である場合は、流動性が良好で、且つ、加硫速度(架橋速度)が速いので加硫時間(架橋時間)の短縮化が図れ、しかも、当該組成物を架橋して得られる燃料電池ガスケットは、圧縮永久歪み、耐熱老化性などの耐久性が良好である。
【0197】
一方、本発明の燃料電池ガスケット用エチレン共重合体組成物が、上記共重合体(A)を含む場合は、流動性および加硫速度(架橋速度)は幾分低下するものの、当該組成物を架橋して得られる燃料電池ガスケットは、同等の耐久性を維持しつつ、より機械的強度および低温特性が良好である。
【0198】
本発明の燃料電池ガスケット用エチレン共重合体組成物は、上記共重合体(S)および上記共重合体(A)に加え、他のポリマーを含有してもよい。架橋が必要な他のポリマーとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等の架橋性ゴムが挙げられる。架橋が不要な他のポリマーとしては、例えば、スチレンとブタジエンとのブロック共重合体(SBS)、ポリスチレン-ポリ(エチレン-ブチレン)-ポリスチレン(SEBS)、ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレン(SEPS)等のスチレン系熱可塑性エラストマー(TPS)、オレフィン系熱可塑性エラストマー(TPO)、塩ビ系エラストマー(TPVC)、エステル系熱可塑性エラストマー(TPC)、アミド系熱可塑性エラストマー(TPA)、ウレタン系熱可塑性エラストマー(TPU)、その他の熱可塑性エラストマー(TPZ)等のエラストマーが挙げられる。他のポリマーは、エチレン・α-オレフィン・非共役ポリエン共重合体(S)および上記エチレン・α-オレフィン・非共役ポリエン共重合体(A)の合計量:100質量部に対して、通常100質量部以下、好ましくは80質量部以下の量で配合することができる。
【0199】
本発明の燃料電池ガスケット用エチレン共重合体組成物は、目的に応じて他の添加剤、例えば、架橋助剤、加硫促進剤、加硫助剤、軟化剤、補強剤、老化防止剤、無機充填剤、加工助剤、活性剤、吸湿剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤、発泡剤および発泡助剤から選ばれる少なくとも1種を含有してもよい。また。それぞれの添加剤は、1種単独で用いてもよく、2種以上を併用してもよい。
【0200】
本発明の燃料電池ガスケット用エチレン共重合体組成物は、上記共重合体(S)および上記共重合体(A)と、必要に応じて配合されるその他の成分とを、例えば、ミキサー、ニーダー、ロールなどの混練機を用いて所望の温度で混練することにより調製することができる。
【0201】
具体的には、ミキサー、ニーダー等の従来公知の混練機を用いて、上記共重合体(S)および上記共重合体(A)および必要に応じてその他の成分を所定の温度および時間、例えば80~200℃で3~30分混練した後、得られた混練物に必要に応じて架橋剤等の必要に応じて用いられるその他の成分を加えて、ロールを用いて所定の温度および時間、例えばロール温度30~80℃で1~30分間混練することにより、本発明の燃料電池ガスケット用エチレン共重合体組成物を調製することができる。
【0202】
〈架橋剤、架橋助剤、加硫促進剤および加硫助剤〉
架橋剤としては、有機過酸化物、フェノール樹脂、硫黄系化合物、ヒドロシリコーン系化合物、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物等の、ゴムを架橋する際に一般に使用される架橋剤が挙げられる。これらのうちでは、有機過酸化物、硫黄系化合物(以下「加硫剤」ともいう)が好適である。
【0203】
有機過酸化物としては、例えば、ジクミルペルオキシド(DCP)、ジ-tert-ブチルペルオキシド、2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、ert-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert-ブチルクミルペルオキシドが挙げられる。
【0204】
架橋剤として、有機過酸化物を用いる場合、燃料電池ガスケット用エチレン共重合体組成物中のその配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、一般に0.1~20質量部、好ましくは0.2~15質量部である、さらに好ましくは0.5~10質量部である。有機過酸化物の配合量が上記範囲内であると、得られる燃料電池ガスケットの表面へのブルームなく、燃料電池ガスケット用エチレン共重合体組成物が優れた架橋特性を示すので好適である。
【0205】
架橋剤として、有機過酸化物を用いる場合、架橋助剤を併用することが好ましい。架橋助剤としては、例えば、イオウ;p-キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種(JIS規格(K-1410))、ハクスイテック(株)製)、酸化マグネシウム、活性亜鉛華(例えば、「META-Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物が挙げられる。
【0206】
架橋助剤を用いる場合、燃料電池ガスケット用エチレン共重合体組成物中の架橋助剤の配合量は、有機過酸化物1モルに対して、通常0.5~10モル、好ましくは0.5~7モル、より好ましくは1~6モルである。
【0207】
硫黄系化合物(加硫剤)としては、例えば、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレンが挙げられる。
【0208】
架橋剤として硫黄系化合物を用いる場合、燃料電池ガスケット用エチレン共重合体組成物中のその配合量は、上記共重合体(S)および上記重合体(A)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常は0.3~10質量部、好ましくは0.5~7.0質量部、さらに好ましくは0.7~5.0質量部である。硫黄系化合物の配合量が上記範囲内であると、得られる燃料電池ガスケットの表面へのブルームがなく、燃料電池ガスケット用エチレン共重合体組成物が優れた架橋特性を示す。
【0209】
架橋剤として硫黄系化合物を用いる場合、加硫促進剤を併用することが好ましい。
加硫促進剤としては、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、2-メルカプトベンゾチアゾール(例えば、サンセラーM(商品名;三新化学工業社製))、2-(4-モルホリノジチオ)ペンゾチアゾール(例えば、ノクセラーMDB-P(商品名;大内新興化学工業社製))、2-(2,4-ジニトロフェニル)メルカプトベンゾチアゾール、2-(2,6-ジエチル-4-モルフォリノチオ)ベンゾチアゾールおよびジベンゾチアジルジスルフィド(例えば、サンセラーDM(商品名;三新化学工業社製))などのチアゾール系加硫促進剤;ジフェニルグアニジン、トリフェニルグアニジンおよびジオルソトリルグアニジンなどのグアニジン系加硫促進剤;アセトアルデヒド・アニリン縮合物およびブチルアルデヒド・アニリン縮合物などのアルデヒドアミン系加硫促進剤;2-メルカプトイミダゾリンなどのイミダゾリン系加硫促進剤;テトラメチルチウラムモノスルフィド(例えば、サンセラーTS(商品名;三新化学工業社製))、テトラメチルチウラムジスルフィド(例えば、サンセラーTT(商品名;三新化学工業社製))、テトラエチルチウラムジスルフィド(例えば、サンセラーTET(商品名;三新化学工業社製))、テトラブチルチウラムジスルフィド(例えば、サンセラーTBT(商品名;三新化学工業社製))およびジペンタメチレンチウラムテトラスルフィド(例えば、サンセラーTRA(商品名;三新化学工業社製))などのチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛(例えば、サンセラーPZ、サンセラーBZおよびサンセラーEZ(商品名;三新化学工業社製))およびジエチルジチオカルバミン酸テルルなどのジチオ酸塩系加硫促進剤;エチレンチオ尿素(例えば、サンセラーBUR(商品名;三新化学工業社製)、サンセラー22-C(商品名;三新化学工業社製))、N,N’-ジエチルチオ尿素およびN,N’-ジブチルチオ尿素などのチオウレア系加硫促進剤;ジブチルキサトゲン酸亜鉛などのザンテート系加硫促進剤が挙げられる。
【0210】
加硫促進剤を用いる場合、燃料電池ガスケット用エチレン共重合体組成物中のこれらの加硫促進剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、一般に0.1~20質量部、好ましくは0.2~15質量部、さらに好ましくは0.5~10質量部である。加硫促進剤の配合量が上記範囲内であると、得られる燃料電池ガスケットの表面へのブルームなく、燃料電池ガスケット用エチレン共重合体組成物が優れた架橋特性を示す。
【0211】
架橋剤として硫黄系化合物を用いる場合、加硫助剤を併用することができる。
加硫助剤としては、例えば、酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、活性亜鉛華(例えば、「META-Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)が挙げられる。
【0212】
加硫助剤を用いる場合、燃料電池ガスケット用エチレン共重合体組成物中の加硫助剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される架橋が必要な他のポリマー(架橋性ゴム等)の合計100質量部に対して、通常1~20質量部である。
【0213】
〈軟化剤〉
軟化剤としては、例えば、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ等のロウ類;ナフテン酸、パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、炭化水素系合成潤滑油、トール油、サブ(ファクチス)が挙げられ、これらのうちでは、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
【0214】
燃料電池ガスケット用エチレン共重合体組成物が軟化剤を含有する場合には、軟化剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)成分の合計100質量部に対して、一般に0~100質量部、好ましくは0~80質量部である。
【0215】
〈補強剤〉
補強剤としては、例えば、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微分ケイ酸が挙げられる。
【0216】
燃料電池ガスケット用エチレン共重合体組成物が補強剤を含有する場合には、補強剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、一般に5~150質量部、好ましくは5~100質量部である。
【0217】
〈老化防止剤(安定剤)〉
本発明の燃料電池ガスケット用エチレン共重合体組成物に、老化防止剤(安定剤)を配合することにより、これから形成される燃料電池ガスケットの寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
【0218】
老化防止剤としては、例えば、フェニルブチルアミン、N,N-ジ-2-ナフチル-p-フェニレンジアミン等の芳香族第2アミン系老化防止剤;ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシ)ヒドロシンナメート]メタン等のフェノール系老化防止剤;ビス[2-メチル-4-(3-n-アルキルチオプロピオニルオキシ)-5-t-ブチルフェニル]スルフィド等のチオエーテル系老化防止剤;ジブチルジチオカルバミン酸ニッケル等のジチオカルバミン酸塩系老化防止剤;2-メルカプトベンゾイルイミダゾール、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾイミダゾールの亜鉛塩、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系老化防止剤等がある。
【0219】
燃料電池ガスケット用エチレン共重合体組成物が老化防止剤を含有する場合には、老化防止剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は0.3~10質量部、好ましくは0.5~7.0質量部である。老化防止剤の配合量が上記範囲内であると、得られる燃料電池ガスケットの表面のブルームがなく、さらに加硫阻害の発生を抑制することができる。
【0220】
〈無機充填剤〉
無機充填剤としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられ、これらのうちでは、「ホワイトンSB」(商品名;白石カルシウム株式会社)等の重質炭酸カルシウムが好ましい。
【0221】
燃料電池ガスケット用エチレン共重合体組成物が、無機充填剤を含有する場合には、無機充填剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は2~50質量部、好ましくは5~50質量部である。無機充填剤の配合量が上記範囲内であると、燃料電池ガスケット用エチレン共重合体組成物の混練加工性が優れており、機械特性に優れた燃料電池ガスケットを得ることができる。
【0222】
〈加工助剤〉
加工助剤としては、例えば、一般に加工助剤としてゴムに配合されるものを広く用いることができる。
【0223】
加工助剤の具体例としては、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸等の脂肪酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸塩、エステル類などが挙げられる。これらのうちでは、ステアリン酸が好ましい。
【0224】
燃料電池ガスケット用エチレン共重合体組成物が加工助剤を含有する場合には、加工助剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常10質量部以下、好ましくは8.0質量部以下である。
【0225】
〈活性剤〉
活性剤としては、例えば、ジ-n-ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;クタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物が挙げられる。
【0226】
燃料電池ガスケット用エチレン共重合体組成物が活性剤を含有する場合には、活性剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は0.2~10質量部、好ましくは0.3~5質量部である。
【0227】
〈吸湿剤〉
吸湿剤としては、例えば、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンが挙げられる。
【0228】
燃料電池ガスケット用エチレン共重合体組成物が、吸湿剤を含有する場合には、吸湿剤の配合量は、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常は0.5~15質量部、好ましくは1.0~12質量部である。
【0229】
〈発泡剤および発泡助剤〉
本発明の燃料電池ガスケット用エチレン共重合体組成物を用いて形成されたシールパッキンは、非発泡体であってもよいし、発泡体であってもよい。燃料電池ガスケットが発泡体である場合には燃料電池ガスケット用エチレン共重合体組成物には発泡剤が含まれていることが好ましい。
【0230】
発泡剤としては、市販の発泡剤のいずれもが好適に使用される。このような発泡剤としては、例えば、重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機系発泡剤;N,N’-ジニトロソテレフタルアミド、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p’-オキシビス(ベンゼンスルフォニルヒドラジド)ジフェニルスルフォン-3,3’-ジスルフォニルヒドラジド等のスルフォニルヒドラジド化合物;カルシウムアジド、4,4’-ジフェニルジスルホニルアジド、パラトルエンマルホニルアジド等のアジド化合物が挙げられる。中でも、アゾ化合物、スルフォニルヒドラジド化合物、アジド化合物が好ましく用いられる。
【0231】
燃料電池ガスケット用エチレン共重合体組成物が、発泡剤を含有する場合には、発泡剤の配合量は、燃料電池ガスケット用エチレン共重合体組成物から製造される燃料電池ガスケットに要求される性能により適宜選択されるが、上記共重合体(S)および上記共重合体(A)および必要に応じて配合される他のポリマー(エラストマー、架橋性ゴム等)の合計100質量部に対して、通常0.1~30質量部、好ましくは0.2~20質量部の割合で用いられる。
【0232】
また、必要に応じて発泡剤とともに発泡助剤を併用しても差し支えない。発泡助剤の添加は、発泡剤の分解温度の調節、気泡の均一化などに効果がある。発泡助剤としては、具体的には、サリチル酸、フタル酸、ステアリン酸、シュウ酸などの有機酸、尿素およびその誘導体などが挙げられる。
【0233】
燃料電池ガスケット用エチレン共重合体組成物が、発泡助剤を含有する場合には、発泡助剤の配合量は、発泡剤100質量部に対して、通常1~100質量部、好ましくは2~80質量部の割合で用いられる。
【0234】
本発明の燃料電池ガスケット用エチレン共重合体組成物を用いることにより、従来のEPDMを用いた場合と比べて、低温柔軟性に優れる燃料電池ガスケットを得ることが可能であり、シリコーンゴムを用いた場合と比べて、耐寒性に優れる燃料電池ガスケットを得ることが可能である。
【0235】
<燃料電池ガスケット>
本発明の燃料電池ガスケットは、上記燃料電池ガスケット用エチレン共重合体組成物から形成される。
【0236】
本発明の燃料電池ガスケット用エチレン共重合体組成物から燃料電池ガスケットを製造する方法としては、例えば、燃料電池ガスケット用エチレン共重合体組成物を、所望の燃料電池ガスケット形状に成形し、この成形と同時または成形後に、前記組成物を架橋処理する方法が挙げられる。
【0237】
架橋処理する方法としては、例えば、燃料電池ガスケット用エチレン共重合体組成物として、架橋剤を含む組成物を用い、加熱することにより架橋処理する方法、燃料電池ガスケット用エチレン共重合体組成物に電子線を照射することにより架橋処理する方法が挙げられる。
【0238】
すなわち、本発明の燃料電池ガスケットは、燃料電池ガスケット用エチレン共重合体組成物を、押出成形機、カレンダーロール、プレス、インジェクション成形機、トランスファー成形機等の成形機を用いて、意図する形状に成形し、成形と同時に、または成形物を加硫槽内に導入して120~270℃で1~30分間加熱するか、あるいは電子線を照射することにより架橋することにより、調製することができる。
【0239】
架橋を行う際には金型を用いてもよいし、また金型を用いないで架橋を実施してもよい。金型を用いない場合は成形、架橋工程は通常連続的に実施される。加硫槽における加熱方法としては、熱空気、ガラスビーズ流動床、UHF(極超短波電磁波)、スチーム等の手段を用いることができる。
【0240】
架橋方法として架橋剤を使用せず、電子線を使用する場合は、所定の形状に成形された燃料電池ガスケット用エチレン共重合体組成物に、通常0.1~10MeV、好ましくは0.3~2MeVのエネルギーを有する電子線を、吸収線量が通常0.5~35Mrad、好ましくは0.5~10Mradになるように照射すればよい。
【0241】
本発明の燃料電池ガスケットは、水素ラインに用いられる燃料電池ガスケットである。燃料電池車等に水素を供給する水素ステーションでは、水素が通過する水素ラインが多数存在する。本発明の燃料電池ガスケットは、このような水素ラインに用いられる燃料電池ガスケットとして用いる。
【0242】
水素ステーションでは、水素を大量に保管するため、高圧で圧縮機に保存する必要がある。また、水素ステーションから水素を供給する際には、高圧、高速で送り出す必要があり、この際に水素の温度が上がる。燃料電池車等の水素タンク内の温度を上げ過ぎないために、水素ステーションでは、水素を低温、例えば-40℃程度で保存する必要がある。このため、水素ラインに用いられる燃料電池ガスケットには、低温でのシール性が求められている。本発明の燃料電池ガスケットは低温特性および機械強度(強度・伸び)を両立しており、水素ラインに好適に用いることができる。
【実施例0243】
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。特に言及しない限り「部」は「質量部」を表す。
実施例および比較例では以下に示す共重合体を用いた。
【0244】
〔エチレン・α-オレフィン・非共役ポリエン共重合体(S)〕
共重合体(S-1)の製造
<エチレン・プロピレン・VNB共重合体の製造>
国際公開第2019/180802号の実施例1([0386]~[0391])に記載のエチレン・プロピレン・VNB共重合体の製造方法において、水素フィード量を調節することにより、下記表1に示すエチレン・プロピレン・VNB共重合体(S-1)を製造した。
【0245】
【0246】
<エチレンに由来する構造単位、α-オレフィンに由来する構造単位、および非共役ポリエンに由来する構造単位のモル量>
前記モル量は、1H-NMRスペクトルメーターによる強度測定によって求めた。測定条件の詳細は、国際公開第2015/122415号に記載されている。
【0247】
<ムーニー粘度>
ムーニー粘度(ML(1+4)100℃)は、ムーニー粘度計(島津製作所社製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
【0248】
<B値>
o-ジクロロベンゼン-d4/ベンゼン-d6(4/1[v/v])を測定溶媒とし、測定温度120℃にて、13C-NMRスペクトル(100MHz、日本電子製ECX400P)を測定し、下記式(i)に基づき算出した。
B値=([EX]+2[Y])/〔2×[E]×([X]+[Y])〕・・・(i)
[ここで[E]、[X]および[Y]は、それぞれ、エチレン[A1]、炭素数3~20のα-オレフィン[A2]、および非共役ポリエン[A3]に由来する構造単位のモル分率を示し、[EX]はエチレン[A1]-炭素数3~20のα-オレフィン[A2]ダイアッド連鎖分率を示す。]
【0249】
エチレン・α-オレフィン・非共役ポリエン共重合体(A)として、以下のエチレン・α-オレフィン・非共役ポリエン共重合体〔共重合体(A-1)〕を用いた。
国際公開第2015/122415号の[合成例C1]の記載に準じて、下記の物性を有するエチレン/1-ブテン/5-エチリデン-2-ノルボルネン(ENB)共重合体を得た。以下、これを「共重合体(A-1)」と記載する。
【0250】
共重合体(A-1)の構成および物性は、以下のとおりである。
エチレンに由来する構造単位:67.7モル%
1-ブテンに由来する構造単位:30.0モル%
ENBに由来する構造単位:2.3モル%
ムーニー粘度ML(1+4)100℃:30
B値:1.3
【0251】
[実施例1]
《燃料電池ガスケット用エチレン共重合体組成物》
MIXTRON BB MIXER(神戸製鋼所社製、BB-4型、容積2.95L、ローター4WH)を用いて、共重合体(S-1):25部、および共重合体(A-1):75部〔共重合体(S-1)+共重合体(A-1)=100部〕に対して、活性亜鉛華(商品名 META Z-102 井上石灰工業(株)社製):5部、ステアリン酸:1部、カーボンブラック「旭#60UG」(商品名;旭カーボン(株)製):50部、老化防止剤として、サンダントMB(2-メルカプトベンゾイミダゾール、三新化学工業(株)製):6部、老化防止剤としてイルガノックス1010(ジブチルヒドロキシトルエン、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシ)ヒドロシンナメート]メタン、 BASF製):3部の配合量で配合した後混練し、配合物1を得た。
【0252】
混練条件は、ローター回転数が50rpm、フローティングウェイト圧力が3kg/cm2、混練時間が5分間で行い、混練排出温度は150℃であった。
次いで、配合物1が温度40℃となったことを確認した後、6インチロールを用いて、配合物1に、架橋剤(加硫剤)として2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン〔商品名 パーヘキサ25B 日本油脂(株)社製〕カヤクミルD-40C(ジクミルペルオキシド40質量%、化薬アクゾ製):7.3部の配合量で添加して混練し、配合物2を得た。
【0253】
混練条件は、ロール温度を前ロール/後ロール=50℃/50℃、ロール周速さを前ロール/後ロール=18rpm/15rpm、ロール間隙を3mmとして、混練時間8分間で分出し、配合物2を得た。
【0254】
〔未加硫物性試験1:ムーニー粘度〕
配合物2のムーニー粘度ML(1+4)100℃を、ムーニー粘度計(島津製作所社製SMV202型)を用いて、JIS K6300(1994)に準じて測定した。
【0255】
〔未加硫物性試験2:加硫特性評価〕
加硫測定装置:MDR2000(ALPHA TECHNOLOGIES 社製)を用いて、配合物2の加硫速度(tC90):180℃を以下のとおり測定した。
【0256】
一定温度および一定のせん断速度の条件下で得られるトルク変化を測定した。
トルクの最大値(S'Max)とトルクの最小値(S'Min)との差の90%のトルクに達成するまでの時間を、TC90(min)とした。測定条件は、温度180℃、時間15分とした。このTC90が小さいほど、加硫速度(架橋速度)が速いことを示す。
【0257】
《加硫物(架橋物)の評価》
配合物2に、プレス成形機を用いて180℃で10分間架橋を行って、厚み2mmのシート(加硫物)を調製した。
【0258】
得られたシートについて、下記方法により硬度試験、引張り試験、耐熱老化性試験、および、T-R試験を行った。
配合物2に、円柱状の金型がセットされたプレス成形機を用いて180℃で13分間加硫して、厚さ12.7mm、直径29mmの直円柱形の試験片を作成し、圧縮永久歪(CS)試験用試験片(加硫物)を得た。
得られた圧縮永久歪(CS)試験用試験片を用いて、下記方法により、圧縮永久歪みを評価した。
結果を表2に示す。
【0259】
〔硬度試験:硬度(Durometer-A)〕
シートの硬度を、JIS K7312(1996)の「熱硬化性ポリウレタンエラストマー成形物の物理試験方法」の7項の「硬さ試験」の記載およびJIS K6253(2006)「加硫ゴム及び熱可塑性ゴム-硬さの求め方」の6項の「デュロメーター硬さ試験」の試験タイプAの記載に準拠して測定した。
【0260】
〔引張り試験:モジュラス、引張破断点応力、引張破断点伸び〕
シートのモジュラス、引張破断点応力、引張破断点伸びを以下の方法で測定した。
シートを打抜いてJIS K6251(1993年)に記載されている3号形ダンベル試験片を調製し、この試験片を用いてJIS K6251第3項に規定される方法に従い、測定温度25℃、引張速度500mm/分の条件で引張り試験を行ない、伸び率が25%であるときの引張応力(25%モジュラス(M25))、伸び率が50%であるときの引張応力(50%モジュラス(M50))、伸び率が100%であるときの引張応力(100%モジュラス(M100))、引張破断点応力(TB)および引張破断点伸び(EB)を測定した。
【0261】
〔耐熱老化性試験〕
シートを、JIS K6257に従い、180℃で168時間保持する熱老化試験を行った。熱老化試験後のシートの硬度、引張破断点応力、引張破断点伸びを、前記[硬度(Durometer-A)]の項目、前記[モジュラス、引張破断点応力、引張破断点伸び]の項目と同様の方法で測定した。
【0262】
熱老化試験前後の硬度の差より、AH(Duro-A)を求め、熱老化試験前後の引張破断点応力(TB)および引張破断点伸び(EB)から、熱老化試験前の値に対する試験後の変化率をそれぞれ、Ac(TB)、Ac(EB)として求めた。
【0263】
〔T-R試験(低温弾性回復試験)〕
JIS K6261に従い、シートにT-R試験(低温弾性回復試験)を行い、耐寒性を測定した。
【0264】
該試験では、伸長させたシートを凍結させ、温度を連続的に上昇させることによって伸長されていたシートの回復性を測定する。(昇温により試験片の長さが10%および65%収縮(回復)する時の温度を、それぞれTR‐10、およびTR‐65と表示する。)TR-10(単位:℃)が低いほど、耐寒性に優れると判断できる。
【0265】
[実施例2~4]
実施例1で用いた共重合体(S-1)および共重合体(A-1)の量を表〇に示す量に変更する以外は、実施例1と同様に行った。
結果を表2に示す。
【0266】
[比較例1]
実施例1で用いた共重合体(S-1)と共重合体(A-1)の混合物に替えて、共重合体(A-1)を単独で用いる以外は、実施例1と同様に行った。
結果を表2に示す。
【0267】
【0268】
表2から明らかなように、共重合体(S-1):100質量部からなる組成物(実施例4)は、共重合体(A-1):100質量部からなる組成物(比較例1)に比べ、ムーニー粘度が低く、流動性に優れ、且つ、加硫速度が速く、得られる加硫物は、耐熱老化性および圧縮永久歪みなどの耐久性に優れる。
【0269】
共重合体(A-1)を含む組成物(実施例1~3)は、実施例4に比べ、やや流動性および加硫速度は低下するものの、比較例1に比べると流動性および加硫速度に優れる。また、得られる加硫物は、実施例4に比べ、同等の耐久性を維持しつつ、より機械的強度および低温特性が良好である。
【0270】
中でも実施例1および実施例2で得られる組成物は流動性、加硫速度と得られる加硫物の耐久性、機械的強度および低温特性のバランスが良好である。