(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023002223
(43)【公開日】2023-01-10
(54)【発明の名称】耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物
(51)【国際特許分類】
E04B 1/94 20060101AFI20221227BHJP
【FI】
E04B1/94 Z
E04B1/94 E
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021103323
(22)【出願日】2021-06-22
(71)【出願人】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】100106909
【弁理士】
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100175802
【弁理士】
【氏名又は名称】寺本 光生
(74)【代理人】
【識別番号】100134359
【弁理士】
【氏名又は名称】勝俣 智夫
(74)【代理人】
【識別番号】100188592
【弁理士】
【氏名又は名称】山口 洋
(72)【発明者】
【氏名】小野木 武司
(72)【発明者】
【氏名】木村 慧
(72)【発明者】
【氏名】佐藤 圭一
(72)【発明者】
【氏名】中安 誠明
(72)【発明者】
【氏名】清水 信孝
(72)【発明者】
【氏名】寺沢 太沖
(72)【発明者】
【氏名】北岡 聡
【テーマコード(参考)】
2E001
【Fターム(参考)】
2E001DE01
2E001FA01
2E001FA02
2E001GA52
2E001HA32
2E001HA33
2E001HB02
(57)【要約】
【課題】耐火性能を改善した耐火構造物の設計方法を提供する。
【解決手段】耐火構造物の設計方法S10は、構造計算を行うことにより、床部、床部を下方から支持する複数の梁、及び複数の梁に接合された複数の柱の配置を設定する構造設定工程S11と、床部の周囲を、複数の梁の一部に耐火被覆を施した複数の耐火被覆梁により下方から支持させるように設定する第1耐火仕様設定工程S13と、複数の柱に耐火被覆を施して複数の耐火被覆柱に設定する第2耐火仕様設定工程S15と、複数の梁の残部である減耐火被覆梁、又は複数の梁の残部に耐火被覆を施した減耐火被覆梁を、領域内に配置するとともに、減耐火被覆梁の端部を耐火被覆梁に接合して床部を下方から支持するように設定する第3耐火仕様設定工程S17と、を行う。
【選択図】
図5
【特許請求の範囲】
【請求項1】
コンクリート中に引張力伝達部材が設けられた床部と、
耐火被覆が施され、前記床部の周囲を下方から支持する複数の耐火被覆梁と、
耐火被覆が施され、前記複数の耐火被覆梁の端部に接合されて、自身の一部及び前記複数の耐火被覆梁が全体として環状に形成された複数の耐火被覆柱と、
溶接組立H形鋼を有するとともに、前記耐火被覆梁よりも前記耐火被覆が削減され、前記複数の耐火被覆梁及び複数の耐火被覆柱により囲まれた領域内に配置されて、端部が前記複数の耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁と、
を備え、
前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向と規定したときに、
前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を設計する耐火構造物の設計方法であって、
構造計算を行うことにより、前記床部、前記床部を下方から支持する複数の梁、及び前記複数の梁に接合された複数の柱の配置を設定する構造設定工程と、
前記床部の周囲を、前記複数の梁の一部に耐火被覆を施した前記複数の耐火被覆梁により下方から支持させるように設定する第1耐火仕様設定工程と、
前記複数の柱に耐火被覆を施して前記複数の耐火被覆柱に設定する第2耐火仕様設定工程と、
前記複数の梁の残部である前記減耐火被覆梁、又は前記複数の梁の残部に耐火被覆を施した前記減耐火被覆梁を、前記領域内に配置するとともに、前記減耐火被覆梁の端部を前記耐火被覆梁に接合して前記床部を下方から支持するように設定する第3耐火仕様設定工程と、
を行う、耐火構造物の設計方法。
【請求項2】
前記減耐火被覆梁が有する前記溶接組立H形鋼の、常温における降伏強度は、235N/mm2以上である、請求項1に記載の耐火構造物の設計方法。
【請求項3】
前記溶接組立H形鋼の長手方向に直交する断面積(mm2)と、前記溶接組立H形鋼の常温における降伏強度(N/mm2)との積が、1000kN以上6000kN以下である、請求項1又は2に記載の耐火構造物の設計方法。
【請求項4】
前記床部は、合成スラブ又は鉄筋コンクリートスラブである、請求項1から3のいずれか一項に記載の耐火構造物の設計方法。
【請求項5】
前記引張力伝達部材は、
前記第1交差方向に沿って延び、前記床部の前記第1交差方向の端部間の引張力を伝達する第1鉄筋と、
前記第2交差方向に沿って延び、前記床部の前記第2交差方向の端部間の引張力を伝達する第2鉄筋とを有する、請求項1から4のいずれか一項に記載の耐火構造物の設計方法。
【請求項6】
前記耐火被覆梁は、前記耐火被覆が施されたH形鋼、鉄筋コンクリート造、又は鉄骨鉄筋コンクリート造である、請求項1から5のいずれか一項に記載の耐火構造物の設計方法。
【請求項7】
前記耐火被覆柱は、前記耐火被覆が施されたH形鋼、前記耐火被覆が施された角形鋼管、前記耐火被覆が施された円形鋼管、コンクリート充填鋼管造、鉄筋コンクリート造、又は鉄骨鉄筋コンクリート造である、請求項1から6のいずれか一項に記載の耐火構造物の設計方法。
【請求項8】
前記耐火被覆は、吹付け工法、成形板工法、又は巻付け工法により施される、請求項1から7のいずれか一項に記載の耐火構造物の設計方法。
【請求項9】
コンクリート中に引張力伝達部材が設けられた床部と、
耐火被覆が施され、前記床部の周囲を下方から支持する複数の耐火被覆梁と、
耐火被覆が施され、前記複数の耐火被覆梁の端部に接合されて、自身の一部及び前記複数の耐火被覆梁が全体として環状に形成された複数の耐火被覆柱と、
溶接組立H形鋼を有するとともに、前記耐火被覆梁よりも前記耐火被覆が削減され、前記複数の耐火被覆梁及び複数の耐火被覆柱により囲まれた領域内に配置されて、端部が前記複数の耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁と、
を備え、
前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向と規定したときに、
前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を施工する耐火構造物の施工方法であって、
前記床部、前記床部を下方から支持する複数の梁、及び前記複数の梁に接合された複数の柱を施工する柱梁施工工程と、
前記床部の周囲を、前記複数の梁の一部に耐火被覆を施した前記複数の耐火被覆梁により下方から支持させる第1被覆工程と、
前記複数の柱に耐火被覆を施して前記複数の耐火被覆柱にする第2被覆工程と、
前記複数の梁の残部である前記減耐火被覆梁、又は前記複数の梁の残部に耐火被覆を施した前記減耐火被覆梁を、前記領域内に配置するとともに、前記減耐火被覆梁の端部を前記耐火被覆梁に接合して前記床部を下方から支持させる第3被覆工程と、
を行う、耐火構造物の施工方法。
【請求項10】
コンクリート中に引張力伝達部材が設けられた床部と、
耐火被覆が施され、前記床部の周囲を下方から支持する複数の耐火被覆梁と、
耐火被覆が施され、前記複数の耐火被覆梁の端部に接合されて、自身の一部及び前記複数の耐火被覆梁が全体として環状に形成された複数の耐火被覆柱と、
溶接組立H形鋼を有するとともに、前記耐火被覆梁よりも前記耐火被覆が削減され、前記複数の耐火被覆梁及び複数の耐火被覆柱により囲まれた領域内に配置されて、端部が前記複数の耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁と、
を備え、
前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向と規定したときに、
前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する、耐火構造物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物に関する。
【背景技術】
【0002】
従来、耐火構造物では、スラブ(床部)が、大梁と、鉄骨小梁(減耐火被覆梁)とによって支持されている(例えば、特許文献1参照)。大梁は、鉄筋コンクリート製であって、柱間に架け渡されている。鉄骨小梁は、全体が耐火被覆処理されていないH形鋼梁からなる。鉄骨小梁は、上フランジに溶接された複数のスタッドによって、スラブと一体化されている。
【0003】
火災時には、熱によって鉄骨小梁の耐荷重が低下したり、鉄骨小梁が溶解する場合がある。しかし、スラブは、鉄骨小梁が無くても長期荷重に耐え得る厚さに設計されている。このため、スラブ自体の耐力によりスラブの脱落が抑制される。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の耐火構造物の設計方法では、耐火性能に改善の余地がある。
【0006】
本発明は、このような問題点に鑑みてなされたものであって、耐火性能を改善した耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物を提供することを目的とする。
【課題を解決するための手段】
【0007】
前記課題を解決するために、この発明は以下の手段を提案している。
(1)本発明の第1の態様は、コンクリート中に引張力伝達部材が設けられた床部と、耐火被覆が施され、前記床部の周囲を下方から支持する複数の耐火被覆梁と、耐火被覆が施され、前記複数の耐火被覆梁の端部に接合されて、自身の一部及び前記複数の耐火被覆梁が全体として環状に形成された複数の耐火被覆柱と、溶接組立H形鋼を有するとともに、前記耐火被覆梁よりも前記耐火被覆が削減され、前記複数の耐火被覆梁及び複数の耐火被覆柱により囲まれた領域内に配置されて、端部が前記複数の耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向と規定したときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を設計する耐火構造物の設計方法であって、構造計算を行うことにより、前記床部、前記床部を下方から支持する複数の梁、及び前記複数の梁に接合された複数の柱の配置を設定する構造設定工程と、前記床部の周囲を、前記複数の梁の一部に耐火被覆を施した前記複数の耐火被覆梁により下方から支持させるように設定する第1耐火仕様設定工程と、前記複数の柱に耐火被覆を施して前記複数の耐火被覆柱に設定する第2耐火仕様設定工程と、前記複数の梁の残部である前記減耐火被覆梁、又は前記複数の梁の残部に耐火被覆を施した前記減耐火被覆梁を、前記領域内に配置するとともに、前記減耐火被覆梁の端部を前記耐火被覆梁に接合して前記床部を下方から支持するように設定する第3耐火仕様設定工程と、を行う。
【0008】
ここで言うコンクリート中に引張力伝達部材が設けられるとは、引張力伝達部材の一部がコンクリートから露出した状態も含む意味である。
【0009】
(2)前記(1)に記載の耐火構造物の設計方法では、前記減耐火被覆梁が有する前記溶接組立H形鋼の、常温における降伏強度は、235(N/mm2)以上であってもよい。
ここで言う常温とは、5℃以上35℃以下のことを意味する。
(3)前記(1)又は(2)に記載の耐火構造物の設計方法では、前記溶接組立H形鋼の長手方向に直交する断面積(mm2)と、前記溶接組立H形鋼の常温における降伏強度(N/mm2)との積が、1000kN以上6000kN以下であってもよい。
【0010】
(4)前記(1)から(3)のいずれか1つに記載の耐火構造物の設計方法では、前記床部は、合成スラブ又は鉄筋コンクリートスラブであってもよい。
(5)前記(1)から(4)のいずれか1つに記載の耐火構造物の設計方法では、前記引張力伝達部材は、前記第1交差方向に沿って延び、前記床部の前記第1交差方向の端部間の引張力を伝達する第1鉄筋と、前記第2交差方向に沿って延び、前記床部の前記第2交差方向の端部間の引張力を伝達する第2鉄筋とを有してもよい。
【0011】
(6)前記(1)から(5)のいずれか1つに記載の耐火構造物の設計方法では、前記耐火被覆梁は、前記耐火被覆が施されたH形鋼、鉄筋コンクリート造、又は鉄骨鉄筋コンクリート造であってもよい。
(7)前記(1)から(6)のいずれか1つに記載の耐火構造物の設計方法では、前記耐火被覆柱は、前記耐火被覆が施されたH形鋼、前記耐火被覆が施された角形鋼管、前記耐火被覆が施された円形鋼管、コンクリート充填鋼管造、鉄筋コンクリート造、又は鉄骨鉄筋コンクリート造であってもよい。
【0012】
(8)前記(1)から(7)のいずれか1つに記載の耐火構造物の設計方法では、前記耐火被覆は、吹付け工法、成形板工法、又は巻付け工法により施されてもよい。
【0013】
(9)本発明の第2の態様は、コンクリート中に引張力伝達部材が設けられた床部と、耐火被覆が施され、前記床部の周囲を下方から支持する複数の耐火被覆梁と、耐火被覆が施され、前記複数の耐火被覆梁の端部に接合されて、自身の一部及び前記複数の耐火被覆梁が全体として環状に形成された複数の耐火被覆柱と、溶接組立H形鋼を有するとともに、前記耐火被覆梁よりも前記耐火被覆が削減され、前記複数の耐火被覆梁及び複数の耐火被覆柱により囲まれた領域内に配置されて、端部が前記複数の耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向と規定したときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する耐火構造物を施工する耐火構造物の施工方法であって、前記床部、前記床部を下方から支持する複数の梁、及び前記複数の梁に接合された複数の柱を施工する柱梁施工工程と、前記床部の周囲を、前記複数の梁の一部に耐火被覆を施した前記複数の耐火被覆梁により下方から支持させる第1被覆工程と、前記複数の柱に耐火被覆を施して前記複数の耐火被覆柱にする第2被覆工程と、前記複数の梁の残部である前記減耐火被覆梁、又は前記複数の梁の残部に耐火被覆を施した前記減耐火被覆梁を、前記領域内に配置するとともに、前記減耐火被覆梁の端部を前記耐火被覆梁に接合して前記床部を下方から支持させる第3被覆工程と、を行う。
【0014】
(10)本発明の第3の態様は、コンクリート中に引張力伝達部材が設けられた床部と、耐火被覆が施され、前記床部の周囲を下方から支持する複数の耐火被覆梁と、耐火被覆が施され、前記複数の耐火被覆梁の端部に接合されて、自身の一部及び前記複数の耐火被覆梁が全体として環状に形成された複数の耐火被覆柱と、溶接組立H形鋼を有するとともに、前記耐火被覆梁よりも前記耐火被覆が削減され、前記複数の耐火被覆梁及び複数の耐火被覆柱により囲まれた領域内に配置されて、端部が前記複数の耐火被覆梁に接合されて前記床部を下方から支持する減耐火被覆梁と、を備え、前記床部の平面内で互いに交差する方向を第1交差方向、第2交差方向と規定したときに、前記引張力伝達部材は、前記床部の前記第1交差方向の端部間の引張力、及び、前記床部の前記第2交差方向の端部間の引張力をそれぞれ伝達する、耐火構造物である。
【発明の効果】
【0015】
本発明の耐火構造物の設計方法、耐火構造物の施工方法、及び耐火構造物では、耐火性能を改善することができる。
【図面の簡単な説明】
【0016】
【
図1】本発明の一実施形態の耐火構造物を模式的に示す斜視図である。
【
図4】鋼材における、温度に対する降伏強度の変化の一例を示す図である。
【
図5】本発明の一実施形態における耐火構造物の設計方法を示すフローチャートである。
【
図6】同耐火構造物の設計方法における基礎構造物の斜視図である。
【
図7】本発明の一実施形態における耐火構造物の施工方法を示すフローチャートである。
【
図8】同耐火構造物に通常時に作用する外力を説明する、同耐火構造物の分解斜視図である。
【
図9】同耐火構造物に火災時に作用する外力を説明する、同耐火構造物の分解斜視図である。
【
図10】実施例の耐火構造物の解析モデルの概要を示す斜視図である。
【
図11】比較例の耐火構造物の解析モデルの概要を示す斜視図である。
【
図12】実施例の耐火構造物のシミュレーション結果の一例を示す斜視図である。
【
図13】比較例の耐火構造物のシミュレーション結果の一例を示す斜視図である。
【
図14】燃焼時間に対するたわみの変化を求めたシミュレーション結果の一例を示す図である。
【
図15】燃焼時間に対するたわみの変化を求めたシミュレーション結果の他の例を示す図である。
【
図16】(A×σ
y)の変化に対するたわみの変化を表す図である。
【発明を実施するための形態】
【0017】
以下、本発明に係る耐火構造物、耐火構造物の設計方法、及び耐火構造物の施工方法の一実施形態を、
図1から
図16を参照しながら説明する。
図1及び
図2に示すように、本実施形態の耐火構造物1は、床部10と、複数の耐火被覆梁25と、複数の耐火被覆柱35と、減耐火被覆梁40と、を備えている。なお、
図1では、床部10を透過して示している。以下の図では、耐火被覆が削減されることなく施された柱及び梁に、ハッチングを付して示している。
床部10は、平板状である。床部10は、床部10の厚さ方向Zに見たときに複数の隅部10aを有する長方形状を呈する。なお、床部10は、厚さ方向Zに見たときに、三角形状、台形状等の多角形状を呈してもよい。
【0018】
本実施形態では、床部10は、厚さ方向Zが上下方向に沿うように配置されている。なお、床部10は、厚さ方向Zが上下方向に交差するように配置されてもよい。
ここで、床部10の上面(平面)内で互いに直交(交差)する方向を第1交差方向X、第2交差方向Yと規定する。第1交差方向Xは、厚さ方向Zに見たときの床部10の長手方向である。第2交差方向Yは、厚さ方向Zに見たときの床部10の短手方向である。
なお、第1交差方向X及び第2交差方向Yは、床部10の上面内で互いに交差する方向であれば、特に限定されない。
【0019】
図2に示すように、床部10は、いわゆる鉄筋コンクリートスラブである。床部10は、デッキプレート11と、コンクリート12と、鉄筋(引張力伝達部材)13と、を備えている。
例えば、デッキプレート11は、鋼板を曲げ加工して形成されている。ただし、この例では、デッキプレート11はコンクリート12の捨型枠として扱われ、コンクリート12との合成効果を発揮しないとして設計されている。
コンクリート12は、厚さ方向Zに見たときに床部10と同一形状を呈する。コンクリート12は、デッキプレート11上に配置されている。デッキプレート11及び鉄筋13は、コンクリート12中に設けられている。ここで言うコンクリート12中にデッキプレート11、鉄筋13が設けられるとは、デッキプレート11、鉄筋13の一部がコンクリート12から露出した状態も含む意味である。
【0020】
鉄筋13の構成は、第1交差方向Xに沿って延びる第1鉄筋と、第2交差方向Yに沿って延びる第2鉄筋と、有していれば、特に限定されない。
図2及び
図3に示すように、本実施形態では、鉄筋13は、複数の第1鉄筋15,16と、複数の第2鉄筋17と、を有している。
なお、
図2では、後述する第1連結部材19を示していない。
【0021】
各第1鉄筋15,16は、それぞれ第1交差方向Xに沿って延びている。第1鉄筋15は、第1鉄筋16の上方に配置されている。第1鉄筋15,16は、厚さ方向Zに互いに間隔を空けて並べて配置されている。第1鉄筋15,16は、コンクリート12における第1交差方向Xの各端部まで延びている。第1鉄筋15,16は、コンクリート12(床部10)の第1交差方向Xの端部間の引張力を伝達する。
図3に示すように、第1鉄筋15,16は、第1連結部材19により互いに接合されている。第1連結部材19は、第1交差方向Xに沿って延びるとともに、厚さ方向Zに交互に折れるジグザグ状である。
各第2鉄筋17は、第2交差方向Yに沿って延びている。第2鉄筋17は、コンクリート12における第2交差方向Yの各端部まで延びている。第2鉄筋17は、コンクリート12の第2交差方向Yの端部間の引張力を伝達する。複数の第2鉄筋17は、複数の第1鉄筋15に溶接や番線等により接合されている。
複数の第1鉄筋15は、複数の第2連結部材20により互いに接合されている。各第2連結部材20は、第2交差方向Yに沿って延びるとともに、厚さ方向Zに交互に折れるジグザグ状である。第2連結部材20における山部の上端部には、第1鉄筋15が接合されている。
【0022】
本実施形態では、鉄筋13は、コンクリート12内に埋設されている。
なお、鉄筋13が有する複数の第1鉄筋15,16と及び複数の第2鉄筋17の数に制限はなく、それぞれ1つでもよい。
床部10は、鉄筋13、デッキプレート11及びコンクリート12を有する合成スラブであってもよい。
【0023】
図1に示すように、複数の耐火被覆梁25は、一対の第1耐火被覆梁26と、一対の第2耐火被覆梁27と、を有している。
例えば、耐火被覆梁26,27は、耐火被覆が施されたH形鋼である。耐火被覆には、ロックウール、グラスウール等の断熱材が用いられる。この場合、耐火被覆は、吹付け工法により、このH形鋼に施される。
【0024】
例えば、耐火被覆梁26,27におけるロックウール等の耐火被覆の厚さは、「吹付けロックウール被覆耐火構造 施工品質管理指針(ロックウール工業会 吹付け部会)」に準拠して設定される。耐火被覆梁26,27に1時間耐火が要求される場合には、耐火被覆の厚さを25mmとする。同様に、耐火被覆梁26,27に2時間耐火が要求される場合には、耐火被覆の厚さを45mmとする。耐火被覆梁26,27に3時間耐火が要求される場合には、耐火被覆の厚さを60mmとする。
本明細書において、耐火被覆が施された梁、柱は、例えばこの仕様の耐火被覆が施された梁、柱のことを意味する。
【0025】
なお、耐火被覆は、巻付け工法、成形板工法によりH形鋼に施されてもよい。耐火被覆梁26,27は、鉄筋コンクリート(RC:Reinforced Concrete)造、又は鉄骨鉄筋コンクリート(SRC:Steel Reinforced Concrete)造であってもよい。
一対の第1耐火被覆梁26は、第1交差方向Xに沿って延びている。一対の第1耐火被覆梁26は、第2交差方向Yに互いに間隔を空けて配置されている。
一対の第2耐火被覆梁27は、第2交差方向Yに沿って延びている。第1耐火被覆梁26と第2耐火被覆梁27との間には、耐火被覆柱35が配置される隙間が形成されている。
【0026】
図2に示すように、第1耐火被覆梁26の上面には、スタッド等のせん断力伝達部材28が固定されている。せん断力伝達部材28は、デッキプレート11を貫通し、コンクリート12内に埋め込まれている。第1耐火被覆梁26は、床部10の第2交差方向Yの端部を、床部10の下方から支持している。第1耐火被覆梁26は、床部10に固定(剛接合)されている。
図示はしないが、第2耐火被覆梁27の上面にも、せん断力伝達部材28が固定されている。第2耐火被覆梁27は、床部10の第1交差方向Xの端部を、床部10の下方から支持している。第1耐火被覆梁26は、床部10に固定されている。
このように、耐火被覆梁25は、床部10の周囲を、床部10の下方から支持している。
【0027】
例えば、耐火被覆柱35は、耐火被覆が施されたH形鋼である。
図1に示すように、複数の耐火被覆柱35は厚さ方向Zに沿って延びている。本実施形態では、複数の耐火被覆柱35は、床部10の複数の隅部10aの下方にそれぞれ配置されている。複数の耐火被覆柱35の上端部(一部)には、複数の耐火被覆梁25の端部が、剛接合により接合されている。複数の耐火被覆柱35の上端部、及び複数の耐火被覆梁25が、全体として角環状に形成されている。すなわち、複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により、領域R1が囲まれる。
なお、耐火被覆柱は、耐火被覆が施された角形鋼管、耐火被覆が施された円形鋼管であるとしてもよい。また、耐火被覆柱は、コンクリート充填鋼管(Concrete Filled steel Tube)造、鉄筋コンクリート造、又は鉄骨鉄筋コンクリート造であるとしてもよい。
本実施形態では、耐火構造物1は、複数の減耐火被覆梁40を備えている。
【0028】
図2に示すように、本実施形態では、減耐火被覆梁40は、耐火被覆41が施された溶接組立H形鋼42である。ただし、減耐火被覆梁40では耐火被覆梁25よりも耐火被覆が削減されている。複数の減耐火被覆梁40は、前記領域R1内に配置されて、両端部が複数の耐火被覆梁25にそれぞれピン接合により接合されている。例えば、ピン接合は、耐火被覆梁25に溶接されたガセットプレートと、減耐火被覆梁40とを高力ボルト等により締結することにより行われる。な お、複数の減耐火被覆梁40の両端部は、耐火被覆梁25に剛接合、半剛接合により接合されてもよい。ピン接合、半剛接合、及び剛接合の定義は、特に、欧州設計基準(Eurocode3 Part1-8)に準拠するものとする。
【0029】
溶接組立H形鋼42は、ウェブ44と、ウェブ44を挟むように配置された一対のフランジ45と、を有する。ウェブ44の厚さは4.5mm以上7.5mm以下が好ましく、フランジ45の厚さは5.5mm以上9mm以下が好ましい。溶接組立H形鋼42のせいは500mm以上700mm以下が好ましく、溶接組立H形鋼42の幅は115mm以上200mm以下が好ましい。
溶接組立H形鋼42は、ウェブ44及び一対のフランジ45を互いに溶接接合することにより製造される。
【0030】
図1に示すように、複数の減耐火被覆梁40は、それぞれ第2交差方向Yに延びるとともに、第1交差方向Xに互いに間隔を空けて配置されている。
図示はしないが、複数の減耐火被覆梁40の上面にも、せん断力伝達部材28が固定されている。複数の減耐火被覆梁40は、床部10を、床部10の下方から支持している。複数の減耐火被覆梁40は、床部10に固定(剛接合)されている。こうして、複数の減耐火被覆梁40は、床部10を下方から支持している。
【0031】
減耐火被覆梁40が有する溶接組立H形鋼の、常温における降伏強度σ
yは、235N/mm
2以上である。
図4に、鋼材における、温度に対する降伏強度の変化の一例を示す。
図4において、横軸は温度(℃)を表し、縦軸は降伏強度(N/mm
2。ニュートン・パー・平方ミリメートル)を表す。
図4中に、引張強さ400N/mm
2級鋼における変化を、線L1で表す。引張強さ590N/mm
2級鋼における変化を、線L2で表す。引張強さの値によらず、常温から所定の温度までは、降伏強度は略一定であるが、前記所定の温度を超えると、温度が高くなるのに従い漸次、降伏強度は小さくなる。
常温から前記所定の温度までの範囲において、引張強さ590N/mm
2級鋼は、引張強さ400N/mm
2級鋼よりも降伏強度が大きい。前記所定の温度を超えても、引張強さ590N/mm
2級鋼は、引張強さ400N/mm
2級鋼よりも降伏強度が大きいと考えられる。
【0032】
前記降伏強度σyは、295N/mm2以上であることが好ましい。降伏強度σyがこの条件を満たす場合、小梁用の溶接組立H形鋼で想定している設計基準強度を満たすことができる。
この降伏強度σyは、325N/mm2以上であることがより好ましい。降伏強度σyがこの条件を満たす場合、引張強度50K相当であって、JIS G 3136 建築構造用圧延鋼材 で規定されたSN490相当の鋼材とすることができる。
この降伏強度σyは、385N/mm2以上であることがより好ましい。降伏強度σyがこの条件を満たす場合、550MPa級の高張力鋼板とすることができる。
【0033】
耐火被覆梁25における耐火被覆の厚さを、「吹付けロックウール被覆耐火構造 施工品質管理指針」に準拠して設定する場合に、減耐火被覆梁40における耐火被覆の厚さを、それぞれの耐火性能に応じた耐火被覆梁25における耐火被覆の厚さの1/10~1/2程度とする。
なお、耐火構造物1が備える減耐火被覆梁40の数は、1本でもよい。
【0034】
次に、以上のように構成された耐火構造物1を設計する本実施形態の耐火構造物の設計方法(以下では、単に設計方法と言う)ついて説明する。
図5は、本発明の一実施形態における設計方法S10を示すフローチャートである。
まず、構造設定工程(
図5に示すステップS11)において、公知の構造計算を行うことにより、
図6に示すように、耐火被覆を施す前の耐火構造物1である基礎構造物1Aにおける、床部10、複数の梁50、及び複数の柱51の配置を設定する。複数の梁50は、床部10を下方から支持する。複数の柱51は、複数の梁50に接合されている。複数の柱51の上端部、及び複数の梁50が、全体として角環状に形成されている。
構造設定工程S11が終了すると、ステップS13に移行する。
【0035】
次に、第1耐火仕様設定工程(ステップS13)において、床部10の周囲を、複数の梁50の一部である梁50Aに耐火被覆を施した複数の耐火被覆梁25により、下方から支持させるように設定する(
図1参照)。
第1耐火仕様設定工程S13が終了すると、ステップS15に移行する。
次に、第2耐火仕様設定工程(ステップS15)において、複数の柱51に耐火被覆を施して複数の耐火被覆柱35に設定する(
図1参照)。
第2耐火仕様設定工程S15が終了すると、ステップS17に移行する。
【0036】
次に、第3耐火仕様設定工程(ステップS17)において、複数の梁50の残部である梁50Bに耐火被覆を施した複数の減耐火被覆梁40を、領域R1内に配置する(
図1参照)。さらに、減耐火被覆梁40の端部を耐火被覆梁25に接合して、複数の減耐火被覆梁40が床部10を下方から支持するように設定する。
第3耐火仕様設定工程S17が終了すると、設計方法S10の全工程が終了し、耐火構造物1が設計される。
なお、耐火構造物1の減耐火被覆梁40には、耐火被覆が施されなくてもよい。この場合、第3耐火仕様設定工程S17において、複数の梁50の残部である複数の梁50Bを、領域R1内に配置する。
【0037】
次に、耐火構造物1を施工する本実施形態の耐火構造物の施工方法(以下では、単に施工方法と言う)ついて説明する。
図7は、本発明の一実施形態における施工方法S20を示すフローチャートである。
まず、柱梁施工工程(
図7に示すステップS21)において、床部10、複数の梁50、及び複数の柱51を備える基礎構造物1Aを施工する。複数の梁50は、床部10を下方から支持する。複数の柱51は、複数の梁50に接合されている。
柱梁施工工程S21が終了すると、ステップS23に移行する。
【0038】
次に、第1被覆工程(ステップS23)において、床部10の周囲を、複数の梁50の一部である梁50Aに耐火被覆を施した複数の耐火被覆梁25により、下方から支持させる。
第1被覆工程S23が終了すると、ステップS25に移行する。
次に、第2被覆工程(ステップS25)において、複数の柱51に耐火被覆を施して複数の耐火被覆柱35にする。
第2被覆工程S25が終了すると、ステップS27に移行する。
【0039】
次に、第3被覆工程(ステップS27)において、複数の梁50の残部である梁50Bに耐火被覆を施した複数の減耐火被覆梁40を、領域R1内に配置する。さらに、減耐火被覆梁40の端部を耐火被覆梁25に接合して、床部10を下方から支持させる。
第3被覆工程S27が終了すると、施工方法S20の全工程が終了し、耐火構造物1が施工される。
なお、耐火構造物1の減耐火被覆梁40には、耐火被覆が施されなくてもよい。この場合、第3被覆工程S27において、複数の梁50の残部である複数の梁50Bを、領域R1内に配置する。
【0040】
ここで、メンブレン効果により火災の前後で床部10等がたわむ様子を模式的に説明する。
図8に、火災が発生していない通常時における耐火構造物1の分解斜視図を示す。なお
図8及び後述する
図9では、耐火構造物1を簡略化して示している。
図8に示す通常時には、床部10、減耐火被覆梁40等に作用する重力、静荷重等により、床部10、減耐火被覆梁40等に下向きの外力F1が作用する。
一方で火災時において、
図9に示すように、床部10の平面視における中央部が下方に向かって凸となるようにたわむ。しかし、いわゆるメンブレン効果により、床部10の周囲が、全体として環状に形成された複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により支持される。床部10がたわむことにより伸びた第1鉄筋15,16が、第1交差方向Xの引張力F2を伝達する。床部10がたわむことにより伸びた第2鉄筋17が、第2交差方向Yの引張力F3を伝達する。すなわち、床部10は、床部10に作用する重力等に引張力F2,F3により抵抗する。
従って、床部10の中央部が、複数の耐火被覆梁25、複数の耐火被覆柱35の上端部、第1鉄筋15,16、及び第2鉄筋17により、第1交差方向X及び第2交差方向Yにそれぞれ支持される。
【0041】
この際、床部10には、引張領域R5及び圧縮領域R6がそれぞれ形成される。なお、
図9中に圧縮領域R6をハッチングを付して示している。引張領域R5では、床部10がたわんだ前記上面に沿って引張られる。圧縮領域R6では、床部10がたわんだ前記上面に沿って圧縮される。
引張領域R5は、床部10の平面視における中央部に形成される。圧縮領域R6は、引張領域R5の周辺に形成される。
火災時に耐火構造物1に生じるメンブレン効果は、鉄筋13により引張力F2,F3に抵抗する効果である。
【0042】
以上説明したように、本実施形態の設計方法S10では、構造設定工程S11において、床部10、複数の梁50、及び複数の柱51の配置を設定する。次に、第1耐火仕様設定工程S13において、床部10の周囲を、複数の梁50の一部に耐火被覆を施した複数の耐火被覆梁25により下方から支持させるように設定する。次に、第2耐火仕様設定工程S15において、複数の柱51に耐火被覆を施して複数の耐火被覆柱35に設定する。次に、第3耐火仕様設定工程S17において、複数の梁50の残部に耐火被覆を施した複数の減耐火被覆梁40を、複数の耐火被覆梁25及び複数の耐火被覆柱35により囲まれた領域R1内に配置するとともに、複数の減耐火被覆梁40の端部を耐火被覆梁25に接合して床部10を下方から支持するように設定する。
以上の工程を行うことにより、耐火構造物1を設計する。
【0043】
以上のように設計された耐火構造物1では、床部10の周囲は、火災時でも一定の剛性及び耐力を維持できる、環状に形成された複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により下方から支持される。床部10中に設けられた鉄筋13は、床部10の第1交差方向Xの端部間の引張力、及び、床部10の第2交差方向Yの端部間の引張力をそれぞれ伝達する。火災時には、床部10に作用する重力等により、床部10の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部10の周囲が複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により支持される。そして、床部10が撓むことにより伸びた鉄筋13が第1交差方向X及び第2交差方向Yにそれぞれ引張力を伝達することにより、床部10の中央部が支持される。従って、耐火構造物1の耐火性能を従来と同等に維持することができる。
【0044】
さらに、減耐火被覆梁40が溶接組立H形鋼42を有するため、減耐火被覆梁が有するH形鋼が圧延H形鋼である場合に比べて、H形鋼を構成するウェブ及びフランジの厚さ等をより自由に設定することができる。従って、例えば、従来のH形鋼造の小梁における長手方向に直交する断面積と常温における降伏強度との積よりも、溶接組立H形鋼42における長手方向に直交する断面積と常温における降伏強度との積を大きくすること等により、耐火構造物1の耐火性能を改善することができる。
【0045】
減耐火被覆梁40が有する溶接組立H形鋼42の降伏強度σyは、235N/mm2以上である。このため、減耐火被覆梁40の強度を、H形鋼として標準的な強度以上に確保することができる。そして、溶接組立H形鋼42のウェブ44及びフランジ45を、それぞれ薄くしても、溶接組立H形鋼42が一定の強度を保つことができる。
床部10は、鉄筋コンクリートスラブである。鉄筋コンクリートスラブは床部として広く用いられているため、床部10を安価に設計(構成)することができる。
【0046】
鉄筋13は、複数の第1鉄筋15,16と、複数の第2鉄筋17と、を有している。従って、複数の第1鉄筋15,16及び複数の第2鉄筋17という簡単な構成で、床部10の第1交差方向Xの端部間の引張力F2、及び、床部10の第2交差方向Yの端部間の引張力F3をそれぞれ伝達することができる。
耐火被覆梁25は、耐火被覆が施されたH形鋼である。H形鋼は梁として広く用いられているため、耐火被覆梁25を安価に設計することができる。
【0047】
耐火被覆柱35は、耐火被覆が施されたH形鋼である。H形鋼は柱として広く用いられているため、耐火被覆柱35を安価に設計することができる。
耐火被覆は、巻付け工法によりH形鋼に施される。巻付け工法は、H形鋼等に耐火被覆を施すのに広く用いられているため、耐火被覆を安価に施すことができる。
【0048】
また、本実施形態の施工方法S20では、柱梁施工工程S21において、床部10、複数の梁50、及び複数の柱51を施工する。次に、第1被覆工程S23において、床部10の周囲を、複数の梁50の一部に耐火被覆を施した複数の耐火被覆梁25により下方から支持させる。次に、第2被覆工程S25において、複数の柱51に耐火被覆を施して複数の耐火被覆柱35にする。次に、第3被覆工程S27において、複数の梁50の残部に耐火被覆を施した複数の減耐火被覆梁40を、複数の耐火被覆梁25及び複数の耐火被覆柱35により囲まれた領域R1内に配置するとともに、複数の減耐火被覆梁40の端部を耐火被覆梁25に接合して床部10を下方から支持させる。
以上の工程を行うことにより、耐火構造物1を施工する。
【0049】
以上のように施工された耐火構造物1では、床部10の周囲は、火災時でも一定の剛性及び耐力を維持できる、環状に形成された複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により下方から支持される。床部10中に設けられた鉄筋13は、床部10の第1交差方向Xの端部間の引張力、及び、床部10の第2交差方向Yの端部間の引張力をそれぞれ伝達する。火災時には、床部10に作用する重力等により、床部10の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部10の周囲が複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により支持される。そして、床部10が撓むことにより伸びた鉄筋13が第1交差方向X及び第2交差方向Yにそれぞれ引張力を伝達することにより、床部10の中央部が支持される。従って、耐火構造物1の耐火性能を従来と同等に維持することができる。
【0050】
さらに、減耐火被覆梁40が溶接組立H形鋼42を有するため、減耐火被覆梁が有するH形鋼が圧延H形鋼である場合に比べて、H形鋼を構成するウェブ及びフランジの厚さ等をより自由に設定することができる。従って、例えば、H形鋼造の小梁に従来用いられているウェブの厚さよりも、溶接組立H形鋼42のウェブ44を薄くし、H形鋼造の小梁のせいよりも溶接組立H形鋼42のせいを高くすることにより、耐火構造物1の耐火性能を改善することができる。
【0051】
また、本実施形態の耐火構造物1では、床部10の周囲は、火災時でも一定の剛性及び耐力を維持できる、環状に形成された複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により下方から支持される。床部10中に設けられた鉄筋13は、床部10の第1交差方向Xの端部間の引張力、及び、床部10の第2交差方向Yの端部間の引張力をそれぞれ伝達する。火災時には、床部10に作用する重力等により、床部10の平面視における中央部が下方に向かって凸となるように撓む。しかし、メンブレン効果により、床部10の周囲が複数の耐火被覆梁25及び複数の耐火被覆柱35の上端部により支持される。そして、床部10が撓むことにより伸びた鉄筋13が第1交差方向X及び第2交差方向Yにそれぞれ引張力を伝達することにより、床部10の中央部が支持される。従って、耐火構造物1の耐火性能を従来と同等に維持することができる。
【0052】
さらに、減耐火被覆梁40が溶接組立H形鋼42を有するため、減耐火被覆梁が有するH形鋼が圧延H形鋼である場合に比べて、H形鋼を構成するウェブ及びフランジの厚さ等をより自由に設定することができる。従って、例えば、従来のH形鋼造の小梁における長手方向に直交する断面積と常温における降伏強度との積よりも、溶接組立H形鋼42における長手方向に直交する断面積と常温における降伏強度との積を大きくすることにより、耐火構造物1の耐火性能を改善することができる。
【0053】
(シミュレーション結果)
ここで、実施例及び比較例の耐火構造物における耐火性能を、シミュレーションにより検討した結果について説明する。
【0054】
(1.断面二次モーメントを同等にした検討)
図10に、実施例の耐火構造物1Bの解析モデルの概要を示す。
図10及び後述する
図11では、耐火被覆が削減されることなく施された梁を実線で示し、耐火被覆が削減された梁を点線で示している。なお、
図10及び
図11では、床部10を示していない。
耐火被覆梁26,27のH形鋼の断面寸法は、H-1000×400×19×28とした。
図10に示すように、各耐火被覆柱35の上端に対して、耐火被覆梁26,27は、第1交差方向X周り、第2交差方向Y周り、及び厚さ方向Z周りにそれぞれ回転できるとした。
複数の耐火被覆柱35の1つである耐火被覆柱35Aに対して、耐火被覆梁26,27は、第1交差方向X、第2交差方向Y、及び厚さ方向Zにそれぞれ固定されているとした。複数の耐火被覆柱35のうち、耐火被覆柱35A以外の耐火被覆柱35Bに対して、耐火被覆梁26,27は、第1交差方向X、第2交差方向Y、及び厚さ方向Zにそれぞれ移動できるとした。
【0055】
第1耐火被覆梁26の長さL5は、19,200mmとした。第2耐火被覆梁27の長さL6は、7,200mmとした。
減耐火被覆梁40Aは、前記減耐火被覆梁40に対して、耐火被覆が全く施されていない梁である。減耐火被覆梁40Aの溶接組立H形鋼42の断面寸法を、表1に示す。
【0056】
【0057】
溶接組立H形鋼42の断面寸法は、700×175×4.5×9とした。溶接組立H形鋼42の降伏強度は、440N/mm
2とした。溶接組立H形鋼42の断面二次モーメントは、49,500cm
4である。溶接組立H形鋼42の単位長さ当たりの質量は、48.8kg/mである。
耐火構造物1Bに用いられている床部10の仕様の説明については、省略する。
図10中には、主筋方向Wとして、第1鉄筋15,16が延びる方向(第1交差方向X)を示す。
床部10の厚さは、140mmとした。第1鉄筋15,16は、D13@200とした。第2鉄筋17は、D10@150とした。耐火被覆梁26,27の耐火被覆の厚さを、45mmとした。
【0058】
一方で、
図11に示す比較例の耐火構造物2は、実施例の耐火構造物1Bの複数の減耐火被覆梁40Aに替えて、複数の減耐火被覆梁55を備えている。減耐火被覆梁55が有するH形鋼は、圧延H形鋼56である。圧延H形鋼56の断面寸法は、表1に示すように、500×200×10×16とした。圧延H形鋼56の降伏強度は、235N/mm
2とした。圧延H形鋼56には、耐火被覆が全く施されていない。圧延H形鋼56の断面二次モーメントは、48,800cm
4である。圧延H形鋼56の単位長さ当たりの質量は、88.2kg/mである。
【0059】
このとき、圧延H形鋼56の高さに対する溶接組立H形鋼42の高さ比は、1.40である。圧延H形鋼56の断面二次モーメントに対する溶接組立H形鋼42の断面二次モーメント比は、1.01である。すなわち、圧延H形鋼56の断面二次モーメント、及び溶接組立H形鋼42の断面二次モーメントは、互いに同等である。
圧延H形鋼56の質量に対する溶接組立H形鋼42の質量の比は、0.55である。すなわち、溶接組立H形鋼42は、圧延H形鋼56に対して断面二次モーメントは同等であるが、質量は約半分である。
常温で用いられる梁の設計では、一般的に梁の断面二次モーメントに着目する。このシミュレーションでは、実施例及び比較例の耐火構造物1B,2の減耐火被覆梁40A,55のH形鋼42,56の断面二次モーメントを同等にした状態で、耐火構造物1B,2の耐火性能を比較する。
【0060】
耐火構造物1B,2を、ISO 834-11:2014に規定された標準加熱曲線に基づいて、120分(2時間)加熱することを想定した。一般的に、梁、柱等の部材は、温度が高くなるのに従い長くなる。シミュレーションにより、予め、前記標準加熱曲線に基づいて加熱されたときの、部材の温度と時間との関係を求めた。その後で、予め求めた前記関係に基づいて、燃焼(加熱)開始からの時間に対する、部材の熱膨張、強度、及び剛性の低下によるたわみを求めた。たわみは、床部10の平面視における中央P1(
図10及び
図11参照)でのたわみである。
【0061】
なお、全体ひずみは、機械的ひずみと、熱的ひずみとの和で表される。
シミュレーションが終了する条件は、例えば、H形鋼42,56の端部における機械的ひずみが20%等の閾値を超えることである。このように終了する条件を決めたのは、H形鋼42,56の中でも、端部におけるひずみが最も大きくなるためである。
【0062】
耐火構造物1Bのシミュレーション結果におけるたわみの状態の一例を、
図12に示す。耐火構造物1Bの加熱前の形状を、二点鎖線で示す。燃焼開始の120分後においても、耐火構造物1Bが上下方向の荷重を支持できることが分かった。
耐火構造物2のシミュレーション結果におけるたわみの状態の一例を、
図13に示す。第1交差方向Xの中心に配置された減耐火被覆梁55の端部における機械的ひずみが閾値を超えたため、加熱開始94分後に、シミュレーションが終了した。
【0063】
耐火構造物1B,2の、燃焼時間に対する中央P1でのたわみの変化を求めた結果を、
図14に示す。
図14において、横軸は燃焼時間(分)を表し、縦軸はたわみ(mm)を表す。実線による線L9は、耐火構造物1Bのたわみを表し、点線による線L10は、耐火構造物2のたわみを表す。
耐火構造物2に比べて耐火構造物1Bは、長時間の燃焼に耐えられるとともに、各時間における中央P1でのたわみが小さくなることが分かる。これにより、耐火構造物1Bは、耐火構造物2に比べて耐火性能を改善できることが分かった。
【0064】
(2.H形鋼の断面積と降伏強度の積の着目した検討)
(1.)では、断面二次モーメントは、耐火性能の支配的なパラメータになり難いと、考えられた。そこで、耐火性能により寄与するパラメータを検討した。
表2に示すように、耐火構造物1B,2のH形鋼42,56に対して、降伏強度σyを235N/mm2、325N/mm2、440N/mm2と変化させる、ケース1からケース6のパラメトリックスタディを行った。
【0065】
【0066】
(1.)においてシミュレーションした結果は、ケース2及びケース5に相当する。
溶接組立H形鋼42の長手方向に直交する断面積Aは、6,219mm
2である。圧延H形鋼56の長手方向に直交する断面積Aは、11,230mm
2である。
断面積Aと、H形鋼42,56の降伏強度σ
yとの積(A×σ
y)を、以下では、降伏軸力とも言う。
図15に、ケース1からケース6の燃焼時間に対する中央P1でのたわみの変化を求めた結果を示す。
図15において、横軸は燃焼時間(分)を表し、縦軸はたわみ(mm)を表す。線L21から線L26は、ケース1からケース6の結果をそれぞれ表す。
例えば、
図15において、加熱時間が60分のときの各ケースにおけるたわみを求めた結果を、表3及び
図16に示す。
図16は、実施例であるケース1,3,5に対する傾向を見たグラフである。
【0067】
【0068】
図16において、横軸は(A×σ
y)(kN)を表し、縦軸は中央P1でのたわみを表す。降伏軸力(A×σ
y)が、大きくなると、たわみが小さくなることがわかる。そして、降伏軸力(A×σ
y)に対して、たわみは、ほぼ線形の関係がある。このとき、たわみδ(mm)と、降伏軸力(A×σ
y)との関係は、(1)式のようになる。
δ=-0.0793×(A×σ
y)+572.68 ・・(1)
降伏軸力(A×σ
y)は、1000kN(キロニュートン)以上6000kN以下であることが好ましい。降伏軸力(A×σ
y)は、1000kN以上3000kN以下であることが、より好ましい。
降伏軸力が1000kN以上6000kN以下であることにより、耐火性能を改善したH形鋼42,56の仕様を、耐火構造物1B,2に適用することができる。
【0069】
以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
【符号の説明】
【0070】
1 耐火構造物
10 床部
11 デッキプレート
12 コンクリート
13 鉄筋(引張力伝達部材)
15,16 第1鉄筋
17 第2鉄筋
25 耐火被覆梁
35 耐火被覆柱
40 減耐火被覆梁
41 耐火被覆
42 溶接組立H形鋼
50 梁
51 柱
R1 領域
S10 設計方法(耐火構造物の設計方法)
S11 構造設定工程
S13 第1耐火仕様設定工程
S15 第2耐火仕様設定工程
S17 第3耐火仕様設定工程
S20 施工方法(耐火構造物の施工方法)
S21 柱梁施工工程
S23 第1被覆工程
S25 第2被覆工程
S27 第3被覆工程
X 第1交差方向
Y 第2交差方向