IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社三井E&Sマシナリーの特許一覧

特開2023-24849高融点配管閉塞物質の生成抑制装置及び方法
<>
  • 特開-高融点配管閉塞物質の生成抑制装置及び方法 図1
  • 特開-高融点配管閉塞物質の生成抑制装置及び方法 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023024849
(43)【公開日】2023-02-17
(54)【発明の名称】高融点配管閉塞物質の生成抑制装置及び方法
(51)【国際特許分類】
   F01N 3/08 20060101AFI20230210BHJP
   F01N 3/10 20060101ALI20230210BHJP
   F01N 3/28 20060101ALI20230210BHJP
   B01D 53/94 20060101ALI20230210BHJP
   B01J 21/06 20060101ALI20230210BHJP
【FI】
F01N3/08 B
F01N3/10 A
F01N3/28 Q
B01D53/94 220
B01D53/94 400
B01J21/06 A ZAB
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022186696
(22)【出願日】2022-11-22
(62)【分割の表示】P 2020176139の分割
【原出願日】2020-10-20
(71)【出願人】
【識別番号】518126144
【氏名又は名称】株式会社三井E&Sマシナリー
(74)【代理人】
【識別番号】100101340
【弁理士】
【氏名又は名称】丸山 英一
(74)【代理人】
【識別番号】100205730
【弁理士】
【氏名又は名称】丸山 重輝
(74)【代理人】
【識別番号】100213551
【弁理士】
【氏名又は名称】丸山 智貴
(72)【発明者】
【氏名】稲葉 利晴
(72)【発明者】
【氏名】服部 望
(57)【要約】
【課題】イソシアン酸やシアン酸の加水分解を促進して、シアヌル酸の生成量を減少させることにより、融点配管閉塞物質の生成抑制装置及び方法を提供すること。
【解決手段】加圧空気と尿素水を供給する尿素水供給管6を排ガスが流れる配管内に挿通し、尿素水供給管6の先端近傍に尿素水噴霧ノズル7を接続し、配管内を流れる排ガスと、尿素水噴霧ノズル7から噴霧された噴霧尿素水との混合部8を有し、混合部8の周囲で配管の内壁面の全部または一部に、金属シート9を帯状に周設してなり、金属シート9の内面に、噴霧した尿素水を接触させて、イソシアン酸(HN=C=O)やシアン酸(HOCN)の加水分解を促進することによりアンモニアを生成させると共に、シアヌル酸の生成量を減少させる加水分解触媒層10が形成され、加水分解触媒層10の加水分解触媒が、Al触媒、又は珪酸アルミ酸化物であることを特徴とする高融点配管閉塞物質の生成抑制装置。
【選択図】図1
【特許請求の範囲】
【請求項1】
加圧空気と尿素水を供給する尿素水供給管を排ガスが流れる配管内に挿通し、
前記尿素水供給管の先端近傍に尿素水噴霧ノズルを接続し、
前記配管内を流れる排ガスと、前記尿素水噴霧ノズルから噴霧された噴霧尿素水との混合部を有し、
該混合部の周囲で前記配管の内壁面の全部または一部に、金属シートを帯状に周設してなり、
該金属シートの内面に、噴霧した尿素水を接触させて、イソシアン酸(HN=C=O)やシアン酸(HOCN)の加水分解を促進することによりアンモニアを生成させると共に、シアヌル酸の生成量を減少させる加水分解触媒層が形成され、
前記加水分解触媒層の加水分解触媒が、Al触媒、又は珪酸アルミ酸化物であることを特徴とする高融点配管閉塞物質の生成抑制装置。
【請求項2】
前記金属シートが、アルミニウム金属シート又はステンレス金属シートであることを特徴とする請求項1記載の高融点配管閉塞物質の生成抑制装置。
【請求項3】
加圧空気と尿素水を供給する尿素水供給管を排ガスが流れる配管内に挿通し、
前記尿素水供給管の先端近傍に尿素水噴霧ノズルを接続し、
前記配管内を流れる排ガスと、前記尿素水噴霧ノズルから噴霧された噴霧尿素水との混合部を有し、
該混合部の周囲の配管の内壁面の全部または一部に帯状に周設された金属シートの内面に、尿素の加水分解を促進する加水分解触媒層を形成し、
前記加水分解触媒層の加水分解触媒が、Al触媒、又は珪酸アルミ酸化物であり、
該加水分解触媒層に尿素水噴霧ノズルから噴霧された噴霧尿素水を接触させて、イソシアン酸(HN=C=O)やシアン酸(HOCN)の加水分解を促進することによりアンモニアを生成させると共に、シアヌル酸の生成量を減少させることを特徴とする高融点物質による配管閉塞を抑制する方法。
【請求項4】
該加水分解触媒層に尿素水噴霧ノズルから噴霧された噴霧尿素水を接触させて、尿素が熱分解して発生するアンモニア以外の副生物であるイソシアン酸やシアン酸と雰囲気中の水分とから加水分解してアンモニアと二酸化炭素に変換する加水反応を促進することにより、イソシアン酸やシアン酸がシアヌル酸へ重合する反応をするための前記イソシアン酸や前記シアン酸が減少し、結果として尿素からのシアヌル酸の生成量を減少させることを特徴とする請求項3記載の高融点物質による配管閉塞を抑制する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高融点配管閉塞物質の生成抑制装置及び高融点物質による配管閉塞を抑制方法に関し、尿素の加熱分解によって生成された尿素由来の高融点物質による配管内のスケール付着による配管閉塞を抑制できる高融点配管閉塞物質の生成抑制装置及び高融点物質による配管閉塞を抑制方法に関する。
【背景技術】
【0002】
ディーゼルエンジンから排出される排気ガスには、HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)およびPM(Particulate Matter)等の汚染物質が含まれる。
これらの汚染物質の中でも、NOxは、酸化触媒やガソリン自動車で実用化されている三元触媒では浄化が難しく、NOxを浄化することができる有望な触媒として選択還元型NOx触媒である脱硝触媒の研究が行われている(特許文献1)。
【0003】
脱硝触媒は、NO、NOのようなNOxとアンモニア(還元剤)の下記反応により、窒素ガス(N)を生成させるNOxの除去に寄与している。
(1)4NO+4NH+O→ 4N+6H
(2)NO+NO+2NH→ 2N+3H
(3)6NO + 8NH → 7N+12H
【0004】
還元剤であるアンモニアを供給する方法として、尿素水タンクから脱硝触媒の上流側の排気系に尿素を添加し、アンモニアを生成させて用いる方法が知られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009-197762号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1によると、還元剤として、アンモニアを供給する方法として、尿素水タンクから脱硝触媒の上流側の排気系に尿素を添加し、アンモニアを生成させて用いる方法が知られているが、尿素は、排気ガスの熱により、あるいは加水分解触媒により加水分解されアンモニアを生成するが、排気ガスの熱による尿素の熱分解では、シアヌル酸、イソシアン酸、メラミン等の高融点物質に変化し、分解効率が低下したり、下流のNOx還元性能を低下させる問題があると指摘しており、また高融点物質による配管等の目詰まりの問題があると指摘している。
【0007】
しかし、特許文献1は、シアヌル酸、イソシアン酸、メラミン等の高融点物質の全てに配管閉塞の問題があると指摘しているだけで、配管内のスケール付着による配管閉塞に関与する物質が何であるかは明らかにされていない。
【0008】
また、尿素の加熱分解により、イソシアン酸やシアン酸が生成されたり、またシアヌル酸(6員環)が生成されたり、メラミン(6員環)が生成されたりすることが知られている。
【0009】
本発明者の研究によると、排ガスの配管内での尿素噴霧により、尿素水の注入ノズルを閉塞させる成分や、排ガス配管を閉塞させる成分について、X線回折法による定性分析を行ったところ、シアヌル酸(6員環)であることを見出した。
【0010】
尿素の加熱分解において、シアヌル酸が生成される過程には、150℃~300℃の加熱によりイソシアン酸やシアン酸が生成され、一部のイソシアン酸やシアン酸は、反応速度が遅く、約150℃~約300℃下で、シアヌル酸に重合される(3量体化)道筋がある。また別の反応経路では、尿素を融点135℃以上で加熱すると、アンモニアが分子間離脱してイソシアン酸やシアン酸が生じ、その一部が、ビュレット(中間体)を生成する。更に、温度が上がり196℃で、この中間体は分解され、シアヌル酸となる。
【0011】
これらの尿素の加熱分解過程で生成する物質のうち、メラミンやシアヌル酸のような6員環では、加水分解を起こさせることは困難である。
【0012】
本発明者は、多量体になっていないイソシアン酸やシアン酸に着目し、イソシアン酸やシアン酸が重合されてシアヌル酸が生成するまでに、イソシアン酸やシアン酸の加水分解を促進すれば、シアヌル酸の生成量が減少することを見出し、本発明に至った。
【0013】
そこで、本発明の課題は、イソシアン酸やシアン酸の加水分解を促進して、シアヌル酸の生成量を減少させることにより、融点配管閉塞物質の生成抑制装置及び高融点物質による配管閉塞を抑制する方法を提供することにある。
【0014】
さらに本発明の他の課題は、以下の記載によって明らかとなる。
【課題を解決するための手段】
【0015】
上記課題は以下の各発明によって解決される。
【0016】
(請求項1)
加圧空気と尿素水を供給する尿素水供給管を排ガスが流れる配管内に挿通し、
前記尿素水供給管の先端近傍に尿素水噴霧ノズルを接続し、
前記配管内を流れる排ガスと、前記尿素水噴霧ノズルから噴霧された噴霧尿素水との混合部を有し、
該混合部の周囲で前記配管の内壁面の全部または一部に、金属シートを帯状に周設してなり、
該金属シートの内面に、噴霧した尿素水を接触させて、イソシアン酸(HN=C=O)やシアン酸(HOCN)の加水分解を促進することによりアンモニアを生成させると共に、シアヌル酸の生成量を減少させる加水分解触媒層が形成され、
前記加水分解触媒層の加水分解触媒が、Al触媒、又は珪酸アルミ酸化物であることを特徴とする高融点配管閉塞物質の生成抑制装置。
(請求項2)
前記金属シートが、アルミニウム金属シート又はステンレス金属シートであることを特徴とする請求項1記載の高融点配管閉塞物質の生成抑制装置。
(請求項3)
加圧空気と尿素水を供給する尿素水供給管を排ガスが流れる配管内に挿通し、
前記尿素水供給管の先端近傍に尿素水噴霧ノズルを接続し、
前記配管内を流れる排ガスと、前記尿素水噴霧ノズルから噴霧された噴霧尿素水との混合部を有し、
該混合部の周囲の配管の内壁面の全部または一部に帯状に周設された金属シートの内面に、尿素の加水分解を促進する加水分解触媒層を形成し、
前記加水分解触媒層の加水分解触媒が、Al触媒、又は珪酸アルミ酸化物であり、
該加水分解触媒層に尿素水噴霧ノズルから噴霧された噴霧尿素水を接触させて、イソシアン酸(HN=C=O)やシアン酸(HOCN)の加水分解を促進することによりアンモニアを生成させると共に、シアヌル酸の生成量を減少させることを特徴とする高融点物質による配管閉塞を抑制する方法。
(請求項4)
該加水分解触媒層に尿素水噴霧ノズルから噴霧された噴霧尿素水を接触させて、尿素が熱分解して発生するアンモニア以外の副生物であるイソシアン酸やシアン酸と雰囲気中の水分とから加水分解してアンモニアと二酸化炭素に変換する加水反応を促進することにより、イソシアン酸やシアン酸がシアヌル酸へ重合する反応をするための前記イソシアン酸や前記シアン酸が減少し、結果として尿素からのシアヌル酸の生成量を減少させることを特徴とする請求項3記載の高融点物質による配管閉塞を抑制する方法。
【発明の効果】
【0017】
本発明によれば、イソシアン酸やシアン酸の加水分解を促進して、シアヌル酸の生成量を減少させることにより、融点配管閉塞物質の生成抑制装置及び高融点物質による配管閉塞を抑制する方法を提供することができる。
【図面の簡単な説明】
【0018】
図1】本発明に係る高融点配管閉塞物質の生成抑制装置の一例を示す説明図
図2】本発明に係る触媒シートの一例を示す概略断面図
【発明を実施するための形態】
【0019】
以下、本発明の高融点配管閉塞物質の生成抑制装置の実施の形態を図1に基づいて説明する。
【0020】
図1は、本発明に係る高融点配管閉塞物質の生成抑制装置の一例を示す説明図である。
【0021】
図1において、1はディーゼルエンジンであり、2はディーゼルエンジン1から排出される排ガスを送る排ガス管である。
【0022】
3は尿素水の加水分解装置であり、気化装置ともいう。加水分解装置3は、気化用配管4内に設けられる。気化用配管4の入口には排ガスの導入口5が設けられ、排ガスは、導入口5から気化用配管4に導入される。
【0023】
気化用配管4には、加圧空気(圧縮空気)と尿素水を供給する尿素水供給管6が挿通され、尿素水供給管6の先端近傍に尿素水噴霧ノズル7が設けられている。尿素水噴霧ノズル7は、尿素水噴霧を気化用配管4内に供給可能に構成されている。
【0024】
8は気化用配管4内を流れる排ガスと、尿素水噴霧ノズルから噴霧された噴霧尿素水との混合部である。
混合部8の周囲で気化用配管4の内壁面の全部または一部には、金属シート9が帯状に周設されており、金属シート9の内面に、尿素の加水分解を促進する加水分解触媒層10が形成されている。金属シート9上に加水分解触媒層10が形成された積層構造はシート状に形成されることが好ましい。
【0025】
金属シート9としては、例えば、アルミニウム金属シート、ステンレス金属シートであることが好ましい。
【0026】
加水分解触媒層10に用いられる触媒材料は、尿素の加水分解触媒であればよいが、具体的には、尿素の加水分解を促進する触媒として機能する金属酸化物であることが好ましい。
【0027】
金属酸化物としては、Ti、Al、Siの中から選ばれた1種以上の元素を含む酸化物(Al、SiO、Al-SiO、TiO等)が挙げられる。入手性と安全性と触媒性能のバランスが良いという観点から、TiOが好ましい。
【0028】
混合部8において、排ガスと噴霧尿素水が混合されると、下記の加水分解反応が生じる。
(NHCO+HO →2NH+CO
【0029】
金属シート9上に、加水分解触媒を付与して加水分解触媒層10を形成する手法は格別限定されず、金属シート9上に加水分解触媒を固定化して加水分解触媒層10を形成できればよい。例えば、分散液に触媒となる酸化チタンを混合して加水分解触媒塗布液を作成し、その塗布液を例えばアルミニウム金属シートやステンレス金属シートなどの金属シート9に塗布することにより、加水分解触媒層10を形成することができる。
【0030】
本実施形態においては、金属シート9上ではなく、金属製の排ガス配管内壁に直接、加水分解触媒を付与してもよい。金属シート9上、又は金属製の排ガス配管内壁に、加水分解触媒を付与する方法としては、加水分解触媒塗布液の塗布以外に、上述した例えば、刷毛塗り、浸漬塗布、スプレー、溶射、CVDなど種々の方法で付与することができる。
【0031】
加水分解触媒が付与され加水分解触媒層10が形成された金属シート9が設置される位置、または加水分解触媒が付与される配管内壁の位置は、尿素水を触媒に接触させる観点から、配管内の尿素水噴霧ノズル7の置かれる位置近傍が好ましい。また、ターボチャージャ付きエンジンである場合には、尿素水噴霧ノズル7が、燃焼室からターボチャージャ前の間の排ガス配管位置、或いは燃焼室からターボチャージャ後の排ガス配管位置に配置されるため、これらの場合でも、尿素水噴霧ノズル7の位置近傍に配置されることが好ましい。
【0032】
図1に示すように、加水分解装置3で、尿素が加水分解される上記の加水分解反応により、NHが生成し、脱硝装置11において、脱硝触媒により、NOxとNHを含む排ガスは、下記の還元反応により、Nに還元されて浄化される。
【0033】
4NO+4NH+O→4N+6H
6NO+8NH→7N+12H
【0034】
脱硝触媒としては、格別限定されるわけではないが、TiOあるいはSiO-TiO、WO-TiO、SiO-TiO、Al-SiOなどの二元系複合酸化物、あるいは、WO-SiO-TiO、Mo-SiO-TiOなどの三元系複合酸化物などの担体に、V、Cr、Mo、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、W、In、Ir、Nbなどの活性成分を担持してなるハニカム構造を有し、NH(還元剤)の存在下で、NOxを還元して窒素ガスに変換して浄化する触媒が用いられる。
【0035】
本実施形態においては、気化用配管4の外周側に、気化用配管4を覆うように、温度調整部12が設けられていることが好ましい。温度調整部12としては、例えば、配管マントルヒーターであることが好ましい。
【0036】
次に、本発明に係る高融点物質による配管閉塞を抑制する方法について説明する。
【0037】
図1に示す高融点配管閉塞物質の生成抑制装置を用いて高融点物質による配管閉塞を抑制する方法について説明する。
【0038】
具体的には、尿素の加熱分解によってシアヌル酸が生成されない加熱系(30~130℃未満、結晶析出防止の観点から好ましくは100℃未満)において、該加水分解触媒層に、尿素水噴霧ノズルから噴霧された噴霧尿素水を135℃~350℃、より好ましくは、150℃~250℃で接触させ、尿素が熱分解して発生するアンモニア以外の副生物であるイソシアン酸(HN=C=O)やシアン酸(HOCN)と雰囲気中の水分とから加水分解してアンモニアと二酸化炭素に変換する加水反応を促進することにより、シアヌル酸へ重合する反応をするためのイソシアン酸(HN=C=O)やシアン酸(HOCN)が減少し、結果として尿素からのシアヌル酸の生成量を減少させることにより、高融点物質による配管閉塞を抑制することができる。
【0039】
尿素の加熱温度をシアヌル酸が生成されない温度に調整する手法としてはは、図1に示すように、排ガス配管の外周側に設けられた温度調整部12によって、気化用配管4の温度を調整することができる。これにより、気化用配管4内に導入される排ガスの温度を調整することができる。温度調整部12を設けることにより、排ガス温度に調整の必要性が生じた場合に、温度調整をすることができる。この結果、シアヌル酸の生成量が減少し、高融点物質による配管閉塞を抑制することができる。
【0040】
本実施形態においては、気化用配管4の外周に図示しない空気管を設け(2重管構造)、その空気管に圧縮空気を流すようにすることも好ましい。排ガスの温度センサに連動して、空気量を調整するようにしてもよい。この場合、気化用配管の外周に設けた空気管の更に外周に、温度調整部12を設けることも好ましい。
【0041】
本発明は、排気ガスの熱による尿素の熱分解において、シアヌル酸へ重合する反応するためのイソシアン酸(HN=C=O)やシアン酸(HOCN)が減少し、結果として尿素からのシアヌル酸の生成量を減少させることにより、アンモニア供給量を増やすことができるため、配管内への還元剤水素源滞留による還元剤水素源供給ロスにより 脱硝効率が低下したり、脱硝触媒の表面被覆またはハニカム触媒の目開きの閉塞により下流のNOx還元性能を低下させるようなことがなくなる。更に、シアヌル酸の生成量が減少させることにより、触媒反応管上流部の高融点物質による配管閉塞目詰まりが抑制され、排気管背圧上昇でのエンジン出力の低下、最悪なケースではエンジンが停止してしまうトラブルを抑制することができる。
【実施例0042】
以下、本発明の実施例について説明するが、本発明は、かかる実施例によって限定されない。
【0043】
(実施例1)
図1に示すNOx除去装置を用いて、船舶用ディーゼルエンジンから排出される排ガスを加水分解装置と、脱硝装置を用いて、高沸点配管閉塞物質の生成抑制実験を行った。
【0044】
1.実験条件
(1)加水分解装置
排ガス量 :SV 90,000/h
加水分解装置用配管 :200℃加熱(250℃配管マントルヒーター加熱)
加水分解触媒:厚み0.1mmのアルミニウム金属シートの上に、TiO触媒をシート状に塗布して、乾燥全厚みが0.105mm~0.200mmのTiO尿素加水分解触媒シート(以下、必要により、TiO触媒ALシートという)を製造した。
【0045】
(2)脱硝装置
脱硝触媒:TiO触媒を金属ハニカム体に浸漬塗布して、ハニカム触媒を製造し、脱硝触媒とした。この触媒は、脱硝機能と加水分解機能を有する。
【0046】
2.実験
(1)敢えて配管マントルヒーターの加熱温度450℃で得られる普段系内ガス温300℃より普段系内ガス温を100℃下げて、尿素水噴霧を行って、シアヌル酸生成を加速させるようにして実験した。すなわち、配管マントルヒーターの加熱温度を250℃にして系内ガス温200℃でのシアヌル酸生成挙動を調べた。
【0047】
(2)尿素供給条件:
ア 4Hの32.5wt%尿素水供給量(g)は、表1の通りとした。
イ 純尿素供給流量(g/min)を表1のようにした。
【0048】
(3)高融点物質(シアヌル酸)の生成速度
ア 尿素由来の高融点物質(シアヌル酸)の生成量(g)(240分後)は、6.12gであった(表1参照)。
イ 尿素由来の高融点物質(シアヌル酸)の単位時間当たりの生成量(g/min)は、0.0255g/minであった(表1参照)。
(4)供給尿素から高融点物質(シアヌル酸)への転化率(%)は、3.9(%)(w/w)であった(表1参照)。
【0049】
比較例1
実施例1において、アルミシートの上に触媒を設けることなく、アルミシートだけにした以外は、実施例1と同様に実験した。
その結果を表1に示した。
【0050】
【表1】
【0051】
(評価)
表1の実験結果から、触媒による供給尿素から高融点物質(シアヌル酸)への生成抑制効果は、6.7%から3.9%に減少したことから、42%減少したことがわかった。
【0052】
実施例2
図1に示すNOx除去装置を用いて、船舶用ディーゼルエンジンから排出される排ガスを加水分解装置と、脱硝装置を用いて、高沸点配管閉塞物質の生成抑制実験を行った。
【0053】
1.実験条件
(1)加水分解装置
排ガス量 :SV 90,000/h
加水分解装置用配管 :200℃加熱(250℃配管マントルヒーター加熱)
加水分解触媒:厚み0.1mmのステンレス金属シートの上に、TiO触媒をシート状に塗布して、乾燥全厚みが0.105mm~0.200mmのTiO尿素加水分解触媒シート(以下、必要により、TiO触媒SUSシートという)を製造した。
【0054】
(2)脱硝装置
脱硝触媒:TiO触媒を金属ハニカム体に浸漬塗布して、ハニカム触媒を製造し、脱硝触媒とした。この触媒は、脱硝機能と加水分解機能を有する。
【0055】
2.実験
(1)配管マントルヒーター加熱温度450℃で得られる普段系内ガス温300℃より100℃下げた普段系内ガス温200℃で、尿素水噴霧を行って、シアヌル酸生成を加速させるようにして実験した。すなわち、配管マントルヒーター加熱温度を250℃にして系内ガス温200℃でのシアヌル酸生成挙動を調べた。
【0056】
(2)尿素供給条件:
ア 4Hの32.5wt%尿素水供給量(g)は、表2の通りとした。
イ 純尿素供給流量(g/min)を表2のようにした。
【0057】
(3)高融点物質(シアヌル酸)の生成速度
ア 尿素由来の高融点物質(シアヌル酸)の生成量(g)(240時間後)は、1.92gであった(表2参照)。
イ 尿素由来の高融点物質(シアヌル酸)の単位時間当たりの生成量
(g/min)は、0.00800g/minであった(表2参照)。
(4)供給尿素から高融点物質(シアヌル酸)への転化率(%)は、
1.23(%)(w/w)であった(表2参照)。
【0058】
比較例2
実施例2において、ステンレスシートの上に触媒を設けることなく、ステンレスシートだけにした以外は、実施例2と同様に実験した。
その結果を表2に示す。
【0059】
【表2】
【0060】
(評価)
表2の実験結果から、比較例2によれば、供給尿素から高融点物質(シアヌル酸)への転化率は、2.17%であった。
SUSシートにコートしたTiO触媒の高融点物質(シアヌル酸)の生成の抑制効果は、供給尿素の高融点物質(シアヌル酸)への転化率が2.17%から1.23%に減少したことから、高融点物質(シアヌル酸)生成が43%減少したことがわかった。
【0061】
実施例3~5
また、実施例3~5は、実施例2のTiO触媒に代えて、Al触媒、珪酸アルミ酸化物(Al-SiO)触媒、及びシリカ(SiO)触媒を用いること以外は、実施例2と同様に実験した。実施例2~5の4種類の触媒をそれぞれにコートしたSUS金属シートの、比較例2の触媒を付与していないSUS金属シートに対する高融点物質(シアヌル酸)の生成抑制効果の結果を表3に示す。
【0062】
【表3】
【0063】
(評価)
これらSUS金属シート表面にコートされた多孔質性の金属酸化物触媒のなかでは、TiO系触媒、Al触媒、珪酸アルミ酸化物(Al-SiO)触媒の尿素由来高融点物質(シアヌル酸)の生成抑制効果が比較的高く、TiO系触媒が最も高いことがわかった。
【符号の説明】
【0064】
1 ディーゼルエンジン
2 排ガス管
3 尿素水の加水分解装置(気化装置)
4 気化用配管
5 排ガス導入口
6 尿素水供給管
7 尿素水噴霧ノズル
8 混合部
9 金属シート
10 加水分解触媒層
11 脱硝装置
12 温度調整部
図1
図2