(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023031149
(43)【公開日】2023-03-08
(54)【発明の名称】屋根構造
(51)【国際特許分類】
E04D 13/17 20060101AFI20230301BHJP
E04D 1/28 20060101ALI20230301BHJP
E04D 12/00 20060101ALI20230301BHJP
E04B 1/70 20060101ALI20230301BHJP
E04B 7/18 20060101ALI20230301BHJP
【FI】
E04D13/17
E04D1/28 E
E04D12/00 C
E04B1/70 E
E04B7/18 B
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2021136674
(22)【出願日】2021-08-24
(11)【特許番号】
(45)【特許公報発行日】2022-03-24
(71)【出願人】
【識別番号】000204985
【氏名又は名称】大建工業株式会社
(74)【代理人】
【識別番号】110001427
【氏名又は名称】弁理士法人前田特許事務所
(72)【発明者】
【氏名】大場 正一
【テーマコード(参考)】
2E001
【Fターム(参考)】
2E001DB02
2E001FA16
2E001FA17
2E001NA07
2E001ND25
2E001ND26
(57)【要約】
【課題】野地板と平板状屋根材とを備えた屋根構造において、施工が容易で、平板状屋根材及び野地板が腐朽により劣化し難い屋根構造を提供する。
【解決手段】野地板21と該野地板21の上方に設けられる平板状屋根材10とを備えた屋根構造1において、野地板21の下方に、軒先6側から棟木5側へ延びる通気路40を形成し、野地板21を、広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
野地板と該野地板の上方に設けられる平板状屋根材とを備えた屋根構造であって、
上記野地板の下方には、軒先側から棟木側へ延びる通気路が形成され、
上記野地板は、広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成されている
ことを特徴とする屋根構造。
【請求項2】
請求項1に記載の屋根構造において、
上記中密度繊維板は、透湿抵抗が1.2m2・s・Pa/μg未満になるように構成されている
ことを特徴とする屋根構造。
【請求項3】
請求項1又は2に記載の屋根構造において、
上記野地板の上面を覆う透湿防水シートをさらに備えている
ことを特徴とする屋根構造。
【請求項4】
請求項1~3のいずれか1つの屋根構造において、
上記平板状屋根材は、金属屋根材である
ことを特徴とする屋根構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、野地板と平板状屋根材とを備えた屋根構造に関するものである。
【背景技術】
【0002】
従来、野地板と平板状屋根材とを備えた屋根構造が用いられている(例えば、下記の特許文献1を参照)。特許文献1には、金属製の平板状屋根材の裏側(屋内側)における結露の発生を防止すべく、野地板と平板状屋根材との間に通気路を形成する通気部材を設けた屋根構造が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記屋根構造では、野地板と平板状屋根材との間には通気路が確保されるものの、野地板とその下方の断熱材との間に通気路が形成されていないため、冬季に室内で生じて小屋裏に至った湿気によって野地板の下面において結露が生じ、構造用合板等で構成される野地板が腐朽により劣化するおそれがあった。
【0005】
また、上記屋根構造において、野地板と断熱材との間にも通気路を形成することが考えられるが、その場合、野地板の上下に通気路を形成しなければならず、施工に手間がかかる。
【0006】
本発明は、かかる点に鑑みてなされたものであり、その目的は、野地板と平板状屋根材とを備えた屋根構造において、施工が容易で、平板状屋根材及び野地板が腐朽により劣化し難い屋根構造を提供することにある。
【課題を解決するための手段】
【0007】
上記の目的を達成するために、この発明では、野地板の下方に通気路を形成し、野地板を広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成することとした。
【0008】
具体的には、第1の発明は、野地板と該野地板の上方に設けられる平板状屋根材とを備えた屋根構造であって、上記野地板の下方には、軒先側から棟木側へ延びる通気路が形成され、上記野地板は、広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成されていることを特徴とするものである。
【0009】
第1の発明では、野地板の下方に、軒先側から棟木側へ延びる通気路が形成されている。そのため、冬季に室内で生じた湿気が小屋裏に至っても、通気路を流れる空気と共に屋外へ排出することができる。よって、野地板の下面において結露が生じて野地板が腐朽により劣化するおそれがない。つまり、野地板の腐朽による劣化を抑制することができる。
【0010】
また、第1の発明では、野地板が、中密度繊維板(MDF:Medium Density Fiberboard)で構成されている。中密度繊維板は、木材繊維を接着剤と共に熱圧して成板することによって形成された木質ボードであり、合板のように単板自体の透湿抵抗が高い上、単板間の接着剤層の存在により、透湿抵抗が高い材料となっていないため、従来、野地板として用いられていた構造用合板に比べて透湿抵抗が低い。このような湿気を透過させ易い野地板を用いることにより、夜間の放射冷却等によって平板状屋根材の下方において結露が生じたとしても、結露水は、日中の気温上昇によって気化して水蒸気となり、野地板を通過して通気路に至る。よって、平板状屋根材と野地板との間に通気路がなくても、平板状屋根材と野地板との間で生じた結露による湿気を屋外へ排出することができ、平板状屋根材の腐朽による劣化を抑制することができる。
【0011】
また、第1の発明では、比較的高密度(0.7以上0.85未満)の中密度繊維板を野地板として用いている。このような野地板は、構造用合板等で構成された従来の野地板(吸水率60%以上)に比べて吸水率が低くなるため、表面に付着した雨水を吸水し難い。また、このような野地板によれば、釘が打ち込まれた箇所においても、木材繊維間をかき分けるように打ち込まれた釘に接着剤でコーティングされた木材繊維が密着することにより、釘穴に雨水等の水分が浸入し難くなる。このように表面だけでなく釘穴からも吸水し難い防水性に優れた中密度繊維板を野地板として用いることにより、雨水が平板状屋根材の隙間から野地板に至っても、従来に比べて雨水が格段に野地板に浸透し難くなり、野地板の腐朽による劣化を抑制することができる。また、万一、雨水が野地板に浸透したとしても、野地板の裏面まで至ることがなく、雨漏りを防止することができる。
【0012】
特に、第1の発明では、広葉樹の木部繊維を主原料とする中密度繊維板を野地板として用いている。広葉樹は、組織の90%以上が仮導管である針葉樹に比べて空隙率が著しく低いため、吸水率も著しく低い。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板よりも吸水率が低くなる。また、広葉樹の木部繊維は、針葉樹の仮導管繊維に比べて繊維長が短く、繊維径が小さい。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べ、単位容積当たりの繊維の本数が多く、釘穴が形成されたときに釘の周囲を多数の細かい繊維が囲むため、欠損度合いが小さくなり、釘穴止水性により優れている。よって、第1の発明によれば、このように吸水率が低く釘穴止水性に優れた広葉樹の木部繊維を主原料とする中密度繊維板を野地板として用いることにより、野地板の腐朽による劣化及び雨漏りをより抑制することができる。
【0013】
さらに、繊維長が短い広葉樹の木部繊維を主原料とする中密度繊維板は、繊維長が長い針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて撓み難い。そのため、野地板を広葉樹の木部繊維を主原料とする中密度繊維板で構成すると、屋根施工時に作業者が野地板上を歩く際に野地板が撓み難いため、作業者に安心感を与えることができる。これは、野地板としては特に重要な要素である。
【0014】
また、従来の合板からなる野地板では、最表層の単板が水を吸収すると、吸収された水は、導管・仮導管を通って単板の繊維方向(通常長手方向)に移動し、小口から漏出して裏面に至る。裏面に至った水の一部は、そのまま滴って雨漏りの原因となり、また、他の一部は、最裏層の単板の小口から再度吸収されて単板内を移動し、垂木と接触する部分で再度単板から漏出し、垂木から滴ってやはり雨漏りの原因となる。
【0015】
これに対し、第1の発明によれば、野地板が中密度繊維板で構成されている。中密度繊維板で構成された野地板は、木材を分解して繊維を接着剤で固めているので、概ね、繊維方向が揃っておらず、高密度で空隙が少なく、耐水性の接着剤や撥水剤を使用でき、吸水率も著しく低い。そのため、第1の発明によれば、従来の合板からなる野地板のように継ぎ目(小口)から水が漏出することがなく、野地板の継ぎ目からの雨漏りも防止することができる。
【0016】
さらに、第1の発明によれば、野地板の下方に通気路が形成され、野地板を透湿性に優れた中密度繊維板で構成している。そのため、万一、雨水が野地板に浸透したとしても、野地板に浸透した雨水は、いずれ気化して水蒸気となり、野地板を通過して通気路に至るため、通気路を流れる空気と共に屋外へ排出することができる。
【0017】
以上により、第1の発明によれば、施工が容易で、平板状屋根材及び野地板が腐朽により劣化し難い屋根構造を提供することができる。
【0018】
第2の発明は、第1の発明において、上記中密度繊維板は、透湿抵抗が1.2m2・s・Pa/μg未満になるように構成されていることを特徴とするものである。
【0019】
ここで、中密度繊維板の透湿抵抗は、JIS A1324に規定されたカップ法に準拠して測定される値である。
【0020】
第2の発明では、透湿抵抗が1.2m2・s・Pa/μg未満に構成された中密度繊維板を野地板として用いている。このように透湿抵抗が極めて低く、透湿性に優れた中密度繊維板を野地板として用いることにより、野地板表面での結露の発生及び野地板の腐朽による劣化を抑制する効果がさらに増大する。
【0021】
第3の発明は、第1又は第2の発明において、上記野地板の上面を覆う透湿防水シートをさらに備えていることを特徴とするものである。
【0022】
ところで、アスファルトルーフィングのような透湿性の低いシート材を野地板の上面に設けると、平板状屋根材の下方で生じた結露水や平板状屋根材の下面側へ侵入した雨水が十分に排出されずに平板状屋根材とシート材との間に溜まり易く、平板状屋根材が劣化する(例えば、金属屋根材では錆が生じる)おそれがある。
【0023】
第3の発明では、野地板の上面を透湿性と防水性を有する透湿防水シートで覆うこととしている。このような構成により、平板状屋根材の下方において結露が生じたり、平板状屋根材の下面側へ雨水が浸入したりしても、その水分(結露水や雨水)は、気温上昇時に気化して水蒸気となり、透湿性を有する屋根下地材(透湿防水シートと野地板)を通過して通気路に至るため、水分(結露水や雨水)が平板状屋根材の下方に溜まることがない。つまり、上記構成によれば、平板状屋根材の劣化を抑制することができる。また、第3の発明によれば、野地板を透湿防水シートで覆うことで屋根下地材の防水性がさらに向上するため、野地板の腐朽等の劣化をさらに抑制することができる。
【0024】
第4の発明は、第1~第3のいずれか1つの発明において、上記平板状屋根材は、金属屋根材であることを特徴とするものである。
【0025】
第4の発明では、平板状屋根材が金属屋根材であるため、金属屋根材の下方で生じた結露水や金属屋根材の下面側へ侵入した雨水によって、金属屋根材が劣化(錆が発生)し易いところ、上記構成により、金属屋根材の下方の水分を通気路へ排出することができるため、金属屋根材の劣化を抑制することができる。
【発明の効果】
【0026】
以上説明したように、本発明の屋根構造によると、野地板の下方に通気路を形成し、野地板を広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成することにより、施工が容易で、平板状屋根材及び野地板が腐朽により劣化し難い屋根構造を提供することができる。
【図面の簡単な説明】
【0027】
【
図1】
図1は、実施形態1に係る建物の屋根構造の一部分の外観を示す斜視図である。
【
図2】
図2は、
図1の屋根構造の一部分を妻側に平行な面で切断した断面図である。
【
図4】
図4は、
図1の屋根構造の一部分を平側に平行な面で切断した断面図である。
【
図6】
図6は、透水性試験の様子を示す模式図である。
【発明を実施するための形態】
【0028】
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の実施形態は、本質的に好ましい例示に過ぎず、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
【0029】
《発明の実施形態1》
図1及び
図2に示すように、屋根構造1は、屋根下地材20の上に、複数の金属製の平板状屋根材10,…,10を、順に配置して葺いたものである。本実施形態1では、複数の平板状屋根材10,…,10は、棟木5側から軒先6側に向かって縦方向に延びるように配置されてそれぞれはぜ継ぎされた、所謂、立平葺きで施工されている。
【0030】
-屋根構造の構成-
図2~
図4に示すように、屋根構造1は、平板状屋根材10と、屋根下地材20と、断熱材30とを備えている。平板状屋根材10と屋根下地材20は、建物の小屋組において間隔を空けて配された複数の垂木2,…,2の上方に施工されている。複数の垂木2,…,2の下端面には、石膏ボード3が取り付けられている。なお、
図2中、符号7は鼻隠し、符号8は水切り、符号9aは棟包み、符号9bは棟換気部材である。
【0031】
屋根構造1では、断熱材30は、ロックウールによって構成され、複数の垂木2,…,2の各間に設けられている。断熱材30は、高さが、複数の垂木2,…,2の成よりも低くなるように形成されている。そのため、屋根下地材20の下方には、垂木2に沿って軒先6側から棟木5側へ延びる通気路40が形成されている。
【0032】
以上のような構成により、本実施形態1では、屋根構造1は、天井側ではなく屋根側に断熱材30が設けられる、所謂、屋根断熱タイプの屋根構造に構成されている。
【0033】
〈平板状屋根材の詳細な構成〉
図2~
図4に示すように、平板状屋根材10は、折り曲げ形成された矩形状の金属板で構成され、本実施形態1では、ガルバリウム鋼板(登録商標)で構成されている。平板状屋根材10は、屋根下地材20に向かって打ち込まれたビス4で、屋根下地材20の上面に取り付けられている。なお、平板状屋根材10は、ガルバリウム鋼板(登録商標)に限られず、銅板、亜鉛メッキ鋼板、アルミニウム板、ステンレス板等の金属屋根材やスレート、アスファルト、セメント等からなる金属以外の屋根材で構成されていてもよい。また、金属屋根材の留め付けにはビス4を用い、スレート、アスファルト、セメント等からなる屋根材の留め付けには釘を用いる。
【0034】
一例として、平板状屋根材10は、本体部11と、第1係合部(はぜ)12と、第2係合部(はぜ)13と、支持脚部14と、固定部15とを備えている。
【0035】
本体部11は、平板状屋根材10を構成する矩形状の金属板の幅方向の両端部を除く部分であり、平板状屋根材10の長手方向に延び、屋根下地材20に取り付けられた際に、該屋根下地材20の上方を覆う概ね平板状の部分である。本体部11は、幅方向の両端部に、端から中程に向かう程、低くなる段差部11aが形成されている。これにより、本体部11は、幅方向の中程部分が両端部に比べて下方へ浅く窪んだ形状となる。
【0036】
第1係合部12は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。第1係合部12は、本体部11の幅方向の一方側(
図4では右側)において上方に突出して隣り合う平板状屋根材10の第2係合部13と係合する形状に形成されている。
【0037】
具体的には、本実施形態1では、第1係合部12は、本体部11の幅方向の一端から上方に向かって延びる矩形平板状の第1直線部12aと、第1直線部12aの上端から平板状屋根材10の幅方向の内側に向かって延びた後、幅方向の外側へ斜め上方に向かって折れ曲がり、斜め上方に延びる突出部12bと、突出部12bの上端から下方に向かって第1直線部12aに平行に延びる矩形平板状の第2直線部12cとを有している。第1係合部12は、第1直線部12aと突出部12bと第2直線部12cとにより、幅方向の内側に向かって突出する片ひげ矢印形状に形成されている。
【0038】
第2係合部13は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。第2係合部13は、本体部11の幅方向の他方側(
図4では左側)において上方に突出して隣り合う平板状屋根材10の第1係合部12に覆い被さることにより、隣り合う平板状屋根材10の第1係合部12と係合(はぜ継ぎ)する形状に形成されている。
【0039】
具体的には、本実施形態1では、第2係合部13は、本体部11の幅方向の他端から上方に向かって延びる矩形平板状の直線部13aと、直線部13aの上端から幅方向の外側へ斜め下方に向かって延びた後、平板状屋根材10の幅方向の内側に向かって折れ曲がり、直線部13aに略垂直に延びる突出部13bと、突出部13bの一端から幅方向の外側へ斜め下方に向かって折れ曲がり、斜め下方に延びる終端部13cとを有している。第2係合部13は、直線部13aと突出部13bと終端部13cとにより、幅方向の外側に向かって突出する片ひげ矢印形状に形成されている。第2係合部13は、第1係合部12に覆い被さるように、第1係合部12よりも一回り大きい片ひげ矢印形状に形成されている。
【0040】
支持脚部14は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。支持脚部14は、第1係合部12の第2直線部12cの下端(第1直線部12aの下端と同じ高さ位置)から下方に延び、第1係合部12を支持する部分である。支持脚部14は、第1係合部12の第2直線部12cと長さ(
図4の紙面直交方向の長さ)が等しい矩形平板状に形成されている。
【0041】
固定部15は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。固定部15は、支持脚部14の下端から幅方向の外側に延び、屋根下地材20に当接する平板状の部分を有し、屋根下地材20に固定されている。固定部15は、支持脚部14と長さ(
図4の紙面直交方向の長さ)が等しい矩形平板状に形成されている。固定部15は、前述したように、屋根下地材20に向かって打ち込まれたビス4で屋根下地材20に固定されている。
【0042】
このような構成により、平板状屋根材10は、固定部15をビス4で屋根下地材20に固定し、第1係合部12に隣接する平板状屋根材10の第2係合部13を覆い被せて係合させると共に、第2係合部13を隣接する平板状屋根材10の第1係合部12に覆い被さるように係合させるだけで、屋根下地材20上に施工される。
【0043】
〈屋根下地材の詳細な構成〉
図2~
図4に示すように、屋根下地材20は、野地板21と、透湿防水シート22とを備えている。野地板21と透湿防水シート22とは、いずれも透湿性と防水性とを兼ね備えている。そのため、本実施形態1では、平板状屋根材10と屋根下地材20との間に屋外と連通する連通路が設けられていない。つまり、平板状屋根材10と屋根下地材20とは大部分が当接し、平板状屋根材10と屋根下地材20との間に空間が形成されていても屋外と連通していない。
【0044】
[野地板]
野地板21は、密度(g/cm3)が0.7以上0.85未満(本実施形態では、密度0.79g/cm3)の中密度繊維板(MDF:Medium Density Fiberboard)で構成されている。野地板21の厚さは特に限定されないが、本実施形態では、厚さ9.2mm厚に形成されている。また、本実施形態では、広葉樹の木部繊維を主原料とする中密度繊維板を野地板21として用いている。
【0045】
一般に、広葉樹は、組織の9割以上が仮導管で占められる針葉樹に比べて硬く、吸水率が低い。そのため、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて吸水率が低いものとなる。
【0046】
実際に、アカシア(広葉樹)の木部繊維を主原料とする中密度繊維板N1と、ラジアータパイン(針葉樹)の仮導管繊維を主原料とする中密度繊維板N2とを製作し、吸水率試験を行って吸水率を測定したところ、中密度繊維板N1の吸水率は28%、中密度繊維板N2の吸水率は52%であった。この測定結果より、広葉樹の木部繊維を主原料とする中密度繊維板N1が、針葉樹の仮導管繊維を主原料とする中密度繊維板N2に比べて吸水率が低くなることがわかる。なお、中密度繊維板N1,N2の製作には、同一で同量の接着剤を用いた。また、吸水率試験では、相対湿度65±5%の環境下で恒量に達した中密度繊維板N1,N2の重量(m1)と、20±1℃の水中に24時間浸した後の中密度繊維板N1,N2の重量(m2)とを測定し、水浸前後の中密度繊維板N1,N2の重量差(m2-m1)を水浸前の重量m1で除したものに100を乗じた値を吸水率とした。
【0047】
なお、後述するように、本屋根構造1では、吸水率が13.6%以下になるように構成された中密度繊維板を野地板21として用いる。上記吸水率試験で用いた中密度繊維板N1,N2は、樹種による吸水率の違いを検証するために用いるものであり、実用上必要な撥水剤等を添加していないので、本屋根構造1において野地板21として用いる中密度繊維板よりも吸水率が高い値(28%、52%)となっている。
【0048】
中密度繊維板の主原料としては、広葉樹の木部繊維と針葉樹の仮導管繊維とが用いられるが、広葉樹の木部繊維は、針葉樹の仮導管繊維に比べて繊維長が短く(仮導管繊維が1.5~6.0mmであるところ、木部繊維は0.5~2.0mm)、細い(仮導管繊維の直径が20~60μmであるところ、木部繊維の直径は10~30μm)。つまり、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて、エレメントサイズ(木質繊維の長さ及び直径)が小さい。そのため、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて、単位容積当たりの繊維の本数が多く、釘穴が形成されたときに釘の周囲を多数の細かい繊維が囲むため、欠損度合が小さくて済み(細かな繊維で釘穴が埋められる)、釘穴止水性により優れたものになる。
【0049】
また、広葉樹は針葉樹よりも曲げヤング係数が大きく、繊維に分解して再構成した中密度繊維板においても同じ傾向がみられるので、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて撓み難いものとなる。実際に、本実施形態1で野地板21として用いる広葉樹の木部繊維を主原料とする厚さ9mmの市販品の中密度繊維板M1と、針葉樹の仮導管繊維を主原料とする厚さ9mmの市販品の中密度繊維板M2,3と、上述のアカシア(広葉樹)の木部繊維を主原料とする中密度繊維板N1と、ラジアータパイン(針葉樹)の仮導管繊維を主原料とする中密度繊維板N2とについて、JIS A5905に規定される曲げ試験方法に準拠して、常態曲げ強度(MOR)と常態曲げヤング係数(MOE)と湿潤時曲げ強度(wetMOR)と湿潤時曲げヤング係数(wetMOE)とを測定した。その結果、
図5に示す結果となった。
【0050】
なお、中密度繊維板M1は、原料となる木繊維の全て(100%)が広葉樹の木部繊維で構成されるものである。一方、中密度繊維板M2,M3は、建築廃材(廃材のため正確な値は特定できないが、構造材のほとんどがスギ、ヒノキ等の針葉樹であり、内装材にも木材は使用されるが、量的には柱等の構造材がほとんどであることから、大部分は針葉樹であると考えられる)から得られる針葉樹の仮導管繊維に広葉樹の木部繊維を少量添加して原料として用いるものであり、原料となる木繊維の50%以上が針葉樹の仮導管繊維で構成されるものである。また、中密度繊維板N1,N2は、上述した同一で同量の接着剤を用いて製作した中密度繊維板であり、中密度繊維板N1は、原料となる木繊維の全て(100%)がアカシア(広葉樹)の木部繊維で構成されるものであり、中密度繊維板N2は、原料となる木繊維の全て(100%)がラジアータパイン(針葉樹)の仮導管繊維で構成されるものである。
【0051】
図5に示すように、市販品M1~M3に関し、曲げ強度は、常態及び湿潤時共に差がほとんどなかった。一方、曲げヤング係数は、常態及び湿潤時共に、木繊維の100%が広葉樹の木部繊維である中密度繊維板M1が、木繊維の50%以上が針葉樹の仮導管繊維である中密度繊維板M2,M3に比べて高い値となった。また、中密度繊維板N1,N2に関し、常態曲げ強度は、中密度繊維板N2(針葉樹の仮導管繊維100%)が、中密度繊維板N1(広葉樹の木部繊維100%)に比べて高い値となるものの、湿潤時曲げ強度は、中密度繊維板N1が中密度繊維板N2よりも高い値となった。また、常態では、曲げヤング係数は、中密度繊維板N1,N2で差がほとんどなかった。一方、湿潤時曲げヤング係数は、中密度繊維板N1(広葉樹の木部繊維100%)が、中密度繊維板N2(針葉樹の仮導管繊維100%)に比べて著しく高い値となった。
【0052】
以上の測定結果より、少なくとも湿潤状態において、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて、撓み難いことが検証された。
【0053】
野地板21を構成する中密度繊維板は、耐水性に優れた接着剤を含んでいる。本実施形態1では、ユリア・メラミン共縮合樹脂系接着剤を含む中密度繊維板によって野地板21が構成されている。なお、中密度繊維板に用いる接着剤は、ユリア・メラミン共縮合樹脂系接着剤に限られず、ユリア・メラミン共縮合樹脂系接着剤、ジフェニルメタンジイソシアネート及びフェノール樹脂の少なくとも一種を含むものであればよい。
【0054】
(吸水率)
野地板21は、広葉樹の木部繊維を主原料とする密度(g/cm3)が0.7以上0.85未満の中密度繊維板で構成することにより、吸水率が15%以下に構成されている。なお、野地板21は、吸水率が13.6%以下となるように構成されるのが好ましく、さらに、吸水率が13.2%以下となるように構成されるのがより好ましい。
【0055】
ここで、上記吸水率は、相対湿度65±5%の環境下で恒量に達した試験片の重量(m1)を測定した後、該試験片を20±1℃の水中に置き、24時間浸した後、試験片を取り出して重量(m2)を測定する吸水率試験を行い、該吸水率試験において測定した水浸前後の試験片の重量差から算出したもの(水浸前後の試験片の重量差(m2-m1)を水浸前の重量m1で除したものに100を乗じた値)を用いる。
【0056】
上述のように、本実施形態1で野地板21として用いる中密度繊維板は、吸水率が比較的低い木材繊維(広葉樹の木部繊維)が耐水性に優れた接着剤でコーティングされることにより、木材繊維間に水が浸入し難くなり、吸水率が低くなる。このように、本実施形態1では、野地板21を、広葉樹の木部繊維を主原料とし、耐水性に優れた接着剤を用いて成形した比較的高密度の中密度繊維板で構成することにより、野地板21の吸水率を所望の吸水率、本実施形態では、15%以下(好ましくは13.6%以下、より好ましくは13.2%以下)にすることができる。
【0057】
なお、従来野地板として用いていた厚さ12mmの構造用合板A(スギ)と構造用合板B(表層カラマツ、芯層スギ)について、上記吸水率試験を行い、吸水率を算出したところ、その吸水率は、82%と61%であった。このことから、本実施形態1の野地板21の吸水率が従来の野地板と比較して著しく低いことが判る。
【0058】
(透湿性能)
野地板21は、JIS A1324に規定されたカップ法に準拠して測定される透湿抵抗が、1.2m2・s・Pa/μg未満となるように構成されている。具体的には、本実施形態1では、野地板21の透湿抵抗が、1.2m2・s・Pa/μg未満となるように、野地板21を構成する中密度繊維板のエレメントサイズ(木質繊維の長さ及び直径)を調節している。
【0059】
上述のように耐水性に優れる接着剤を含む広葉樹の木部繊維を主原料とする比較的高密度の中密度繊維板は、吸水率が低くなる。一方、本実施形態1では、野地板21を構成する中密度繊維板のエレメントサイズ(木質繊維の長さ及び直径)を調節することにより、吸水率が15%以下で且つ透湿抵抗が1.2m2・s・Pa/μg未満と低く抑えられた野地板21を構成することができる。
【0060】
なお、従来野地板として用いていた上記構造用合板Aと構造用合板Bについて、JIS A1324に規定されたカップ法に準拠して測定した透湿抵抗は、11m2・s・Pa/μgと13m2・s・Pa/μgであった。このことから、本実施形態1の野地板21の透湿抵抗が従来の野地板と比較して著しく低い、つまり、透湿性能が著しく高いことが判る。
【0061】
[透湿防水シート]
透湿防水シート22は、JIS A6111に準拠して測定される透湿抵抗が0.65m2・s・Pa/μg以下となるように構成されている。より具体的には、本実施形態1では、透湿防水シート22は、多数の微細孔(直径0.5μm程度)が設けられた樹脂フィルムで構成され、透湿抵抗が0.65m2・s・Pa/μg以下に構成されている。なお、透湿防水シート22は、JIS A6111に準拠したものであればいかなるものを用いてもよく、不織布で構成してもよい。また、これらを積層したものとしてもよい。
【0062】
-屋根構造の施工方法-
屋根構造1は、以下のようにして施工される。
【0063】
まず、建物の小屋組において間隔を空けて配された複数の垂木2,…,2の間に断熱材30(袋入りロックウール)を充填し、各垂木2の下端面にステープルで固定した後、複数の垂木2,…,2の下端面に石膏ボード3を押しつけ、ビス等で石膏ボード3を複数の垂木2,…,2に打ち付ける。
【0064】
次に、建物の小屋組において間隔を空けて配された複数の垂木2,…,2の上方に屋根下地材20を施工する。具体的には、複数の垂木2,…,2上に野地板21を敷きつめ、釘やビス等で野地板21を複数の垂木2,…,2に固定する。その後、野地板21上に透湿防水シート22を敷きつめ、ステープル釘等で透湿防水シート22を野地板21に打ち付ける。このとき、野地板21の上において複数の透湿防水シート22を、屋根勾配の下側から上側へ順に辺縁を重ね合わせながら敷きつめ、隣り合う透湿防水シート22の重ね合わせた部分にステープル釘等を打ち込む。このようにして屋根下地材20が施工される。
【0065】
なお、本実施形態1では、垂木2の成よりも薄い断熱材30を用いている。そのため、断熱材30及び屋根下地材20を施工することにより、断熱材30と屋根下地材20との間に、自動的に軒先6側から棟木5側に向かって延びる通気路40が形成される。
【0066】
以上のようにして屋根下地材20を施工し軒先6側に水切り8を設けた後、平板状屋根材10を葺く。具体的には、複数の平板状屋根材10,…,10を、棟木5の延伸方向の一端(けらば)から他端(けらば)まで順に葺いていく。具体的には、平板状屋根材10を、長手方向が棟木5側から軒先6側へ延びるように、屋根下地材20上の所定の位置に配置し、平板状の固定部15を、屋根下地材20に向かって打ち込まれたビス4で固定する。次の屋根下地材20は、第2係合部13が、先に屋根下地材20に取り付けられた平板状屋根材10の第1係合部12に覆い被さる位置に配置され、第2係合部13を、先に屋根下地材20に取り付けられた平板状屋根材10の第1係合部12に押しつけることによって該第1係合部12を内部に嵌める(はぜ継ぎする)。このとき、互いに係合する第1係合部12と第2係合部13との間に、防水材を挟み込むことが好ましい。このようにして、複数の平板状屋根材10,…,10を、棟木5の延伸方向の一端側から他端側に順に葺いていく。
【0067】
以上のようにして複数の平板状屋根材10,…,10を施工した後、複数の平板状屋根材10,…,10の棟木5側に棟包み9aと棟換気部材9bとを設ける。
【0068】
以上のようにして、屋根構造1が施工される。
【0069】
-屋根構造の特性-
〈屋根下地材の特性〉
上述のように、従来の屋根下地材では、野地板(構造用合板)の吸水率が高いため、防水シートを貫く釘穴を通って野地板に至った雨水が野地板の表面から内部に浸透し易かった。また、従来の屋根下地材では、野地板の釘穴止水性が低く、釘穴を介して雨水が野地板の内部まで至り、野地板に吸収されていた。さらに、構造用合板からなる従来の野地板は、保水性が高く乾燥し難い。つまり、従来の屋根下地材では、野地板の吸水性、透水性が高いことに加え、保水性が高いため、野地板の腐朽による劣化を招き易かった。
【0070】
これに対し、本実施形態1の屋根下地材20では、広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板によって構成され、従来の屋根下地材に比べて吸水率が低い(吸水率15%以下の)野地板21を用いている。このように吸水率が低い中密度繊維板で構成された野地板21は、構造用合板からなる従来の野地板に比べて雨水を吸水し難い。また、中密度繊維板で構成された野地板21では、屋根下地材20を施工するために打ち込まれたビス4に耐水性を有する接着剤や撥水剤でコーティングされた木材繊維が密着することにより、構造用合板からなる従来の野地板に比べて釘穴止水性が飛躍的に高くなる。特に、本実施形態1では、野地板21として、吸水率が低くエレメントサイズの小さい広葉樹の木部繊維を主原料とする中密度繊維板を用いているため、単位容積当たりの繊維の本数が多く、釘穴(ビス4の穴)が形成されてもビス4の周囲を多数の細かい繊維が囲み、釘穴が細かな繊維で埋められることにより、釘穴による欠損度合いが比較的小さくて済み、針葉樹の仮導管繊維を主原料とする中密度繊維板を野地板21として用いる場合に比べて釘穴止水性がさらに高くなる。
【0071】
また、本実施形態1の屋根下地材20では、野地板21の上面を、透湿性と防水性とを兼ね備えた透湿防水シート22で覆っている。そのため、雨水が平板状屋根材10の隙間から屋根下地材20に至っても、従来に比べて雨水が格段に野地板21に浸透し難くなり、野地板21の腐朽による劣化を抑制することができる。また、万一、若干量の雨水が野地板21に浸透したとしても、野地板21は、透湿性と同様に通気性にも優れているため、浸透した雨水はすぐに気化して通気路40に導かれる。つまり、本実施形態1の屋根下地材20では、この点によっても野地板21の腐朽による劣化を抑制することができ、また、雨水が野地板21の裏面にまで至ることがないので、雨漏りを防止することもできる。
【0072】
また、上述のように、従来の合板からなる野地板では、最表層の単板が水を吸収すると、吸収された水は、導管・仮導管を通って単板の繊維方向(通常長手方向)に移動し、小口から漏出して裏面に至る。裏面に至った水の一部は、そのまま滴って雨漏りの原因となり、また、他の一部は、最裏層の単板の小口から再度吸収されて単板内を移動し、垂木と接触する部分で再度単板から漏出し、垂木から滴ってやはり雨漏りの原因となる。また、屋根の勾配にしたがって合板上を流れた水は、合板の継ぎ目で漏れ易く、これも雨漏りの原因となる。
【0073】
これに対し、本実施形態1の屋根下地材20では、野地板21が中密度繊維板で構成されている。中密度繊維板で構成された野地板21は、木材を分解して繊維を接着剤で固めているので、合板のように繊維方向が揃っておらず、高密度で空隙が少なく、耐水性の接着剤や撥水剤を使用でき、吸水率も著しく低い。そのため、本実施形態1の屋根下地材20では、従来の合板からなる野地板のように継ぎ目(小口)から水が漏出することがなく、野地板21の継ぎ目からの雨漏りも防止することができる。
【0074】
この点を実証すべく、以下の透水性試験を行った。
【0075】
(1)試験体
以下の2種類の試験体Xを2枚ずつ用意した。
【0076】
I:中密度繊維板(厚さ9mm、密度0.79g/cm3、含水率8.9%)
II:合板(厚さ9mm、密度0.42g/cm3、含水率10.6%、針葉樹)
【0077】
なお、Iの試験体Xは、野地板21を構成する中密度繊維板と同様に、広葉樹の木部繊維を主原料とし、吸水率が15%以下で透湿抵抗が1.2m2・s・Pa/μg未満となるように構成されている。
【0078】
(2)試験方法
まず、
図6に示すように、試験用器具を組み立てる。具体的には、試験体Xの中心に釘51(N50、スクリュー釘)を上方から打ち込む。Iの試験体Xの一方(試験体X1と言う)には、N50の釘51を打ち込み、他方(試験体X2と言う)には、スクリュー釘を打ち込む。IIの試験体Xの一方(試験体X3と言う)には、N50の釘51を打ち込み、他方(試験体X4と言う)には、スクリュー釘を打ち込む。このようにして形成された4種類の試験体X1~X4のそれぞれに対し、釘51を覆うように試験体Xの上面にアクリル樹脂からなる円筒52(内径34mm、高さ300mm)を立てて置き、円筒52と試験体Xの上面との隙間をコーキング剤53で埋めた後、これらを円筒52よりも大径のビーカー54の上に載せる。
【0079】
試験用器具の組み立て後、水(常温)を、円筒52内に静かに注ぐ。水は、円筒52の高さ250mm(約227ml)の位置まで注ぐ。そして、これらを気温20℃、相対湿度65%の環境下で8日間静置し、定期的に水の残量、試験体Xの外観状態及び釘穴からの水の漏れを確認した。
【0080】
(3)試験結果
図7のグラフは、上記透水性試験の結果である。
図7のグラフの縦軸に示す透水量(ml)は、円筒52内に注がれた水の減少量である。また、■印が試験体X1、◆印が試験体X2、●印が試験体X3、▲印が試験体X4のそれぞれの透水量を示している。
【0081】
図7のグラフから判るように、4種類の試験体X1~X4のうち、試験体X4の透水量が最も多く、試験開始後3日目で円筒52内の水がほとんど無くなり、試験の続行が不可能となった。次いで、試験体X3の透水量が多く、試験開始後4日目で円筒52内の水がほとんど無くなり、試験の続行が不可能となった。この結果より、試験体X3及びX4では、釘51を打ち込む際に釘穴が大きく形成されるために、この釘穴から水が試験体Xの繊維方向に拡がる(浸透する)と共に、釘51を伝って試験体Xの下方(ビーカー54)まで通り抜け易い(釘穴の止水性が低い)ことが判る。
【0082】
これに対し、本実施形態1の野地板21を構成する試験体X1及びX2は、4種類の試験体X1~X4の中で試験体X3及びX4に比べて透水量が著しく少なく、試験開始から3日経過しても、円筒52内からほとんど水が流出しなかった。試験体X1及びX2では、試験開始から8日経過しても、釘51からビーカー54へ水が滴らなかった。これは、試験体X1及びX2では、釘51が木材繊維間をかき分けるように打ち込まれ、その釘51に接着剤でコーティングされた木材繊維が密着することにより、水が通過する隙間がほとんど形成されないことによるものと推測される。また、試験体X1は、耐水性に優れる接着剤(本実施形態1では、ユリア・メラミン共縮合樹脂系接着剤)で形成され、吸水率が15%以下に構成されている。そのため、釘穴によって釘51の周囲に隙間が形成されたとしても、木材繊維が耐水性に優れる接着剤でコーティングされているため、水が浸入しないものと推測される。このように、試験体X1及びX2では、水が表面(上面)から内部に浸透することがなく、釘穴に浸入することもなく、試験体X3及びX4に比べて透水性が著しく低い、即ち、防水性が極めて高いことが判る。
【0083】
このように、本実施形態1では、防水性が極めて高く(透水性が極めて低く)、透湿性及び通気性に優れた野地板21を屋根下地材20として用いていることにより、屋根下地材20の腐朽による劣化及び雨漏りを防止することができる。
【0084】
〈通気路の特性〉
上述のように、本実施形態1では、垂木2の成よりも薄い断熱材30を、複数の垂木2,…,2の各間に設けている。そのため、断熱材30及び屋根下地材20を施工するだけで、各断熱材30と屋根下地材20との間に、軒先6側から棟木5側に向かって延びる通気路40が形成される。
【0085】
通気路40では、軒先6側の端部が流入口40aとなり、棟木5側の端部(棟包み9aと平板状屋根材10との間に設けた棟換気部材9bの端部)が流出口40bとなって、屋外の空気が流入口40aから流出口40bへ流れる。そのため、室内の湿気が断熱材30を通過して屋根下地材20の下面側(野地板21の下面)に至ったとしても、屋根下地材20の下面において結露が生じ難くなる。また、屋根下地材20の下面において結露が生じたとしても、結露水は、通気路40を流れる空気によって気化して水蒸気となり、該空気と共に軒先6側から棟木5側へ流れ、流出口40bから速やかに屋外へ排出されることとなる。そのため、屋根下地材20の腐朽による劣化を防止することができる。
【0086】
また、本実施形態1の屋根下地材20では、従来の屋根下地材に比べて吸水率が低く(15%以下)且つ透湿抵抗の低い(1.2m2・s・Pa/μg未満)野地板21と、透湿性と防水性に優れた透湿防水シート22とを用いている。そのため、夜間の放射冷却等によって平板状屋根材10の下方(具体的には、透湿防水シート22の上下面)において結露が生じたとしても、結露水は、日中の気温上昇によって気化して水蒸気となり、屋根下地材20(野地板21及び透湿防水シート22)を通過して通気路40に至る。平板状屋根材10と屋根下地材20との間で生じた結露による湿気は、通気路40を流れる空気と共に軒先6側から棟木5側へ流れ、流出口40bから速やかに屋外へ排出されることとなる。そのため、屋根下地材20の腐朽による劣化を防止することができる。
【0087】
-実施形態1の効果-
本実施形態1によれば、野地板21の下方に、軒先6側から棟木5側へ延びる通気路40が形成されている。そのため、冬季に室内で生じた湿気が小屋裏に至っても、通気路40を流れる空気と共に屋外へ排出することができる。よって、野地板21の下面において結露が生じて野地板21が腐朽により劣化するおそれがない。つまり、野地板21の腐朽による劣化を抑制することができる。
【0088】
また、本実施形態1によれば、野地板21が中密度繊維板で構成されている。中密度繊維板は、木材繊維を接着剤と共に熱圧して成板することによって形成された木質ボードであり、合板のように単板自体の透湿抵抗が高い上、単板間の接着剤層の存在により、透湿抵抗が高い材料となっていないため、従来、野地板として用いられていた構造用合板に比べて透湿抵抗が低い。そのため、このような湿気を透過させ易い野地板21を屋根下地材20として用いることにより、夜間の放射冷却等によって平板状屋根材10の下方において結露が生じたとしても、結露水は、日中の気温上昇によって気化して水蒸気となり、野地板21を通過して通気路40に至る。よって、平板状屋根材10と野地板21との間に通気路40がなくても、平板状屋根材10と野地板21との間で生じた結露による湿気を屋外へ排出することができ、平板状屋根材10の腐朽による劣化を抑制することができる。
【0089】
また、本実施形態1によれば、比較的高密度(0.7以上0.85未満)の中密度繊維板を野地板21として用いている。このような野地板21は、構造用合板等で構成された従来の野地板(吸水率60%以上)に比べて吸水率が低くなるため、表面に付着した雨水を吸水し難く、いくらか吸水しても構造用合板より速乾性に優れる。また、このような野地板21によれば、ビス4が打ち込まれた箇所においても、木材繊維間をかき分けるように打ち込まれたビス4に接着剤でコーティングされた木材繊維が密着することにより、釘穴に雨水等の水分が浸入し難くなる。このように表面だけでなく釘穴からも吸水し難い防水性に優れた中密度繊維板を野地板21として用いることにより、雨水が平板状屋根材10の隙間から野地板21に至っても、従来に比べて雨水が格段に野地板21に浸透し難くなり、野地板21の腐朽による劣化を抑制することができる。また、万一雨水が野地板21に浸透したとしても、裏面にまで至ることはなく、雨漏りを防止することができる。
【0090】
特に、本実施形態1では、広葉樹の木部繊維を主原料とする中密度繊維板を野地板21として用いている。広葉樹は、組織の90%以上が仮導管である針葉樹に比べて空隙率が著しく低いため、吸水率も著しく低い。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板よりも吸水率が低くなる。また、広葉樹の木部繊維は、針葉樹の仮導管繊維に比べて繊維長が短く、繊維径が小さい。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べ、単位容積当たりの繊維の本数が多く、釘穴が形成されたときに釘の周囲を多数の細かい繊維が囲むため、欠損度合いが小さくなり、釘穴止水性により優れている。よって、本実施形態1によれば、このように吸水率が低く釘穴止水性に優れた広葉樹の木部繊維を主原料とする中密度繊維板を野地板21として用いることにより、野地板21の腐朽による劣化及び雨漏りをより抑制することができる。
【0091】
さらに、広葉樹は針葉樹よりも曲げヤング係数が大きく、繊維に分解して再構成した中密度繊維板においても同じ傾向がみられるので、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて撓み難い。そのため、野地板21を広葉樹の木部繊維を主原料とする中密度繊維板で構成すると、屋根施工時に作業者が野地板21上を歩く際に野地板21が撓み難いため、作業者に安心感を与えることができる。これは、野地板としては特に重要な要素である。
【0092】
また、従来の合板からなる野地板では、最表層の単板が水を吸収すると、吸収された水は、導管・仮導管を通って単板の繊維方向(通常長手方向)に移動し、小口から漏出して裏面に至る。裏面に至った水の一部は、そのまま滴って雨漏りの原因となり、また、他の一部は、最裏層の単板の小口から再度吸収されて単板内を移動し、垂木と接触する部分で再度単板から漏出し、垂木から滴ってやはり雨漏りの原因となる。
【0093】
これに対し、本実施形態1によれば、野地板21が中密度繊維板で構成されている。中密度繊維板で構成された野地板21は、木材を分解して繊維を接着剤で固めているので、概ね、繊維方向が揃っておらず、高密度で空隙が少なく、耐水性の接着剤や撥水剤を使用でき、吸水率も著しく低い。そのため、本実施形態1によれば、従来の合板からなる野地板のように継ぎ目(小口)から水が漏出することがなく、野地板21の継ぎ目からの雨漏りも防止することができる。
【0094】
さらに、本実施形態1によれば、野地板21の下方に通気路40が形成され、野地板21を透湿性に優れた中密度繊維板で構成している。そのため、万一、雨水が野地板21に浸透したとしても、野地板21に浸透した雨水は、いずれ気化して水蒸気となり、野地板21を通過して通気路40に至るため、通気路40を流れる空気と共に屋外へ排出することができる。
【0095】
以上により、本実施形態1によれば、施工が容易で、平板状屋根材10及び野地板21が腐朽により劣化し難い屋根構造1を提供することができる。
【0096】
また、本実施形態1では、透湿抵抗が1.2m2・s・Pa/μg未満に構成された中密度繊維板を野地板21として用いている。このように透湿抵抗が極めて低く、透湿性に優れた中密度繊維板を野地板21として用いることにより、野地板21表面での結露の発生及び野地板21の腐朽による劣化を抑制する効果がさらに増大する。
【0097】
ところで、平板状屋根材10が本実施形態1のように金属板によって形成された金属屋根材10である場合、アスファルトルーフィングのような透湿性の低いシート材を野地板21の上面に設けると、金属屋根材10の下方で生じた結露水や金属屋根材10の下面側へ侵入した雨水が十分に排出されずに金属屋根材10とシート材との間に溜まり易く、金属屋根材10の下面に錆が発生(劣化)するおそれがある。
【0098】
これに対し、本実施形態1では、野地板21の上面を透湿性と防水性を有する透湿防水シート22で覆うこととしている。このような構成により、金属屋根材10の下面において結露が生じたり、金属屋根材10の下面側へ雨水が浸入したりしても、その水分(結露水や雨水)は、気温上昇時に気化して水蒸気となり、透湿性を有する屋根下地材20(透湿防水シート22と野地板21)を通過して通気路40に至るため、水分(結露水や雨水)が金属屋根材10の下方に溜まることがない。つまり、上記構成によれば、金属屋根材10の下面における錆の発生(劣化)を抑制することができる。また、上記構成によれば、屋根下地材20の防水性がさらに向上するため、野地板21の腐朽等の劣化をさらに抑制することができる。
【0099】
また、本実施形態1では、透湿抵抗が0.65m2・s・Pa/μg以下に構成された透湿防水シート22を用いることとしている。このように透湿抵抗が極めて低く、透湿性に優れた透湿防水シート22を用いることにより、野地板21と透湿防水シート22とを備えた屋根下地材20の透湿性能が向上するため、平板状屋根材10や野地板21の劣化を抑制する効果がさらに増大する。
【0100】
また、本実施形態1では、平板状屋根材10が金属屋根材であるため、金属屋根材10の下方で生じた結露水や金属屋根材10の下面側へ侵入した雨水によって、金属屋根材10が劣化(錆が発生)し易いところ、上記構成により、金属屋根材10の下方の水分を通気路40へ排出することができるため、金属屋根材10の劣化を抑制することができる。
【0101】
《その他の実施形態》
上記実施形態1では、屋根下地材20を、野地板21と透湿防水シート22とで構成していたが、屋根下地材20は、透湿防水シート22を備えないものであってもよい。上述のように、野地板21は、従来の野地板に比べて透水性が低く防水性に優れるため、透湿防水シート22を設けなくても、野地板21に雨水が浸透するのを抑制することができるため、野地板21の腐朽による劣化を抑制することができる。
【0102】
また、上記実施形態1では、平板状屋根材の一例として金属板によって形成された平板状の金属屋根材について説明した。しかしながら、平板状屋根材は、屋根下地材にベタ置きする平板状の屋根材であればいかなるものであってもよく、平板状の金属屋根材に限られない。平板状屋根材は、屋根下地材にベタ置きする平板状の化粧スレートやアスファルトシングル等であってもよい。
【0103】
また、上記実施形態1では、立平葺きの屋根構造1について説明したが、本発明に係る屋根構造の平板状屋根材の葺き方は、立平葺きに限定されない。本発明に係る屋根構造の平板状屋根材の葺き方は、平葺きや横葺き等であってもよく、瓦棒葺きであってもよい。
【0104】
また、上記各実施形態において、平板状屋根材として金属屋根材を用いず、平板状の化粧スレートやアスファルトシングル等を用いる場合、透湿防水シート22の代わりに、アスファルトルーフィングのような透湿性を有しないシート材を用いることとしてもよい。金属屋根材と異なり、化粧スレートやアスファルトシングル等は、錆が発生しない。よって、平板状の化粧スレートやアスファルトシングル等を用いる場合には、透湿防水シート22の代わりに透湿性を有しないシート材を用いることにより、屋根構造にかかる費用を削減することができる。
【0105】
ただし、ベタ置き型の屋根材(平板状屋根材)は、太陽からの熱を直接的に屋根材の下面に伝えるため、ルーフィングとその上面の水分は、夏場であれば70℃程度にまで温度が上昇する。アスファルトルーフィングを用いる場合、平板状屋根材とアスファルトルーフィングとの間に熱だけでなく熱と水分が共存することとなり、アスファルトルーフィングの劣化が促進される。そのため、アスファルトルーフィングを用いる場合、耐久性の高いアスファルトルーフィングを使用する等の配慮が必要である。
【0106】
一方、近年の技術開発により、腐食、錆に強い金属屋根材が開発されている。このように腐食や錆に強い金属屋根材を用いる場合には、水分による腐食の心配が無いため、アスファルトルーフィングを用いることが可能となる。また、腐食や錆に強い金属屋根材とアスファルトルーフィングを用いる場合、通気路40を介してアスファルトルーフィングの上面(金属屋根材の下面)の水分を排出する必要がなく、主としてアスファルトルーフィングの下面(中密度繊維板からなる野地板21の上面)の水分を排出すればよいため、野地板21の腐朽防止に特化した構造となる。
【0107】
また、上記実施形態1では、本発明に係る屋根下地材20を、屋根断熱タイプの屋根構造1に適用する例について説明したが、屋根下地材20は、屋根側ではなく天井側に断熱材30が設けられた天井断熱タイプの屋根構造に適用することも勿論可能である。天井断熱タイプの屋根構造に適用した場合においても、屋根下地材20の下方に通気路40を形成し、上記実施形態1と同様の野地板21を用いることにより、上記実施形態1と同様の効果を奏することができる。
【0108】
なお、上記実施形態1では、充填断熱工法で施工された屋根構造について説明しているが、本発明は、外張り断熱工法で施工された屋根構造にも適用可能である。
【産業上の利用可能性】
【0109】
本発明は、野地板と平板状屋根材とを備えた屋根構造に有用である。
【符号の説明】
【0110】
1 屋根構造
5 棟木
6 軒先
10 平板状屋根材
20 屋根下地材
21 野地板
22 透湿防水シート
40 通気路
【手続補正書】
【提出日】2022-01-24
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、野地板と平板状屋根材とを備えた屋根構造に関するものである。
【背景技術】
【0002】
従来、野地板と平板状屋根材とを備えた屋根構造が用いられている(例えば、下記の特許文献1を参照)。特許文献1には、金属製の平板状屋根材の裏側(屋内側)における結露の発生を防止すべく、野地板と平板状屋根材との間に通気路を形成する通気部材を設けた屋根構造が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記屋根構造では、野地板と平板状屋根材との間には通気路が確保されるものの、野地板とその下方の断熱材との間に通気路が形成されていないため、冬季に室内で生じて小屋裏に至った湿気によって野地板の下面において結露が生じ、構造用合板等で構成される野地板が腐朽により劣化するおそれがあった。
【0005】
また、上記屋根構造において、野地板と断熱材との間にも通気路を形成することが考えられるが、その場合、野地板の上下に通気路を形成しなければならず、施工に手間がかかる。
【0006】
本発明は、かかる点に鑑みてなされたものであり、その目的は、野地板と平板状屋根材とを備えた屋根構造において、施工が容易で、平板状屋根材及び野地板が腐朽により劣化し難い屋根構造を提供することにある。
【課題を解決するための手段】
【0007】
上記の目的を達成するために、この発明では、野地板の下方に通気路を形成し、野地板を広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成することとした。
【0008】
具体的には、第1の発明は、断熱材と、該断熱材の上方に設けられる野地板と該野地板の上方に設けられる平板状屋根材とを備えた屋根構造であって、上記断熱材と上記野地板との間には、軒先側から棟木側へ延びる通気路が形成され、上記野地板は、繊維長が0.5mm以上2.0mm以下の広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成されていることを特徴とするものである。
【0009】
第1の発明では、野地板の下方に、軒先側から棟木側へ延びる通気路が形成されている。そのため、冬季に室内で生じた湿気が小屋裏に至っても、通気路を流れる空気と共に屋外へ排出することができる。よって、野地板の下面において結露が生じて野地板が腐朽により劣化するおそれがない。つまり、野地板の腐朽による劣化を抑制することができる。
【0010】
また、第1の発明では、野地板が、中密度繊維板(MDF:Medium Density Fiberboard)で構成されている。中密度繊維板は、木材繊維を接着剤と共に熱圧して成板することによって形成された木質ボードであり、合板のように単板自体の透湿抵抗が高い上、単板間の接着剤層の存在により、透湿抵抗が高い材料となっていないため、従来、野地板として用いられていた構造用合板に比べて透湿抵抗が低い。このような湿気を透過させ易い野地板を用いることにより、夜間の放射冷却等によって平板状屋根材の下方において結露が生じたとしても、結露水は、日中の気温上昇によって気化して水蒸気となり、野地板を通過して通気路に至る。よって、平板状屋根材と野地板との間に通気路がなくても、平板状屋根材と野地板との間で生じた結露による湿気を屋外へ排出することができ、平板状屋根材の腐朽による劣化を抑制することができる。
【0011】
また、第1の発明では、比較的高密度(0.7以上0.85未満)の中密度繊維板を野地板として用いている。このような野地板は、構造用合板等で構成された従来の野地板(吸水率60%以上)に比べて吸水率が低くなるため、表面に付着した雨水を吸水し難い。また、このような野地板によれば、釘が打ち込まれた箇所においても、木材繊維間をかき分けるように打ち込まれた釘に接着剤でコーティングされた木材繊維が密着することにより、釘穴に雨水等の水分が浸入し難くなる。このように表面だけでなく釘穴からも吸水し難い防水性に優れた中密度繊維板を野地板として用いることにより、雨水が平板状屋根材の隙間から野地板に至っても、従来に比べて雨水が格段に野地板に浸透し難くなり、野地板の腐朽による劣化を抑制することができる。また、万一、雨水が野地板に浸透したとしても、野地板の裏面まで至ることがなく、雨漏りを防止することができる。
【0012】
特に、第1の発明では、広葉樹の木部繊維を主原料とする中密度繊維板を野地板として用いている。広葉樹は、組織の90%以上が仮導管である針葉樹に比べて空隙率が著しく低いため、吸水率も著しく低い。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板よりも吸水率が低くなる。また、広葉樹の木部繊維は、針葉樹の仮導管繊維に比べて繊維長が短く、繊維径が小さい。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べ、単位容積当たりの繊維の本数が多く、釘穴が形成されたときに釘の周囲を多数の細かい繊維が囲むため、欠損度合いが小さくなり、釘穴止水性により優れている。よって、第1の発明によれば、このように吸水率が低く釘穴止水性に優れた広葉樹の木部繊維を主原料とする中密度繊維板を野地板として用いることにより、野地板の腐朽による劣化及び雨漏りをより抑制することができる。
【0013】
さらに、繊維長が短い広葉樹の木部繊維を主原料とする中密度繊維板は、繊維長が長い針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて撓み難い。そのため、野地板を広葉樹の木部繊維を主原料とする中密度繊維板で構成すると、屋根施工時に作業者が野地板上を歩く際に野地板が撓み難いため、作業者に安心感を与えることができる。これは、野地板としては特に重要な要素である。
【0014】
また、従来の合板からなる野地板では、最表層の単板が水を吸収すると、吸収された水は、導管・仮導管を通って単板の繊維方向(通常長手方向)に移動し、小口から漏出して裏面に至る。裏面に至った水の一部は、そのまま滴って雨漏りの原因となり、また、他の一部は、最裏層の単板の小口から再度吸収されて単板内を移動し、垂木と接触する部分で再度単板から漏出し、垂木から滴ってやはり雨漏りの原因となる。
【0015】
これに対し、第1の発明によれば、野地板が中密度繊維板で構成されている。中密度繊維板で構成された野地板は、木材を分解して繊維を接着剤で固めているので、概ね、繊維方向が揃っておらず、高密度で空隙が少なく、耐水性の接着剤や撥水剤を使用でき、吸水率も著しく低い。そのため、第1の発明によれば、従来の合板からなる野地板のように継ぎ目(小口)から水が漏出することがなく、野地板の継ぎ目からの雨漏りも防止することができる。
【0016】
さらに、第1の発明によれば、野地板の下方に通気路が形成され、野地板を透湿性に優れた中密度繊維板で構成している。そのため、万一、雨水が野地板に浸透したとしても、野地板に浸透した雨水は、いずれ気化して水蒸気となり、野地板を通過して通気路に至るため、通気路を流れる空気と共に屋外へ排出することができる。
【0017】
以上により、第1の発明によれば、施工が容易で、平板状屋根材及び野地板が腐朽により劣化し難い屋根構造を提供することができる。
【0018】
第2の発明は、第1の発明において、上記中密度繊維板は、透湿抵抗が1.2m2・s・Pa/μg未満になるように構成されていることを特徴とするものである。
【0019】
ここで、中密度繊維板の透湿抵抗は、JIS A1324に規定されたカップ法に準拠して測定される値である。
【0020】
第2の発明では、透湿抵抗が1.2m2・s・Pa/μg未満に構成された中密度繊維板を野地板として用いている。このように透湿抵抗が極めて低く、透湿性に優れた中密度繊維板を野地板として用いることにより、野地板表面での結露の発生及び野地板の腐朽による劣化を抑制する効果がさらに増大する。
【0021】
第3の発明は、第1又は第2の発明において、上記野地板の上面を覆う透湿防水シートをさらに備えていることを特徴とするものである。
【0022】
ところで、アスファルトルーフィングのような透湿性の低いシート材を野地板の上面に設けると、平板状屋根材の下方で生じた結露水や平板状屋根材の下面側へ侵入した雨水が十分に排出されずに平板状屋根材とシート材との間に溜まり易く、平板状屋根材が劣化する(例えば、金属屋根材では錆が生じる)おそれがある。
【0023】
第3の発明では、野地板の上面を透湿性と防水性を有する透湿防水シートで覆うこととしている。このような構成により、平板状屋根材の下方において結露が生じたり、平板状屋根材の下面側へ雨水が浸入したりしても、その水分(結露水や雨水)は、気温上昇時に気化して水蒸気となり、透湿性を有する屋根下地材(透湿防水シートと野地板)を通過して通気路に至るため、水分(結露水や雨水)が平板状屋根材の下方に溜まることがない。つまり、上記構成によれば、平板状屋根材の劣化を抑制することができる。また、第3の発明によれば、野地板を透湿防水シートで覆うことで屋根下地材の防水性がさらに向上するため、野地板の腐朽等の劣化をさらに抑制することができる。
【0024】
第4の発明は、第1~第3のいずれか1つの発明において、上記平板状屋根材は、金属屋根材であることを特徴とするものである。
【0025】
第4の発明では、平板状屋根材が金属屋根材であるため、金属屋根材の下方で生じた結露水や金属屋根材の下面側へ侵入した雨水によって、金属屋根材が劣化(錆が発生)し易いところ、上記構成により、金属屋根材の下方の水分を通気路へ排出することができるため、金属屋根材の劣化を抑制することができる。
【発明の効果】
【0026】
以上説明したように、本発明の屋根構造によると、野地板の下方に通気路を形成し、野地板を広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成することにより、施工が容易で、平板状屋根材及び野地板が腐朽により劣化し難い屋根構造を提供することができる。
【図面の簡単な説明】
【0027】
【
図1】
図1は、実施形態1に係る建物の屋根構造の一部分の外観を示す斜視図である。
【
図2】
図2は、
図1の屋根構造の一部分を妻側に平行な面で切断した断面図である。
【
図4】
図4は、
図1の屋根構造の一部分を平側に平行な面で切断した断面図である。
【
図6】
図6は、透水性試験の様子を示す模式図である。
【発明を実施するための形態】
【0028】
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の実施形態は、本質的に好ましい例示に過ぎず、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
【0029】
《発明の実施形態1》
図1及び
図2に示すように、屋根構造1は、屋根下地材20の上に、複数の金属製の平板状屋根材10,…,10を、順に配置して葺いたものである。本実施形態1では、複数の平板状屋根材10,…,10は、棟木5側から軒先6側に向かって縦方向に延びるように配置されてそれぞれはぜ継ぎされた、所謂、立平葺きで施工されている。
【0030】
-屋根構造の構成-
図2~
図4に示すように、屋根構造1は、平板状屋根材10と、屋根下地材20と、断熱材30とを備えている。平板状屋根材10と屋根下地材20は、建物の小屋組において間隔を空けて配された複数の垂木2,…,2の上方に施工されている。複数の垂木2,…,2の下端面には、石膏ボード3が取り付けられている。なお、
図2中、符号7は鼻隠し、符号8は水切り、符号9aは棟包み、符号9bは棟換気部材である。
【0031】
屋根構造1では、断熱材30は、ロックウールによって構成され、複数の垂木2,…,2の各間に設けられている。断熱材30は、高さが、複数の垂木2,…,2の成よりも低くなるように形成されている。そのため、屋根下地材20の下方には、垂木2に沿って軒先6側から棟木5側へ延びる通気路40が形成されている。
【0032】
以上のような構成により、本実施形態1では、屋根構造1は、天井側ではなく屋根側に断熱材30が設けられる、所謂、屋根断熱タイプの屋根構造に構成されている。
【0033】
〈平板状屋根材の詳細な構成〉
図2~
図4に示すように、平板状屋根材10は、折り曲げ形成された矩形状の金属板で構成され、本実施形態1では、ガルバリウム鋼板(登録商標)で構成されている。平板状屋根材10は、屋根下地材20に向かって打ち込まれたビス4で、屋根下地材20の上面に取り付けられている。なお、平板状屋根材10は、ガルバリウム鋼板(登録商標)に限られず、銅板、亜鉛メッキ鋼板、アルミニウム板、ステンレス板等の金属屋根材やスレート、アスファルト、セメント等からなる金属以外の屋根材で構成されていてもよい。また、金属屋根材の留め付けにはビス4を用い、スレート、アスファルト、セメント等からなる屋根材の留め付けには釘を用いる。
【0034】
一例として、平板状屋根材10は、本体部11と、第1係合部(はぜ)12と、第2係合部(はぜ)13と、支持脚部14と、固定部15とを備えている。
【0035】
本体部11は、平板状屋根材10を構成する矩形状の金属板の幅方向の両端部を除く部分であり、平板状屋根材10の長手方向に延び、屋根下地材20に取り付けられた際に、該屋根下地材20の上方を覆う概ね平板状の部分である。本体部11は、幅方向の両端部に、端から中程に向かう程、低くなる段差部11aが形成されている。これにより、本体部11は、幅方向の中程部分が両端部に比べて下方へ浅く窪んだ形状となる。
【0036】
第1係合部12は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。第1係合部12は、本体部11の幅方向の一方側(
図4では右側)において上方に突出して隣り合う平板状屋根材10の第2係合部13と係合する形状に形成されている。
【0037】
具体的には、本実施形態1では、第1係合部12は、本体部11の幅方向の一端から上方に向かって延びる矩形平板状の第1直線部12aと、第1直線部12aの上端から平板状屋根材10の幅方向の内側に向かって延びた後、幅方向の外側へ斜め上方に向かって折れ曲がり、斜め上方に延びる突出部12bと、突出部12bの上端から下方に向かって第1直線部12aに平行に延びる矩形平板状の第2直線部12cとを有している。第1係合部12は、第1直線部12aと突出部12bと第2直線部12cとにより、幅方向の内側に向かって突出する片ひげ矢印形状に形成されている。
【0038】
第2係合部13は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。第2係合部13は、本体部11の幅方向の他方側(
図4では左側)において上方に突出して隣り合う平板状屋根材10の第1係合部12に覆い被さることにより、隣り合う平板状屋根材10の第1係合部12と係合(はぜ継ぎ)する形状に形成されている。
【0039】
具体的には、本実施形態1では、第2係合部13は、本体部11の幅方向の他端から上方に向かって延びる矩形平板状の直線部13aと、直線部13aの上端から幅方向の外側へ斜め下方に向かって延びた後、平板状屋根材10の幅方向の内側に向かって折れ曲がり、直線部13aに略垂直に延びる突出部13bと、突出部13bの一端から幅方向の外側へ斜め下方に向かって折れ曲がり、斜め下方に延びる終端部13cとを有している。第2係合部13は、直線部13aと突出部13bと終端部13cとにより、幅方向の外側に向かって突出する片ひげ矢印形状に形成されている。第2係合部13は、第1係合部12に覆い被さるように、第1係合部12よりも一回り大きい片ひげ矢印形状に形成されている。
【0040】
支持脚部14は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。支持脚部14は、第1係合部12の第2直線部12cの下端(第1直線部12aの下端と同じ高さ位置)から下方に延び、第1係合部12を支持する部分である。支持脚部14は、第1係合部12の第2直線部12cと長さ(
図4の紙面直交方向の長さ)が等しい矩形平板状に形成されている。
【0041】
固定部15は、平板状屋根材10を構成する金属板の幅方向の一部分によって構成され、平板状屋根材10の長手方向に延びるものである。固定部15は、支持脚部14の下端から幅方向の外側に延び、屋根下地材20に当接する平板状の部分を有し、屋根下地材20に固定されている。固定部15は、支持脚部14と長さ(
図4の紙面直交方向の長さ)が等しい矩形平板状に形成されている。固定部15は、前述したように、屋根下地材20に向かって打ち込まれたビス4で屋根下地材20に固定されている。
【0042】
このような構成により、平板状屋根材10は、固定部15をビス4で屋根下地材20に固定し、第1係合部12に隣接する平板状屋根材10の第2係合部13を覆い被せて係合させると共に、第2係合部13を隣接する平板状屋根材10の第1係合部12に覆い被さるように係合させるだけで、屋根下地材20上に施工される。
【0043】
〈屋根下地材の詳細な構成〉
図2~
図4に示すように、屋根下地材20は、野地板21と、透湿防水シート22とを備えている。野地板21と透湿防水シート22とは、いずれも透湿性と防水性とを兼ね備えている。そのため、本実施形態1では、平板状屋根材10と屋根下地材20との間に屋外と連通する連通路が設けられていない。つまり、平板状屋根材10と屋根下地材20とは大部分が当接し、平板状屋根材10と屋根下地材20との間に空間が形成されていても屋外と連通していない。
【0044】
[野地板]
野地板21は、密度(g/cm3)が0.7以上0.85未満(本実施形態では、密度0.79g/cm3)の中密度繊維板(MDF:Medium Density Fiberboard)で構成されている。野地板21の厚さは特に限定されないが、本実施形態では、厚さ9.2mm厚に形成されている。また、本実施形態では、広葉樹の木部繊維を主原料とする中密度繊維板を野地板21として用いている。
【0045】
一般に、広葉樹は、組織の9割以上が仮導管で占められる針葉樹に比べて硬く、吸水率が低い。そのため、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて吸水率が低いものとなる。
【0046】
実際に、アカシア(広葉樹)の木部繊維を主原料とする中密度繊維板N1と、ラジアータパイン(針葉樹)の仮導管繊維を主原料とする中密度繊維板N2とを製作し、吸水率試験を行って吸水率を測定したところ、中密度繊維板N1の吸水率は28%、中密度繊維板N2の吸水率は52%であった。この測定結果より、広葉樹の木部繊維を主原料とする中密度繊維板N1が、針葉樹の仮導管繊維を主原料とする中密度繊維板N2に比べて吸水率が低くなることがわかる。なお、中密度繊維板N1,N2の製作には、同一で同量の接着剤を用いた。また、吸水率試験では、相対湿度65±5%の環境下で恒量に達した中密度繊維板N1,N2の重量(m1)と、20±1℃の水中に24時間浸した後の中密度繊維板N1,N2の重量(m2)とを測定し、水浸前後の中密度繊維板N1,N2の重量差(m2-m1)を水浸前の重量m1で除したものに100を乗じた値を吸水率とした。
【0047】
なお、後述するように、本屋根構造1では、吸水率が13.6%以下になるように構成された中密度繊維板を野地板21として用いる。上記吸水率試験で用いた中密度繊維板N1,N2は、樹種による吸水率の違いを検証するために用いるものであり、実用上必要な撥水剤等を添加していないので、本屋根構造1において野地板21として用いる中密度繊維板よりも吸水率が高い値(28%、52%)となっている。
【0048】
中密度繊維板の主原料としては、広葉樹の木部繊維と針葉樹の仮導管繊維とが用いられるが、広葉樹の木部繊維は、針葉樹の仮導管繊維に比べて繊維長が短く(仮導管繊維が1.5~6.0mmであるところ、木部繊維は0.5~2.0mm)、細い(仮導管繊維の直径が20~60μmであるところ、木部繊維の直径は10~30μm)。つまり、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて、エレメントサイズ(木質繊維の長さ及び直径)が小さい。そのため、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて、単位容積当たりの繊維の本数が多く、釘穴が形成されたときに釘の周囲を多数の細かい繊維が囲むため、欠損度合が小さくて済み(細かな繊維で釘穴が埋められる)、釘穴止水性により優れたものになる。
【0049】
また、広葉樹は針葉樹よりも曲げヤング係数が大きく、繊維に分解して再構成した中密度繊維板においても同じ傾向がみられるので、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて撓み難いものとなる。実際に、本実施形態1で野地板21として用いる広葉樹の木部繊維を主原料とする厚さ9mmの市販品の中密度繊維板M1と、針葉樹の仮導管繊維を主原料とする厚さ9mmの市販品の中密度繊維板M2,3と、上述のアカシア(広葉樹)の木部繊維を主原料とする中密度繊維板N1と、ラジアータパイン(針葉樹)の仮導管繊維を主原料とする中密度繊維板N2とについて、JIS A5905に規定される曲げ試験方法に準拠して、常態曲げ強度(MOR)と常態曲げヤング係数(MOE)と湿潤時曲げ強度(wetMOR)と湿潤時曲げヤング係数(wetMOE)とを測定した。その結果、
図5に示す結果となった。
【0050】
なお、中密度繊維板M1は、原料となる木繊維の全て(100%)が広葉樹の木部繊維で構成されるものである。一方、中密度繊維板M2,M3は、建築廃材(廃材のため正確な値は特定できないが、構造材のほとんどがスギ、ヒノキ等の針葉樹であり、内装材にも木材は使用されるが、量的には柱等の構造材がほとんどであることから、大部分は針葉樹であると考えられる)から得られる針葉樹の仮導管繊維に広葉樹の木部繊維を少量添加して原料として用いるものであり、原料となる木繊維の50%以上が針葉樹の仮導管繊維で構成されるものである。また、中密度繊維板N1,N2は、上述した同一で同量の接着剤を用いて製作した中密度繊維板であり、中密度繊維板N1は、原料となる木繊維の全て(100%)がアカシア(広葉樹)の木部繊維で構成されるものであり、中密度繊維板N2は、原料となる木繊維の全て(100%)がラジアータパイン(針葉樹)の仮導管繊維で構成されるものである。
【0051】
図5に示すように、市販品M1~M3に関し、曲げ強度は、常態及び湿潤時共に差がほとんどなかった。一方、曲げヤング係数は、常態及び湿潤時共に、木繊維の100%が広葉樹の木部繊維である中密度繊維板M1が、木繊維の50%以上が針葉樹の仮導管繊維である中密度繊維板M2,M3に比べて高い値となった。また、中密度繊維板N1,N2に関し、常態曲げ強度は、中密度繊維板N2(針葉樹の仮導管繊維100%)が、中密度繊維板N1(広葉樹の木部繊維100%)に比べて高い値となるものの、湿潤時曲げ強度は、中密度繊維板N1が中密度繊維板N2よりも高い値となった。また、常態では、曲げヤング係数は、中密度繊維板N1,N2で差がほとんどなかった。一方、湿潤時曲げヤング係数は、中密度繊維板N1(広葉樹の木部繊維100%)が、中密度繊維板N2(針葉樹の仮導管繊維100%)に比べて著しく高い値となった。
【0052】
以上の測定結果より、少なくとも湿潤状態において、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて、撓み難いことが検証された。
【0053】
野地板21を構成する中密度繊維板は、耐水性に優れた接着剤を含んでいる。本実施形態1では、ユリア・メラミン共縮合樹脂系接着剤を含む中密度繊維板によって野地板21が構成されている。なお、中密度繊維板に用いる接着剤は、ユリア・メラミン共縮合樹脂系接着剤に限られず、ユリア・メラミン共縮合樹脂系接着剤、ジフェニルメタンジイソシアネート及びフェノール樹脂の少なくとも一種を含むものであればよい。
【0054】
(吸水率)
野地板21は、広葉樹の木部繊維を主原料とする密度(g/cm3)が0.7以上0.85未満の中密度繊維板で構成することにより、吸水率が15%以下に構成されている。なお、野地板21は、吸水率が13.6%以下となるように構成されるのが好ましく、さらに、吸水率が13.2%以下となるように構成されるのがより好ましい。
【0055】
ここで、上記吸水率は、相対湿度65±5%の環境下で恒量に達した試験片の重量(m1)を測定した後、該試験片を20±1℃の水中に置き、24時間浸した後、試験片を取り出して重量(m2)を測定する吸水率試験を行い、該吸水率試験において測定した水浸前後の試験片の重量差から算出したもの(水浸前後の試験片の重量差(m2-m1)を水浸前の重量m1で除したものに100を乗じた値)を用いる。
【0056】
上述のように、本実施形態1で野地板21として用いる中密度繊維板は、吸水率が比較的低い木材繊維(広葉樹の木部繊維)が耐水性に優れた接着剤でコーティングされることにより、木材繊維間に水が浸入し難くなり、吸水率が低くなる。このように、本実施形態1では、野地板21を、広葉樹の木部繊維を主原料とし、耐水性に優れた接着剤を用いて成形した比較的高密度の中密度繊維板で構成することにより、野地板21の吸水率を所望の吸水率、本実施形態では、15%以下(好ましくは13.6%以下、より好ましくは13.2%以下)にすることができる。
【0057】
なお、従来野地板として用いていた厚さ12mmの構造用合板A(スギ)と構造用合板B(表層カラマツ、芯層スギ)について、上記吸水率試験を行い、吸水率を算出したところ、その吸水率は、82%と61%であった。このことから、本実施形態1の野地板21の吸水率が従来の野地板と比較して著しく低いことが判る。
【0058】
(透湿性能)
野地板21は、JIS A1324に規定されたカップ法に準拠して測定される透湿抵抗が、1.2m2・s・Pa/μg未満となるように構成されている。具体的には、本実施形態1では、野地板21の透湿抵抗が、1.2m2・s・Pa/μg未満となるように、野地板21を構成する中密度繊維板のエレメントサイズ(木質繊維の長さ及び直径)を調節している。
【0059】
上述のように耐水性に優れる接着剤を含む広葉樹の木部繊維を主原料とする比較的高密度の中密度繊維板は、吸水率が低くなる。一方、本実施形態1では、野地板21を構成する中密度繊維板のエレメントサイズ(木質繊維の長さ及び直径)を調節することにより、吸水率が15%以下で且つ透湿抵抗が1.2m2・s・Pa/μg未満と低く抑えられた野地板21を構成することができる。
【0060】
なお、従来野地板として用いていた上記構造用合板Aと構造用合板Bについて、JIS A1324に規定されたカップ法に準拠して測定した透湿抵抗は、11m2・s・Pa/μgと13m2・s・Pa/μgであった。このことから、本実施形態1の野地板21の透湿抵抗が従来の野地板と比較して著しく低い、つまり、透湿性能が著しく高いことが判る。
【0061】
[透湿防水シート]
透湿防水シート22は、JIS A6111に準拠して測定される透湿抵抗が0.65m2・s・Pa/μg以下となるように構成されている。より具体的には、本実施形態1では、透湿防水シート22は、多数の微細孔(直径0.5μm程度)が設けられた樹脂フィルムで構成され、透湿抵抗が0.65m2・s・Pa/μg以下に構成されている。なお、透湿防水シート22は、JIS A6111に準拠したものであればいかなるものを用いてもよく、不織布で構成してもよい。また、これらを積層したものとしてもよい。
【0062】
-屋根構造の施工方法-
屋根構造1は、以下のようにして施工される。
【0063】
まず、建物の小屋組において間隔を空けて配された複数の垂木2,…,2の間に断熱材30(袋入りロックウール)を充填し、各垂木2の下端面にステープルで固定した後、複数の垂木2,…,2の下端面に石膏ボード3を押しつけ、ビス等で石膏ボード3を複数の垂木2,…,2に打ち付ける。
【0064】
次に、建物の小屋組において間隔を空けて配された複数の垂木2,…,2の上方に屋根下地材20を施工する。具体的には、複数の垂木2,…,2上に野地板21を敷きつめ、釘やビス等で野地板21を複数の垂木2,…,2に固定する。その後、野地板21上に透湿防水シート22を敷きつめ、ステープル釘等で透湿防水シート22を野地板21に打ち付ける。このとき、野地板21の上において複数の透湿防水シート22を、屋根勾配の下側から上側へ順に辺縁を重ね合わせながら敷きつめ、隣り合う透湿防水シート22の重ね合わせた部分にステープル釘等を打ち込む。このようにして屋根下地材20が施工される。
【0065】
なお、本実施形態1では、垂木2の成よりも薄い断熱材30を用いている。そのため、断熱材30及び屋根下地材20を施工することにより、断熱材30と屋根下地材20との間に、自動的に軒先6側から棟木5側に向かって延びる通気路40が形成される。
【0066】
以上のようにして屋根下地材20を施工し軒先6側に水切り8を設けた後、平板状屋根材10を葺く。具体的には、複数の平板状屋根材10,…,10を、棟木5の延伸方向の一端(けらば)から他端(けらば)まで順に葺いていく。具体的には、平板状屋根材10を、長手方向が棟木5側から軒先6側へ延びるように、屋根下地材20上の所定の位置に配置し、平板状の固定部15を、屋根下地材20に向かって打ち込まれたビス4で固定する。次の屋根下地材20は、第2係合部13が、先に屋根下地材20に取り付けられた平板状屋根材10の第1係合部12に覆い被さる位置に配置され、第2係合部13を、先に屋根下地材20に取り付けられた平板状屋根材10の第1係合部12に押しつけることによって該第1係合部12を内部に嵌める(はぜ継ぎする)。このとき、互いに係合する第1係合部12と第2係合部13との間に、防水材を挟み込むことが好ましい。このようにして、複数の平板状屋根材10,…,10を、棟木5の延伸方向の一端側から他端側に順に葺いていく。
【0067】
以上のようにして複数の平板状屋根材10,…,10を施工した後、複数の平板状屋根材10,…,10の棟木5側に棟包み9aと棟換気部材9bとを設ける。
【0068】
以上のようにして、屋根構造1が施工される。
【0069】
-屋根構造の特性-
〈屋根下地材の特性〉
上述のように、従来の屋根下地材では、野地板(構造用合板)の吸水率が高いため、防水シートを貫く釘穴を通って野地板に至った雨水が野地板の表面から内部に浸透し易かった。また、従来の屋根下地材では、野地板の釘穴止水性が低く、釘穴を介して雨水が野地板の内部まで至り、野地板に吸収されていた。さらに、構造用合板からなる従来の野地板は、保水性が高く乾燥し難い。つまり、従来の屋根下地材では、野地板の吸水性、透水性が高いことに加え、保水性が高いため、野地板の腐朽による劣化を招き易かった。
【0070】
これに対し、本実施形態1の屋根下地材20では、広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板によって構成され、従来の屋根下地材に比べて吸水率が低い(吸水率15%以下の)野地板21を用いている。このように吸水率が低い中密度繊維板で構成された野地板21は、構造用合板からなる従来の野地板に比べて雨水を吸水し難い。また、中密度繊維板で構成された野地板21では、屋根下地材20を施工するために打ち込まれたビス4に耐水性を有する接着剤や撥水剤でコーティングされた木材繊維が密着することにより、構造用合板からなる従来の野地板に比べて釘穴止水性が飛躍的に高くなる。特に、本実施形態1では、野地板21として、吸水率が低くエレメントサイズの小さい広葉樹の木部繊維を主原料とする中密度繊維板を用いているため、単位容積当たりの繊維の本数が多く、釘穴(ビス4の穴)が形成されてもビス4の周囲を多数の細かい繊維が囲み、釘穴が細かな繊維で埋められることにより、釘穴による欠損度合いが比較的小さくて済み、針葉樹の仮導管繊維を主原料とする中密度繊維板を野地板21として用いる場合に比べて釘穴止水性がさらに高くなる。
【0071】
また、本実施形態1の屋根下地材20では、野地板21の上面を、透湿性と防水性とを兼ね備えた透湿防水シート22で覆っている。そのため、雨水が平板状屋根材10の隙間から屋根下地材20に至っても、従来に比べて雨水が格段に野地板21に浸透し難くなり、野地板21の腐朽による劣化を抑制することができる。また、万一、若干量の雨水が野地板21に浸透したとしても、野地板21は、透湿性と同様に通気性にも優れているため、浸透した雨水はすぐに気化して通気路40に導かれる。つまり、本実施形態1の屋根下地材20では、この点によっても野地板21の腐朽による劣化を抑制することができ、また、雨水が野地板21の裏面にまで至ることがないので、雨漏りを防止することもできる。
【0072】
また、上述のように、従来の合板からなる野地板では、最表層の単板が水を吸収すると、吸収された水は、導管・仮導管を通って単板の繊維方向(通常長手方向)に移動し、小口から漏出して裏面に至る。裏面に至った水の一部は、そのまま滴って雨漏りの原因となり、また、他の一部は、最裏層の単板の小口から再度吸収されて単板内を移動し、垂木と接触する部分で再度単板から漏出し、垂木から滴ってやはり雨漏りの原因となる。また、屋根の勾配にしたがって合板上を流れた水は、合板の継ぎ目で漏れ易く、これも雨漏りの原因となる。
【0073】
これに対し、本実施形態1の屋根下地材20では、野地板21が中密度繊維板で構成されている。中密度繊維板で構成された野地板21は、木材を分解して繊維を接着剤で固めているので、合板のように繊維方向が揃っておらず、高密度で空隙が少なく、耐水性の接着剤や撥水剤を使用でき、吸水率も著しく低い。そのため、本実施形態1の屋根下地材20では、従来の合板からなる野地板のように継ぎ目(小口)から水が漏出することがなく、野地板21の継ぎ目からの雨漏りも防止することができる。
【0074】
この点を実証すべく、以下の透水性試験を行った。
【0075】
(1)試験体
以下の2種類の試験体Xを2枚ずつ用意した。
【0076】
I:中密度繊維板(厚さ9mm、密度0.79g/cm3、含水率8.9%)
II:合板(厚さ9mm、密度0.42g/cm3、含水率10.6%、針葉樹)
【0077】
なお、Iの試験体Xは、野地板21を構成する中密度繊維板と同様に、広葉樹の木部繊維を主原料とし、吸水率が15%以下で透湿抵抗が1.2m2・s・Pa/μg未満となるように構成されている。
【0078】
(2)試験方法
まず、
図6に示すように、試験用器具を組み立てる。具体的には、試験体Xの中心に釘51(N50、スクリュー釘)を上方から打ち込む。Iの試験体Xの一方(試験体X1と言う)には、N50の釘51を打ち込み、他方(試験体X2と言う)には、スクリュー釘を打ち込む。IIの試験体Xの一方(試験体X3と言う)には、N50の釘51を打ち込み、他方(試験体X4と言う)には、スクリュー釘を打ち込む。このようにして形成された4種類の試験体X1~X4のそれぞれに対し、釘51を覆うように試験体Xの上面にアクリル樹脂からなる円筒52(内径34mm、高さ300mm)を立てて置き、円筒52と試験体Xの上面との隙間をコーキング剤53で埋めた後、これらを円筒52よりも大径のビーカー54の上に載せる。
【0079】
試験用器具の組み立て後、水(常温)を、円筒52内に静かに注ぐ。水は、円筒52の高さ250mm(約227ml)の位置まで注ぐ。そして、これらを気温20℃、相対湿度65%の環境下で8日間静置し、定期的に水の残量、試験体Xの外観状態及び釘穴からの水の漏れを確認した。
【0080】
(3)試験結果
図7のグラフは、上記透水性試験の結果である。
図7のグラフの縦軸に示す透水量(ml)は、円筒52内に注がれた水の減少量である。また、■印が試験体X1、◆印が試験体X2、●印が試験体X3、▲印が試験体X4のそれぞれの透水量を示している。
【0081】
図7のグラフから判るように、4種類の試験体X1~X4のうち、試験体X4の透水量が最も多く、試験開始後3日目で円筒52内の水がほとんど無くなり、試験の続行が不可能となった。次いで、試験体X3の透水量が多く、試験開始後4日目で円筒52内の水がほとんど無くなり、試験の続行が不可能となった。この結果より、試験体X3及びX4では、釘51を打ち込む際に釘穴が大きく形成されるために、この釘穴から水が試験体Xの繊維方向に拡がる(浸透する)と共に、釘51を伝って試験体Xの下方(ビーカー54)まで通り抜け易い(釘穴の止水性が低い)ことが判る。
【0082】
これに対し、本実施形態1の野地板21を構成する試験体X1及びX2は、4種類の試験体X1~X4の中で試験体X3及びX4に比べて透水量が著しく少なく、試験開始から3日経過しても、円筒52内からほとんど水が流出しなかった。試験体X1及びX2では、試験開始から8日経過しても、釘51からビーカー54へ水が滴らなかった。これは、試験体X1及びX2では、釘51が木材繊維間をかき分けるように打ち込まれ、その釘51に接着剤でコーティングされた木材繊維が密着することにより、水が通過する隙間がほとんど形成されないことによるものと推測される。また、試験体X1は、耐水性に優れる接着剤(本実施形態1では、ユリア・メラミン共縮合樹脂系接着剤)で形成され、吸水率が15%以下に構成されている。そのため、釘穴によって釘51の周囲に隙間が形成されたとしても、木材繊維が耐水性に優れる接着剤でコーティングされているため、水が浸入しないものと推測される。このように、試験体X1及びX2では、水が表面(上面)から内部に浸透することがなく、釘穴に浸入することもなく、試験体X3及びX4に比べて透水性が著しく低い、即ち、防水性が極めて高いことが判る。
【0083】
このように、本実施形態1では、防水性が極めて高く(透水性が極めて低く)、透湿性及び通気性に優れた野地板21を屋根下地材20として用いていることにより、屋根下地材20の腐朽による劣化及び雨漏りを防止することができる。
【0084】
〈通気路の特性〉
上述のように、本実施形態1では、垂木2の成よりも薄い断熱材30を、複数の垂木2,…,2の各間に設けている。そのため、断熱材30及び屋根下地材20を施工するだけで、各断熱材30と屋根下地材20との間に、軒先6側から棟木5側に向かって延びる通気路40が形成される。
【0085】
通気路40では、軒先6側の端部が流入口40aとなり、棟木5側の端部(棟包み9aと平板状屋根材10との間に設けた棟換気部材9bの端部)が流出口40bとなって、屋外の空気が流入口40aから流出口40bへ流れる。そのため、室内の湿気が断熱材30を通過して屋根下地材20の下面側(野地板21の下面)に至ったとしても、屋根下地材20の下面において結露が生じ難くなる。また、屋根下地材20の下面において結露が生じたとしても、結露水は、通気路40を流れる空気によって気化して水蒸気となり、該空気と共に軒先6側から棟木5側へ流れ、流出口40bから速やかに屋外へ排出されることとなる。そのため、屋根下地材20の腐朽による劣化を防止することができる。
【0086】
また、本実施形態1の屋根下地材20では、従来の屋根下地材に比べて吸水率が低く(15%以下)且つ透湿抵抗の低い(1.2m2・s・Pa/μg未満)野地板21と、透湿性と防水性に優れた透湿防水シート22とを用いている。そのため、夜間の放射冷却等によって平板状屋根材10の下方(具体的には、透湿防水シート22の上下面)において結露が生じたとしても、結露水は、日中の気温上昇によって気化して水蒸気となり、屋根下地材20(野地板21及び透湿防水シート22)を通過して通気路40に至る。平板状屋根材10と屋根下地材20との間で生じた結露による湿気は、通気路40を流れる空気と共に軒先6側から棟木5側へ流れ、流出口40bから速やかに屋外へ排出されることとなる。そのため、屋根下地材20の腐朽による劣化を防止することができる。
【0087】
-実施形態1の効果-
本実施形態1によれば、野地板21の下方に、軒先6側から棟木5側へ延びる通気路40が形成されている。そのため、冬季に室内で生じた湿気が小屋裏に至っても、通気路40を流れる空気と共に屋外へ排出することができる。よって、野地板21の下面において結露が生じて野地板21が腐朽により劣化するおそれがない。つまり、野地板21の腐朽による劣化を抑制することができる。
【0088】
また、本実施形態1によれば、野地板21が中密度繊維板で構成されている。中密度繊維板は、木材繊維を接着剤と共に熱圧して成板することによって形成された木質ボードであり、合板のように単板自体の透湿抵抗が高い上、単板間の接着剤層の存在により、透湿抵抗が高い材料となっていないため、従来、野地板として用いられていた構造用合板に比べて透湿抵抗が低い。そのため、このような湿気を透過させ易い野地板21を屋根下地材20として用いることにより、夜間の放射冷却等によって平板状屋根材10の下方において結露が生じたとしても、結露水は、日中の気温上昇によって気化して水蒸気となり、野地板21を通過して通気路40に至る。よって、平板状屋根材10と野地板21との間に通気路40がなくても、平板状屋根材10と野地板21との間で生じた結露による湿気を屋外へ排出することができ、平板状屋根材10の腐朽による劣化を抑制することができる。
【0089】
また、本実施形態1によれば、比較的高密度(0.7以上0.85未満)の中密度繊維板を野地板21として用いている。このような野地板21は、構造用合板等で構成された従来の野地板(吸水率60%以上)に比べて吸水率が低くなるため、表面に付着した雨水を吸水し難く、いくらか吸水しても構造用合板より速乾性に優れる。また、このような野地板21によれば、ビス4が打ち込まれた箇所においても、木材繊維間をかき分けるように打ち込まれたビス4に接着剤でコーティングされた木材繊維が密着することにより、釘穴に雨水等の水分が浸入し難くなる。このように表面だけでなく釘穴からも吸水し難い防水性に優れた中密度繊維板を野地板21として用いることにより、雨水が平板状屋根材10の隙間から野地板21に至っても、従来に比べて雨水が格段に野地板21に浸透し難くなり、野地板21の腐朽による劣化を抑制することができる。また、万一雨水が野地板21に浸透したとしても、裏面にまで至ることはなく、雨漏りを防止することができる。
【0090】
特に、本実施形態1では、広葉樹の木部繊維を主原料とする中密度繊維板を野地板21として用いている。広葉樹は、組織の90%以上が仮導管である針葉樹に比べて空隙率が著しく低いため、吸水率も著しく低い。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板よりも吸水率が低くなる。また、広葉樹の木部繊維は、針葉樹の仮導管繊維に比べて繊維長が短く、繊維径が小さい。そのため、同じ中密度繊維板であっても、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べ、単位容積当たりの繊維の本数が多く、釘穴が形成されたときに釘の周囲を多数の細かい繊維が囲むため、欠損度合いが小さくなり、釘穴止水性により優れている。よって、本実施形態1によれば、このように吸水率が低く釘穴止水性に優れた広葉樹の木部繊維を主原料とする中密度繊維板を野地板21として用いることにより、野地板21の腐朽による劣化及び雨漏りをより抑制することができる。
【0091】
さらに、広葉樹は針葉樹よりも曲げヤング係数が大きく、繊維に分解して再構成した中密度繊維板においても同じ傾向がみられるので、広葉樹の木部繊維を主原料とする中密度繊維板は、針葉樹の仮導管繊維を主原料とする中密度繊維板に比べて撓み難い。そのため、野地板21を広葉樹の木部繊維を主原料とする中密度繊維板で構成すると、屋根施工時に作業者が野地板21上を歩く際に野地板21が撓み難いため、作業者に安心感を与えることができる。これは、野地板としては特に重要な要素である。
【0092】
また、従来の合板からなる野地板では、最表層の単板が水を吸収すると、吸収された水は、導管・仮導管を通って単板の繊維方向(通常長手方向)に移動し、小口から漏出して裏面に至る。裏面に至った水の一部は、そのまま滴って雨漏りの原因となり、また、他の一部は、最裏層の単板の小口から再度吸収されて単板内を移動し、垂木と接触する部分で再度単板から漏出し、垂木から滴ってやはり雨漏りの原因となる。
【0093】
これに対し、本実施形態1によれば、野地板21が中密度繊維板で構成されている。中密度繊維板で構成された野地板21は、木材を分解して繊維を接着剤で固めているので、概ね、繊維方向が揃っておらず、高密度で空隙が少なく、耐水性の接着剤や撥水剤を使用でき、吸水率も著しく低い。そのため、本実施形態1によれば、従来の合板からなる野地板のように継ぎ目(小口)から水が漏出することがなく、野地板21の継ぎ目からの雨漏りも防止することができる。
【0094】
さらに、本実施形態1によれば、野地板21の下方に通気路40が形成され、野地板21を透湿性に優れた中密度繊維板で構成している。そのため、万一、雨水が野地板21に浸透したとしても、野地板21に浸透した雨水は、いずれ気化して水蒸気となり、野地板21を通過して通気路40に至るため、通気路40を流れる空気と共に屋外へ排出することができる。
【0095】
以上により、本実施形態1によれば、施工が容易で、平板状屋根材10及び野地板21が腐朽により劣化し難い屋根構造1を提供することができる。
【0096】
また、本実施形態1では、透湿抵抗が1.2m2・s・Pa/μg未満に構成された中密度繊維板を野地板21として用いている。このように透湿抵抗が極めて低く、透湿性に優れた中密度繊維板を野地板21として用いることにより、野地板21表面での結露の発生及び野地板21の腐朽による劣化を抑制する効果がさらに増大する。
【0097】
ところで、平板状屋根材10が本実施形態1のように金属板によって形成された金属屋根材10である場合、アスファルトルーフィングのような透湿性の低いシート材を野地板21の上面に設けると、金属屋根材10の下方で生じた結露水や金属屋根材10の下面側へ侵入した雨水が十分に排出されずに金属屋根材10とシート材との間に溜まり易く、金属屋根材10の下面に錆が発生(劣化)するおそれがある。
【0098】
これに対し、本実施形態1では、野地板21の上面を透湿性と防水性を有する透湿防水シート22で覆うこととしている。このような構成により、金属屋根材10の下面において結露が生じたり、金属屋根材10の下面側へ雨水が浸入したりしても、その水分(結露水や雨水)は、気温上昇時に気化して水蒸気となり、透湿性を有する屋根下地材20(透湿防水シート22と野地板21)を通過して通気路40に至るため、水分(結露水や雨水)が金属屋根材10の下方に溜まることがない。つまり、上記構成によれば、金属屋根材10の下面における錆の発生(劣化)を抑制することができる。また、上記構成によれば、屋根下地材20の防水性がさらに向上するため、野地板21の腐朽等の劣化をさらに抑制することができる。
【0099】
また、本実施形態1では、透湿抵抗が0.65m2・s・Pa/μg以下に構成された透湿防水シート22を用いることとしている。このように透湿抵抗が極めて低く、透湿性に優れた透湿防水シート22を用いることにより、野地板21と透湿防水シート22とを備えた屋根下地材20の透湿性能が向上するため、平板状屋根材10や野地板21の劣化を抑制する効果がさらに増大する。
【0100】
また、本実施形態1では、平板状屋根材10が金属屋根材であるため、金属屋根材10の下方で生じた結露水や金属屋根材10の下面側へ侵入した雨水によって、金属屋根材10が劣化(錆が発生)し易いところ、上記構成により、金属屋根材10の下方の水分を通気路40へ排出することができるため、金属屋根材10の劣化を抑制することができる。
【0101】
《その他の実施形態》
上記実施形態1では、屋根下地材20を、野地板21と透湿防水シート22とで構成していたが、屋根下地材20は、透湿防水シート22を備えないものであってもよい。上述のように、野地板21は、従来の野地板に比べて透水性が低く防水性に優れるため、透湿防水シート22を設けなくても、野地板21に雨水が浸透するのを抑制することができるため、野地板21の腐朽による劣化を抑制することができる。
【0102】
また、上記実施形態1では、平板状屋根材の一例として金属板によって形成された平板状の金属屋根材について説明した。しかしながら、平板状屋根材は、屋根下地材にベタ置きする平板状の屋根材であればいかなるものであってもよく、平板状の金属屋根材に限られない。平板状屋根材は、屋根下地材にベタ置きする平板状の化粧スレートやアスファルトシングル等であってもよい。
【0103】
また、上記実施形態1では、立平葺きの屋根構造1について説明したが、本発明に係る屋根構造の平板状屋根材の葺き方は、立平葺きに限定されない。本発明に係る屋根構造の平板状屋根材の葺き方は、平葺きや横葺き等であってもよく、瓦棒葺きであってもよい。
【0104】
また、上記各実施形態において、平板状屋根材として金属屋根材を用いず、平板状の化粧スレートやアスファルトシングル等を用いる場合、透湿防水シート22の代わりに、アスファルトルーフィングのような透湿性を有しないシート材を用いることとしてもよい。金属屋根材と異なり、化粧スレートやアスファルトシングル等は、錆が発生しない。よって、平板状の化粧スレートやアスファルトシングル等を用いる場合には、透湿防水シート22の代わりに透湿性を有しないシート材を用いることにより、屋根構造にかかる費用を削減することができる。
【0105】
ただし、ベタ置き型の屋根材(平板状屋根材)は、太陽からの熱を直接的に屋根材の下面に伝えるため、ルーフィングとその上面の水分は、夏場であれば70℃程度にまで温度が上昇する。アスファルトルーフィングを用いる場合、平板状屋根材とアスファルトルーフィングとの間に熱だけでなく熱と水分が共存することとなり、アスファルトルーフィングの劣化が促進される。そのため、アスファルトルーフィングを用いる場合、耐久性の高いアスファルトルーフィングを使用する等の配慮が必要である。
【0106】
一方、近年の技術開発により、腐食、錆に強い金属屋根材が開発されている。このように腐食や錆に強い金属屋根材を用いる場合には、水分による腐食の心配が無いため、アスファルトルーフィングを用いることが可能となる。また、腐食や錆に強い金属屋根材とアスファルトルーフィングを用いる場合、通気路40を介してアスファルトルーフィングの上面(金属屋根材の下面)の水分を排出する必要がなく、主としてアスファルトルーフィングの下面(中密度繊維板からなる野地板21の上面)の水分を排出すればよいため、野地板21の腐朽防止に特化した構造となる。
【0107】
また、上記実施形態1では、本発明に係る屋根下地材20を、屋根断熱タイプの屋根構造1に適用する例について説明したが、屋根下地材20は、屋根側ではなく天井側に断熱材30が設けられた天井断熱タイプの屋根構造に適用することも勿論可能である。天井断熱タイプの屋根構造に適用した場合においても、屋根下地材20の下方に通気路40を形成し、上記実施形態1と同様の野地板21を用いることにより、上記実施形態1と同様の効果を奏することができる。
【0108】
なお、上記実施形態1では、充填断熱工法で施工された屋根構造について説明しているが、本発明は、外張り断熱工法で施工された屋根構造にも適用可能である。
【産業上の利用可能性】
【0109】
本発明は、野地板と平板状屋根材とを備えた屋根構造に有用である。
【符号の説明】
【0110】
1 屋根構造
5 棟木
6 軒先
10 平板状屋根材
20 屋根下地材
21 野地板
22 透湿防水シート
40 通気路
【手続補正2】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
断熱材と、該断熱材の上方に設けられる野地板と該野地板の上方に設けられる平板状屋根材とを備えた屋根構造であって、
上記断熱材と上記野地板との間には、軒先側から棟木側へ延びる通気路が形成され、
上記野地板は、繊維長が0.5mm以上2.0mm以下の広葉樹の木部繊維を主原料とする密度が0.7以上0.85未満の中密度繊維板で構成されている
ことを特徴とする屋根構造。
【請求項2】
請求項1に記載の屋根構造において、
上記中密度繊維板は、透湿抵抗が1.2m2・s・Pa/μg未満になるように構成されている
ことを特徴とする屋根構造。
【請求項3】
請求項1又は2に記載の屋根構造において、
上記野地板の上面を覆う透湿防水シートをさらに備えている
ことを特徴とする屋根構造。
【請求項4】
請求項1~3のいずれか1つの屋根構造において、
上記平板状屋根材は、金属屋根材である
ことを特徴とする屋根構造。