(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023031312
(43)【公開日】2023-03-08
(54)【発明の名称】カップリングデバイス及び方法、波長ロックシステム及び方法、並びに位相アンラップシステム及び方法
(51)【国際特許分類】
G02B 6/125 20060101AFI20230301BHJP
H04B 10/07 20130101ALI20230301BHJP
G02B 6/122 20060101ALI20230301BHJP
【FI】
G02B6/125 301
H04B10/07
G02B6/122 311
【審査請求】有
【請求項の数】20
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022133144
(22)【出願日】2022-08-24
(31)【優先権主張番号】63/236,567
(32)【優先日】2021-08-24
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】17/827,281
(32)【優先日】2022-05-27
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】503260918
【氏名又は名称】アップル インコーポレイテッド
【氏名又は名称原語表記】Apple Inc.
【住所又は居所原語表記】One Apple Park Way,Cupertino, California 95014, U.S.A.
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【弁理士】
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100139712
【弁理士】
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100121979
【弁理士】
【氏名又は名称】岩崎 吉信
(72)【発明者】
【氏名】モハメド マハムード
(72)【発明者】
【氏名】イ-クエイ ウー
(72)【発明者】
【氏名】ルシア ガン
【テーマコード(参考)】
2H147
5K102
【Fターム(参考)】
2H147AB11
2H147BA05
2H147BB02
2H147BD02
2H147GA22
5K102AA15
5K102MC02
5K102MD01
5K102MD03
5K102MH02
5K102MH12
5K102MH22
5K102PB01
5K102PH31
5K102PH49
5K102PH50
5K102RB01
5K102RD02
5K102RD06
5K102RD28
(57)【要約】
【課題】光学デバイスの改良技術を提供する。
【解決手段】光分割及び波長ロックに使用される光学デバイスの構成が開示されている。光学デバイスは、第2の導波路に結合された第1の導波路と、第2の導波路に結合された第3の導波路とを備えた2×3カプラであり得る。第1及び第3の導波路は、入力光を受光し、光を第2の導波路に光学的に結合することができる。第1、第2、及び第3の導波路の出力信号は、広帯域波長範囲にわたって互いに一定の位相差を有することができ、これにより、位相アンラップを可能にし得る。FSRを介して出力信号を位相アンラップし、広帯域波長範囲にわたって更なる位相アンラップを実行することによって、連続信号が生成され、広帯域波長範囲にわたって光源によって放出される光の各波長を順次ロックするために使用され得る。
【選択図】
図1
【特許請求の範囲】
【請求項1】
光学デバイスであって、
第1の導波路であって、
第1の光を受光し、
第1の波長応答及び第1の位相シフトを有する第1の出力信号を出力する、ように構成された、第1の導波路と、
前記第1の導波路に光学的に結合されており、第2の波長応答及び第2の位相シフトを有する第2の出力信号を出力するように構成された、第2の導波路と、
前記第2の導波路に光学的に結合されており、
第2の光を受光し、
第3の波長応答及び第3の位相シフトを有する第3の出力信号を出力する、ように構成された第3の導波路と、を備え、
前記第1の位相シフト及び前記第2の位相シフトが、第1の位相差によってオフセットされており、
前記第2の位相シフト及び前記第3の位相シフトが、第2の位相差によってオフセットされており、
前記第1の位相シフト及び前記第3の位相シフトが、第3の位相差によってオフセットされており、
前記第1の位相差、前記第2の位相差、及び前記第3の位相差が一定である、光学デバイス。
【請求項2】
前記第2の光を位相シフトするように動作可能な位相シフタを更に備え、
前記第2の光の前記位相シフトが、前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号の波長ロック効率を制御し、
前記第1の位相シフト、前記第2の位相シフト、及び前記第3の位相シフトが、約1マイクロメートルの波長範囲にわたって一定である、請求項1に記載の光学デバイス。
【請求項3】
前記第1の導波路及び第3の導波路が、前記第2の導波路に対して対称である、請求項1に記載の光学デバイス。
【請求項4】
前記第1の導波路がテーパ状で、前記第2の導波路に断熱的に光結合されており、
前記第3の導波路がテーパ状で、前記第2の導波路に断熱的に光結合されている、
請求項1に記載の光学デバイス。
【請求項5】
前記第1の導波路、前記第2の導波路、及び前記第3の導波路が、結合領域において一定の幅を有し、
前記第2の導波路が、前記結合領域において前記第1の導波路及び前記第3の導波路よりも広い、
請求項1に記載の光学デバイス。
【請求項6】
前記光学デバイスが、光結合領域を画定し、
前記第1の導波路が、前記光結合領域において増大するテーパを有し、
前記第2の導波路が、前記光結合領域において減少するテーパを有し、
前記第3の導波路が、前記光結合領域において増大するテーパを有し、
前記第1の導波路及び前記第3の導波路からの光が、前記光結合領域において前記第2の導波路に光学的に結合する、
請求項1に記載の光学デバイス。
【請求項7】
前記第1の導波路、前記第2の導波路、及び前記第3の導波路が、一定の幅を有する、請求項1に記載の光学デバイス。
【請求項8】
光源の波長を監視する光学システムであって、
光を生成するように構成された前記光源と、
前記光源から受光された前記光を受光し、前記光を第1の分割光及び第2の分割光に分割するスプリッタと、
前記第1の分割光を受光し、前記第1の分割光を前記第2の分割光に対して位相シフトするように配置された位相シフタと、
2×3カプラであって、
前記位相シフタから前記第1の分割光を受光し、
前記スプリッタから前記第2の分割光を受光し、
第1の出力信号、第2の出力信号、及び第3の出力信号であって、前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号のうちのそれぞれが、前記第1の分割光と前記第2の分割光との間のそれぞれの干渉に基づくそれぞれの強度を有する、第1の出力信号、第2の出力信号、及び第3の出力信号を出力する、ように構成された、2×3カプラと、
前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号の強度を使用して、前記スプリッタによって受光された前記光の波長を監視するように構成されたコントローラと、を備える、光学システム。
【請求項9】
前記コントローラが、光検出器のセットを含み、
前記光検出器のセットが、前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を受信し、
前記光検出器のセットが、前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を、第1のデジタル出力信号、第2のデジタル出力信号、及び第3のデジタル出力信号に変換し、
前記コントローラが、前記第1のデジタル出力信号、前記第2のデジタル出力信号、及び前記第3のデジタル出力信号を、第1の目標デジタル値、第2の目標デジタル値、及び第3の目標デジタル値と比較し、
前記コントローラが、前記第1の目標デジタル値、前記第2の目標デジタル値、及び前記第3の目標デジタル値で、前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を制御するためのフィードバック信号を、前記光源に送信する、
請求項8に記載の光学システム。
【請求項10】
前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を受信し、アンラップ位相信号を抽出する位相抽出ブロックと、
前記アンラップ位相信号を受信する微分器であって、
前記アンラップ位相信号におけるゼロ点を検出し、
前記検出されたゼロ点を示す微分信号を生成する、ように構成された、微分器と、
前記ゼロ点を調整するように構成されたコンパレータのセットと、
波長ロック用の連続信号を生成する際に使用するための積分信号を生成するように構成された積分器と、
光検出器のセットであって、
前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を受信し、
前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号のうちのそれぞれに対する、対応する正弦波信号を前記位相抽出ブロックに送信する、ように動作可能な、光検出器のセットと、
前記コンパレータのセットからの前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を合計する第1の合計器と、
積分信号を前記微分信号と合計して、測定された光の波長を対応する光の目標波長にロックするために使用される、波長ごとの位相シフト量を判定するために使用される合計信号を生成する、第2の合計器と、
を更に備える、請求項8に記載の光学システム。
【請求項11】
前記積分信号が、前記第1及び第2の分割光の特定の波長と前記合計信号との間に1対1の関係を生成するために使用される補正値である、請求項10に記載の光学システム。
【請求項12】
前記コンパレータのセットが、
負のジャンプコンパレータと、
正のジャンプコンパレータと、を備え、
前記負のジャンプコンパレータが、前記微分信号に対して2πを加算し、
前記正のジャンプコンパレータが、前記微分信号に対して2πを減算し、
前記光学システムが、前記積分信号を前記微分信号と合計して、約1マイクロメートルの波長範囲にわたって各々測定された光の波長を順次ロックするために使用される情報を含む合計信号を生成するように構成された第2の合計器を更に備える、
請求項8に記載の光学システム。
【請求項13】
前記第1の出力信号が、第1の位相シフトを伴う第1の正弦波波長応答を有し、
前記第2の出力信号が、第2の位相シフトを伴う第2の正弦波波長応答を有し、
前記第3の出力信号が、第3の位相シフトを伴う第3の正弦波波長応答を有し、
前記第1の位相シフト、前記第2の位相シフト、及び前記第3の位相シフトが、約1マイクロメートルの波長範囲にわたって一定である、
請求項8に記載の光学システム。
【請求項14】
前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号が、同じ位相差によって互いにオフセットされている、請求項8に記載の光学システム。
【請求項15】
前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号の位相シフトが、約1マイクロメートルの波長範囲にわたって一定である、請求項8に記載の光学システム。
【請求項16】
信号を位相アンラップする方法であって、
第1の出力信号、第2の出力信号、及び第3の出力信号であって、前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号のそれぞれが一定の位相差によって互いに分離された、第1の出力信号、第2の出力信号、及び第3の出力信号を生成することと、
波長範囲にわたって、前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号からアンラップ位相を抽出して、アンラップ位相信号を生成することと、
前記アンラップ位相信号を微分して、微分信号を生成することと、
前記微分信号を閾値電圧と比較することによって、補償微分信号を生成することと、
前記補償微分信号を積分して、波長ロック用の連続信号を生成する際に使用するように構成された積分信号を生成することと、を含む、方法。
【請求項17】
前記波長範囲が、約1マイクロメートルであり、
前記アンラップ位相信号を微分する前記動作が、前記アンラップ位相信号におけるジャンプを検出することを含み、
前記微分されたアンラップ位相信号を比較する前記動作が、前記検出されたジャンプが正のジャンプであるか又は負のジャンプであるかを判定することを含み、
前記微分されたアンラップ位相信号を補償する前記動作が、2π又は-2πのうちの少なくとも1つによって前記検出されたジャンプを調整することと、
前記連続信号を使用して、前記波長範囲にわたって光の各波長を順次波長ロックすることと、を更に含む、
請求項16に記載の方法。
【請求項18】
前記検出されたジャンプが前記正のジャンプであるか又は前記負のジャンプであるかを判定する前記動作が、負のジャンプコンパレータ及び正のジャンプコンパレータによって実行され、
前記方法が、
前記負のジャンプコンパレータ及び前記正のジャンプコンパレータの出力を合計することと、
前記積分信号を前記微分されたアンラップ位相信号と合計して、波長ロックの際に使用される前記連続信号を生成することと、を更に含む、
請求項17に記載の方法。
【請求項19】
前記波長範囲が、約1マイクロメートルであり、
一定の位相シフトを伴う前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を生成する前記動作が、前記波長範囲にわたって前記第1の出力信号、前記第2の出力信号、及び前記第3の出力信号を生成することを含む、
請求項16に記載の方法。
【請求項20】
前記積分信号を前記微分されたアンラップ位相信号と合計して、波長ロックの際に使用される前記連続信号を生成する前記動作を更に含み、前記積分信号が、前記第1及び第2の分割光の特定の波長と前記連続信号との間に1対1の関係を作成するために使用される補正値信号を含む、請求項16に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、光カプラに関する。より具体的には、本明細書の実施形態は、波長ロック光源に対する位相アンラップに使用され得る信号を出力する光結合導波路を有する光学システムに関する。
【0002】
(関連出願の相互参照)
本出願は、2021年8月24日に出願された米国仮特許出願第63/236,567号の米国特許法第119条(e)の下の利益を主張するものであり、その内容は、参照によりその全体が本明細書に組み込まれる。
【背景技術】
【0003】
一般に、光学システムは、様々なタイプの情報を測定するために複数の光源を使用する。場合によっては、光源によって放出される光の光学特性を監視することが有用であり得る。例えば、光源によって放出される光の光学特性は、光源が特定の程度の波長安定性を有することを確実にするために測定及び監視され得る。更に、波長ロックは、単一の波長又は小さな波長範囲を扱う際に達成され得るが、複数の波長又はより多数の波長に及び波長範囲の複雑さが増大させる。
【0004】
これらの光学システムのいくつかは、同時に及び/又は順次に複数の異なる波長で光を出力することができる。しかしながら、監視される波長の数が増加するにつれて、システムのサイズ及び複雑さも増加する。波長ロックされた波長の数に応じた光学システムのサイズのスケーリングにより、光を監視するために使用される光学システムは、サイズ及び複雑さなどの要因に起因して特定の用途には好適ではない場合がある。一例として、そのような光学システムは、携帯電話、タブレットコンピューティングデバイス、ラップトップ、ウェアラブルなどのコンパクトな電子デバイスに合理的に組み込まれるスペースを多くとり過ぎる場合がある。加えて、光を監視するための既存の光学システムは、狭い波長範囲にわたって機能し得、異なる若しくは広い波長範囲では動作しない場合がある。したがって、コンパクトな電子デバイスに組み込むためのコンパクトな形状因子を維持しながら、大きな波長範囲にわたって光の波長をロックするためのシステムを使用することが望ましい場合がある。
【発明の概要】
【0005】
本開示に記載のシステム、デバイス、方法、及び装置の実施形態は、波長ロックに使用される2×3カプラを対象とする。また、自由スペクトル範囲、及び広帯域波長範囲にわたる全ての波長を位相アンラップすることを対象とする、システム、デバイス、方法、及び装置が記載されている。2×3カプラは、広帯域波長範囲にわたって互いに一定の位相差を伴う正弦波波長応答を有する出力信号を生成することができ、これにより、広帯域波長範囲にわたる位相アンラップを可能にし得る。自由スペクトル範囲にわたって出力信号を位相アンラップし、広帯域波長範囲にわたる更なる位相アンラップを実行することによって、連続信号が生成及び使用されて、広帯域波長範囲にわたって各波長をロックすることができる。連続信号は、各波長と位相アンラップ信号との間に1対1の関係を生成することができる。
【0006】
いくつかの例では、本開示は、光学デバイスを記載している。光学デバイスは、第1の光を受光し、第1の位相シフトを伴う第1の波長応答を有する第1の出力信号を出力する、ように構成された第1の導波路と、第1の導波路に光学的に結合されており、第2の位相シフトを伴う第2の波長応答を有する第2の出力信号を出力するように構成された、第2の導波路と、第2の導波路に光学的に結合されており、第2の光を受光し、第3の位相シフトを伴う第3の波長応答を有する第3の出力信号を出力する、ように構成された第3の導波路と、を含み得、ここで、第1の位相シフト、第2の位相シフト、及び第3の位相シフトの間の位相差は一定である。
【0007】
いくつかの例では、本開示は、光源の波長を監視する光学システムを記載している。光学システムは、光を生成するように構成された光源と、光源から受光された光を受光し、第1の分割光及び第2の分割光に分割するスプリッタと、第1の分割光を受光し、第1の分割光を位相シフトするように配置された位相シフタと、位相シフタから第1の分割光を受光し、スプリッタから第2の分割光を受光し、第1の出力信号、第2の出力信号、及び第3の出力信号であって、第1の出力信号、第2の出力信号、及び第3の出力信号のうちのそれぞれが第1の分割光と第2の分割光との間のそれぞれの干渉に基づくそれぞれの強度を有する、第1の出力信号、第2の出力信号、及び第3の出力信号を出力する、ように構成された2×3カプラと、を含み得る。光学システムはまた、第1の出力信号、第2の出力信号、及び第3の出力信号の強度を使用して、スプリッタによって受光された光の波長を監視するように構成されたコントローラを含み得る。
【0008】
いくつかの例では、本開示は、信号を位相アンラップする方法を記載している。方法は、各々が一定の位相差によって互いに分離された波長応答を有する、第1の出力信号、第2の出力信号、及び第3の出力信号を生成することと、波長範囲にわたって、第1の出力信号、第2の出力信号、及び第3の出力信号からアンラップ位相を抽出して、アンラップ位相信号を生成することと、アンラップ位相信号を微分して、微分信号を生成することと、微分信号を閾値電圧と比較することによって、補償微分信号を生成することと、補償微分信号を積分して、波長ロック用の連続信号を生成する際に使用するように構成された積分信号を生成することと、を含み得る。
【0009】
上述の例示的な態様及び実施形態に加えて、更なる態様及び実施形態が、図面を参照し、以下の説明を検討することによって明らかになるであろう。
【図面の簡単な説明】
【0010】
【
図1】例示的な波長ロックシステムのブロック図である。
【
図2】2×3カプラを含む例示的な波長ロックシステムのブロック図である。
【
図3B】
図3Aに示される2×3カプラを備えた例示的な波長ロックシステムの断面図である。
【
図4A】
図2に示されるものなどの波長ロックシステムからの例示的な出力信号を示すグラフである。
【
図4B】
図4Aの例示的な出力信号から抽出された例示的な位相を示すグラフである。
【
図5】位相アンラップ出力信号用の例示的な回路のサンプル回路図である。
【
図6A】
図5の回路図の様々なノードにおいて測定された信号のグラフである。
【
図6B】
図5の回路図の様々なノードにおいて測定された信号のグラフである。
【
図6C】
図5の回路図の様々なノードにおいて測定された信号のグラフである。
【
図6D】
図5の回路図の様々なノードにおいて測定された信号のグラフである。
【
図7A】2×3カプラの別の変形例の断面図である。
【
図7B】
図7Aの2×3カプラを組み込んだ波長ロックシステムの概略図である。
【発明を実施するための形態】
【0011】
添付の図でのクロスハッチング又はシェーディングの使用は、概して、隣り合う要素間の境界を明らかにし、図の視認性も促進するためにも提供される。したがって、クロスハッチング又はシェーディングの存在も不在も、添付の図に示される任意の要素に関する特定の材料、材料特性、要素の割合、要素の寸法、同様に図示されている要素の共通点、又は任意の他の特質、属性、若しくは特性についてのいかなる選好又は要件も伝達又は指示するものではない。
【0012】
種々の特徴及び要素(並びにそれらの集合及び群)の(相対的であれ絶対的であれ)割合及び寸法、並びにそれらの間に提示される境界、分離点及び位置関係は、単に本明細書に述べられる種々の実施形態の理解を容易にするために添付の図に提供されるものであり、したがって必ずしも一定の縮尺で提示又は図示されていない場合があり、図示される実施形態についての任意の選好又は要件を、それを参照して述べられる実施形態を除外して示す意図はないことを理解されたい。
【0013】
ここで、添付図面に図示される代表的な実施形態が詳細に説明される。以下の説明は、これらの実施形態を1つの好ましい実施形態に限定することを意図するものではないことを理解されたい。反対に、以下の説明は、添付の特許請求の範囲により定義される記載された実施形態の趣旨及び範囲に含むことができるような、代替形態、修正形態及び均等物を包含することを意図している。
【0014】
互いに「結合された」2つの要素は、互いに恒久的に又は取り外し可能に物理的に結合されてもよく、及び/又は互いに動作的に又は機能的に結合されてもよい。一般に、物理的に結合された要素は、要素の相対位置を少なくとも部分的に画定又は制限する2つ以上の要素間の物理的接続を指す。更に、動作的に又は機能的に結合された2つ以上の要素は、第1の要素の動作が直接的に又は間接的に第2の要素の動作に影響を及ぼすか又は影響を与える場合があるという点で、互いに影響を及ぼし得る。加えて、互いに「光学的に結合された」2つの要素は、光が1つの要素から他の要素に通過及び/又は結合することを可能にし得る。
【0015】
以下の実施例の説明では、実施することが可能な特定の実施例が例示として示される、添付図面を参照する。それら様々な実施例の範囲から逸脱することなく、他の実施例を使用することができ、構造上の変更を実施することができる点を理解されたい。
【0016】
本明細書には、2つの入力及び3つの出力を有する2×3カプラを使用して一緒に組み合わせることができる複数の波長を出力する1つ以上の光源を使用する集積フォトニクスシステムが開示されている。具体的には、2×3カプラは、その3つの出力間のその入力のうちのそれぞれにおいて受光された光を分割する。光がその入力の両方において同時に受光されると、3つの出力は各々、入力光の異なる組み合わせを出力することになる。2×3カプラを使用して、コンパクトな形状因子を維持しながら、大きな波長範囲にわたる光を(同時に又は順次に)組み合わせることができる。2×3カプラからの出力信号は、集積フォトニクスシステムによって使用されて、波長ロックを介して、集積フォトニクスシステムによって放出される光の波長(単数又は複数)を制御及び安定化することができる。
【0017】
集積フォトニクスシステムは、光源を目標波長に波長ロックするためのオンチップ波長ロックシステムを更に含み得る。いくつかの実施形態では、集積フォトニクスシステムは、複数の光源を備えた波長ロックシステムを含み、波長ロックシステムは、複数の光源のうちのそれぞれをそれぞれの目標波長に順次ロックすることができる。複数の光源の少なくともいくつかは各々、異なるそれぞれの公称波長で光を放出することができ、これは(集積フォトニクスシステムの全体的な仕様によって判定されるように)波長の範囲にわたって集合的に広がり、したがって、波長ロックシステムにとって、波長の範囲全体にわたって波長ロックを効果的に実行することができることが望ましい場合がある。一般に、本明細書に記載の実施形態は、広帯域波長範囲(例えば、少なくとも1マイクロメートルに及び波長範囲)にわたって波長にロックすることができ得る。言い換えれば、波長ロックシステムは、2つの光源の波長をロックすることができ得、各光源によって放出される波長は、少なくとも1マイクロメートルだけ分離される。
【0018】
オンチップ波長ロックシステムは、本明細書に記載の2×3カプラを利用することができる。具体的には、2×3カプラは、2つの入力信号を受信し、3つの出力信号を出力するように構成され得、(本明細書でより詳細に説明されるように)2つの入力が特定の波長の位相シフト光(集合的に「入力光」)を含むときに、各出力信号が入力信号間のそれぞれの干渉に基づく強度を有するように構成され得る。各出力信号の強度は、波長依存性であるため、入力光の波長が変化すると、各出力信号の強度もまた変化する。具体的には、各出力に対して、入力光波長と出力強度との間に正弦波波長関係が存在し、言い換えれば、出力強度は、入力光波長の関数として正弦波的に変化する。2×3カプラは、各出力に対する正弦波波長関係が各々異なる位相を有するように構成され得、その結果、目標波長範囲にわたる3つの出力信号の最大値と最小値との間に同時重複が存在せず、これにより、本明細書に更に記載されるように、出力信号を使用して入力光の波長をロックすることが可能になる。
【0019】
波長ロックシステムは、光の2つの入力を光の3つの出力に分割するために使用される光分割2×3カプラを含み得る。波長ロックデバイスはまた、監視するため、並びに対応する光源の波長を目標波長に波長ロックするために使用され得る。一般に、各光源は、それがロックされ得る光の別個の波長を順次放出することができる。2×3カプラは、デバイスの2つの外部アーム間に中間導波路を含み、したがって3つの出力信号を生成する。前述のように、各出力信号の強度は、入力光の波長が変化すると、各出力信号の強度が変化するように波長依存性であり得る。
【0020】
この波長ロックデバイスは、水平軸に対して対称であり得、一方のアームにおける光は、他方のアームにおける光(及び/又はカプラへの入力光)に対する位相シフトを有し得、その結果、各々が振幅(例えば、強度)を有し、互いに正弦波波長関係を有する信号を出力する。正弦波波長関係は、出力信号のうちの少なくとも1つの最大値及び最小値が他の出力信号の最大値及び最小値と整列しないようにするものである。2×3カプラは、出力を所望の波長にロックする波長に使用される信号を出力しながらも、比較的小さいフットプリントを有し得る。いくつかの実施形態では、この波長ロックは、約1マイクロメートルの広帯域波長範囲を有する光に対して発生する。
【0021】
2×3カプラの2つの外側導波路の間に配置された中間導波路内に光を結合することによって、2つの外側導波路は、広い波長範囲にわたって正弦波波長関係を有する出力信号を生成することができる。2×3カプラの出力信号は、3つのMach-Zehnder干渉計(「MZI」)の出力信号と同様であり得るが、2×3カプラは、波長範囲が増加するにつれてロック技術のサイズ及び複雑さが大きくなるため、MZIのこの組み合わせよりも小さくなり得る。
【0022】
本明細書に記載されるように、一定の位相差は、複数のモードの2×3カプラから生じる出力信号の正弦波波長関係であり、これにより、互いに整列していないデッドゾーンを有する出力信号をもたらし得る。すなわち、各出力信号は、互いに入力信号間のそれぞれの干渉に基づく強度を有し得る。各出力に対して、入力光波長と出力強度との間に正弦波波長関係が存在し、出力強度が入力光波長の関数として正弦波的に変化するように、各出力信号の強度は、波長依存性である。出力信号のうちのそれぞれの正弦波波長関係は、各々が正弦波波長関係間の異なる位相及び一定の位相差を有し得るため、出力信号は、目標波長範囲にわたる3つの出力信号の最大値と最小値との間で重複しなくてもよく、これにより、出力信号を使用して、入力光の波長を順次ロックすることが可能になる。
【0023】
波長ロックに使用され得るシステムが存在するが、それらは狭い波長範囲(50ナノメートルなど)で機能するように制限され得、考慮されていない位相シフトを導入する場合があり、高い光損失を有し得、電子デバイス(モバイル又はウェアラブルデバイスなど)への積分には大き過ぎる場合などがある。波長ロックは、電気通信、医療デバイス、分光法などを含むがこれらに限定されない様々なフォトニクス用途に使用され得る。フォトニクス用途において波長精度を維持することは、正確なデータ収集にとって重要であり得、波長ロックは、放出される光の波長の望ましくない偏差を防止することができる。波長ロック及び達成される方法は、
図1を参照して本明細書で更に詳細に説明される。
【0024】
本明細書で使用される場合、「作業ゾーン」は、単一の出力信号の波長範囲であり、ここで単一の出力信号は、ゼロではないか、又は実質的にゼロに近い勾配を有する。更に、「デッドゾーン」は、単一の出力信号の波長範囲であり、ここで単一の出力信号は、単一の出力信号のピーク及びトラフ及びその周囲などの、ゼロ又はゼロに近い勾配を有する。言い換えれば、作業ゾーンは、デッドゾーンではない単一の出力信号の任意の部分である。したがって、作業ゾーン内の点は、デッドゾーンの点よりも高い勾配を有する。互いに正弦波波長関係を有する複数の出力信号を有する他の実施形態では、複数の出力信号は各々、一致して異なる位相を有し得る。複数の出力信号のうちのそれぞれは、ゼロ又はゼロに近いある点において勾配を有し得るが、各出力のデッドゾーンは、波長範囲内の異なる点に当てはまり得、したがって、複数の出力信号のうちの少なくとも1つの出力信号は、ゼロではないか又は「デッドゾーン」ではない勾配を有し得る。
【0025】
本明細書に記載されるように、他の解決策の出力信号のデッドゾーンでは、波長の小さな変化を識別することが困難であり得、次いでこの出力信号に基づく波長ロックの精度を制限し得る。対照的に、本明細書に記載の波長ロックデバイスは、任意の所与の波長において、少なくとも1つの出力信号がその信号の対応する作業ゾーンにあるため、より効果的に動作し得る。したがって、目標波長と測定波長との間に大きな勾配及び大きな差を有する出力信号が常に存在し得る。
【0026】
対象の波長範囲にわたって一定の位相差を有するこれらの複数の出力信号を順次生成する波長ロックデバイスは、通常、(少なくとも、波長ロックを実行する他の以前のデバイスと比較して)サイズが小さく、同様の機能を有する他の構造よりも複雑さが低く、信号の測定波長と目標波長との間の差を正確に判定することができる。この判定された差は、波長ロックに使用され得る。波長ロックのために正弦波出力信号を使用することを、
図1を参照して更に詳細に説明する。
【0027】
この明細書全体を通して使用される場合、参照番号に続くアルファベット文字を有さない参照番号は、対応する参照、全ての参照のグループ、又は参照のいくつかのうちの1つ以上を指すことができる。例えば、「209」は、光路209のいずれか1つ(例えば、光路209a又は光路209bなど)を指すことができ、又はそれが使用される文脈に応じて、光路209の両方を指すことができる。光路209という用語は、光路の一般的な特性を論じる際に使用され得る。
【0028】
本開示による方法及び装置の代表的な適用例を、本セクションで説明する。これらの実施例は、前後関係を追加し、説明する実施例の理解を助けることのみを目的として提供される。それゆえ、説明する実施例は、具体的な詳細の一部又は全てを伴わずに実践することができる点が、当業者には明らかとなるであろう。他の適用例が可能であり、それゆえ以下の実施例は、限定的なものとして解釈されるべきではない。
【0029】
これら及び他の実施形態について、
図1~
図7Bを参照して以下に説明する。しかしながら、当業者であれば、これらの図に関して本明細書に与えられた発明を実施するための形態は説明を目的とするものに過ぎず、限定するものとして解釈されるべきではないことを容易に理解するであろう。
【0030】
(波長ロックシステム)
図1は、光源(単数又は複数)113、スプリッタ102、及び波長ロックデバイス117を含む例示的な波長ロックシステム100のブロック図を示している。光源(単数又は複数)113は、光路103に沿って入力光をスプリッタ102に放出する。一般に、光路103は、導波路、光ファイバ、自由空間光学系、又は光が移動する他の要素若しくは媒体を表し得る。
図1の実施形態では、光路103は、導波路の代わりに通る導波路(例えば、デバイス間の空気又はポリシリコンなどの媒体を通って伝播する光)であり、光を波長ロックデバイス117に結合するためにより大きなシステムで使用され得る。
【0031】
スプリッタは、入力光路103から受光した入力光を分割し、分割光を波長ロックデバイス117に渡す。波長ロックデバイス117は、一般に、スプリッタ102から光を(直接的に又は間接的に)受光する(例えば、2×3カプラの形態の)3つの導波路を含む。いくつかの実施形態では、波長ロックデバイス117は、互いに光学的に結合された複数の導波路に光を提供する追加のスプリッタを含み得る。他の実施形態では、波長ロックデバイス117は、複数の導波路を含み得、及び/又は追加のスプリッタを含まない場合がある。例えば、2つの光入力は、分割されて波長ロックデバイス117に渡される1つの光入力とは対照的に、2つの光路を介して波長ロックデバイス117に渡され得る。加えて、位相シフタ(図示せず)は、スプリッタ102の1つの出力から光を受光して、導波路のうちの1つに渡された光を位相シフトさせることができる。これらの実施形態は、
図2~
図7Bを参照して更に詳細に説明される。
【0032】
いくつかの実施形態では、波長ロックデバイス117は、光源113の光の波長をロックするために使用される光路107a、107b、及び107cを介して、出力信号(例えば、出力光)を生成することができる。出力信号は、2×3カプラの導波路のうちの1つに渡された位相シフト光間の干渉を介して生成され得る。波長ロックデバイス117は、出力信号を生成し得、出力信号のうちのそれぞれは、光の波長との正弦波関係を有し、その正弦波関係間に一定の位相差を有する。したがって、出力信号のデッドゾーンは、光源(単数又は複数)113によって入力された光の波長範囲内の任意の波長に対して整列しない場合がある。
【0033】
波長ロックデバイス117の出力を分析することにより、波長ロックシステム100は、光源113によって出力された光の波長のシフトを識別することができる。具体的には、波長が変化するにつれて、各出力の強度は、正弦波波長関係に従って変化することになる。コントローラ(図示せず)は、出力信号のうちの1つ以上の変化を測定することができ、波長変化の指標としてこれらの変化のうちの1つ以上(例えば、最大の大きさの変化を有する出力信号)を使用することができる。この変化は、光源113の出力を制御する際のフィードバックとしてコントローラによって使用され得る。
【0034】
任意選択的に、出力信号は、出力信号から位相を抽出する(特定の機能、デジタルロジックなどを実行する集積回路であり得る)位相ロック解除デバイスに送信され得る。この抽出された位相情報を使用して、測定波長と目標波長との間の差を判定することができ、その結果、光源が目標波長を放出するように調整され得る。波長ロックシステム及び2×3カプラは、
図2~
図7Bを参照して本明細書で更に詳細に説明される。
【0035】
図2は、2×3カプラ、及び光検出器のセットを含み得るコントローラブロックを含む、例示的な波長ロックシステム200のブロック図を示している。波長ロックシステム200は、光源を波長範囲から選択された任意の目標波長にロックするために使用され得る。場合によっては、波長ロックシステム200を使用して、生成された光を1マイクロメートルに及ぶ波長範囲にわたって複数の異なる波長のうちのいずれかにロックすることができるが、本明細書に記載の波長ロックシステムは、任意の好適な(例えば、100nm未満に及ぶ、少なくとも100nmに及ぶ、少なくとも500nmに及ぶ、又は少なくとも1300nmに及ぶ)波長範囲内で使用され得ることを理解されたい。実際、場合によっては、波長範囲は、光源(単数又は複数)によって放出され得る波長の範囲、及びカプラ自体を形成するために使用される下地材料(例えば、光が所与の導波路材料によって搬送され得る波長)のみによって限定される。
【0036】
波長ロックシステム200は、スプリッタ205、位相シフタ210、2×3カプラ260、及びコントローラ265を含む。
図2に示されるように、スプリッタ205は、1×2スプリッタであるが、任意の適切な構成要素又は構成要素の組み合わせを使用して、同様の光分割機能(例えば、1×Nスプリッタ及びN×Mスプリッタ)を達成して2×3カプラ260への2つの入力を提供することができる。スプリッタ205は、1つ以上の光源213に光学的に結合されており、光路203を介して1つ以上の光源213から入力光を受光する。スプリッタ205は、2つの出力光路間で光源213の光出力を分割し、光路209aを介して第1の分割光を2×3カプラ260に渡し、光路209bを介して第2の分割光を位相シフタ210に渡すことができる。位相シフタ210は、光路209bを介して受光された光に位相シフト又は遅延を導入して、光路290a及び290bを介して受光された光の間の位相差を生成することができる。2×3カプラ260は波長ロックシステム200の文脈で
図2に記載されているが、2×3カプラ260は、光の2つの入力を組み合わせて3つの信号を出力するための任意のシステムで使用され得る。コントローラ265は、2×3カプラ260から、第1の光出力信号230、第2の光出力信号235、及び第3の光出力信号240を受信することができる。コントローラ265は、第1の出力信号230、第2の出力信号235、及び第3の出力信号240の強度を使用して、スプリッタ205によって受光された光の波長を監視することができる。
【0037】
光源(単数又は複数)213は、光路203に沿ってスプリッタ205によって受光される光を放出することができる。光源(単数又は複数)213は、単一の光源又は複数の光源を含み得る。いくつかの例では、光源(単数又は複数)213は、任意のコヒーレント若しくは準コヒーレント光源、又はそれらの任意の組み合わせであり得る。各光源213(単数又は複数)は、単一の波長の光を放出することができ、又は例えば15ナノメートルである光の波長範囲にわたって発光し得る調整可能な光源として構成され得るが、他の調整可能な光源は、15ナノメートル超又は15ナノメートル未満の異なる範囲を有し得る。加えて、波長ロックシステム200では、任意の数の光源が使用され得る。
【0038】
図2の説明を続けると、スプリッタ205は、光路209a及び209bを介して分割光を2×3カプラ260に通過させる。2×3カプラ260は、一般に、3つの導波路を含む。2×3カプラ260の第1の導波路は、光路209aを介して光を受光し、2×3カプラ260の第3の導波路は、光路209bを介して光を受光する。第2の導波路は、第1の導波路と第3の導波路との両方に光学的に結合されており、その間に配置される中間導波路であり得る。2×3カプラ260の3つの導波路は全て、2×3カプラ260の対応する出力を介して、出力光路の固有の1つに沿って光を出力することができる。2×3カプラ260及びその相対的なレイアウトの構成の一例は、
図3A及び
図3Bに関して以下で論じられ、別の例は、
図7A及び
図7Bに関して以下で論じられる。光は、第1及び第3の導波路から第2の中間導波路に結合し、導波路間の光を互いに干渉させて、3つの光出力信号230、235、240を生成することを可能にする。
【0039】
具体的には、第1の導波路によって受光された光のいくつかは、第2の導波路に、及びそこから第3の導波路に結合する。同様に、第3の導波路によって受光された光のいくつかは、第2の導波路に、及びそこから第1の導波路に結合する。結果として、各導波路は、第1及び第3の導波路の両方から受光された成分を含む光を出力する。第1の導波路は、第1の出力信号230を生成することができ、第2の導波路は、第2の出力信号235を生成することができ、第3の導波路は、第3の出力信号240を生成することができる。前述のように、各出力信号は、互いに入力信号間のそれぞれの干渉に基づく強度を有し得る。各出力に対して、入力光波長と出力強度との間に正弦波波長関係が存在し、出力強度が入力光波長の関数として正弦波的に変化するように、各出力信号の強度は、波長依存性である(本明細書では出力信号の「波長応答」とも呼ばれる)。3つの導波路の構成及び機能は、
図3A~
図4Bを参照して更に詳細に論じられる。
【0040】
前述のように、コントローラ265は、2×3カプラ260から、第1の出力信号230、第2の出力信号235、及び第3の出力信号249を受信することができる。コントローラ265は、第1の出力信号230、第2の出力信号235、及び第3の出力信号240を第1のデジタル出力信号、第2のデジタル出力信号、及び第3のデジタル出力信号に変換する検出器270のセットを含み得る。いくつかの実施形態では、第1の出力信号230、第2の出力信号235、及び第3の出力信号240は、光の強度であり得、第1のデジタル出力信号245、第2のデジタル出力信号250、及び第3のデジタル出力信号255は、検出器270のセットによって変換され得るこれらの光ベースの出力信号と等価なデジタル信号であり得る。
【0041】
コントローラ265は、第1、第2、及び第3の出力信号230、235、及び240に基づいてフィードバック信号275を生成して、光源(単数又は複数)213を制御することができる。光源(単数又は複数)213によって放出された光の波長が目標波長から逸脱すると、フィードバック信号275は、光源(単数又は複数)の動作を調整して、光源(単数又は複数)213によって放出された光の波長を目標波長に向けて調整し戻す。例えば、所与の波長において、第1、第2、及び第3の出力信号230、235、及び240は各々、対応する目標出力値(例えば、第1の出力目標、第2の出力目標、及び第3の出力目標)を有する。同様に、第1、第2、及び第3のデジタル出力信号245、250、及び255は、対応する目標デジタル値を有する。
【0042】
コントローラ265は、第1、第2、及び第3の出力信号230、235、及び240を(例えば、第1、第2、及び第3のデジタル出力信号245、250、及び255をそれらの対応するデジタル目標値と比較することによって)それらの対応する出力目標値と比較することができ、これらの目標出力値からの偏差の関数としてフィードバック信号275を生成することができる。次いで、フィードバック信号275は、光源(単数又は複数)213を制御して、光源(単数又は複数)213の波長を変更する1つ以上の動作パラメータを調整する。したがって、コントローラ265は、第1、第2、及び第3の出力信号230、235、及び240をそれぞれの目標出力値に維持することによって、光源(単数又は複数)213の閉ループ制御を提供して、目標波長で波長を維持することができる。
【0043】
前述のように、多くの既存の光カプラは大きく、サイズを低減することが困難である。単一の2×3カプラ260は、そのような既存のカプラよりもコンパクトで空間効率が高くなり得る。加えて、波長ロックシステム200は、温度非感受性であり得るが、多くの他の光カプラは、温度でそれらの出力を変化させる。加えて、波長ロックシステム200によって生成された出力信号は、整列されたデッドゾーンを有しない場合があり(例えば、出力信号のデッドゾーンは、互いに時間でオフセットされ得る)、したがって、出力光の実際の波長又は波長範囲と、目標光の目標波長又は目標波長範囲との間のなんらかの不一致に関する情報を搬送する出力光を確実に生成することができる。
【0044】
(2×3カプラ)
図3Aは、5つの領域を画定する2×3カプラ301の断面図である。第1の領域(又は「入力領域」)は、線S0とS1との間にあり、一般に、導波路のうちのそれぞれが導波路間に結合が発生しないように互いに十分に離れて配置される入力領域を表す。第2の領域(又は「第1のS屈曲領域」)は、線S1とS2との間にあり、第1のS屈曲領域、又は出力導波路の側壁が湾曲を開始し、場合によっては光が第1及び第3の導波路(例えば、外側導波路)から第2の導波路(例えば、中間導波路)に結合し始め得る点を表す。第3の領域(又は「中央領域」)は、S2とS3との間にあり、光が第1及び第3の導波路(例えば、外側導波路)と第2の導波路(例えば、中間導波路)との間で結合し得る主結合領域を表す。第4の領域(又は「第2のS屈曲領域」)は、S3とS4との間にあり、第2のS屈曲領域、又は第1及び第3の導波路の側壁の湾曲が終了し得、光が第1及び第3の導波路(例えば、外側導波路)から第2の導波路(例えば、中間導波路)への結合を終了し得る点を表す。第5の領域(又は「出力領域」)は、S4とS5との間にあり、光が導波路間で更に結合することなく、第1、第2、及び第3の導波路から出力され得る領域を表す。これらの領域及びその特性は、本明細書で論じられる。本明細書で論じられる領域は、説明目的のために使用され、異なる材料組成を有するデバイス内の別個の領域を示さない。
【0045】
更に、S屈曲領域は、異なる形状(例えば、90度、直線、45度など)であってもよく、中央領域内の導波路は、テーパ状になっていてもよく、又はテーパ状にされていなくてもよく、入力領域の導波路は、湾曲していてもよく、S形状、又は他の任意の形状であってもよい。更に他の実施形態では、第1の導波路315及び第3の導波路325は、互いに異なるレートで湾曲してもよく、線S0及びS1によって境界付けられた第1の領域及び線S1及びS2によって境界付けられた第2の領域内の導波路において任意の線形セクション又はS屈曲形状が存在しなくてもよい。
【0046】
領域は、以下のように、導波路構成がそれぞれの領域内で所望の方式で光相互作用をもたらす限り、様々な形状の導波路を有する任意の構成を有し得る。言い換えれば、本明細書に記載される特定の実施形態は、説明目的のみのためであり、導波路が、所望の光結合及び波長応答結果を有する限り、様々な方法で直線であり又は湾曲し得ることを制限するものではない。所望の光結合は、入力領域(例えば、線S0及びS1によって境界付けられた領域)内の導波路間にほとんど又は全く結合が発生しないように、入力領域内での導波路の間隔を含み得る。入力領域では、導波路間の光結合が発生し始め得るように、導波路を互いにより近づけて配置することができ、中央領域では、導波路は、より多くの光結合が導波路間で発生するように、互いに対して配置することができる。第2のS屈曲領域内の導波路は、光が導波路間でもはや結合しなくなり得るように、互いに離れて配置されて分離され得る。
【0047】
いくつかの実施形態では、第1の導波路315、第2の導波路320、及び第3の導波路325は、ストリップ導波路であり得るが、いくつかの例では、リブ導波路が、リブからストリップへの導波路変換で使用され得る。加えて、第1の導波路315、第2の導波路320、及び第3の導波路325は、同様のクロスハッチングパターンで示されており、それらは(類似又は同一の材料から形成され得るか又はそれから構成され得るが)互いに別個の導波路である。
【0048】
2×3カプラ301は、第1の導波路315及び第3の導波路325の対応する入力領域を含み、
図3Aに示される実施形態では、第2の導波路320の入力領域を含む、入力領域(
図3Aでは線S0及びS1によって境界付けされている)を含む。具体的には、2×3カプラ301が光学システムに組み込まれると、第1の導波路315及び第3の導波路325の入力領域は、光学システムの他の構成要素に光学的に接続されて、そこから光を受光することができる。逆に、第2の導波路320は、入力領域内に存在するように光学システムに組み込まれ得るが、第2の導波路320の入力領域を介して光を受光しない。したがって、これらの例における第2の導波路320は、第1の導波路315及び第3の導波路325からの結合を介してのみ光を受光することができる。第2の導波路320は、2×3カプラ301の入力領域に配置された入力領域を有するものとして
図3Aに示されているが、代替的に(すなわち、線S1及びS2によって境界付けられた)第2の領域において開始してもよい。
【0049】
第2の領域(S1及びS2によって境界付けられて示されるような第1のS屈曲領域)は、第1の領域と第3の領域との間で第1、第2、及び第3の導波路315、320、325の間の距離が減少して、第3の領域において導波路間の結合を可能にする、領域である。したがって、第1、第2、及び第3の導波路315、320、325のうちの1つ以上は、(S屈曲又はC屈曲などの)1つ以上の屈曲又は湾曲を含む。S屈曲及びS形状という用語は、
図3Aの第1のS屈曲領域及び第2のS屈曲領域に示されるように、第1及び第3の導波路315、325の形状を説明するために、本明細書で互換的に使用され得る。2×3カプラの各導波路は、湾曲セクションと直線セクションの任意の適切な組み合わせを有し得、湾曲セクションは、任意の適切な角度(例えば、90度、45度、30度)などで以前のセグメントの軌道から離れて屈曲し得る。前述のように、第2及び第4の領域は、本明細書では第1及び第2のS屈曲領域と呼ばれるが、これは、参照及び説明のためだけのものであり、S1及びS2によって境界付けられた導波路は、S形状屈曲に限定されない。
【0050】
図3Aに示される変形例では、第1のS屈曲領域は、S形状であって、直線である第2の導波路320の付随部分も含む、第1の導波路315及び第3の導波路325の一部分を有する。第1のS屈曲領域では、第1の導波路315の一部分は湾曲していて、S屈曲形状を有し、これが、2×3カプラの外側アームを第2の(例えば、中央の)導波路320の部分のより近くに配置する。同様に、第3の導波路325の一部分は、2×3カプラの他の外側アームを第2の導波路320の中央の一部分により近づくように配置するS屈曲形状を有する。第2の導波路320は、入力領域及び第1のS屈曲領域において直線であるように示されているが、第2の導波路320のこれらの部分は、他の実施形態では湾曲していてもよい。一般に、第2の導波路320のこれらの部分の形状は、主に、第1の導波路315及び第3の導波路325の対応する部分の形状又は構成、及び光結合効率の所望の部分に依存する。例えば、第2の導波路320のこれらの一部分は、一方の導波路から他方の導波路よりも多くの光を光学的に結合するためにS形状であり得る。
【0051】
加えて、第3の導波路325は、波長ロックシステム300の5つの領域において、第1の導波路315の対応する部分にほぼ対称又は鏡像である形状で示されている。他の実施形態では、第3の導波路325は、いくつかの領域において、第1の導波路315の対応する部分に対して対称であり得るが、他の領域ではそうではない。更に別のオプションとして、第3の導波路325の一部分は、5つの領域のいずれかにおいて、第1の導波路315の対応する部分に対して対称ではない場合がある。本明細書に記載されるように、第1の導波路315は、線S0~S5の間に延びる単一の導波路であり、隣接する線によって示される領域のうちのそれぞれに位置する導波路の様々な部分(例えば、S0及びS1によって画定される領域内の1つの部分、S1及びS2によって画定される領域内で別のものなど)を有することが理解され得る。同様のロジックが、第2の導波路320及び第3の導波路325に適用され得る。
【0052】
(例えば、S2からS3に延びる)中央領域は、光が第1、第2、及び第3の導波路315、320、325の間で結合する領域である。具体的には、中央領域において第1の導波路315を通って移動する光の一部分は、第2の導波路320に結合することができ、逆もまた同様である。同様に、中央領域において第3の導波路325を通って移動する光の一部分は、第2の導波路320に結合することができ、逆もまた同様である。このようにして、2×3カプラ301の中央領域は、第1の導波路315の入力領域において受光された光が第2の導波路320に少なくとも部分的に結合されており、その光の少なくとも一部分が第2の導波路320から第3の導波路325に結合されるように構成され得る。同様に、2×3カプラ301の中央領域は、第3の導波路325の入力領域において受光された光が第2の導波路320に少なくとも部分的に結合されており、その光の少なくとも一部が第2の導波路320から第1の導波路315に結合されるように構成され得る。その結果、第1の入力光及び第2の入力光が、第1及び第3の導波路315、325の入力領域にそれぞれ同時に導入されると、第1、第2、及び第3の導波路315、320、325は各々、第1の入力光と第2の入力光との組み合わせを出力することになる。
【0053】
いくつかの変形例では、中央領域は、第1、第2、及び第3の導波路315、320、325の一部分が幅を変化させることができ、中央領域内のサイズを増加又は減少させることができるように構成される。例えば、
図3Aに示されるように、第2の導波路320は、中央領域において第2の領域及び第4の領域から狭くなり、一方、第1及び第3の導波路315、325は各々、中央領域において第2の領域から第4の領域に広がる。場合によっては、第1、第2、及び第3の導波路315、320、325は、第1の導波路315と第2の導波路320との間、及び第2の導波路320と第3の導波路325との間に断熱性の光結合を提供するように断熱的にテーパ状になっている。いくつかの実施形態では、中央領域における第1及び第2の導波路315、320の一部分は、依然として断熱的に結合されており、テーパ状でなくてもよい。
【0054】
図3Aの出力領域に示されるように、第1及び第3の導波路315、325は、出力領域を通ってテーパ状になり得る。すなわち、第1の導波路315はS5よりも約S4の周りでより広くなってもよく、第3の導波路325は同様にテーパ状になっていてもよい。加えて、第2の導波路320は、出力領域においてS4からS5に拡張して、より広い断面を有する。図示されるように、第2の導波路320は、第1及び第3の導波路315、325が拡張し始める位置よりも出力領域内の異なる位置において拡張し得る。なおも更なる実施形態では、第1及び第3の導波路315、325の狭窄部の位置、及び第2の導波路320の位置は、出力領域において異なる位置にあり得る。
【0055】
第1の導波路315及び第3の導波路325は、断熱的に、中央領域内の第2の導波路320に、並びに第1及び第2のS屈曲領域に光学的に結合され得る。
図3Aでは、第1のギャップ322(例えば、第1の導波路315と第2の導波路320との間の距離)が、第2のギャップ323(例えば、第2の導波路320と第3の導波路325との間の距離)とほぼ又は正確に同じであるため、第2の導波路320は、第1の導波路315及び第3の導波路325の両方からほぼ等しい量の光を受光することができる。第1及び第2のギャップ322、323がほぼ等しい限り、第1及び第3の導波路315、325から第2の導波路320への光結合はほぼ等しくなる。例えば、第1のギャップ322は、中央領域の幅を増加させ得、第2のギャップ323の幅が同様に変化する限り、第1及び第3の導波路315、325から第2の導波路320への光結合はほぼ同じままである。
【0056】
図3Aに示されるように、第1の導波路315及び第3の導波路325は、中央領域に沿って広くなり、第2の導波路320は、幅が減少する。他の実施形態では、中央領域は省略されてもよく、したがって、導波路は、第1のS屈曲領域から第2のS屈曲領域に遷移する際に幅を変化させなくてもよい。そのような実施形態では、導波路は、第1及び第2のS屈曲領域において光学的に結合することができる。
【0057】
第4の領域(S3とS4の間の第2のS屈曲領域)は、第1、第2、及び第3の導波路315、320、325の間の距離が第3の領域から第5の領域まで増加して、これらの導波路間の結合を終了させる領域である。したがって、第1、第2、及び第3の導波路315、320、325のうちの1つ以上は、(S屈曲又はC屈曲などの)1つ以上の屈曲又は湾曲を含む。例えば、
図3Aに示される変形例では、第4の領域内の第1の導波路315及び第3の導波路325の一部分はS形状であり、第1のS屈曲領域とほぼ対称であり、第2の導波路320の対応する一部分は一定の断面を有する。本明細書で更に詳細に説明するように、第1の導波路315及び第3の導波路325のS形状部分は、第1のS屈曲領域における光結合を強化させ、第1の導波路315と第2の導波路320との間、及び第2の導波路320と第3の導波路325との間の第2のS屈曲領域における光結合を低減させることができる。
【0058】
中央領域における導波路間の断熱性の光結合に加えて、光結合もまた、第1及び第2のS屈曲領域内で発生し得る。これらの領域では、第1の導波路315及び第3の導波路325は、S屈曲形状の断面を有し、第2の導波路の周りで互いに対称である。ギャップ幅は、第3の導波路と第2の導波路との間のギャップ幅と同様に、第1のS屈曲領域の開始から終了までのこれら2つの導波路間で減少するため、S屈曲断面は、第1の導波路315と第2の導波路320との間の光結合を可能にする。すなわち、導波路間のギャップが減少するにつれて、導波路間の光結合が増加し得る。他の実施形態では、これらのS屈曲領域では、光結合が起こらない場合がある。
【0059】
他の実施形態では、第1の導波路315及び第3の導波路325の一部分は、非対称形状であり得る。加えて、第2の導波路320は、他の実施形態では湾曲していてもよい(例えば、一直線ではない)。第1の導波路315、第2の導波路320、及び第3の導波路325の幅は、ほぼ同じであるように示されているが、いくつかの実施形態では、異なっていてもよい。
【0060】
(例えば、S4とS5との間に示される)出力領域では、第1、第2、及び第3の導波路は、これらの導波路間に結合が存在しないように十分に分離されている。したがって、光が第1及び/又は第3の導波路315、325の入力領域に導入されると、第1、第2、及び第3の導波路は、それぞれ、第1、第2、及び第3の出力信号330、335、340を出力することになる。同じ波長であるが異なる位相を有する第1の入力光及び第2の入力光が、それぞれ、第1及び第3の導波路315、325の入力領域に同時に導入される場合、第1の導波路315は、第1の位相シフトを伴う第1の波長応答を有する第1の出力信号330を出力し、第2の導波路320は、第2の位相シフトを伴う第2の波長応答を有する第2の出力信号335を出力し、第3の導波路325は、第3の波長応答及び第3の位相シフトを有する第3の出力信号340を出力する。したがって、第1、第2、及び第3の出力信号330、335、340の波長応答は、各出力信号が、第1及び第2の入力光の波長の関数として正弦波的に変化するが、他の出力信号と比較して異なる位相を有する(すなわち、3つの異なる位相を有し得る)結果となる。出力信号及び対応する位相は、
図4A~
図6Dを参照して更に詳細に説明される。
【0061】
図7Aは、本明細書に記載の2×3カプラ700の別の変形例を示している。2×3カプラ700は、第1の導波路705、第2の導波路710、及び第3の導波路715を含み、第2の導波路710は、第1の導波路705と第3の導波路715との間に配置される。
図3Aの2×3カプラ301と同様に、2×3カプラ700は、(線S1まで延びる)第1の領域、(線S1とS2の間に配置された)第2の領域、(線S2とS3の間に配置された)第3の領域、(線S3とS4の間に配置された)第4の領域、及び(線S4から延びる)第5の領域、を含む。
【0062】
第1の領域は、第1、第2、及び第3の導波路705、710、715が互いに光学的に結合されていない第3の領域として作用する(したがって、光は、第1の領域内のこれらの導波路間で伝達されない)。
図7Aに示される2×3カプラ700の実施形態は入力領域内に延びるように第2の導波路710を示しているが、他の変形例では、第2の導波路710は、代替的に第2の領域において開始する(したがって、第1の領域内には存在しない)。第2の領域は、第1の導波路と第2の導波路と第3の導波路との間の距離が減少する第1の屈曲領域として作用するため、光は、第3の領域内の導波路間で結合することができる。第1の屈曲領域内での第1の導波路705と第2の導波路710との間、及び/又は第2の導波路710と第3の導波路715との間にいくつかの結合が発生し得ることを理解されたい。導波路を互いにより近づけるために、第1、第2、及び第3の導波路705、710、715の一部又は全部は、1つ以上の湾曲セクションを含む。例えば、
図7Aに示される変形例では、第1及び第3の導波路705、715は各々、第2の導波路710に向かって湾曲し、第2の導波路710は、第1の屈曲領域において一直線である。
【0063】
第3の領域は、第1、第2、及び第3の導波路705、710、715の間で光が結合する結合領域として作用する。具体的には、結合領域において第1の導波路705を通って移動する光の一部分は、第2の導波路710に結合することができ、逆もまた同様である。同様に、中央領域において第3の導波路715を通って移動する光の一部分は、第2の導波路710に結合することができ、逆もまた同様である。このようにして、2×3カプラ700の中央領域は、入力領域において第1の導波路705が第2の導波路710に少なくとも部分的に結合されており、その光の少なくとも一部分が第2の導波路710から第3の導波路715に更に結合されるように構成され得る。同様に、2×3カプラ700の中央領域は、入力領域において第3の導波路715によって受光された光が、第2の導波路710に少なくとも部分的に結合されており、その光の少なくとも一部分が第2の導波路710から第1の導波路705に更に結合されるように構成され得る。その結果、第1の入力光及び第2の入力光が入力領域内の第1及び第3の導波路705、715にそれぞれ同時に導入されると、第1、第2、及び第3の導波路705、710、715は各々、第1の入力光と第2の入力光との組み合わせを出力することになる。
【0064】
第4の領域は、第1、第2、及び第3の導波路の間の距離が増加する第2の屈曲領域として作用し、その結果、第1、第2、及び第3の導波路705、710、及び715は、第5の領域においてもはや光学的に結合されない。例えば、
図7Aに示される変形例では、第1及び第3の導波路705、715は各々、第2の導波路710を湾曲して離れ、第2の導波路710は、第2の屈曲領域において一直線である。第2の屈曲領域内での第1の導波路705と第2の導波路710との間、及び/又は第2の導波路710と第3の導波路715との間にいくつかの結合が生じ得ることを理解されたい。第5の領域は、第1、第2、及び第3の導波路705、710、715の各導波路が、残りの導波路から光学的に分離される出力領域として作用する。第5の領域は、2×3カプラ700を組み込んだ光学システムの他の部分に出力(例えば、各導波路からの1つ)を提供するために使用され得る。
【0065】
図7Aに示される2×3カプラ700の変形例では、第1、第2、及び第3の導波路705、710、715のうちのそれぞれの幅は、結合領域において一定であり得る。これらの変形例のいくつかでは、第2の導波路710は、第1及び第3の導波路705、715の幅よりも大きい幅を有する。これらの変形例のいくつかでは、第1の導波路705の幅は、第3の導波路715の幅と同じであり得る。2×3カプラ700が
図7Aに示されるように構成されている場合、第3の領域において導波路の各々に対して一定の幅を有するように、この領域において、第2の導波路710は、第1及び第3の導波路705、715よりも幅が広く、導波路の相対的な幅(及びそれらの間の間隔)は、出力の波長応答間の目標位相差を達成するように選択され得る。これらの変形例のいくつかでは、第1、第2、及び第3の導波路705、710、715は、他の領域(例えば、第1、第2、第4、及び/又は第5の領域)の一部又は全部にわたって一定の幅を有し得る。例えば、いくつかの変形例では、第1、第2、及び第3の導波路は、2×3カプラ700全体にわたって一定の幅を有する。
【0066】
具体的には、2×3カプラ700は、第1及び第3の導波路705、715がそれぞれ第1の入力光及び同じ波長を有するが異なる位相を有する第2の入力光を受光するときに、第1、第2、及び第3の導波路が各々、上述のような正弦波波長関係を有する対応する強度を伴う光を出力するように構成される。場合によっては、導波路は、各出力に対する波長関係間に120度の位相差を達成する寸法であって、そのように位置付けられ得る。これらの例では、第1及び第2の導波路705、710からの出力信号の波長関係間、第1及び第3の導波路705、715からの出力信号の波長関係間、並びに第2及び第3の導波路710、715からの出力信号の波長関係間に、120度の位相差が存在する。波長関係のうちのそれぞれの間に120度の位相差がある場合、2×3カプラ700のうちの少なくとも1つの出力は、その範囲の入力波長の全ての波長に対してその作業ゾーンの中央にあることになる。
【0067】
上述の2×3カプラは、第1、第2、及び第3の出力信号が各々、この範囲にわたってそれらの対応する波長応答を有するように、入力波長の範囲にわたって動作することができ得る。結果として、2×3カプラは、範囲内の任意の波長で位相シフト入力光を受光し得、入力光の波長にシフトすることにより、各出力信号に対して正弦波変化を引き起こす。したがって、本明細書で論じられるように、2×3カプラが波長ロックシステムと共に使用される場合、これらの出力信号を使用して、光源の波長を波長範囲内の任意の目標波長にロックすることができる。上述のように、光学システムの動作中に2×3カプラによって受光される光の波長は、少なくとも50nm、少なくとも100nm、少なくとも400nm、少なくとも1000nm、少なくとも1500nmなどの波長範囲に及び得る。
【0068】
(波長ロックデバイス)
上述のように光源の波長を目標波長にロックするために、上記の2×3カプラを波長ロックシステムに組み込むことができる。例えば、
図3Bは、
図3Aの2×3カプラ301を利用する例示的な波長ロックシステム300を示している。波長ロックシステム300は、スプリッタ305、クラッド307、位相シフタ310、及び(上述のように第1の導波路315、第2の導波路320、及び第3の導波路325を含む)2×3カプラ301を含む。クラッド307は、波長ロックシステム300の構成要素を取り囲んで、光損失を低減し、伝播領域に光を閉じ込めることができ、したがって導波路を画定する。波長ロックシステム300の構成要素は、類似の機能を有し、同様に、波長ロックシステム200の対応する構成要素として構成され得る。波長ロックシステム300は、異なる位相を伴う波長応答を有する3つの出力信号を生成する構造であり、これは、波長ロックの目的で以下で論じられ、広帯域波長範囲をカバーするために任意選択的にアンラップされ得る。位相アンラップは、波長シフトとして波長追跡を支援し得る、抽出された位相値と波長との間に単調な関係を作成するために使用される。
【0069】
図3Bの実施形態300では、スプリッタ305は、入力光を受光し、光を2つの出力にわたって分割することができる。スプリッタ305は、2つの出力間にほぼ(又は正確に)均等に光を分割する1×2スプリッタであり得る。他の例では、スプリッタ305は、電力を非対称的に分割することができ、2×3カプラ301は、依然として、異なる正弦波波長関係を有する信号を出力する。2つの出力が2×3カプラ301の対応する入力に光を提供する限り、任意のスプリッタ又はスプリッタの組み合わせを使用することができ、1×2スプリッタは、説明目的のみに使用される。スプリッタ305の第1の出力304aは、2×3カプラ301の第1の入力、すなわち、2×3カプラ301の入力領域内の第1の導波路315に渡され得る。第2の出力304bは、位相シフタ310を介して2×3カプラ301の第2の入力に渡され得、第1の出力の光に対して第2の出力の光に位相シフトを導入する。位相シフタ310は、MZIの異なる長さのアームによって導入される遅延と同様に、遅延線として機能し得る。言い換えれば、第2の出力304bは、位相遅延を導入するために、第1の出力304aとは十分に異なる長さを有し得る。あるいは、位相シフタ310は、位相シフトを生成するように能動的に制御される能動構成要素(例えば、電気光学位相シフタ、熱光学位相シフタ、又は光機械位相シフタなど)であり得る。光は、2×3カプラ301の入力領域において、位相シフタ310を通って第3の導波路325に通過する。
【0070】
前述のように、波長ロックシステム300は、波長ロックシステム300によって受光された入力光を目標波長にロックするために使用され得る。そのために、スプリッタ305への入力光は、広帯域波長範囲に及ぶ波長の範囲から任意の波長の光を受光することができる。実際、異なる時間において、波長ロックシステム300は、入力光を広範囲の目標波長にわたって異なる波長にロックすることができる。いくつかの例では、第1の波長の光は、第1の時間において入力光として受光され得(第1の目標波長にロックされる)、第2の波長の光は、第2の時間において入力光として受光され得る(第2の目標波長にロックされる)。
【0071】
上述のように、所与の波長の入力光がスプリッタ305によって受光されると、2×3カプラ301は、第1の導波路315及び第3の導波路325において第1及び第2の入力光を受光し、ここで第1及び第2の入力光は、同じ波長であるが異なる位相を有する。第1及び第2の入力光は、第1、第2、及び第3の導波路315、320、325の間を結合して、3つの出力信号を生成する。各導波路の第1の光の一部分は、その導波路において第2の光の一部分と干渉することになり、その結果、一定の強度を有する出力信号が生じる。上述のように、この強度は波長依存性であるため、各出力信号は前述のように正弦波波長関係を有するが、異なる相対位相を有することになる。すなわち、3つの波長関係は、互いに相対遅延を有し得る(例えば、互いに一定の位相差を有し得る)。これにより、波長関係からのデッドゾーンが互いにオフセットされる結果となり得るため、任意の所与の波長において、少なくとも1つの出力信号その作業ゾーンに存在する(したがって全体的な波長ロックシステム300全体がデッドゾーンを有効に有しない)。これは、広い波長範囲内の任意の目標波長に正確にロックする能力をもたらし得る。加えて、出力信号は、全ての波長がロックされ得るように、位相アンラップされ得る。位相アンラップは、
図4A~
図6Dを参照して更に詳細に説明される。
【0072】
図4Aは、波長ロックシステムからの出力信号のサンプル波長関係を示すグラフであり、
図4Bは、
図4Aの出力信号から抽出された位相の例を示すグラフである。出力信号グラフ400は、関数波長として、第1の出力信号430、第2の出力信号435、及び第3の出力信号440のうちのそれぞれの強度を含む。これらの出力信号は、
図3の第1、第2、及び第3の出力信号に対応し得る。
図4Aの出力信号は、第1、第2、及び第3の導波路315、320、及び325の第1、第2、及び第3の出力330、335、及び340によって出力される
図3の出力に関して論じられたのと同じ方式で生成され得る。
【0073】
図4Aのグラフでは、水平軸は光の波長範囲を表し、垂直軸は信号振幅を表す。グラフの水平軸は、任意に割り当てられた数字4及び5を有し、水平軸は、波長範囲を表す。
図4A、
図4B、
図6A、
図6B、
図6C、及び
図6Dは、これらのグラフのX軸の各々上の点4が波長範囲内の同じ波長であるように、互いに対して一致して番号付けされている。
図4Aに示されるように、出力信号430、435、及び440の波長応答の位相差は、出力信号間の相対オフセットと同様に一致している。出力信号430、435、及び440の波長応答は、概して正弦波信号である。
【0074】
出力信号は、光の波長(すなわち、光源によって生成され、波長ロックシステムによって受光された)と目標波長との間の任意の不一致を測定するために使用され得る。具体的には、目標波長は、出力信号430、435、及び440の各々に対して予想される強度を有することになる。測定された強度とこれらの予想される強度との差は、測定波長と目標波長との間の不一致を示している。したがって、測定された強度を使用して、測定された光の波長を判定することができる。追加的又は代替的に、これらの測定された強度を使用して、光源の動作を制御して生成された光の波長を変更して、それを目標波長にロックするために使用されるフィードバック信号を生成することができる。
【0075】
上述のように、出力信号がデッドゾーンにあるとき、波長の変化は、出力信号の強度の比較的小さな変化をもたらすことになる。結果として、波長変化を判定する際の単一の出力信号の有効性は、その出力信号のデッドゾーンにおいて制限される。しかしながら、本明細書に記載の波長ロックシステムでは、複数の出力信号は、それらの波長応答間に一定の位相差を有し得る。これは、他の出力信号のデッドゾーンと整列しない各出力信号用のデッドゾーンをもたらし得る。結果として、有用な情報は、波長範囲にわたる全ての波長に対して少なくとも1つの出力信号から利用可能であり得る。
【0076】
具体的には、出力信号430、435、及び440の各々は、様々な勾配及び変曲点を有する。所与の出力信号の最大情報は、勾配が最も急又は最大(すなわち、作業ゾーン内)であるときに波長に対して利用可能であり、これは、波長変化の関数として信号強度の最大変化をもたらすことになる。全ての波長において、出力信号430、435、及び440のうちの少なくとも1つは、非ゼロ勾配を有し(例えば、全ての出力信号に対して最大値又は最小値の間の同時重複は存在しない)、したがって、出力信号430、435、及び440の各々は、その特定の波長での波長ロックに利用可能な情報を有し得る。上述のように、これは、広い波長範囲にわたる(例えば、1000nmなどの帯域幅で)波長ロックを容易にし得る。
【0077】
図7Bは、
図7Aに記載の2×3スプリッタ700を含む、波長ロックシステム701の別の変形例を示している。そこに示されるように、波長ロックシステム701は、入力755において(例えば、前述のような光源から)入力光を受光し、入力光を第1の出力704aと第2の出力704bとの間で分割するスプリッタ702を含む。第2の出力704bは、上述のように、第1の出力704aに対して第2の出力704bに位相シフトを導入し得る位相シフタ706を含む。したがって、所与の波長の光がスプリッタ702の入力755において受光されると、スプリッタ702の第1及び第2の出力704a、704bは、2つの異なる位相を伴うその波長の光を出力することになる。
【0078】
第1及び第2の出力704a、704bは、線S0において、スプリッタ702を2×3スプリッタ700に光学的に結合する。具体的には、第1及び第2の出力704a、704bは、2×3カプラ700の入力領域において、2×3カプラ700の第1及び第3の導波路705、715にそれぞれ光学的に結合される。このようにして、所与の波長の光がスプリッタ702の入力755に導入されると、第1の導波路705は、その波長及び第1の位相を有する第1の入力光を受光し、第3の導波路715は、その波長及び第2の位相を有する第2の入力光を受光する。これらの入力を受光すると、第1、第2、及び第3の導波路705、710、715はそれぞれ、第1の出力信号730、第2の出力信号735、及び第3の出力信号740を出力することになる。これらの出力信号は、各々、入力光の波長の関数として正弦波変化する(すなわち、位相シフトされた第1の入力光と第2の入力光との間の干渉の結果として)一定の強度を有することになる。
【0079】
これらの出力信号は、以前に論じたように、入力光の波長を判定し、及び/又は光源の動作を制御するための(例えば、入力光を目標波長にロックするための)フィードバックとして使用され得る。これらの出力信号の波長応答は、波長の範囲にわたって、デッドゾーンにない少なくとも1つの出力信号が常に存在するように、互いに対して位相シフトされ得る。これらの波長応答は、
図4Aに示されるものと同様であり得るが、各出力信号の波長応答間の相対位相が異なる。例えば、2×3カプラ700は、第1、第2、及び第3の出力信号730、735、740のうちのそれぞれに対して、波長応答間に120度の位相シフトが存在するように構成され得る。
【0080】
(位相アンラップ)
上述のように、本明細書に記載されるシステムは、任意選択的に、波長ロックを実行する際に位相アンラップ技術を使用し得る。
図4Bに示されるように、抽出された位相のグラフ450は、任意に割り当てられた数字4~5によって表される、入力光の波長範囲の一部にわたる自由スペクトル範囲(「FSR」)のアンラップ位相を示している。自由スペクトル範囲は、単一の出力信号430、435、440で、2つの連続する反射又は透過された光強度最大値又は最小値の間の間隔である(すなわち、出力信号440の自由スペクトル範囲が
図4Bに示されている)。言い換えれば、自由スペクトル範囲は、出力信号の連続するピーク又は連続するトラフ間の波長の範囲である。信号の元の位相を再構築するために信号を位相アンラップすることによって、測定波長(若しくは波長の範囲)と目標波長と間の不一致、又は理想出力信号(単数又は複数)の目標波長範囲が得られる。
【0081】
位相アンラップは、2×3カプラの動作を表すために複素変数Sを使用することによって達成され得る。複素変数Sの一般式は、通常、狭帯域デバイスに適用され、広帯域デバイス用のアンラップ位相を抽出しないため、適切ではない場合がある。広帯域デバイス用に導出された複合変数Sは、
図3の第1の導波路と第3の導波路との間の位相シフトに比例する角度を有し得る。複素変数Sは、以下の式で表すことができる。
【数1】
ここで、
【数2】
【数3】
【数4】
【0082】
ここで、|a
2|、|b
2|、及び|c
2|は、第1の入力信号と第1、第2、及び第3の出力信号430、435、及び440との間の2×3カプラに対する散乱パラメータの振幅である。I
1、I
2、及びI
3は、対応するFSRの出力信号430、435、及び440である。加えて、ΔΘは、出力信号430と440との間の位相差である。これらの式を使用して、所与の波長範囲(例えば、1000nmの帯域幅又は上述の他の帯域幅)にわたってデータを取得するために、アンラップ位相が、
図3の波長ロックシステム300に含まれる2×3カプラによって受光された波長範囲にわたって抽出されて、アンラップ位相信号を生成することができる。
【0083】
図4A及び4Bに示されるように、位相は出力信号430のFSRから抽出されているが、アンラップ位相信号は、依然として出力信号のゼロ点を含む。出力信号グラフ400と同様に、抽出された位相グラフ450のスパイク又はゼロ点452(例えば、「ジャンプ」とも呼ばれる、抽出された位相グラフ450内の垂直線)において、情報は、ゼロ点452が発生する特定の波長における波長ロックに対して、ほとんど又は全く利用可能でない。加えて、
図3を参照して前述されたように、位相は、位相シフタによってシフト又は遅延され得る。遅延が増加するにつれて、位相差(例えば、自由スペクトル範囲)が小さくなり得る。更に、遅延が増加するにつれて、波長ロック効率が増大する。
【0084】
図5は、位相アンラップ出力信号用の例示的な回路図であり、
図6A~
図6Dは、回路図に沿った点での出力信号に対応するグラフを示している。位相アンラップ回路500は、出力信号の位相をアンラップするためのアルゴリズムを実装し得る。位相アンラップ回路500は、2×3カプラ560、光検出器565、位相抽出ブロック570、微分器575、負のジャンプコンパレータ580a、正のジャンプコンパレータ580b、第1の合計器585、積分器590、及び第2の合計器595を含む。点A、B、C、及びDは、位相アンラップ回路500上に示されており、これらの点の各々において測定された信号がそれぞれ、
図6A、
図6B、
図6C、及び
図6Dのグラフ上に示されている。
【0085】
点Aは、
図6Aのグラフ上に示される信号が測定され、位相抽出ブロック570と微分器575との間に位置する点である。点Bは、
図6Bのグラフ上に示される信号が測定され、第1の合計器585と積分器590との間に位置する点である。点Cは、
図6Cのグラフ上に示される信号が測定され、積分器590と第2の合計器595との間に位置し、点Dは、
図6Dのグラフ上に示される信号が測定され、第2の合計器595の後に位置する点である。点Dにおいて測定された信号は、位相アンラップ回路500の出力信号である。
【0086】
2×3カプラ560は、3つの出力信号を光検出器565に出力する。3つの出力信号は、
図3及び
図4A~
図4Bを参照して説明される光出力信号であり得る。光検出器565は、光出力信号を受信し、
図4Aの出力信号グラフ400に示されるように、それらを出力信号に変換する。光検出器565は、アレイの一部であってもよく、又は単一のユニットであってもよい。更に、光検出器565は、任意の適切な光検出器であり得る。光検出器565からの出力信号は、位相抽出ブロック570に送信され得る。
【0087】
位相抽出ブロック570は、
図4Bに関して説明される動作、すなわち、出力信号の位相のアンラップを実行する。したがって、位相抽出ブロックは、
図4Aのグラフに示されるような信号をとり、
図4Bに示されるグラフの信号を生成するための入力としてそれを使用することができる。より具体的には、位相抽出ブロック570は、
図4Bを参照して説明される式を実装することによって、出力信号からのアンラップ位相を抽出することができる(例えば、このアンラップ位相に対応する信号を生成する)。更に、位相抽出ブロック570の出力は、点Aにおいて測定され得、この測定値が
図6Aのグラフに示されている。
図4Bのグラフは、
図6Aのグラフのセグメントであり、具体的には、
図6Aの水平軸上の点4と点5との間の拡大図であることを理解されたい。
【0088】
図4Bを参照して前述したように、(抽出された位相を示す)
図6Aのグラフは、出力信号のゼロ点を依然として含むか、又はそれに対応する点を有し得る。
図6Aの抽出された位相のグラフのスパイク又はゼロ点(例えば、抽出された位相のグラフ450の垂直線)において、特定の波長用の波長ロックに情報がほとんど又は全く利用可能でなく、したがって、波長と出力信号との間に1対1の関係を生成するため、波長ロックに対して連続湾曲が望ましい場合がある。
【0089】
図6Aのグラフにおけるスパイクは、信号が増加しているか、又は2π「ジャンプしている」ことを示す。典型的には、位相ジャンプは、たとえ位相が連続的に増加又は減少する場合であっても点が反対の値にジャンプするように、位相値エントリがπ又は-πの値を超えるときに発生する。
図6Aのグラフにおける鋭い遷移又はスパイクを検出及び軽減する1つの方法は、信号を微分することである。微分ブロックの出力は、波長が正の方向に掃引される(例えば、位相ジャンプがπから-πまで発生する)とき、負のスパイクである。一方、波長が負の方向に掃引される(例えば、位相ジャンプが-πからπまで発生する)とき、出力は、正のスパイクを有する。スパイクが正の方向又は負の方向から検出されるかどうかに応じて、位相が-π~π内になるまで、2πがそれぞれ、減算されるか又は加算され得る。
【0090】
図5に戻ると、位相抽出ブロック570は、抽出された位相信号を微分器575に提供することができ、これが、位相抽出ブロック570から受信された信号を微分する。微分器575を使用して、信号内のスパイク(例えば、2πのジャンプ)を検出し、微分信号でのこの情報を、負のジャンプコンパレータ580a及び正のジャンプコンパレータ580bに送信することができる。微分信号は、微分器575の出力であり、波長が正の方向に掃引される(例えば、πから-πまで位相ジャンプが発生する)とき、負のスパイクである。更に、波長が負の方向に掃引される(例えば、位相ジャンプが-πからπまで発生する)とき、出力は、正のスパイクを有する。
【0091】
負のジャンプコンパレータ580a及び正のジャンプコンパレータ580bを使用して、スパイクが発生する波長において信号に対して2πを加算又は減算する。負のジャンプコンパレータ580a及び正のジャンプコンパレータ580bからの信号は、第1の合計器585によって一緒に合計され得る。第1の合計器585の信号出力は、点Bにおいて測定され、
図6Bのグラフに示されている。負のジャンプコンパレータ580a及び正のジャンプコンパレータ580bは、微分信号を特定の閾値電圧と比較する。負のジャンプコンパレータ580a及び正のジャンプコンパレータ580bは、波長が増加する第1のケースと、波長が減少する第2のケースとの2つのケース間の違いを引き出すことができる。第1のケースは、
図4Bの信号において負のジャンプをもたらし得、したがって、2πが負のジャンプコンパレータ580aによって信号に加算され得る。逆に、第2のケースは、正のジャンプをもたらし得、2πが正のジャンプコンパレータ580bによって減算され得る。負のジャンプ及び正のジャンプは、微分信号を負のジャンプコンパレータ580a及び正のジャンプコンパレータ580bの負及び正及び電圧閾値と比較することによって判定される。
【0092】
第1の合計器585の出力は、2πにわたって信号を積分して、
図6Cに示されるグラフに対応する点Cである階段信号を生成する積分器590に渡され得る。積分器590から生成された階段信号は、完全に線形及び連続信号を生成する補正値である。連続信号は、波長と信号との間に1対1の関係を生成することが望ましいため、
図5における点C及び
図6Cにおけるグラフの階段信号は、微分器575からの信号が完全に線形信号を生成するように、第2の合計器595において合計され得る。この線形及び連続信号は、
図6Dに示されるグラフであり、波長と信号との間に1対1の関係を提供する。点D又は合計器595の出力は、対応する波長を波長ロックするために必要な波長ごとの位相シフト量を提供する。
【0093】
実際には、光学デバイスは、1.4~2.4umの波長範囲内の異なる波長において動作する数Nのレーザを含み得る。光学デバイスは、各々のものが特定の時間において光を放出することができるように、レーザ間の時間多重化を可能にする駆動電子機器を含み得る。駆動電子機器はまた、コントローラでレーザ周波数を制御するフィードバックループを含み得る。このコントローラへの入力は、コントローラがこの信号を所望の目標値(例えば、以下に説明される較正ステップ中に判定される所定値)と比較する位相アンラップ信号(応答信号)からの出力であり得る。環境変動(例えば、温度又は他の騒音源)に起因して、レーザ周波数変化は、エラー信号(例えば、設定値と応答信号との間の差)に影響を及ぼし得る。そのエラー信号を使用してレーザ駆動電流(例えば、制御信号)値を変更して、レーザ波長を所望の動作値に設定することができる。
【0094】
いくつかの実施形態では、較正ステップは、目標波長と同等の設定点を判定するために閉ループ形態で動作する前に実行され得る。較正ステップは、駆動電流が掃引されている間、応答信号がレーザ波長と一緒に測定され得る開ループ構成で実行され得る。1つのレーザが一度に光を放出するため、2つ以上のレーザが同時にロックされない場合がある。しかしながら、いくつかの実施形態では、波長ロック用の1つの回路を使用することはより効率的であり得、したがって、少なくとも1つ、2つ以上、又は全ての重み、サイズ、及び電力のスケールダウンを可能にする。したがって、較正ステップは、個々に各レーザに対して実行され得る。
【0095】
プロセスステップ又は方法ステップは順番に記述され得るが、そのようなプロセス及び方法は、任意の適切な順序で機能するように構成され得る。言い換えれば、本開示に説明し得るステップの任意の順番又は順序は、これらのステップがその順序で実行される必要性をそれ自体示唆するものではない。更に、一部のステップは、(例えば、あるステップが他のステップの後に述べられていることにより)同時に起こらないものとして述べられるか又は示唆されていても同時に実行される場合もある。更に、図面における描写によるあるプロセスの説明は、説明されるプロセスがそのプロセスに対する他の変形及び改変を除外することを示唆するものではなく、説明されるプロセス又はその任意のステップが1つ以上の実施例に必要であることを示唆するものでもなく、説明されるプロセスが好ましいものであることを示唆するものでもない。
【0096】
本開示による方法及び装置の代表的な適用例を、本セクションで説明する。これらの実施例は、前後関係を追加し、説明する実施例の理解を助けることのみを目的として提供される。それゆえ、説明する実施例は、具体的な詳細の一部又は全てを伴わずに実践することができる点が、当業者には明らかとなるであろう。他の適用例が可能であり、それゆえ以下の実施例は、限定的なものとして解釈されるべきではない。
【0097】
添付図面を参照して、本開示の実施例を十分に説明してきたが、様々な変更及び修正が、当業者には明らかとなるであろうことに留意されたい。そのような変更及び修正は、添付の特許請求の範囲によって定義されるような本開示の実施例の範囲内に含まれるものとして理解されたい。
【外国語明細書】