(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023036464
(43)【公開日】2023-03-14
(54)【発明の名称】電動車両
(51)【国際特許分類】
B60L 58/18 20190101AFI20230307BHJP
B60L 9/18 20060101ALI20230307BHJP
B60L 50/60 20190101ALI20230307BHJP
B60L 53/80 20190101ALI20230307BHJP
B60L 58/12 20190101ALI20230307BHJP
H02J 7/00 20060101ALI20230307BHJP
H02M 3/155 20060101ALI20230307BHJP
【FI】
B60L58/18
B60L9/18 J
B60L50/60
B60L53/80
B60L58/12
H02J7/00 P
H02J7/00 303C
H02M3/155 G
H02M3/155 H
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021143529
(22)【出願日】2021-09-02
(71)【出願人】
【識別番号】000128175
【氏名又は名称】株式会社エフ・シー・シー
(74)【代理人】
【識別番号】100095614
【弁理士】
【氏名又は名称】越川 隆夫
(72)【発明者】
【氏名】マハムド アブドルナビ サイド アブダラ
(72)【発明者】
【氏名】大橋 達之
【テーマコード(参考)】
5G503
5H125
5H730
【Fターム(参考)】
5G503AA04
5G503AA07
5G503BA04
5G503BB01
5G503BB02
5G503BB03
5G503CA11
5G503CB11
5G503DA07
5G503DA08
5G503EA05
5G503FA06
5G503GB03
5G503GD03
5G503GD04
5G503GD06
5H125AA01
5H125AC12
5H125AC14
5H125BA00
5H125BB00
5H125BB05
5H125BC28
5H125CA01
5H125CB02
5H125CD04
5H125DD01
5H125EE23
5H125EE25
5H125EE27
5H125EE42
5H125EE44
5H125FF06
5H730AA15
5H730AS04
5H730AS05
5H730AS08
5H730AS13
5H730AS17
5H730BB13
5H730BB14
5H730BB98
5H730DD04
5H730FD01
5H730FD11
5H730FD61
(57)【要約】
【課題】第2蓄電装置の小型化を図りつつ車両走行時に第2蓄電装置のエネルギが不足してしまうのを抑制することができ、第1蓄電装置の寿命を向上させることができる電動車両を提供する。
【解決手段】第1蓄電装置4と、第2蓄電装置5と、電力変換器10と、第2蓄電装置5を介さずに電力変換器10とインバータ2とを接続する回路を形成する第1スイッチS3と、第2蓄電装置5を介して電力変換器10とインバータ2とを接続する回路を形成する第2スイッチS4と、第2蓄電装置5とグラウンドとを接続する回路を形成する第3スイッチS5とを具備し、モータ1の停止時、及び/又は、モータ1の力行時に、第1スイッチS3を接続状態、第2スイッチS4を遮断状態及び第3スイッチS5を接続状態とし、第1蓄電装置4の出力電圧を降圧しつつ当該第1蓄電装置4から第2蓄電装置5にエネルギを供給するものである。
【選択図】
図2
【特許請求の範囲】
【請求項1】
力行可能なモータと、
直流電流から交流電流に変換可能なインバータと、
を有する電動車両であって、
高容量型の特性を有する第1蓄電装置と、
高出力型の特性を有する第2蓄電装置と、
力行時に降圧する機能を有する電力変換器と、
前記第1蓄電装置に力行時に降圧する機能を有する前記電力変換器が接続され、前記電力変換器のリアクトルと前記インバータの間に前記第2蓄電装置が直列に接続された回路と、
前記第2蓄電装置を介さずに前記電力変換器と前記インバータとを接続する回路を形成する第1スイッチと、
前記第2蓄電装置を介して前記電力変換器と前記インバータとを接続する回路を形成する第2スイッチと、
前記第2蓄電装置とグラウンドとを接続する回路を形成する第3スイッチと、
を具備し、
前記モータの停止時、及び/又は、前記モータの力行時に、前記第1スイッチを接続状態、前記第2スイッチを遮断状態及び前記第3スイッチを接続状態とし、前記第1蓄電装置の出力電圧を降圧しつつ当該第1蓄電装置から前記第2蓄電装置にエネルギを供給することを特徴とする電動車両。
【請求項2】
前記第2蓄電装置の電圧に基づいて当該第2蓄電装置の蓄電状態を判断可能とされるとともに、前記第2蓄電池の蓄電状態が所定値以下の場合、前記第1蓄電装置の出力電圧を降圧しつつ前記第2蓄電装置にエネルギを供給することを特徴とする請求項1記載の電動車両。
【請求項3】
前記モータは、力行及び回生可能とされ、前記電力変換器は、力行時に降圧する機能と回生時に昇圧する機能とを有するとともに、前記モータの回生時において、前記第1スイッチを遮断状態、前記第2スイッチを接続状態及び前記第3スイッチを遮断状態とし、前記第2蓄電装置の出力電圧を昇圧しつつ当該第1蓄電装置及び前記第2蓄電装置でエネルギを回収することを特徴とする請求項1又は請求項2に記載の電動車両。
【請求項4】
前記モータの力行時において、前記第1スイッチを遮断状態、前記第2スイッチを接続状態及び前記第3スイッチを遮断状態とし、前記第1蓄電装置の出力電圧を降圧しつつ当該第1蓄電装置及び前記第2蓄電装置から前記インバータにエネルギを供給することを特徴とする請求項1~3の何れか1つに記載の電動車両。
【請求項5】
前記モータの力行時において、前記第1スイッチを遮断状態、前記第2スイッチを遮断状態及び前記第3スイッチを接続状態とし、前記第2蓄電装置から前記インバータにエネルギを供給することを特徴とする請求項1~4の何れか1つに記載の電動車両。
【請求項6】
前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記モータの力行時において、前記第1蓄電装置の温度が所定値以上の場合、前記第2蓄電装置から前記インバータにエネルギを供給することを特徴とする請求項5記載の電動車両。
【請求項7】
前記第1蓄電装置は、前記第2蓄電装置より高電圧型の特性を有することを特徴とする請求項1~6の何れか1つに記載の電動車両。
【請求項8】
前記第1蓄電装置の満充電時のエネルギ量は、前記第2蓄電装置の満充電時のエネルギ量より多いことを特徴とする請求項1~7の何れか1つに記載の電動車両。
【請求項9】
前記第1蓄電装置は、交換可能なカセット型の蓄電装置から成ることを特徴とする請求項1~8の何れか1つに記載の電動車両。
【請求項10】
前記第1蓄電装置は、高容量リチウムイオン電池又は高容量ニッケル水素電池から成り、前記第2蓄電装置は、高出力リチウムイオン電池、高出力ニッケル水素電池、リチウムイオンキャパシタ又は電気二重層キャパシタの何れかであることを特徴とする請求項1~9の何れか1つに記載の電動車両。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、力行及び回生可能なモータと当該モータにエネルギ供給可能な蓄電装置とを具備した電動車両に関するものである。
【背景技術】
【0002】
力行及び回生可能なモータと当該モータにエネルギ供給可能な蓄電装置とを具備し、モータの駆動力で推力を得るとともに、駆動輪の制動トルクを調整して蓄電装置にエネルギを回収可能な電動車両として、例えば特許文献1に記載されたものが挙げられる。かかる電動車両によれば、高容量型の特性を有するバッテリ及び高出力型の特性を有するキャパシタのそれぞれから任意タイミングでインバータにエネルギを供給してモータを駆動することができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記従来技術においては、バッテリ(第1蓄電装置)及びキャパシタ(第2蓄電装置)が分担してエネルギ供給を行いモータを駆動させることができるものの、回生による充電が間に合わずキャパシタのエネルギが不足した場合、バッテリのみからエネルギ供給を行う必要がある。しかるに、例えば車両の加速時には、急激なエネルギ供給が必要とされるため、バッテリのみからエネルギ供給する場合、急激なエネルギ供給によりバッテリが発熱して寿命が低下してしまう虞がある。また、車両の走行時、キャパシタのエネルギが不足するのを回避するため、車両の未使用時等の事前に、充電器を使ってキャパシタのエネルギを多く充電しておくことも考えられるが、その場合、キャパシタが大型化してしまうという問題がある。
【0005】
本発明は、このような事情に鑑みてなされたもので、第2蓄電装置の小型化を図りつつ車両走行時に第2蓄電装置のエネルギが不足してしまうのを抑制することができ、第1蓄電装置の寿命を向上させることができる電動車両を提供することにある。
【課題を解決するための手段】
【0006】
請求項1記載の発明は、力行可能なモータと、直流電流から交流電流に変換可能なインバータとを有する電動車両であって、高容量型の特性を有する第1蓄電装置と、高出力型の特性を有する第2蓄電装置と、力行時に降圧する機能を有する電力変換器と、前記第1蓄電装置に力行時に降圧する機能を有する前記電力変換器が接続され、前記電力変換器のリアクトルと前記インバータの間に前記第2蓄電装置が直列に接続された回路と、前記第2蓄電装置を介さずに前記電力変換器と前記インバータとを接続する回路を形成する第1スイッチと、前記第2蓄電装置を介して前記電力変換器と前記インバータとを接続する回路を形成する第2スイッチと、前記第2蓄電装置とグラウンドとを接続する回路を形成する第3スイッチとを具備し、前記モータの停止時、及び/又は、前記モータの力行時に、前記第1スイッチを接続状態、前記第2スイッチを遮断状態及び前記第3スイッチを接続状態とし、前記第1蓄電装置の出力電圧を降圧しつつ当該第1蓄電装置から前記第2蓄電装置にエネルギを供給することを特徴とする。
【0007】
請求項2記載の発明は、請求項1記載の電動車両において、前記第2蓄電装置の電圧に基づいて当該第2蓄電装置の蓄電状態を判断可能とされるとともに、前記第2蓄電池の蓄電状態が所定値以下の場合、前記第1蓄電装置の出力電圧を降圧しつつ前記第2蓄電装置にエネルギを供給することを特徴とする。
【0008】
請求項3記載の発明は、請求項1又は請求項2記載の電動車両において、前記モータは、力行及び回生可能とされ、前記電力変換器は、力行時に降圧する機能と回生時に昇圧する機能とを有するとともに、前記モータの回生時において、前記第1スイッチを遮断状態、前記第2スイッチを接続状態及び前記第3スイッチを遮断状態とし、前記第2蓄電装置の出力電圧を昇圧しつつ当該第1蓄電装置及び前記第2蓄電装置でエネルギを回収することを特徴とする。
【0009】
請求項4記載の発明は、請求項1~3の何れか1つに記載の電動車両において、前記モータの力行時において、前記第1スイッチを遮断状態、前記第2スイッチを接続状態及び前記第3スイッチを遮断状態とし、前記第1蓄電装置の出力電圧を降圧しつつ当該第1蓄電装置及び前記第2蓄電装置から前記インバータにエネルギを供給することを特徴とする。
【0010】
請求項5記載の発明は、請求項1~4の何れか1つに記載の電動車両において、前記モータの力行時において、前記第1スイッチを遮断状態、前記第2スイッチを遮断状態及び前記第3スイッチを接続状態とし、前記第2蓄電装置から前記インバータにエネルギを供給することを特徴とする。
【0011】
請求項6記載の発明は、請求項5記載の電動車両において、前記第1蓄電装置の温度に基づいて当該第1蓄電装置の温度状態を判断可能とされるとともに、前記モータの力行時において、前記第1蓄電装置の温度が所定値以上の場合、前記第2蓄電装置から前記インバータにエネルギを供給することを特徴とする。
【0012】
請求項7記載の発明は、請求項1~6の何れか1つに記載の電動車両において、前記第1蓄電装置は、前記第2蓄電装置より高電圧型の特性を有することを特徴とする。
【0013】
請求項8記載の発明は、請求項1~7の何れか1つに記載の電動車両において、前記第1蓄電装置の満充電時のエネルギ量は、前記第2蓄電装置の満充電時のエネルギ量より多いことを特徴とする。
【0014】
請求項9記載の発明は、請求項1~8の何れか1つに記載の電動車両において、前記第1蓄電装置は、交換可能なカセット型の蓄電装置から成ることを特徴とする。
【0015】
請求項10記載の発明は、請求項1~9の何れか1つに記載の電動車両において、前記第1蓄電装置は、高容量リチウムイオン電池又は高容量ニッケル水素電池から成り、前記第2蓄電装置は、高出力リチウムイオン電池、高出力ニッケル水素電池、リチウムイオンキャパシタ又は電気二重層キャパシタの何れかであることを特徴とする。
【発明の効果】
【0016】
本発明によれば、モータの停止時、及び/又は、モータの力行時に、第1スイッチを接続状態、第2スイッチを遮断状態及び第3スイッチを接続状態とし、第1蓄電装置の出力電圧を降圧しつつ当該第1蓄電装置から第2蓄電装置にエネルギを供給するので、第2蓄電装置の小型化を図りつつ車両走行時に第2蓄電装置のエネルギが不足してしまうのを抑制することができ、第1蓄電装置の寿命を向上させることができる。
【図面の簡単な説明】
【0017】
【
図1】本発明の実施形態に係る電動車両を示す模式図
【
図6】同電動車両の電力制御の全体を示すフローチャート
【
図7】同電動車両の要求特性(駆動輪の車両要求)を示すグラフ
【
図8】同電動車両の要求特性(駆動輪のモータ要求)を示すグラフ
【
図9】同電動車両の要求特性(従動輪の車両要求)を示すグラフ
【
図10】同電動車両の要求特性(従動輪のブレーキ要求)を示すグラフ
【
図11】同電動車両の電力制御の要求処理制御を示すフローチャート
【
図12】同電動車両の運転者要求テーブル(テーブル1)を示すグラフ
【
図13】同電動車両の運転者要求テーブル(テーブル2)を示すグラフ
【
図14】同電動車両の運転者要求テーブル(テーブル3)を示すグラフ
【
図15】同電動車両の運転者要求テーブル(テーブル4)を示すグラフ
【
図16】同電動車両の運転者要求テーブル(テーブル5)を示すグラフ
【
図17】同電動車両の運転者要求テーブル(テーブル6)を示すグラフ
【
図18a】同電動車両の電力制御のモータ制御を示すフローチャート
【
図18b】同電動車両の電力制御のモータ制御を示すフローチャート
【
図20】同電動車両の電圧要求テーブル(テーブルA)を示すグラフ
【
図21】同電動車両の電圧要求テーブル(テーブルB)を示すグラフ
【
図22】同電動車両の電圧要求テーブル(テーブルC)を示すグラフ
【
図23】同電動車両の電圧要求テーブル(テーブルD)を示すグラフ
【
図24】同電動車両の電圧要求テーブル(テーブルE)を示すグラフ
【
図25】同電動車両の第1蓄電装置の蓄電状態を示すグラフ
【
図26】同電動車両の第2蓄電装置の蓄電状態を示すグラフ
【
図27】同電動車両の蓄電装置の組み合わせを示す表
【発明を実施するための形態】
【0018】
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係る電動車両は、モータの駆動力により走行可能な自動二輪車等の鞍乗り型車両から成るもので、
図1~4に示すように、モータ1と、インバータ2と、メカブレーキ(3a、3b)と、第1蓄電装置4と、第2蓄電装置5と、アクセル操作手段6と、メカブレーキ操作手段7と、回生ブレーキ操作手段8と、電力変換器10と、ECU11と、スタートスイッチ12と、モニタ13(補助装置)とを主に具備している。
【0019】
モータ1(Motor)は、エネルギ供給により駆動力を得るための電磁モータから成り、
図2、3に示すように、インバータ2を介して第2蓄電装置5、電力変換器10及び第1蓄電装置4と電気的に接続可能とされ、力行及び回生可能とされている。インバータ2(DC-AC Inverter)は、直流電流から交流電流に変換可能なもので、本実施形態においては、第1蓄電装置4及び第2蓄電装置5の直流電流を交流電流に変換してモータ1に供給可能とされている。
【0020】
メカブレーキは、ディスクブレーキやドラムブレーキ等のエネルギを放出して制動可能な制動装置から成り、駆動輪Taの運動エネルギを放出して制動する駆動輪メカブレーキ3aと、従動輪Tbの運動エネルギを放出して制動する従動輪メカブレーキ3bとを有して構成されている。これら駆動輪メカブレーキ3a及び従動輪メカブレーキ3bは、ブレーキアクチュエータ9を介してメカブレーキ操作手段7と接続されている。
【0021】
かかるメカブレーキ操作手段7は、メカブレーキ(従動輪メカブレーキ3b)を制御して制動トルクを調整可能な部品(本実施形態においては、ハンドルバーの右側端部に取り付けられた操作レバー)から成り、その操作量に応じてメカブレーキ制御部18(
図4参照)がブレーキアクチュエータ9を作動させ、従動輪メカブレーキ3bを動作させ得るよう構成されている。
【0022】
アクセル操作手段6は、モータ1を制御して駆動輪Taの駆動トルクを調整可能な部品(本実施形態においては、ハンドルバーの右側端部に取り付けられたアクセルグリップ)から成り、
図4に示すように、その操作量に応じてインバータ制御部16によりトルク要求を推定してモータ1を作動させることにより、所望の駆動力を得るよう構成されている。なお、インバータ制御部16は、ECU11に形成された制御部の一つである。
【0023】
蓄電装置は、モータ1にエネルギを供給可能なもので、本実施形態においては、第1蓄電装置4及び第2蓄電装置5を有して構成されている。第1蓄電装置4は、高容量型の特性を有する蓄電池から成り、
図27に示すように、例えば高容量リチウムイオン電池又は高容量ニッケル水素電池を使用することができる。第2蓄電装置5は、高出力型の特性を有する蓄電池から成り、
図27に示すように、例えば高出力リチウムイオン電池、高出力ニッケル水素電池、リチウムイオンキャパシタ又は電気二重層キャパシタの何れかを使用することができる。
【0024】
より具体的には、第1蓄電装置4は、第2蓄電装置5より高電圧型の特性を有するとともに、第1蓄電装置4の満充電時のエネルギ量は、第2蓄電装置5の満充電時のエネルギ量より多いものとされている。また、本実施形態に係る第1蓄電装置4は、車両から取り外して交換可能なカセット型の蓄電装置から成り、第1蓄電装置4の蓄電状態に応じて満充電状態の第1蓄電装置4と交換可能とされている。
【0025】
回生ブレーキ操作手段8は、モータ1を制御して、駆動輪Taの制動トルクを調整し、蓄電装置(第1蓄電装置4及び第2蓄電装置5)にエネルギを回収可能な部品(本実施形態においては、ハンドルバーの左側端部に取り付けられた操作レバー)から成り、その操作量に応じてモータ1の回生を行わせて所望の制動力が得られるよう構成されている。かかるモータ1の回生により、第1蓄電装置4及び第2蓄電装置5にエネルギを回収することができる。
【0026】
電力変換器10は、モータ1の力行時(モータ1へのエネルギ供給時)に電圧を降圧する機能とモータ1の回生時(モータ1からのエネルギ回収時)に電圧を昇圧する機能を有するもので、
図2、3に示すように、電気回路における第1蓄電装置4及び第2蓄電装置5の間に接続されている。より具体的には、電力変換器10は、
図2に示すように、スイッチS1、S2及び整流器としてのダイオードを有する2つの半導体スイッチ素子(MOSFET)10a、10bと、リアクトル10c(コイル)とを有して構成されている。
【0027】
そして、本実施形態に係る電力変換器10によれば、半導体スイッチ素子10a、10bのスイッチS1、S2を高速スイッチング(duty制御)することにより、モータ1の力行時(
図3において右側に向かって電流が流れるとき)には、リアクトル10cが半導体スイッチ素子10a、10bの下流側に位置するため、電圧を降圧し得るとともに、モータ1の回生時(
図3において左側に向かって電流が流れるとき)には、リアクトル10cが半導体スイッチ素子10a、10bの上流側に位置するため、電圧を昇圧し得るようになっている。
【0028】
より具体的には、本実施形態においては、
図2、3に示すように、第1蓄電装置4に力行時に降圧する機能を有する電力変換器10が接続され、電力変換器10のリアクトル10cとインバータ2の間に第2蓄電装置5が直列に接続された回路を有しており、モータ1の力行時に電力変換器10によって第1蓄電装置4の出力電圧(Vdc1)を降圧し、第1蓄電装置4及び第2蓄電装置5からインバータ2にエネルギを供給するとともに、モータ1の回生時、電力変換器10によって第2蓄電装置5の出力電圧(Vinv-Vdc2)を昇圧し、第1蓄電装置4及び第2蓄電装置5でエネルギを回収するよう構成されている。
【0029】
また、本実施形態においては、
図2に示すように、第2蓄電装置5を介さずに電力変換器10とインバータ2とを接続する回路を形成する第1スイッチS3と、第2蓄電装置5を介して電力変換器10とインバータ2とを接続する回路を形成する第2スイッチS4と、第2蓄電装置5とグラウンドとを接続(グラウンド接続)する回路を形成する第3スイッチS5とを有している。なお、本実施形態に係る回路には、安定化のためのコンデンサCa、Cbが接続されている。
【0030】
さらに、本実施形態に係る第1スイッチS3及び第2スイッチS4は、半導体スイッチ素子(MOSFET)14、15(半導体スイッチ素子10a、10bと同様、整流器としてのダイオードを有している)にて構成されるとともに、第3スイッチS5は、電流の導通をオン・オフ(接続又は遮断)可能なスイッチにて構成されている。そして、回路制御部17による制御によって、第1スイッチS3、第2スイッチS4及び第3スイッチS5を任意タイミングでオン・オフ(接続状態又は遮断状態)可能とされている。
【0031】
ECU11は、入力された運転者の要求に応じてモータ1等を制御するためのもので、
図4に示すように、インバータ制御部16、回路制御部17及びメカブレーキ制御部18を有するとともに、インバータ2、電力変換器10、第1蓄電装置4、第2蓄電装置5及びブレーキアクチュエータ9と接続されている。また、第1蓄電装置4の電圧を検出可能な電圧検出センサ4a及び当該第1蓄電装置4の温度を検出可能な温度検出センサ4bを具備するとともに、第2蓄電装置5の電圧を検出可能な電圧検出センサ5aを具備している。
【0032】
しかるに、電圧検出センサ4a、温度検出センサ4b及び電圧検出センサ5aが回路制御部17と電気的に接続されており、電圧検出センサ4a及び電圧検出センサ5aで検出される電圧によって第1蓄電装置4及び第2蓄電装置5の蓄電状態をそれぞれ判断可能とされるとともに、温度検出センサ4bによって第1蓄電装置4の温度を検出可能とされている。なお、第1蓄電装置4の蓄電状態を
図25、第2蓄電装置5の蓄電状態を
図26にそれぞれ示している。
【0033】
そして、モータ1の力行時、第2蓄電装置5の蓄電状態が充電判定値以下の場合(
図26における充電判定値以下のとき)、第1スイッチS3を接続状態(ON状態)、第2スイッチS4を遮断状態(OFF状態)及び第3スイッチS5を接続状態(ON状態)とし、第1蓄電装置4の出力電圧(Vdc1)を降圧しつつ当該第1蓄電装置4からインバータ2及び第2蓄電装置5にエネルギを供給する。
【0034】
すなわち、モータ1の力行時、第1スイッチS3を接続状態(ON状態)、第2スイッチS4を遮断状態(OFF状態)及び第3スイッチS5を接続状態(ON状態)とすることにより、第1蓄電装置4からインバータ2にエネルギを供給するとともに、第2の蓄電装置5にもエネルギを供給して充電可能とされている。同様に、モータ1の停止時、第1スイッチS3を接続状態(ON状態)、第2スイッチS4を遮断状態(OFF状態)及び第3スイッチS5を接続状態(ON状態)とすることにより、第1蓄電装置4の出力電圧(Vdc1)を降圧しつつ当該第1蓄電装置4から第2蓄電装置5にエネルギを供給する。
【0035】
このように、本実施形態に係る電動車両は、モータ1の停止時、及び/又は、モータ1の力行時に、第1スイッチS3を接続状態、第2スイッチS4を遮断状態及び第3スイッチS5を接続状態とし、第1蓄電装置4の出力電圧を降圧しつつ当該第1蓄電装置4から第2蓄電装置5にエネルギを供給して充電可能とされている。さらに、本実施形態に係る電動車両は、モータ1の回生時、第1スイッチS3を遮断状態、第2スイッチS4を接続状態及び第3スイッチS5を遮断状態とし、第2蓄電装置5の出力電圧(Vinv-Vdc2)を昇圧しつつ第1蓄電装置4及び第2蓄電装置5でエネルギを回収(回生エネルギを蓄積)するようになっている。
【0036】
また、本実施形態に係る電動車両は、モータ1の力行時において、第2蓄電装置5の蓄電状態が所定値以上の場合(
図26における所定下限値以上のとき)、第1スイッチS3を遮断状態、第2スイッチS4を接続状態及び第3スイッチS5を遮断状態とし、第1蓄電装置4の出力電圧を降圧しつつ当該第1蓄電装置4及び第2蓄電装置5からインバータ2にエネルギを供給するよう構成されている。
【0037】
さらに、モータ1の力行時において、第1スイッチS3を遮断状態、第2スイッチS4を遮断状態及び第3スイッチS5を接続状態とし、第2蓄電装置5からインバータ2にエネルギを供給するようになっている。具体的には、第1蓄電装置4の温度に基づいて当該第1蓄電装置4の温度状態を温度センサ4bにて判断可能とされるとともに、モータ1の力行時において、第1蓄電装置4の温度が所定値以上の場合、第1蓄電装置4からのエネルギの供給を停止しつつ第2蓄電装置5からインバータにエネルギを供給するよう構成されている。
【0038】
スタートスイッチ12は、車両の走行を可能にする操作スイッチから成り、かかるスタートスイッチ12を操作した後、アクセル操作手段6を操作することにより、モータ1を作動させて走行し得るようになっている。モニタ13は、車両に取り付けられた液晶モニタ等の補助装置から成り、例えば車両の状態(速度、蓄電状態又は故障の有無等)やナビゲーションシステムの地図等を表示させ得るようになっている。
【0039】
ここで、本実施形態においては、
図4に示すように、モータ1の回転数を検知するセンサから成る検知手段19を具備しており、検知手段19で検知されたモータ1の回転数が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じた所定制動トルクを回生ブレーキにより発生(特に、本実施形態においては、回生ブレーキのみにより発生)するよう構成されている。また、モータ1の回生時、その所定制動トルクの最大値は、モータ1の定格トルクとされている。
【0040】
さらに、検知手段19で検知されたモータ1の回転数が所定値未満のとき、回生ブレーキ操作手段8の操作量に応じてメカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるようになっている。加えて、第1蓄電装置4の充電量が所定値以上のとき、回生ブレーキ操作手段8の操作量に応じて、メカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させるよう構成されている。
【0041】
図5は、上記実施形態に係る電動車両において、スタートスイッチ12をオンした後、アクセル操作手段6及び回生ブレーキ操作手段8の操作を行った場合の各パラメータの変化を示している。本実施形態においては、スタートスイッチ12をオンした後、充電が開始されるとともに、モータ1の停止時及び力行時において、第2蓄電装置5が蓄電されるようになっている。なお、同図の表における「FCCNO」(function circuit control number)は、
図4、18、19で示される「FCCNO」と対応するものである。
【0042】
次に、本実施形態に係る電動車両の制御(メイン制御)について、
図6のフローチャートに基づいて説明する。
先ず、S1にてスタートスイッチ12がオンしたか否か判定され、スタートスイッチ12がオンしたと判断されると、S2にて第1蓄電装置4の充電状態(Soc1)が所定下限値(
図25参照)より大きいか否か判定される。そして、充電状態(Soc1)が所定下限値より大きいと判断されると、要求処理(S3)、モータ制御(S4)及びメカブレーキ制御(S5)が順次行われることとなる。
【0043】
次に、本実施形態に係る電動車両の要求特性について、
図7~10に基づいて説明する。
駆動輪Taにおける駆動トルク及び制動トルクと車速との関係は、
図7に示すような特性とされ、駆動輪Taにおけるモータトルクとモータ1の回転数(ω)との関係は、
図8に示すような特性とされる。特に、
図7において、高速走行の場合、駆動トルクが車速に対して漸減関係にあるのに対し、制動トルクは一定関係となっている。なお、
図8においては、縦軸のプラス側(上半分)がアクセル操作手段6の操作量に応じた駆動トルクを示しており、縦軸のマイナス側(下半分)が回生ブレーキ操作手段8の操作量に応じた制動トルクを示している。同図中の符号Tm1は、モータ1の定格トルクを示している。
【0044】
また、従動輪Tbにおける制動トルクと車速との関係は、
図9に示すような特性とされ、従動輪Tbにおける制動トルク(メカ制動トルク(Tbmf)とモータ1の回転数(ω)との関係は、
図10に示すような特性とされる。なお、
図9、10においては、従動輪Tbの特性を示すものであるため、縦軸のマイナス側(下半分)のみの特性(制動トルク)のみが示されている。
【0045】
次に、本実施形態に係る電動車両の制御(要求処理制御)について、
図11のフローチャートに基づいて説明する。
先ず、S1にて故障信号の有無に基づいて回生システムが正常か否か判定され、故障信号がないと判断された場合、S2にてアクセル操作手段6の操作の有無(アクセル操作量Apが0より大きいか否か)が判定され、アクセル操作手段6の操作があると判断されると、S5に進み、
図12に示すテーブル1に基づいてアクセル操作手段6の操作量に応じたモータトルク(Tm)が算出される。
【0046】
そして、S5の算出の後、S9に進み、
図16に示すテーブル5に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出され、その後、S13に進み、
図17に示すテーブル6に基づいてメカブレーキ操作手段7の操作量に応じたメカ制動トルク(Tbmf)が算出される。なお、S9で算出されたメカ制動トルク(Tbmr)は、駆動輪Taの制動トルクとされるとともに、S13で算出されたメカ制動トルク(Tbmf)は、従動輪Tbの制動トルクとされる。
【0047】
また、S2にてアクセル操作手段の操作がないと判断されると、S3にてモータ1の回生が可能か否か判定される。かかる判定は、第1蓄電装置4の蓄電状態(Soc1)が所定上限値以下(
図27参照)であり、且つ、モータの回転数がω1(
図8参照)以上である場合、モータ1の回生が可能であると判断されるものである。そして、モータ1の回生が可能であると判断されると、S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(
図26参照)より大きいか否か判定される。
【0048】
S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(
図26参照)より大きいと判断されると、S6に進み、
図13に示すテーブル2に基づいて回生ブレーキ操作手段8の操作量に応じたモータトルク(Tm)が算出される。ここで、テーブル2に基づくモータトルク(Tm)の算出においては、モータ1の回転数が
図8で示す所定回転数(ω2)以下の場合、Tm=Tm(ω-ω1)/(ω2-ω1)なる補正が行われる。なお、S6の算出後、S10に進み、
図15に示すテーブル4に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出され、その後、既述のS13が順次行われることとなる。
【0049】
さらに、S4にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値(
図26参照)より大きくないと判断されると、S7に進み、
図14に示すテーブル3に基づいて回生ブレーキ操作手段8の操作量に応じたモータトルク(Tm)が算出される。ここで、テーブル3に基づくモータトルク(Tm)の算出においては、テーブル2と同様、モータ1の回転数が
図8で示す所定回転数(ω2)以下の場合、Tm=Tm(ω-ω1)/(ω2-ω1)なる補正が行われる。なお、S7の算出後、S11にてメカ制動トルク(Tbmr)が0に設定された後、既述のS13が行われることとなる。
【0050】
一方、S1にて故障信号があると判断された場合やS3にて回生可能でないと判断された場合、S8に進み、モータトルク(Tm)=0に設定された後、S12に進み、
図16に示すテーブル5に基づいて回生ブレーキ操作手段8の操作量に応じたメカ制動トルク(Tbmr)が算出される。これにより、回生システムに故障があると判断されたときや回生可能でないと判断されたとき、回生ブレーキ操作手段8の操作量に応じてメカブレーキ(駆動輪メカブレーキ3a)により制動トルクを発生させることができる。なお、S12の算出後、既述のS13が行われることとなる。
【0051】
次に、本実施形態に係る電動車両の制御(モータ制御)について、
図18a、18bのフローチャートに基づいて説明する。
先ず、S1にて故障信号の有無に基づいて回生システムが正常か否か判定され、故障信号がないと判断された場合、S2にてアクセル操作手段6の操作の有無(アクセル操作量Apが0より大きいか否か)が判定され、アクセル操作手段6の操作があると判断されると、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(
図26参照)より大きいか否か判定される。
【0052】
そして、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(
図26参照)より大きくないと判断されると、S10に進み、FCC(function circuit control)=1とするとともに、S3にて第2蓄電装置5の蓄電状態(Soc2)が所定下限値(
図26参照)より大きいと判断されると、S4に進み、モータ1の回転数(ω)がω3より小さいか否か判定される。
【0053】
そして、S4にてモータ1の回転数(ω)がω3より小さくないと判定されると、S11に進み、FCC=2とするとともに、S4にてモータ1の回転数(ω)がω3より小さいと判定されると、S5に進み、第1蓄電装置4の温度が所定値より小さいか否か判定される。S5にて第1蓄電装置4の温度が所定値より小さくないと判定されると、S13に進み、FCC=4とするとともに、S5にて第1蓄電装置4の温度が所定値より小さいと判定されると、S6に進み、アクセル操作量Apが所定値より小さいか否か判定される。
【0054】
その後、S6にてアクセル操作量Apが所定値より小さくないと判定されると、S11に進み、FCC=2とするとともに、S6にてアクセル操作量Apが所定値より小さいと判定されると、S12に進み、FCC=3とする。一方、S2にてアクセル操作手段6の操作がないと判断されると、S7に進み、モータ1の回生が可能か否か判定され、回生可能であると判断されると、S8に進み、第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きいか否か判定される。
【0055】
S8にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きいと判定されると、S14に進み、FCC=5とするとともに、S8にて第2蓄電装置5の蓄電状態(Soc2)が所定上限値より大きくないと判定されると、S15に進み、FCC=6とする。さらに、S7にてモータ1の回生が可能でないと判断されると、S9に進み、第2蓄電装置5の蓄電状態(Soc2)が充電判定値以下か否か判定される。
【0056】
そして、S9にて第2蓄電装置5の蓄電状態(Soc2)が充電判定値以下と判定されると、S16に進み、FCC=7とするとともに、S9にて第2蓄電装置5の蓄電状態(Soc2)が充電判定値より大きいと判定されると、S17に進み、FCC=8とする。なお、S1にて故障信号があると判断された場合においても、S17に進み、FCC=8とする。
【0057】
上記の如くモード(FCC)1~8が決定した後、S18にて前回処理で決定したモード(FCCO)に対し、今回処理で決定したモード(FCC)の変更有無について判定され、モード変更がないと判断された場合、S19に進み、S10~17で決定されたFCCを維持するとともに、モード変更があると判断された場合、S20に進み、FCCNO=8とする。その後、S21にてFCCNOに応じた回路制御及びS22にてFCCNOに応じた充電制御が行われ、続いて、S23にて今回処理決定されたモード(FCC)をFCCOに記憶し、S24にてインバータ制御が行われる。
【0058】
ここで、S21の制御は、
図19の制御表に基づいて行われる。かかる制御表による制御内容について以下に説明する。
FCCNO=1のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が力行時にDuty制御されて電力変換器10が第1蓄電装置4の出力電圧を降圧するとともに、第1スイッチS3が接続状態(オン状態)、第2スイッチS4が遮断状態(オフ状態)及び第3スイッチS5が遮断状態(オフ状態)とされる。そして、FCCNO=1のとき、インバータ2の電流制御は、
図20に示すテーブルAに基づいて行われる。
【0059】
かかるテーブルAによれば、PWM制御(pulse width modulation:パルス幅変調)でインバータ2の電流制御が行われることを前提として、
図20に示すように、インバータ2の直流電圧をモータ1の回転数(ω)に応じて制御可能とされる。なお、後述するテーブルB~Eについても、PWM制御でインバータ2の電流制御が行われることを前提としている。
【0060】
FCCNO=2のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が力行時にDuty制御されて電力変換器10が第1蓄電装置4の出力電圧を降圧するとともに、第1スイッチS3が遮断状態(オフ状態)、第2スイッチS4が接続状態(オン状態)及び第3スイッチS5が遮断状態(オフ状態)とされる。そして、FCCNO=2のとき、インバータ2の電流制御は、
図21に示すテーブルBに基づいて行われる。
【0061】
FCCNO=3のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が力行時及び充電時にDuty制御されて電力変換器10が第1蓄電装置4の出力電圧を降圧するとともに、第1スイッチS3が接続状態(オン状態)、第2スイッチS4が遮断状態(オフ状態)及び第3スイッチS5が接続状態(オン状態)とされる。そして、FCCNO=3のとき、インバータ2の電流制御は、
図22に示すテーブルCに基づいて行われる。
【0062】
FCCNO=4のとき、半導体スイッチ素子10a、10bのスイッチS1、S2がオフ状態(電力変換器10がオフ状態)とされるとともに、第1スイッチS3及び第2スイッチ素子S4が遮断状態(オフ状態)及び第3スイッチS5が接続状態(オン状態)とされる。そして、FCCNO=4のとき、インバータ2の電流制御は、
図22に示すテーブルCに基づいて行われる。
【0063】
FCCNO=5のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が回生時にDuty制御されて昇圧するとともに、第1スイッチS3が接続状態(オン状態)、第2スイッチS4が遮断状態(オフ状態)及び第3スイッチS5が遮断状態(オフ状態)とされる。そして、FCCNO=5のとき、インバータ2の電流制御は、
図23に示すテーブルDに基づいて行われる。
【0064】
FCCNO=6のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が回生時にDuty制御されて昇圧するとともに、第1スイッチS3が遮断状態(オフ状態)、第2スイッチS4が接続状態(オン状態)及び第3スイッチS5が遮断状態(オフ状態)とされる。そして、FCCNO=6のとき、インバータ2の電流制御は、
図24に示すテーブルEに基づいて行われる。
【0065】
FCCNO=7のとき、半導体スイッチ素子10a、10bのスイッチS1、S2が停止時にDuty制御されて降圧するとともに、第1スイッチS3が接続状態(オン状態)、第2スイッチS4が遮断状態(オフ状態)及び第3スイッチS5が接続状態(オン状態)とされる。そして、FCCNO=7のとき、インバータ2の電流制御は、
図22に示すテーブルCに基づいて行われる。
【0066】
FCCNO=8のとき、半導体スイッチ素子10a、10bのスイッチS1、S2がオフ状態(電力変換器10がオフ状態)とされるとともに、第1スイッチS3、第2スイッチS4及び第3スイッチS5がオフ状態とされる。FCCNO=9のとき、半導体スイッチ素子10a、10bのスイッチS1、S2がDuty制御されるとともに、第1スイッチS3、第2スイッチS4及び第3スイッチS5がオフ状態とされる。
【0067】
上記実施形態に係る電動車両によれば、モータ1の停止時、及び/又は、モータ1の力行時に、第1スイッチS3を接続状態、第2スイッチS4を遮断状態及び第3スイッチS5を接続状態とし、第1蓄電装置4の出力電圧(Vdc1)を降圧しつつ当該第1蓄電装置4から第2蓄電装置5にエネルギを供給するので、モータ1の停止時、及び/又は、モータ1の力行時に第2蓄電装置5を充電することができる。したがって、第2蓄電装置4の小型化を図りつつ車両走行時に第2蓄電装置5のエネルギが不足してしまうのを抑制することができ、第1蓄電装置4の寿命を向上させることができる。
【0068】
特に、本実施形態に係る電動車両は、第2蓄電装置5の電圧に基づいて当該第2蓄電装置5の蓄電状態を判断可能とされるとともに、第2蓄電池5の蓄電状態が所定値以下の場合、第1蓄電装置4の出力電圧を降圧しつつ第2蓄電装置5にエネルギを供給するので、第2蓄電装置5の蓄電状態に応じて第2蓄電装置5を充電することができる。また、モータ1の回生時において、第1スイッチS3を遮断状態、第2スイッチS4を接続状態及び第3スイッチS5を遮断状態とし、第1蓄電装置4及び第2蓄電装置5でエネルギ(回生エネルギ)を回収するので、回生エネルギを効率よく回収することができる。
【0069】
さらに、モータ1の力行時において、第1スイッチS3を遮断状態、第2スイッチS4を接続状態及び第3スイッチS5を遮断状態とし、第1蓄電装置4の出力電圧を降圧しつつ当該第1蓄電装置4及び第2蓄電装置5からインバータ2にエネルギを供給するので、第1蓄電装置4及び第2蓄電装置5の両方からインバータ2にエネルギを供給して電動車両を走行させることができる。
【0070】
またさらに、モータ1の力行時において、第1スイッチS3を遮断状態、第2スイッチS4を遮断状態及び第3スイッチS5を接続状態とし、第2蓄電装置5からインバータ2にエネルギを供給するので、第1蓄電装置4を停止させつつ第2蓄電装置5からエネルギを供給して電動車両を走行させることができる。特に、第1蓄電装置4の温度に基づいて当該第1蓄電装置4の温度状態を判断可能とされるとともに、モータ1の力行時において、第1蓄電装置4の温度が所定値以上の場合、第2蓄電装置5からインバータ2にエネルギを供給するので、第1蓄電装置4の過熱を回避しつつ第2蓄電装置5からエネルギを供給して電動車両を走行させることができる。
【0071】
加えて、蓄電装置は、高容量型の特性を有する第1蓄電装置4と、高出力型の特性を有する第2蓄電装置5とを有して構成されるとともに、第1蓄電装置4に力行時に降圧する機能を有する電力変換器が接続され、電力変換器10のリアクトル10cとインバータ2の間に第2蓄電装置5が直列に接続された回路を有し、モータ1の回生時に当該回路を使ってエネルギを第1蓄電装置4及び第2蓄電装置5に回収するので、モータ1の回生時、第1蓄電装置4のみで定格トルクを発生できるモータ回転数に比べ、より高回転まで定格トルクを回生ブレーキのみで発生することができる。
【0072】
さらに、モータの力行時に第1蓄電装置4の出力電圧を降圧し、第1蓄電装置4及び第2蓄電装置5からインバータ2にエネルギを供給するので、第2蓄電装置5による昇圧機能と併せることにより、降圧及び昇圧可能とされる。したがって、第1蓄電装置4の出力電圧を昇圧及び降圧することによりインバータ2の直流電圧設定に合致させて調整することができるので、インバータ2の直流電圧の設定値が変化した場合でも、電圧が規格品の蓄電池を用いることができ、製造コストの増加を防止させることができる。
【0073】
特に、本実施形態によれば、力行時、電力変換器10の半導体スイッチ素子10a、10bにおけるスイッチS1、S2をduty制御することにより、モータ1のインバータ直流電圧を第1蓄電装置4の電圧に対して最適に昇降圧制御できる。また、第1蓄電装置4及び第2蓄電装置5で力行用エネルギを分担して供給するので、第1蓄電装置4のみで同量の力行用エネルギを供給するものに比べて、第1蓄電装置4の電流が小さくなり、力行エネルギが大きい場合であっても第1蓄電装置4の電流を小さくすることができ、第1蓄電装置4の寿命を向上させることができる。
【0074】
しかるに、第1蓄電装置4は、第2蓄電装置5より高電圧型の特性を有するので、第1蓄電装置4の出力電圧を降圧して第2蓄電装置5にエネルギを供給することができる。また、第1蓄電装置4の満充電時のエネルギ量は、第2蓄電装置5の満充電時のエネルギ量より多いので、第1蓄電装置4から第2蓄電装置5にエネルギを円滑に供給することができる。さらに、第1蓄電装置4は、交換可能なカセット型の蓄電装置から成るので、必要時に第1蓄電装置4を短時間で交換して、第1蓄電装置4から第2蓄電装置5にエネルギを安定して供給することができる。
【0075】
以上、本実施形態について説明したが、本発明はこれに限定されず、例えば第1スイッチS3、第2スイッチS4及び第3スイッチS5を他の形態のスイッチとしてもよく、別個必要とされるスイッチを追加してもよい。また、半導体スイッチ素子は、MOSFETに代えてIGBTとしてもよい。さらに、モニタ13を具備しないもの、或いはバギー等の3輪車両又は4輪車両に適用してもよい。
【産業上の利用可能性】
【0076】
モータの停止時、及び/又は、モータの力行時に、第1スイッチを接続状態、第2スイッチを遮断状態及び第3スイッチを接続状態とし、第1蓄電装置の出力電圧を降圧しつつ当該第1蓄電装置から第2蓄電装置にエネルギを供給する電動車両であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。
【符号の説明】
【0077】
1 モータ
2 インバータ
3a 駆動輪メカブレーキ
3b 従動輪メカブレーキ
4 第1蓄電装置
4a 電圧検出センサ
4b 温度検出センサ
5 第2蓄電装置
5a 電圧検出センサ
6 アクセル操作手段
7 メカブレーキ操作手段
8 回生ブレーキ操作手段
9 ブレーキアクチュエータ
10 電力変換器
10a、10b 半導体スイッチ素子(MOSFET)
10c リアクトル(コイル)
11 ECU
12 スタートスイッチ
13 モニタ(補助装置)
14、15 半導体スイッチ素子(MOSFET)
16 インバータ制御部
17 回路制御部
18 メカブレーキ制御部
19 検知手段
Ta 駆動輪
Tb 従動輪
S3 第1スイッチ
S4 第2スイッチ
S5 第3スイッチ
Ca 平滑コンデンサ
Cb 平滑コンデンサ
Vdc1 第一蓄電装置(電池)電圧
Vdc2 第二蓄電装置(キャパシタ)電圧
Vinv インバータ直流電圧
V1 S2端子平均電圧