IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧

特開2023-37317PVT特性計算モデル推定システムおよび方法
<>
  • 特開-PVT特性計算モデル推定システムおよび方法 図1
  • 特開-PVT特性計算モデル推定システムおよび方法 図2
  • 特開-PVT特性計算モデル推定システムおよび方法 図3
  • 特開-PVT特性計算モデル推定システムおよび方法 図4
  • 特開-PVT特性計算モデル推定システムおよび方法 図5
  • 特開-PVT特性計算モデル推定システムおよび方法 図6
  • 特開-PVT特性計算モデル推定システムおよび方法 図7
  • 特開-PVT特性計算モデル推定システムおよび方法 図8
  • 特開-PVT特性計算モデル推定システムおよび方法 図9
  • 特開-PVT特性計算モデル推定システムおよび方法 図10
  • 特開-PVT特性計算モデル推定システムおよび方法 図11
  • 特開-PVT特性計算モデル推定システムおよび方法 図12
  • 特開-PVT特性計算モデル推定システムおよび方法 図13
  • 特開-PVT特性計算モデル推定システムおよび方法 図14
  • 特開-PVT特性計算モデル推定システムおよび方法 図15
  • 特開-PVT特性計算モデル推定システムおよび方法 図16
  • 特開-PVT特性計算モデル推定システムおよび方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023037317
(43)【公開日】2023-03-15
(54)【発明の名称】PVT特性計算モデル推定システムおよび方法
(51)【国際特許分類】
   B29C 45/76 20060101AFI20230308BHJP
   G06F 30/27 20200101ALN20230308BHJP
   G06F 113/22 20200101ALN20230308BHJP
   G06F 111/10 20200101ALN20230308BHJP
【FI】
B29C45/76
G06F30/27
G06F113:22
G06F111:10
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021143980
(22)【出願日】2021-09-03
(71)【出願人】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000279
【氏名又は名称】弁理士法人ウィルフォート国際特許事務所
(72)【発明者】
【氏名】小林 漢
(72)【発明者】
【氏名】八木 大介
(72)【発明者】
【氏名】中土 裕樹
【テーマコード(参考)】
4F206
5B146
【Fターム(参考)】
4F206AM23
4F206JP18
5B146AA06
5B146AA10
5B146BA04
5B146DC03
(57)【要約】
【課題】樹脂材料のPVT特性計算モデルを容易に推定できるようにする。
【解決手段】樹脂材料の樹脂材料計算モデルを推定するPVT特性計算モデル推定システム1において、制御装置11と、制御装置11により使用される記憶装置13とを含み、演算装置11は、前記第1樹脂材料で成形した際のプロセスデータと成形品品質と、少なくとも1つ以上の所定の関係式とに基づいて、前記第1樹脂材料計算モデルを推定し、前記所定の関係式は、前記第1樹脂材料と同一樹脂種である第2樹脂材料のPVT特性の実測により得られたPVT特性の計算モデルである第2樹脂材料計算モデルと、前記第2樹脂材料を成形した際のプロセスデータと成形品品質との関係を示す式であり、前記第2樹脂材料計算モデルと、前記第2樹脂材料を用いて成形した際のプロセスデータと成形品品質とが紐づけられて記憶装置13に蓄積されたデータに基づいて生成される。
【選択図】図7
【特許請求の範囲】
【請求項1】
第1樹脂材料のPVT特性の計算モデルである第1樹脂材料計算モデルを推定するPVT特性計算モデル推定システムであって、
プロセッサと、前記プロセッサに接続される記憶装置とを含み、
前記プロセッサは、前記第1樹脂材料で成形した際のプロセスデータと成形品品質と、少なくとも1つ以上の所定の関係式とに基づいて、前記第1樹脂材料計算モデルを推定し、
前記所定の関係式は、
前記第1樹脂材料と同一樹脂種である第2樹脂材料のPVT特性の実測により得られたPVT特性の計算モデルである第2樹脂材料計算モデルと、前記第2樹脂材料を成形した際のプロセスデータと成形品品質との関係を示す式であり、前記第2樹脂材料計算モデルと、前記第2樹脂材料を用いて成形した際のプロセスデータと成形品品質とが紐づけられて前記記憶装置に蓄積されたデータに基づいて生成される、
PVT特性計算モデル推定システム。
【請求項2】
請求項1に記載のPVT特性計算モデル推定システムであって、
前記第1樹脂材料と、前記第2樹脂材料とは、同一の型番の樹脂材料である
PVT特性計算モデル推定システム。
【請求項3】
請求項1記載のPVT特性計算モデル推定システムであって、
前記所定の関係式は、
前記第2樹脂材料計算モデルの係数を出力パラメータとし、基準成形条件により前記第2樹脂材料で成形した際のプロセスデータと前記成形品品質とを入力パラメータとする回帰式であって、機械学習を用いて生成される、
PVT特性計算モデル推定システム。
【請求項4】
請求項3記載のPVT特性計算モデル推定システムであって、
前記所定の関係式の生成に使用される前記プロセスデータは、前記第2樹脂材料の所定の単位毎に、各所定の単位間で共通の基準成形条件により成形した際の、金型内センサの測定値の特徴量に基づいて生成される、
PVT特性計算モデル推定システム。
【請求項5】
請求項4記載のPVT特性計算モデル推定システムであって、
前記所定の単位は、材料サプライヤから供給されるリサイクル材の納品単位である、
PVT特性計算モデル推定システム。
【請求項6】
請求項4又は請求項5に記載のPVT特性計算モデル推定システムであって、
前記特徴量には、圧力、温度のうち少なくともいずれか一つが含まれる、
PVT特性計算モデル推定システム。
【請求項7】
請求項6記載のPVT特性計算モデル推定システムであって、
前記特徴量には、前記第2樹脂材料の圧力及び/又は温度の状態情報が含まれており、
前記第2樹脂材料の前記状態情報は、
前記金型内センサの測定値のピーク値、射出開始からピークまでの前記測定値の積分値、射出開始から型開きまでの前記測定値の積分値、前記測定値の最大微分値のうちの少なくともいずれか一つに基づいて計算される、
PVT特性計算モデル推定システム。
【請求項8】
請求項3~請求項7のいずれか一項に記載のPVT特性計算モデル推定システムであって、
前記成形品品質は、成形品重量、成形品寸法のうち少なくともいずれか一つが含まれる、
PVT特性計算モデル推定システム。
【請求項9】
請求項1~請求項8のいずれか一項に記載のPVT特性計算モデル推定システムであって、
前記プロセッサは、
複数のクライアント計算機からネットワークを介して発信される、前記PVT特性が実測された前記第2樹脂材料のPVT特性の計算モデルと、前記第2樹脂材料を用いて成形した際のプロセスデータと成形品品質と、が紐づいたデータを前記記憶装置に保存し、前記記憶装置に保存したデータを基に前記所定の関係式を生成し、前記関係式を前記ネットワークを介して前記クライアント計算機に送信する、
PVT特性計算モデル推定システム。
【請求項10】
第1樹脂材料のPVT特性の計算モデルである第1樹脂材料計算モデルを推定するPVT特性計算モデル推定システムよるPVT特性計算モデル推定方法であって、
PVT特性計算モデル推定システムは、
前記第1樹脂材料で成形した際のプロセスデータと成形品品質と、少なくとも1つ以上の所定の関係式とに基づいて、前記第1樹脂材料計算モデルを推定し、
前記所定の関係式は、
前記第1樹脂材料と同一樹脂種である第2樹脂材料のPVT特性の実測により得られたPVT特性の計算モデルである第2樹脂材料計算モデルと、前記第2樹脂材料を成形した際のプロセスデータと成形品品質との関係を示す式であり、前記第2樹脂材料計算モデルと、前記第2樹脂材料を用いて成形した際のプロセスデータと成形品品質とが紐づけられて記憶装置に蓄積されたデータに基づいて生成される、
PVT特性計算モデル推定方法。



【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂材料のPVT特性の計算モデルである樹脂材料計算モデルを推定する技術に関する。
【背景技術】
【0002】
射出成形プロセスにおいて、樹脂材料の物性ばらつきは成形品品質に影響を与える。特に比容積の圧力・温度依存性(PVT特性)は成形品の寸法に大きく影響するため、PVT特性が異なる材料を成形する際は成形条件の調整が必要となる。ここで成形条件の調整は容易な作業ではなく、熟練作業者の技術と時間を要する。このため、成形条件の調整を支援するために、射出成形CAEを用いたシミュレーションが活用されている。しかし、射出成形CAEを使用するためには、樹脂材料のPVT特性の測定・計算モデル構築が必要となり、専用の比容積測定装置を用いた複数回の試験を行わなければならない。このため、測定・モデル構築の低コスト化が課題である。この課題に対して、従来、専用装置を使わずに射出成形機および金型の情報からPVT特性を測定するための方法が検討されている(特許文献1)。
【0003】
特許文献1に記載の方法では、射出成形機から金型に樹脂を充填する経路を製品部とPVT特性を測定するためのプランジャユニット部で切り替えられるようにし、プランジャユニット部に樹脂を充填した際の樹脂温度、樹脂圧、プランジャ位置を検出し、ある樹脂温度・圧力における比容積を測定する。また、プランジャユニット部に供給した樹脂を供給側に逆送することにより、複数の樹脂温度・圧力条件下における比容積測定処理を繰り返して行い、PVT特性を取得することができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006-137057号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
射出成形における成形品品質は、樹脂の材料特性の影響を受ける。例えば、同一種類(例えば、ポリプロピレン、略称:PP)の材料であっても、グレード単位やサプライヤ単位毎にPVT特性が異なるため、同じ成形条件で成形しても、金型内の収縮挙動が異なり、成形品品質が変動する。
【0006】
近年、プラスチック廃棄物による海洋汚染問題や、中国や東南アジアによるプラスチック廃棄物の輸入禁止措置を受けて、プラスチックのリサイクル材の活用にこれまで以上に大きな注目が集まっている。欧州を中心に一部の地域でバージン材の使用に対する課税や法規制も検討されており、プラスチックを用いた製品を製造するメーカにとってリサイクル材の活用は喫緊の課題となっている。しかし、リサイクル材は、成形時の熱履歴、使用時環境による劣化、およびリサイクル時の異物混入や熱履歴によって、バージン材と比較してPVT特性のばらつきが大きいため、バージン材以上に成形品品質のばらつきも大きくなる。
【0007】
図1は、後述する実施例の優位性を明らかにするための比較例を示すグラフであり、従来技術ではない。図1は、材料の種類は同じ(PP)かつ同じ型番であり、製造ロットが異なる3つのリサイクル材、ロットA、ロットB、ロットCに対する、圧力水準が50MPaの場合の比容積の温度依存性を示している。図1において横軸は、樹脂温度を示し、縦軸は比容積を示している。ここで、ロットとは、サプライヤからの納品時期の違いを意味している。図1の各点プロットは、専用の比容積測定装置で得られた実測値であり、曲線プロットは、実測値に対して、数1に示す2-domain Tait PVTモデルとよばれる計算モデルをフィッティングした結果である。図1は、圧力一水準(50MPa)における温度依存性のみを示しているが、圧力水準が変わった場合でもロット間における比容積の絶対値、温度依存変化率の大小関係は保たれている。図1より、同種の材料であってもロットが異なるとPVT特性が大きく変動することが確認できる。
【0008】
【数1】
【0009】
図2は、樹脂材料のPVT特性の測定に用いる、一般的なロードセル方式の測定装置の概要図である。この測定装置では、炉体を含む温度調節機構が備わった試験槽に被測定対象(試料)の樹脂を投入し、樹脂に対してピストンで圧力を加えた時の体積を測定することによって、ある温度・圧力値(温度及び圧力値)における比容積を測定することができる。
【0010】
次に、図3を用いて、一般的なPVT特性計算モデルの構築方法を説明する。図2に示す装置を用いて、任意の温度・圧力条件(温度及び圧力条件)下での比容積の測定を、所定の回数分異なる温度・圧力条件で繰り返し行う。その後、樹脂材料のPVT特性を表す数理モデルを選択し、比容積の測定点に対してフィッティングを施すことで、PVT特性計算モデルを構築する。
【0011】
図4に構築したPVT特性計算モデルの一例を示す。図4に示すPVT特性計算モデルは、樹脂に与える圧力を固定した状態で温度を変化させて測定した比容積に対して、2-domain Tait PVTモデルでフィッティングした結果である。グラフより、数理モデルが実測比容積をよく表現していることが確認できる。
【0012】
特許文献1に記載の方法では、図2に示す測定装置を使わず、金型にPVT特性を取得するための専用ユニットを取り付けることが前提となっている。従って、この方法では、測定用の専用ユニットと、製品を得るための金型とを接続および切り替えるための追加開発が必要である。また、PVT特性を得るためには、同一樹脂に対して複数の樹脂温度・圧力条件下で測定を行う必要がある。ここで、樹脂は与えられた温度や圧力の影響により、各種物性が変化する性質を持つ。この方法では、PVT特性を得るために専用ユニットから樹脂を逆送し、同一樹脂を繰り返し使用しながら複数の温度・圧力条件下で測定を行うため、樹脂特性が劣化する虞がある。従って、この方法では、複数条件での測定を繰り返すための工数が必要であるとともに、被測定樹脂の劣化による測定精度が低下し、得られたPVT特性を用いた成形では、成形品品質が低下する可能性も考えられる。
【0013】
また、射出成形CAEと連携するためには、一つの樹脂材料のPVT特性を測定した後、PVT特性を記述する計算モデルを用いて実測値に対してフィッティングを施し、材料の計算モデルを構築する工程も必要となる。
【0014】
本発明は、上記課題に鑑みなされたものであり、その目的は、樹脂材料のPVT特性計算モデルを容易に推定することができる技術を提供することにある。
【課題を解決するための手段】
【0015】
上記目的を達成するため、一観点に係るPVT特性計算モデル推定システムは、第1樹脂材料のPVT特性の計算モデルである第1樹脂材料計算モデルを推定するPVT特性計算モデル推定システムであって、プロセッサと、前記プロセッサにより使用されるメモリとを含み、前記プロセッサは、前記第1樹脂材料で成形した際のプロセスデータと成形品品質と、少なくとも1つ以上の所定の関係式とに基づいて、前記第1樹脂材料計算モデルを推定し、前記所定の関係式は、前記第1樹脂材料と同一樹脂種である第2樹脂材料のPVT特性の実測により得られたPVT特性の計算モデルである第2樹脂材料計算モデルと、前記第2樹脂材料を成形した際のプロセスデータと成形品品質との関係を示す式であり、前記第2樹脂材料計算モデルと、前記第2樹脂材料を用いて成形した際のプロセスデータと成形品品質とが紐づけられて前記メモリに蓄積されたデータに基づいて生成される。
【発明の効果】
【0016】
本発明によれば、樹脂材料のPVT特性計算モデルを容易に推定することができる。
【図面の簡単な説明】
【0017】
図1図1は、比較例としての、納品時期が異なるリサイクル材に対するPVT特性図である。
図2図2は、PVT特性の測定装置の構成図である。
図3図3は、PVT特性計算モデル構築方法を説明する図である。
図4図4は、PVT特性計算モデルを示す図である。
図5図5は、実施例1に係るPVT特性計算モデル推定システムの機能ブロック図である。
図6図6は、実施例1に係る射出成形機の概念図である。
図7図7は、実施例1に係るPVT特性計算モデル推定システムの実現に使用することができる計算機の構成図である。
図8図8は、実施例1に係る射出成形におけるプロセスデータの取得に用いる金型の概念図である。
図9図9は、実施例1に係る特徴量を登録する処理のブロック図である。
図10図10は、実施例1に係る射出成形時におけるセンサによる取得データの時系列変化を示すグラフである。
図11図11は、実施例1に係る回帰モデルの学習用データセットの構成図である。
図12図12は、実施例1に係る回帰モデル学習処理のフローチャートである。
図13図13は、実施例1に係るPVT特性計算モデル係数推定処理のフローチャートである。
図14図14は、実施例1に係るPVT特性計算モデル係数の推定用データセットの構成図である。
図15図15は、実施例1に係る推定されたPVT特性計算モデルを説明する図である。
図16図16は、実施例2に係るPVT特性計算モデル推定システムの機能ブロック図である。
図17図17は、実施例1及び実施例2に係るPVT特性計算モデルデータベースの構成図である。
【発明を実施するための形態】
【0018】
実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0019】
本実施形態では、樹脂材料のPVT特性計算モデルを推定するシステムを提供する。このシステムは、例えば、PVT特性が既知である第2樹脂材料のPVT特性計算モデルと、第2樹脂材料を用いて各所定の単位間で共通の基準射出成形条件で成形した際のセンサデータと成形品品質との関係を示す所定の関係式を、予め得られている、第2樹脂材料計算モデルと、第2樹脂材料を用いて成形した際のプロセスデータと成形品品質と、が紐づけられて蓄積されたデータに基づいて予め生成しておき、第1樹脂材料を用いて基準射出成形条件で成形した際のプロセスデータと、成形品品質と、前記生成した所定の関係式とから、前記第1樹脂材料のPVT特性計算モデルを推定する。
【0020】
本実施形態によれば、PVT特性が既知である材料のPVT特性計算モデルと、前記PVT特性が既知である樹脂材料を用いた成形から予め取得したセンサデータおよび成形品品質とから、少ない工数で容易に所定の樹脂材料のPVT特性計算モデルを得ることができる。これにより、例えばリサイクル材のような同一型番であっても納品単位(ロット)毎でのPVT特性ばらつきが大きいような材料に対して、納品単位毎のPVT特性計算モデルを得るための物性試験が不要となり、PVT特性を基にした納品単位毎の射出成形条件の調整が可能になり、納品単位間のばらつき抑制およびリサイクル材の成形品品質の向上を実現できる。
【実施例0021】
図5は、実施例1に係るPVT特性計算モデル推定システムの機能ブロック図である。PVT特性計算モデル推定システム1は、例えば製造実行システム2と、製造工場3と、学習及び計算モデル生成システム4を含む。以下に述べるPVT特性計算モデル推定システム1の各機能の一部または全部は、ソフトウェアとして構成してもよいし、ソフトウェアとハードウェアとの協働として実現してよいし、固定的な回路を有するハードウェアを用いて実現してもよい。製造実行システム2、および製造工場3の有する機能の少なくとも一部を、オペレータが実行してもよい。
【0022】
製造実行システム2は、製造工場3に対して生産実行を指示するシステムである。製造実行システム2は、予め設定しておいた基準となる射出成形条件(以下、基準成形条件とする。)に基づいた製造条件で生産する指示を製造工場3に送る。製造条件には、例えば、生産(射出成形)に用いる射出成形機を特定する情報、生産に使用する金型を特定する情報、生産に使用する材料を特定する情報、生産する成形品の数量、生産時期、要求品質などが含まれてもよい。
【0023】
製造実行システム2について詳細に説明する。製造実行システム2は、例えば、製造条件決定部21と、製造実行指示部22とを備える。
【0024】
製造条件決定部21は、基準成形条件に基づいて、上述の製造条件を決定する機能である。製造条件決定部21は、製造条件に関する情報を、製造実行指示部22に渡す。なお、製造条件に関する情報は、製造工場3を介して学習及び計算モデル生成システム4に送信される。製造条件に関する情報は、金型、射出成形機および材料に関する所定の情報を含むことができる。
【0025】
所定の情報は、例えば、金型の容量、金型のランナー構成を含んでもよく、さらに、使用する樹脂材料のサプライヤ単位の製造番号(型番)およびサプライヤごとの納品番号(例えば、ロット番号)等を含んでいてもよい。
【0026】
製造実行指示部22は、製造工場3に対して製造実行を指示する機能である。なお、製造実行を生産と呼ぶこともできる。製造実行指示には、例えば、基準成形条件での成形の要求が含まれる。本実施形態では、製造実行指示部22は、製造条件決定部21から送信された所定の情報を製造工場3に送信する。所定の情報は、製造工場3を介して学習及び計算モデル生成システム4に入力され、樹脂材料のサプライヤ単位の製造番号およびサプライヤごとの納品番号毎に、PVT特性計算モデルを推定するために使用される。
【0027】
製造工場3を説明する。製造工場3は、製造実行システム2からの製造実行指示を受けて、射出成形プロセス32を実行する。以下、射出成形を「IM」と略記する場合がある。
【0028】
製造工場3は、例えば、製造実行部31と、複数台の射出成形機50(図6で後述)と、複数台の金型509(図6で後述)と、成形品品質検査部33とを有する。以下、成形品品質検査部33を品質検査部33と略記する場合がある。
【0029】
製造実行部31は、製造実行指示部22から基準成形条件での成形の指示を受け取ると、指示された金型と材料との組み合わせに対して、予め指定された基準成形条件を射出成形機50に入力することにより射出成形プロセス32を実行する。すなわち、射出成形プロセス32は、基準成形条件に従って射出成形するプロセスである。
【0030】
品質検査部33は、射出成形プロセス32で得られた成形品の品質を検査する機能である。成形品品質は、例えば、寸法、重量に基づいて評価する。成形品の品質検査は、自動的に行われてもよいし、検査員により手動で行われてもよいし、半自動で行われてもよい。
【0031】
なお、品質検査部33で検査する成形品品質を、成形品の反り量、バリ、傷、光沢、色彩に基づいて評価してもよい。品質検査部33は、製造実行部31が受け取った製造条件と、成形品品質の検査結果とを紐づけて、学習及び計算モデル生成システム4の成形品品質記録部404に出力する。
【0032】
なお、本実施例において、金型を使用した際の、使用材料ごとの材料特性に係わる情報は、予め製造工場3が保有する各射出成形機および金型に搭載されたセンサ34により、射出成形機の所定の位置及び金型内の所定の位置おける物理量を測定して、学習及び計算モデル生成システム4のセンサ情報記録部401に出力される。金型に搭載されたセンサの詳細に関しては、図8を用いて後述する。ここで、材料特性に係わる情報とは、例えば、材料の流動性や材料物性、およびこれらに相関する物理量を意味する。
【0033】
ここで、射出成形機の所定の位置とは、例えば、ノズル先端部などである。金型内の所定の位置とは、例えば、金型の樹脂流入口などである。物理量には、例えば、樹脂の圧力、樹脂の温度、樹脂の速度、樹脂の材料物性、および金型の開き量(型開き量)が含まれる。材料物性とは、例えば、樹脂の密度、樹脂の粘度、樹脂の繊維長の分布(強化繊維含有量材料の場合)などである。このうち、材料の流動性に最も相関する物理量は、樹脂の粘度であるが、材料の流動性に相関する物理量としては、その他の圧力、温度、および速度から算出した流動性に相関する量を用いることもできる。
【0034】
学習及び計算モデル生成システム4は、例えば、センサ情報記録部401、特徴量抽出部402、特徴量データベース403、成形品品質記録部404、PVT特性計算モデル係数記憶部405、連結処理部406、学習用データベース407、回帰モデル学習部408、回帰モデル保存部409、学習済みモデル記憶部410、回帰モデル読み出し部411、推定用データベース412、PVT特性計算モデル推定部413、PVT特性計算モデル保存部414、及びPVT特性計算モデルデータベース415を含む。
【0035】
一般に、計算モデルとは、ある現象を数学的に抽象化した数理モデルを指し、PVT特性計算モデルとは、樹脂材料のPVT特性を表す数理モデルを指す。また、本実施例の説明においてPVT特性計算モデルは、所定の材料単位毎に数理モデルのパラメータ(係数)が決定された計算モデルのことを指す。
【0036】
センサ情報記録部401は、製造工場3の射出成形プロセス32中においてセンサ34により取得される、金型内の所定の位置における物理量を記録する。特徴量抽出部402は、センサ情報記録部401で一時記録された物理量に対して特徴量抽出を行い、所定の材料単位と、射出成形機と金型との組み合わせと、抽出した特徴量とを紐づけて特徴量データベース403に記録する。ここで、特徴量は物理量そのままでもよく、物理量及び特徴量は、プロセスデータに対応する。また、所定の材料単位とは、例えば、材料サプライヤごとの樹脂材料(リサイクル材も含む)の型番ごとの単位または、同一の型番のロットごとの単位等の材料を区別する単位を意味する。また、特徴量データベース403に記録された、材料単位と、射出成形機と金型との組み合わせと、抽出した特徴量とを紐づけたデータ群のことを、本実施例では、特徴量データセットという。特徴量抽出部402の処理に関しては、図6および図7を用いて後述する。
【0037】
ここで、射出成形機と金型との組み合わせを固定すると共に、射出成形プロセス32における成形条件を固定した状態において、所定の材料単位だけが変化した場合、センサ34から得られる物理量から抽出される特徴量は、材料単位間の材料情報(例えば、流動性や物性値)の変化の影響を強く受ける。
【0038】
このため、材料単位毎に固有の材料情報を特徴量間の差として記録することが可能となる。ここで、センサ34から得られる物理量から抽出される特徴量は、射出成形機及び金型の機差による影響を受けるため、特徴量データセットは、射出成形機と金型の組み合わせごとに、材料単位毎に固有の材料情報を特徴量間の差として保存する。本実施例では、特徴量データセットは、全て、射出成形機と金型の組み合わせが固定されているものとして説明する。
【0039】
成形品品質記録部404は、品質検査部33により検査された成形品品質と、製造条件(所定の材料単位と、射出成形機と金型との組み合わせ)と、を紐づけて記録する。
【0040】
PVT特性計算モデル係数記憶部405には、所定の材料単位毎に予め測定された樹脂材料のPVT特性により構築されたPVT特性計算モデルの各係数が、所定の材料単位の情報と紐づいて記憶されている。本実施例において、PVT特性計算モデルには、例えば2-domain-taitモデル、Spencer-Glimoreモデル、Modified-Cellモデル、Simha-Somcynskyモデルなどの計算モデルを用いてよい。
【0041】
連結処理部406は、特徴量データベース403から取得した材料情報と紐づいた特徴量データセットと、成形品品質記録部404から取得した成形品品質及び製造条件と、PVT特性計算モデル係数記憶部405から取得したPVT特性計算モデル(第2樹脂材料計算モデル)の各係数とを、材料情報を結合キーとして、特徴量データセットと、成形品品質と、PVT特性計算モデルの各係数と、製造に使用した材料とが対応したデータセット(以下、このデータセットを学習用データセットという)を生成し、この学習用データセットを学習用データベース407に記録する。
【0042】
また、連結処理部406は、PVT特性計算モデル係数記憶部405に係数が記憶されていない樹脂材料(例えば、PVT特性が未知である樹脂材料:第1樹脂材料)の材料情報に対応する、特徴量データベース403から取得した材料情報と紐づいた特徴量データセットと、成形品品質記録部404から取得した成形品品質及び製造条件とを、材料情報を結合キーとして、特徴量データセットと、成形品品質と、製造に使用した材料とが対応したデータセット(以下、このデータセットを推定用データセットという)を生成し、この推定用データセットを推定用データベース412に記録する。この推定用データセットは、PVT特性計算モデル係数を含んでいない。
【0043】
回帰モデル学習部408は、学習用データベース407から学習用データセットを取得し、特徴量データセットと成形品品質とを説明変数とし、PVT特性計算モデル係数の内の1つを目的変数とした回帰モデルを用いて、説明変数から目的変数を予測する回帰モデルを学習し、学習済み回帰モデルを生成する。
【0044】
一般に回帰モデルとは、説明変数(X)から目的変数(y)を予測するモデル(y=f(X))のことを指し、回帰モデル内のパラメータは学習用データによって決定される。本実施例の説明において「回帰モデル」というときは、回帰モデル全般のことを指し、「学習済み回帰モデル」というときは、学習用データによって、モデルのパラメータが決定された回帰モデルのことを指す。
【0045】
本実施例において、回帰モデルには、例えば線形回帰、リッジ回帰、サポートベクタマシン、ニューラルネットワーク、ランダムフォレスト回帰等の回帰モデル、またはこれらを組み合わせた回帰モデルを用いてよい。また、使用する回帰モデルが、例えばニューラルネットワークのように複数の目的変数を持つことができる場合は、目的変数としてPVT特性計算モデルの係数の中から複数選定してもよい。
【0046】
回帰モデル保存部409は、回帰モデル学習部408において生成された学習済み回帰モデルを、学習済み回帰モデル記憶部410に記録する。回帰モデル読み出し部411は、学習済み回帰モデル記憶部410から学習済み回帰モデルを取得し、PVT特性計算モデル推定部413へ入力する。
【0047】
推定用データベース412は、推定用データセットを記録する。
【0048】
PVT特性計算モデル推定部413は、PVT特性が未知である樹脂材料のPVT特性計算モデルを推定する。PVT特性計算モデル推定部413は、推定用データベース412から読み出した推定用データセットと、回帰モデル読み出し部411から読み出した学習済み回帰モデル(例えば、同一の型番のPVT特性計算モデルが既知のロットの情報に基づいて学習された回帰モデル)とに基づいて、PVT特性が未知である所定の材料単位の樹脂材料のPVT特性計算モデル(第1樹脂材料計算モデル)を推定し、推定したPVT特性計算モデル(推定PVT特性計算モデル)をPVT特性計算モデル保存部414へ入力する。
【0049】
PVT特性計算モデル保存部414は、入力された推定PVT特性計算モデルをPVT特性計算モデルデータベース415に格納する。
【0050】
PVT特性計算モデルデータベース415は、PVT特性計算モデル係数記憶部405に格納されている既知のPVT特性計算モデルと、PVT特性計算モデル保存部414により格納されたPVT特性計算モデル(推定PVT特性計算モデル)とを、対応する材料単位と、PVT特性計算モデルが既知であるか又は推定されたものであるかを示す情報とに紐づいたデータとして記録する。図17は、本実施例のPVT特性計算モデルデータベースの構成を示す。図17に示すように、PVT特性計算モデルデータベース415は、所定の材料単位を示す樹脂材料の型番及びロットと、既知又は推定の情報と、PVT特性計算モデルの係数とを格納する。
【0051】
図7は、PVT特性計算モデル推定システム1の実現に使用することができる計算機10の構成例を示す。ここでは、一つの計算機10によりPVT特性計算モデル推定システム1を実現する場合を説明するが、これに限らず、複数の計算機を連携させることにより一つまたは複数のPVT特性計算モデル推定システム1を構築することもできる。また、上述の通り、製造実行システム2、および製造工場3は、専用のソフトウェアやハードウェアを用いず、各機能の一部または全部をオペレータが実施することで、PVT特性計算モデル推定システム1を実現することもできる。
【0052】
計算機10は、例えば、演算装置11、メモリ12、記憶装置13、入力装置14、出力装置15、通信装置16、媒体インターフェース部17を備えており、それら各装置11~17は通信経路CN1により接続されている。通信経路CN1は、例えば、内部バス、LAN(Local Area Network)などである。
【0053】
演算装置11は、例えばマイクロプロセッサなどから構成されており、プロセッサの一例である。演算装置11は、マイクロプロセッサに限らず、例えば、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)などを含んでもよい。演算装置11は、記憶装置13に記録されたコンピュータプログラムをメモリ12に読み出して実行することにより、PVT特性計算モデル推定システム1としての各機能21、22、31、401~415、60を実現する。
【0054】
記憶装置13は、コンピュータプログラムとデータとを記憶する装置であり、例えば、フラッシュメモリまたはハードディスクなどの書き換え可能な記憶媒体を有する。記憶装置13には、オペレータにGUI(Graphical User Interface)を提供するGUI部60を実現するためのコンピュータプログラムと、上述した各機能21、22、31、401~415を実現するためのコンピュータプログラムとが格納される。
【0055】
入力装置14は、オペレータが計算機10に情報を入力する装置である。入力装置14としては、例えば、キーボード、タッチパネル、マウスなどのポインティングデバイス、音声指示装置(いずれも不図示)などがある。出力装置15は、計算機10が情報を出力する装置である。出力装置15としては、例えば、ディスプレイ、プリンタ、音声合成装置(いずれも不図示)などがある。
【0056】
通信装置16は、外部の情報処理装置と計算機10とを通信経路CN2を介して通信させる装置である。外部の情報処理装置としては、図示せぬ計算機のほかに、外部記憶装置19がある。計算機10は外部記憶装置19に記録されたデータ(計算機固有情報、生産実績など)およびコンピュータプログラムを読み込むことができる。計算機10は、記憶装置13に記憶されたコンピュータプログラムおよびデータの全部または一部を、外部記憶装置19に送信して記憶させることもできる。
【0057】
媒体インターフェース部17は、外部記録媒体18に読み書きする装置である。外部記録媒体18としては、例えば、USB(Universal Serial Bus)メモリ、メモリカード、ハードディスクなどがある。外部記録媒体18から記憶装置13に記憶されたコンピュータプログラムおよびデータの全部または一部を外部記録媒体18に転送して記憶させることもできる。
【0058】
図6は、射出成形機50の概念図である。図6を用いて、射出成形プロセスの各過程を説明する。本実施例において、成形現象とは、射出成形プロセスにおいて生じる一連の現象を示す。本実施例では、射出成形プロセスを、計量および可塑化過程と、射出および保圧過程と、冷却過程と、取出過程とに大別する。
【0059】
計量および可塑化過程では、可塑化用モータ501を駆動力としてスクリュー502を後退させ、ホッパー503から樹脂ペレット504をシリンダ505内へ供給する。そして、ヒータ506による加熱とスクリュー502の回転とにより、樹脂を可塑化させて均一な溶融状態とする。スクリュー502の背圧および回転数の設定により、溶融樹脂の密度と強化繊維の破断度合いとが変化し、これらの変化は成形品品質に影響を与える。
【0060】
射出および保圧過程では、射出用モータ507を駆動力としてスクリュー502を前進させ、ノズル508を介して溶融樹脂を金型509内へ射出する。金型509内に射出された溶融樹脂には、金型509の壁面からの冷却と、流動に起因するせん断発熱とが並行して作用する。すなわち溶融樹脂は、冷却作用と加熱作用を受けながら金型509内を流動する。金型509を閉じておく力である型締め力が小さい場合は、溶融樹脂の固化後に微小な金型開きが生じてしまい、その微小な隙間により成形品品質が影響を受ける。
【0061】
冷却過程では、一定温度に保持された金型509により、溶融樹脂が固化温度以下に冷却される。この冷却過程において発生する残留応力は、成形品の品質に影響を与える。残留応力は、金型内での流動により生じる材料物性の異方性、保圧による密度分布、成形収縮率の不均等に伴い発生する。
【0062】
取出過程では、金型509を開閉するモータ511を駆動力として型締機構512を駆動させることにより、金型509を開く。そして、突き出し用モータ513を駆動力としてエジェクタ機構514を駆動させることにより、固化した成形品を金型509から取り出す場合において、十分な突き出し力が成形品に均等に作用しなかったときには、成形品に残留応力が残ってしまい、成形品の品質に影響する。
【0063】
射出成形機50において、ロードセル510による圧力値が、入力された成形条件内の圧力値へ近づくように圧力制御される。シリンダ505の温度は、複数のヒータ506により制御される。スクリュー502の形状とシリンダ505の形状とノズル508の形状とによって、射出成形機毎に異なる圧力損失が生じる。これにより、金型509の樹脂流入口における圧力は、射出成形機50に入力された成形条件に示される圧力よりも低い値となる。さらに、ヒータ506の配置とノズル部における樹脂のせん断発熱とに起因して、金型509の樹脂流入口における樹脂温度は、射出成形機50に入力された成形条件に示される樹脂温度と異なる場合がある。
【0064】
射出機構の構成(スクリュー502の形状、シリンダ505の形状、ノズル508の形状、ヒータ506の配置等)は、射出成形機ごとに異なり、これが機差となり成形品品質に影響を与える場合がある。
【0065】
成形品品質は、形状特性(重量、寸法、厚さ、ヒケ、バリ、反りなど)と、外観不良などの表面特性(ウェルド、シルバー、焼け、白化、傷、気泡、剥離、フローマーク、ジェッティング、色・光沢など)と、機械的・光学特性(引張強度、耐衝撃特性、透過率など)で評価される。
【0066】
本実施例においては、評価する成形品の品質として、例えば、重量、寸法とを用いている。成形品形状にショートショットやオーバーパック等の不良が無い場合、成形品の重量は金型容積に対する樹脂材料の比容積によって変化すると考えられるため、重量はPVT特性と相関の大きい物理量である。また、同じく上述の不良が無い場合、成形品の寸法は樹脂の収縮率によって変化すると考えらえるため、寸法もPVT特性と相関の大きい物理量である。
【0067】
形状特性は、射出および保圧過程と冷却過程とにおける、圧力および温度の履歴と型締力とに強い相関がある。表面特性は、発生する現象に対してそれぞれ発生要因が異なるが、例えばフローマークおよびジェッティングは、射出過程における樹脂の温度と速度に強い相関がある。機械的および光学的特性は、例えば引張強度の場合、破壊試験での評価が必要となるため、重量などの相関する他の品質指標で評価されることが多い。
【0068】
成形条件には、射出成形プロセスの各過程に対応したパラメータが設定される。計量および可塑化過程については、計量位置、サックバック、背圧、背圧速度、および回転数などが設定される。射出および保圧過程については、圧力と温度と時間と速度とがそれぞれ設定される。射出および保圧過程については、射出と圧力とを切り替えるスクリュー位置(VP切替位置)と、金型509の型締め力も設定される。冷却過程については、保圧後の冷却時間が設定される。温度に関するパラメータとして、複数のヒータ506の温度、および金型509を冷却するための冷媒の温度および流量などが設定される。
【0069】
図8は、本実施例において、射出成形におけるプロセスデータの取得に用いる金型の概要を示す。図8において、図8(A)は、金型70の製品部の上面図を示し、図8(B)は、金型70の製品部の側面図を示し、図8(C)は、金型のランナー部75の上面図を示す。この金型70は、ランナー部75から5点のピンゲート方式で製品部へ樹脂が流入する構造である。実際の成形実験では、製品部のセンサ配置部71に、金型内の樹脂の温度を測定するための樹脂用温度センサ72と、樹脂の圧力を測定する圧力センサ73と、金型の温度を測定する金型用温度センサ74とを配置し、ランナー部75のセンサ配置部76に、樹脂用温度センサ72と、圧力センサ73とを配置し、これらの時間変化を取得した。これら樹脂用温度センサ72と、圧力センサ73と、金型用温度センサ74とが、センサ34に対応する。成形に使用する樹脂材料は、ポリプロピレン(PP)を用いた。射出成形機は、最大型締力150tおよびスクリュー径44mmの電動射出成形機を用いた。
【0070】
図9は、センサ34から得られた物理量に対して特徴量抽出部402が特徴量抽出を行い、その結果を特徴量データベース403へ記録することで、材料情報を取得する方法の例を示すブロック図である。図9に示す材料情報の取得情報は、所定の位置に所定の物理量を計測するセンサが設けられた「センサ付き金型」、「センサ内臓金型」のいずれかを用いることにより実現される。
【0071】
まず任意の材料601に対して、固定された成形条件である基準成形条件602を、実際の射出成形機603へ入力することにより、金型内の所定部位における物理量を取得する。ここで、射出成形機603は、図6で述べた射出成形機50に対応する。また、基準成形条件は、図5で述べた射出成形プロセス32を実行する際に射出成形機に入力される条件に対応する。
【0072】
金型内の所定部位における物理量は、使用する材料自体の材料情報、金型および射出成形機固有の機差、成形条件の影響をうける。このため、金型と射出成形機の組み合わせごとに基準成形条件602を設定することにより、機差および成形条件の影響を抑制して、材料固有の材料情報を物理量の特徴量として特徴量データベース610に記録できる。なお、基準成形条件は、金型と射出成形機の組み合わせごとに変更してもよい。
【0073】
実際の射出成形機603において成形現象を取得するためには、金型内センサ606を用いる。金型604内の任意の位置に金型内センサ606を配置することにより、金型604内の成形現象を直接測定して、材料情報と相関した物理量の実測値608を取得することができる。成形品605の品質は、製品品質検査607により取得され、成形品品質記録部611に記録される。
【0074】
得られた物理量の実測値から、特徴量が抽出される(609)。得られた物理量の実測値は、いずれも射出成形プロセス中の時間変化として取得されるため、直接評価することは難しい。そこで、本実施例では、物理量の時間変化から、材料情報と相関する特徴量を取得することにより、材料情報の定量的評価した。材料間で共通した基準成形条件で成形することによって、材料間の特徴量を比較することで、材料間の材料情報が比較可能となる。
【0075】
図10および図11を用いて、図4で述べたPVT特性を得るための実験例の測定結果を説明する。図10は、納品時期の異なる3つのPPの材料ロットA、B、Cそれぞれに対して、基準成形条件で射出成形した際のランナーのセンサ配置部76における、圧力センサ73および樹脂用温度センサ72の時系列データを示す。図10に示すように、センサ取得波形は、同一成形条件であっても、ロット毎に時系列データの変動が異なっており、圧力センサ73の時系列データが、材料固有の材料情報、例えば図1に示す所定の材料単位間のPVT特性のばらつきの影響を受けていることが確認できる。
【0076】
図11には、図10に示す材料ロット毎の金型内の異なる位置に取り付けた複数の圧力センサおよび樹脂温度センサ波形から抽出された特徴量の結果例が含まれている。図11における説明変数の一部分が特徴量の結果例である。特徴量としては、圧力センサおよび樹脂温度センサのセンサ値のピーク値、ピーク値までの積分値、ピーク値からの積分値等がある。なお、図示していないが、圧力センサおよび樹脂温度センサのセンサ値の最大微分値、ピーク値および位置に設置したセンサ値を特徴量としてもよい。
【0077】
図11によれば、特徴量がロット間でばらついていることから、抽出した特徴量が材料情報の影響を受けていることが確認できる。また、同じ材料ロットでもセンサ取り付け位置によって特徴量が変化していることが確認できる。このように、ロット毎に特徴量抽出処理を行い、ロット毎に特徴量が紐づいたデータセットを特徴量データセットといい、特徴量データベース403に記録される。本実施例では、特徴量データセットは、図11に示すように、圧力センサおよび樹脂用温度センサ、金型用温度センサの複数センサのそれぞれの特徴量を紐づけたデータセットとしている。
【0078】
以下、物理量を測定する金型の部位、樹脂情報に相関する物理量のパラメータおよび特徴量について説明する。
【0079】
まず、物理量を測定する金型内の部位(以下、測定部位)について説明する。いずれの金型構造においても、測定部位は、少なくとも金型内の樹脂流入口からキャビティ内に至るまでのスプルー部あるいはランナー部を含むことが好ましい。
【0080】
スプルー部およびランナー部に加えて、例えば、キャビティ内のゲート直下部、樹脂合流部(ウェルド部)、流動末端部などのように、特徴的な流動が観測されうる部位を測定部位として使用してもよい。この場合、取り付け位置が異なる複数のセンサにより得られる物理量から、より高精度に材料固有のPVT特性に相関する物理量を求めることができる。
【0081】
例えば、基準成形条件での成形において、成形中の樹脂の圧力・温度は金型内の位置によって異なる。そのため、取り付け位置が異なる複数のセンサによって、1つの成形条件で異なる圧力・温度条件下における樹脂の物理量を測定することが可能である。これにより、より高精度に材料固有のPVT特性に相関する物理量を求めることができる。
【0082】
なお、金型構造と測定する物理量とによって、適切な測定部位は異なる。金型開き量以外の物理量では、いずれの金型構造であっても、可能であるならスプルー部を測定部位とするのが好ましい。なお、本明細書において「好ましい」という表現は、何らかの有利な効果を期待できるという意味で使用しているにすぎず、その構成が必須であることを意味していない。
【0083】
サイドゲート、ジャンプゲート、サブマリンゲート、およびバナナゲートでは、スプルー部直下のランナー部や、ゲート直前のランナー部などにセンサ配置する。ピンゲートの場合、3プレート構造となるため、センサ配置には工夫が必要だが、スプルー部直下のランナー部などにセンサを配置する。ピンゲートの場合、キャビティには繋がらないダミーのランナーを測定用に設けて測定部位としてもよい。測定専用の部位を設けることにより、金型設計の自由度が向上する。ピンゲートの場合、キャビティには繋がらないダミーのランナーを測定用に設けて測定部位としてよい。測定専用の部位を設けることにより、金型設計の自由度が向上する。フィルムゲートやファンゲートの場合、ゲート部に流入する前のランナー部にセンサを設置する。
【0084】
上述の物理量として測定するパラメータについて説明する。本実施例では、所定の材料単位のPVT特性計算モデルの推定を行うために、少なくとも圧力および温度を測定する。圧力と温度の測定には、例えば、金型内圧力センサ、金型表面温度センサ、樹脂温度センサなどを用いることができる。樹脂温度センサには、熱電対などの接触式温度センサ、または赤外線放射温度計などの非接触式温度センサのいずれかまたは両方を用いることができる、圧力と温度とのいずれの物理量も、射出成形プロセス中の時間変化を記録する。
【0085】
上述の物理量の特徴量について説明する。本実施例においては、例えば、圧力の最大値(時間変化のピーク値)と積分値と、温度の最大値(時間変化のピーク値)とを特徴量として用いることができる。また、圧力の時間変化に対して、時間微分値の最大値を取得することも有効である。圧力の時間微分値の最大値は、材料の瞬間粘度と相関がある。また、圧力の積分値は、射出過程と保圧過程とで分けて算出してもよい。保圧過程における圧力の積分値はゲートシール後の無圧力下における比容積の温度依存変化と相関が大きい物理量であると考えられる。
【0086】
図11を用いて、学習用データベース407に記録される学習用データセットを説明する。学習用データセットは、図11に示すように、特徴量データセットと、成形品品質と、PVT特性計算モデルの各係数(目的変数に対応)と、製造条件決定部21から取得された製造条件と、所定の材料単位とが、紐づけられたデータである。学習用データセットは、学習用データベース407では、射出成形機と金型の組み合わせに対応付けられて、射出成形機と金型の組み合わせ毎に記録される。
【0087】
本実施例では、学習用データセットとしては、前述したPVT特性が既知である材料ロットA,Cを使用し、成形品品質として重量、寸法で評価し、PVT特性計算モデルとして2-domain-Taitモデルを用いた。
【0088】
図12を用いて、学習及び計算モデル生成システム4における回帰モデル学習処理について説明する(回帰モデル学習フローチャート)。回帰モデル学習処理では、まず、回帰モデル学習部408は、学習用データベース407から学習用データセットを読み出し、学習用データセットの中の特徴量データセットと、成形品品質とについて標準化処理を行う(S101)。
【0089】
図11は、回帰モデル学習処理で用いた射出成形機と金型の組み合わせ毎に記録される学習用データセットの一例である。学習用データセットは、材料ロットA、Cの各ロット名、各センサにおける圧力・樹脂温度のピーク値、ピーク値までの積分値、ピーク値からの積分値と成形品重量、寸法、および各ロットのPVT特性計算モデルの係数が紐づいている。
【0090】
標準化処理とは、対象とする学習用データセットの列ごとに、データ群の平均値および標準偏差を算出し、各列のデータに対して、その列の平均値を引き、その列の標準偏差で割る処理である。標準化処理により各列のデータ群は平均が0、標準偏差が1になるため、列間の単位の違いによる影響を除くことができる。一般に、標準化処理を行うことにより、回帰モデルの学習精度を向上させる効果がある。
【0091】
次に、学習及び計算モデル生成システム4の回帰モデル学習部408は、学習用データセットのPVT特性計算モデル係数を読み込む(S102)。次いで、回帰モデル学習部408は、目的変数(出力パラメータ)をPVT特性計算モデル係数の1つとし、説明変数(入力パラメータ)を、標準化処理後の特徴量データセット及び成形品品質とした、回帰モデルを作成して、この回帰モデルを機械学習により学習することにより学習済み回帰モデルを生成し、このような学習済み回帰モデルを、使用するPVT特性計算モデルの係数分繰り返して、各係数のそれぞれに対応する学習済み回帰モデルを生成する(S103)。これにより、使用するPVT特性計算モデルの係数分の学習済み回帰モデルが生成されることとなる。
【0092】
本実施例では、PVT特性計算モデルとして、2-domain-taitモデルを用いた例を示しているが、PVT特性計算モデルには、例えば、Spencer-Glimoreモデル、Modified-Cellモデル、Simha-Somcynskyモデルなどの計算モデルを用いてよい。
【0093】
また、本実施例では、学習済み回帰モデルを例えば、リッジ回帰を用いて生成したが、線形回帰、サポートベクタマシン、ニューラルネットワーク、ランダムフォレスト回帰等の他の回帰モデル、またはこれらを組み合わせた回帰モデルを用いて学習済み回帰モデルを生成するようにしてもよい。また、使用する回帰モデルが、例えばニューラルネットワークのように複数の目的変数を持つことができる場合は、回帰モデルにおける目的変数として、PVT特性計算モデルの複数の係数を同時に選定してもよい。
【0094】
次いで、学習及び計算モデル生成システム4は、標準化処理に係る情報および学習済み回帰モデルを学習済みモデル記憶部410に保存する(S104)。
【0095】
図13図14を用いて、学習及び計算モデル生成システム4におけるPVT特性計算モデル係数推定処理を説明する(PVT特性計算モデル係数推定フローチャート)。学習及び計算モデル生成システム4のPVT特性計算モデル推定部413は、推定用データベース412からPVT特性計算モデルを推定する対象の材料(基本的には、PVT特性計算モデルの係数が未知である材料)の推定用データセット(例えば、特徴量データセット及び成形品品質)を読み込み、推定用データセットについて標準化処理を行う(S105)。標準化処理は、ステップS101で算出した各列の平均値、標準偏差を用いて同様な処理を行ってもよい。
【0096】
次に、学習及び計算モデル生成システム4のPVT特性計算モデル推定部413は、回帰モデル読み出し部411により学習済み回帰モデル記憶部410から対応する学習済み回帰モデルを読み出し(S106)、読み出した学習済み回帰モデルの説明変数(入力パラメータ)に対して標準化処理後の推定用データセットの値を入力することで、推定用データセットに対してPVT特性計算モデルの係数を生成する(S107)。
【0097】
図14に推定用データセットの一例を示す。本実施例では、回帰モデルにリッジ回帰を用いたため、PVT特性計算モデルの係数のそれぞれに対して、ステップS106及びS107の処理を繰り返し、推定する対象の材料のPVT特性計算モデルのすべての係数を生成した。このように生成した係数をPVT特性計算モデルの係数とすることにより、推定対象の材料のPVT特性計算モデル(推定PVT特性計算モデル)が特定できる。
【0098】
次いで、学習及び計算モデル生成システム4のPVT特性計算モデル保存部414が、標準化処理に係る情報、推定用データセット、及び推定PVT特性計算モデルを、PVT特性計算モデルデータベース415に保存する(S108)。
【0099】
このようにして、本実施例では、推定対象の所定単位の樹脂材料について、この樹脂材料のPVT特性を細かく測定することなく、容易且つ迅速にPVT特性計算モデルを推定することができる。例えば、同一の型番におけるロット単位のPVT特性計算モデルを容易に推定することができる。
【0100】
図15は、本実施例において、生成した推定PVT特性計算モデルの妥当性評価結果を示す。本評価は、本実施例で生成した学習済み回帰モデルの有効性を確かめるために行ったものであり、PVT特性の計算モデル推定システム1を実行するうえで必ずしも実施する必要はない。以下、本評価の方法について説明する。
【0101】
本評価では、推定したPVT特性計算モデルの妥当性を確認するために、PVT特性計算モデルが既知である材料ロットA、B、Cにおける材料ロットBをPVT特性モデルが未知である材料ロットと仮定した。具体的には、材料ロットA、Cの学習用データセットで学習済み回帰モデルを作成し、この学習済み回帰モデルと、材料ロットBの推定用データセットを用いて、材料ロットBのPVT特性計算モデルを推定し、推定したPVT特性計算モデルと、既知である材料ロットBのPVT特性とを比較評価を行った。
【0102】
図15は、推定された材料ロットBのPVT特性計算モデルと、公知の方法(温度を30℃から250℃まで5℃刻み、圧力水準50、100、150MPa)で測定された材料ロットBのPVT特性との比較を示すグラフである。図15のグラフは、横軸が温度であり、縦軸が比容積であり、図中の線プロットが本実施例の方法により推定した材料ロットBのPVT特性計算モデルを示し、点プロットが公知の方法で測定された材料ロットBのPVT特性(比容積の実測値)である。図15の凡例に示す線・点の形状がそれぞれの圧力水準に対応する。
【0103】
図15に示すグラフでは、点プロットに対して線プロットの一致度が高いほど、推定したPVT特性計算モデルの妥当性が高いことを意味する。実測値に対する計算モデルの妥当性を定量評価する代表的な指標としては、決定係数が使用され、決定係数が1に近づくほど、計算モデルの妥当性が高いと言える。図15に示すグラフにおいては、測定時の圧力水準毎に決定係数を計算すると、いずれの圧力水準に対しても、測定したPVT特性と推定PVT特性計算モデルとの決定係数は0.9以上であり、推定したPVT特性計算モデルの妥当性が高いことが確認できる。本評価によって、射出成形プロセス32における基準成形条件による成形から得られる特徴量データおよび成形品品質を用いた学習済み回帰モデルより、PVT特性が未知の材料のPVT特性計算モデルを推定する方法が、良好な方法であることが確認できる。
【実施例0104】
次に、実施例2に係るPVT特性計算モデル推定システムについて説明する。なお、実施例1に係るPVT特性計算モデル推定システムと同様な構成については、同一の符号を付す。実施例2に係るPVT特性計算モデル推定システムは、実施例1における計算機10の機能を、インターネットを介して接続された1以上のクライアント8(クライアント計算機)とクラウドサーバ80とで実現するようにしたシステムである。クライアント8は、データ送信部801と、取得データで記憶部802とを含み、クラウドサーバ80上で構築された学習及び計算モデル生成システム4に接続可能である。
【0105】
クラウドサーバ80には、学習及び計算モデル生成システム4が構築されている。クラウドサーバ80は、PVT特性計算モデルデータベース415から所定の材料単位のPVT特性計算モデルをクライアント8に提供する機能と、クライアント8から提供された成形品品質とセンサデータとを用いて、学習済みモデル記憶部410に記憶された学習済み回帰モデルから対象の材料単位についてのPVT特性計算モデルを推定し、クライアント8に推定PVT特性計算モデルを提供する機能と、クライアント8から提供された成形品品質とセンサ情報とPVT特性計算モデルとを用いて、学習用データベース407の学習用データセットを更新し、学習用データセットにより新たに回帰モデルを学習することで学習済み回帰モデルを更新する機能と、を有する。
【0106】
以下、図16図17を用いて、実施例2に係るPVT特性計算モデル推定システムのそれぞれの機能について説明する。
【0107】
図16を用いて、PVT特性計算モデルをクライアント8に提供する機能を説明する。
クライアント8は、クラウドサーバ80からPVT特性計算モデルデータベース415の所定の材料単位毎のPVT特性計算モデルを取得可能であり、取得したPVT特性計算モデルを取得データ記憶部802に保存することができる。取得データ記憶部802に記憶されたPVT特性計算モデルは、例えば射出成形CAE等に用いてもよい。
【0108】
図16図13を用いて、クライアント8から提供された成形品品質とセンサデータとを用いて、学習済み回帰モデルからPVT特性計算モデルを推定し、クライアント8に推定PVT特性計算モデルを提供する機能を説明する。クライアント8は、クラウドサーバ80に対して、データ送信部801により、推定対象の材料の所定単位の情報と、対象の材料を用いて基準成形条件で成形した際の、成形品品質と、センサデータとを送信する。
【0109】
クラウドサーバ80の学習及び計算モデル生成システム4は、データ送信部801から送信された、推定対象の材料の所定単位の情報と成形品品質とを成形品品質記録部404に格納し、センサデータをセンサ情報記録部401に渡し、PVT特性計算モデル係数推定処理(S105~S108)を実行する。この時、射出成形機による機差を考慮するため、学習用データベース407における、クライアント8から送信された、基準成形条件の金型と射出成形機との組み合わせと一致する学習用データセットが使用される。
【0110】
PVT特性計算モデル係数推定処理(S105~S108)によってPVT特性計算モデル保存部414に記録された推定PVT特性計算モデルは、PVT特性計算モデルデータベース415に格納される。クライアント8は、クラウドサーバ80から、PVT特性計算モデルデータベース415に格納されている、情報を送信した材料についての推定されたPVT特性計算モデルを取得して、取得データ記憶部802に保存することができる。
【0111】
図16図12を用いて、クライアント8から提供された、成形品品質と、センサデータと、PVT特性計算モデルとを用いて、クラウドサーバ80上の学習用データベース407を更新し、新たに回帰モデルを学習することで学習済み回帰モデルを更新する機能を説明する。クライアント8は、クラウドサーバ80の学習及び計算モデル生成システム4に、任意の所定単位の材料情報と、対象の材料を用いて基準成形条件で成形した際の、成形品品質と、センサ情報と、PVT特性計算モデルとを送信する。
【0112】
学習及び計算モデル生成システム4は、データ送信部801から送信された、所定単位の材料情報及び成形品品質を成形品品質記録部404に格納し、センサデータをセンサ情報記録部401に格納し、PVT特性計算モデルをPVT特性計算モデル係数記憶部405に格納し、学習済み回帰モデル構築処理(S101~S104)を実行する。
【0113】
この時、クラウドサーバ80は、学習用データベース407に、クライアント8から送信された材料情報によって新たに構築された学習用データセットをマージして、学習用データベース407を更新してもよい。なお、クラウドサーバ80は、クライアント8から送信された、基準成形条件の金型と射出成形機との組み合わせ毎に学習用データベース407を構築する。
【0114】
学習済み回帰モデル構築処理(S101~S104)において、更新された学習用データベース407を用いて生成された学習済み回帰モデルを、回帰モデル保存部409が学習済みモデル記憶部410に記録してもよい。また、回帰モデル読み出し部411は、更新前後の学習済み回帰モデルを選択する機能を有してもよい。
【0115】
上述のクライアント8から送信された材料情報を基に学習済み回帰モデルを更新する機能によって、1以上のクライアント8からのデータを用いて効率よく回帰モデルの学習に必要となる学習用データセットを拡充可能であるため、学習済み回帰モデルの構築・更新のための工数を低減することが可能となる。また、一般に、機械学習による回帰モデルの学習において、学習用データベースのサンプル数が多い程、回帰モデルの精度が良くなることが知られており、上述のように学習用データセットを拡充可能であるために、学習済み回帰モデルの精度を向上することができる。
【0116】
なお、本発明は、上述の実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
【0117】
例えば、上記実施例では、同一型番の材料の各ロットを単位として、樹脂材料のPVT特性の実測により得られたPVT特性の計算モデルと、樹脂材料を成形した際のプロセスデータと、成形品品質との関係を示す式とを紐づけて記憶装置に格納し、同一型番の材料の所定のロットについてのPVT特性計算モデルを推定するようにしていたが、例えば、同一樹脂種の樹脂材料を単位として、樹脂材料のPVT特性の実測により得られたPVT特性の計算モデルと、樹脂材料を成形した際のプロセスデータと、成形品品質との関係を示す式とを紐づけて記憶装置に格納し、同一樹脂種の所定の樹脂材料についてのPVT特性計算モデルを推定するようにしてもよい。
【0118】
また、上記実施例において、プロセッサ等の演算装置が行っていた処理の一部又は全部を、専用のハードウェア回路で行うようにしてもよい。また、上記実施例におけるプログラムは、プログラムソースからインストールされてよい。プログラムソースは、プログラム配布サーバ又は記憶メディア(例えば可搬型の記憶メディア)であってもよい。
【符号の説明】
【0119】
1…PVT特性計算モデル推定システム、2…製造実行システム、3…製造工場、4…学習及び計算モデル生成システム、11…演算装置、12…メモリ、13…記憶装置、14…入力装置、15…出力装置、16…通信装置、17…媒体インターフェース部、21…製造条件決定部、22…製造実行指示部、31…製造実行部、32…射出成形プロセス、33…品質検査部、34…センサ、401…センサ情報記録部、402…特徴量抽出部、403…特徴量データベース、404…成形品品質記録部、405…PVT特性計算モデル係数記憶部、406…連結処理部、407…学習用データベース、408…回帰モデル学習部、409…回帰モデル保存部、410…学習済みモデル記憶部、411…回帰モデル読み出し部、412…推定用データベース、413…PVT特性計算モデル推定部、414…PVT特性計算モデル保存部、415…PVT特性計算モデルデータベース
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17