IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社NTTファシリティーズの特許一覧

特開2023-38192学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム
<>
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図1
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図2
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図3
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図4
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図5
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図6
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図7
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図8
  • 特開-学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023038192
(43)【公開日】2023-03-16
(54)【発明の名称】学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラム
(51)【国際特許分類】
   G01M 7/02 20060101AFI20230309BHJP
   G01M 99/00 20110101ALI20230309BHJP
   G01H 17/00 20060101ALI20230309BHJP
   E04H 9/02 20060101ALI20230309BHJP
   F16F 15/02 20060101ALI20230309BHJP
【FI】
G01M7/02 B
G01M99/00 Z
G01H17/00 D
E04H9/02 311
F16F15/02 A
【審査請求】有
【請求項の数】11
【出願形態】OL
(21)【出願番号】P 2022203054
(22)【出願日】2022-12-20
(62)【分割の表示】P 2021131179の分割
【原出願日】2017-11-09
【新規性喪失の例外の表示】特許法第30条第2項適用申請有り 株式会社NTTファシリティーズ、資料(NEWS RELEASE)、平成29年8月30日発行 ウェブサイト(http://www.ntt-f.co.jp/news/2017/170830.html)、平成29年8月30日掲載 NTTファシリティーズ ビジネスソリューションセミナー、平成29年9月13日開催 PMシンポジウム2017、平成29年9月14日開催 [関西]住宅・都市イノベーション総合展2017 専門セミナー、平成29年9月21日開催 MMフォーラム21、平成29年9月26日開催 NTT GROUP COLLECTION 2017(大阪)、平成29年10月5-6日開催 NTTファシリティーズフォーラム、平成29年10月12日開催 NTT GROUP COLLECTION 2017(福岡)、平成29年10月26-27日開催 一般社団法人電気通信協会、NTT技術ジャーナル 2017年11月号、Vol.29、No.11、平成29年11月1日発行 株式会社NTTファシリティーズ、NTTファシリティーズジャーナル、2017年11月号、No.324、平成29年11月1日発行 数理システムユーザーコンファレンス2017 論文集、平成29年11月2日発行 数理システムユーザーコンファレンス2017、平成29年11月2日開催
(71)【出願人】
【識別番号】593063161
【氏名又は名称】株式会社NTTファシリティーズ
(74)【代理人】
【識別番号】110001634
【氏名又は名称】弁理士法人志賀国際特許事務所
(72)【発明者】
【氏名】鈴木 幹夫
(72)【発明者】
【氏名】林 政輝
(72)【発明者】
【氏名】千葉 大輔
(72)【発明者】
【氏名】吉海 伸祐
(72)【発明者】
【氏名】渡邉 啓介
(57)【要約】
【課題】より簡易な方法で、建築構造物の振動を抑制できる。
【解決手段】制振制御システムは、複数の層を備える建築構造物の振動を模擬する振動シミュレータを用いて学習処理がなされた第1人工ニューラルネット(以下、第1NNという。)を含み、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力として作用させる力を、前記第1NNにより調整する制御部を備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
複数の層を備える建築構造物の振動を模擬する振動シミュレータを用いて学習処理がなされた第1人工ニューラルネット(以下、第1NNという。)を含み、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力として作用させる力を、前記第1NNにより調整する制御部
を備える制振制御システム。
【請求項2】
前記建築構造物の動きを検出する検出部と、
制御に基づいて、前記2つの床部分に前記建築構造物内で前記偶力を掛ける応力調整部と、
を備え、
前記制御部の第1NNは、
前記建築構造物の動きを表す物理量に基づいて前記応力調整部を制御する、
請求項1に記載の制振制御システム。
【請求項3】
前記建築構造物の仮想建築構造物モデルを駆動する応答解析により、前記仮想建築構造物モデルに基づいて振動を解析する振動解析装置の第2人工ニューラルネットが前記応力調整部に代わる仮想応力調整部の制御量を生成し、前記生成された制御量に基づいて、前記2つの床部分に対応する前記仮想建築構造物モデルの第1質点と第2質点との間に、又は前記第1質点と前記仮想建築構造物モデルの基準面との間に前記仮想応力調整部が水平方向の偶力を作用させて、前記仮想建築構造物モデルを駆動する応答解析を実施して、前記仮想建築構造物モデルの各部の動きを表す状態値が生成され、
前記制御部の第1NNの特徴情報が、前記振動シミュレータによって生成された前記状態値に基づいた振動制御の度合いを報酬にした学習により決定されている、
請求項1又は請求項2に記載の制振制御システム。
【請求項4】
複数の層を備える建築構造物の振動を模擬する振動解析装置であって、
人工ニューラルネットが生成する制御量に基づいて、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力を作用させるように前記建築構造物の仮想建築構造物モデルを駆動して、前記仮想建築構造物モデルの各部の動きを表す状態値を振動解析により生成する振動シミュレータ
を備える振動解析装置。
【請求項5】
前記振動シミュレータは、前記2つの床部分に前記建築構造物内で作用させる前記偶力を動的に調整して前記状態値を生成する、
請求項4に記載の振動解析装置。
【請求項6】
複数の層を備える建築構造物の振動を模擬するシミュレータを用いて学習処理がなされた人工ニューラルネットが、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が作用させる水平方向の偶力を調整する過程
を含む制振制御方法。
【請求項7】
複数の層を備える建築構造物の振動を模擬する振動解析装置の振動解析方法であって、
人工ニューラルネットが生成する制御量に基づいて、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力を作用させるように前記建築構造物の仮想建築構造物モデルを駆動して、前記仮想建築構造物モデルの各部の動きを表す状態値を生成する応答解析を実施する過程
を含む振動解析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、制振制御システム、制振制御方法、振動解析装置及び振動解析方法
に関する。
【背景技術】
【0002】
制振制御システムにおける制振技術には、パッシブ方式とアクティブ方式が含まれる。アクティブ方式は、対象物に設けられたセンサによる計測値に基づいて、対象物に応力を掛けるアクチュエータを制御して、能動的に対象物の振動を抑制する。建築分野におけるアクティブ方式の制振制御システムとして、制御対象を定常かつ線形のシステムとして扱う制御理論を適用したものが知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005-249687号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、実際の建築構造物の場合、建築構造物に応力を生じさせる地震動などの外乱は非定常であり、建築構造物自体も非線形の特性を有する。そのため、建築構造物の制振制御システムに、制御対象を定常かつ線形のシステムとして扱う制御理論を適用しても、期待するほどの制振効果が得られないことがある。
【0005】
本発明が解決しようとする課題は、より簡易な方法で、建築構造物の振動を抑制できる制振制御システム、制振制御方法、振動解析装置及び振動解析方法を提供する。
【課題を解決するための手段】
【0006】
本発明の一態様の制振制御システムは、複数の層を備える建築構造物の振動を模擬する振動シミュレータを用いて学習処理がなされた第1人工ニューラルネット(以下、第1NNという。)を含み、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力として作用させる力を、前記第1NNにより調整する制御部を備える制振制御システムである。
【0007】
上記の制振制御システムは、前記建築構造物の動きを検出する検出部と、制御に基づいて、前記2つの床部分に前記建築構造物内で前記偶力を掛ける応力調整部と、を備え、前記制御部の第1NNは、前記建築構造物の動きを表す物理量に基づいて前記応力調整部を制御する。
【0008】
上記の制振制御システムにおいて、前記建築構造物の仮想建築構造物モデルを駆動する応答解析により、前記仮想建築構造物モデルに基づいて振動を解析する振動解析装置の第2人工ニューラルネットが前記応力調整部に代わる仮想応力調整部の制御量を生成し、前記生成された制御量に基づいて、前記2つの床部分に対応する前記仮想建築構造物モデルの第1質点と第2質点との間に、又は前記第1質点と前記仮想建築構造物モデルの基準面との間に、前記仮想応力調整部が水平方向の偶力を作用させて、前記仮想建築構造物モデルを駆動する応答解析を実施して、前記仮想建築構造物モデルの各部の動きを表す状態値が生成され、前記制御部の第1NNの特徴情報が、前記振動シミュレータによって生成された前記状態値に基づいた振動制御の度合いを報酬にした学習により決定されている。
【0009】
本発明の一態様の振動解析装置は、複数の層を備える建築構造物の振動を模擬する振動解析装置であって、人工ニューラルネット(第1NN)が生成する制御量に基づいて、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力を作用させるように前記建築構造物の仮想建築構造物モデルを駆動して、前記仮想建築構造物モデルの各部の動きを表す状態値を振動解析により生成する振動シミュレータを備える振動解析装置である。
【0010】
本発明の一態様の振動解析装置における前記振動シミュレータは、前記2つの床部分に前記建築構造物内で作用させる前記偶力を動的に調整して前記状態値を生成する。
【0011】
本発明の一態様の制振制御方法は、複数の層を備える建築構造物の振動を模擬するシミュレータを用いて学習処理がなされた人工ニューラルネット(第1NN)が、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が作用させる水平方向の偶力を調整する過程を含む制振制御方法である。
【0012】
本発明の一態様の振動解析方法は、複数の層を備える建築構造物の振動を模擬する振動解析装置の振動解析方法であって、人工ニューラルネット(第1NN)が生成する制御量に基づいて、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力を作用させるように前記建築構造物の仮想建築構造物モデルを駆動して、前記仮想建築構造物モデルの各部の動きを表す状態値を生成する応答解析を実施する過程を含む振動解析方法である。
【発明の効果】
【0013】
本発明によれば、より簡易な方法で、建築構造物の振動を抑制できる制振制御システム、制振制御方法、振動解析装置及び振動解析方法を提供できる。
【図面の簡単な説明】
【0014】
図1】第1の実施形態の実施形態に係る制振制御システムの概要を説明するための図である。
図2】実施形態の制振装置が設置される建物の一部を示す図である。
図3】実施形態の制振装置を示す断面図である。
図4】実施形態の制振制御システム1の制御系の構成図である。
図5】実施形態の機械学習器10の構成図である。
図6】実施形態の仮想建築構造物モデルを説明するための図である。
図7】実施形態のニューロンのモデルを示す模式図である。
図8】実施形態のニューラルネットを示す模式図である。
図9】実施形態の強化学習処理の手順を示すフローチャートである。
【発明を実施するための形態】
【0015】
以下、本発明の実施形態について、添付図面を参照して説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。
なお、実施形態において建物は、建築構造物の一例であり、例えば、ラーメン構造を有するものであってよい。また、建物の「層」は、互いに地上高が異なる複数の床(床部分)に挟まれた範囲のことである。例えば、上記の複数の床が互いに隣り合う位置に配置されている場合には、各床部分は、建物の階に対応する。なお、偶力を作用させる一対の床の間には、偶力を作用させない他の床が配置されていてもよい。また、偶力を作用させる「床部分」は、振動シミュレータにおける仮想建築構造物モデルを多質点系で形成した場合の質点又は基準面に対応する。上記の基準面とは、仮想建築構造物モデルに対応する建物における地表面、基礎部、1階の床などに対応する。なお、実施形態において「人工ニューラルネットの特徴情報」とは、人工ニューラルネットにおける振動制御ルールとして獲得した情報のことである。
【0016】
(第1の実施形態)
図1は、本発明の実施形態に係る制振制御システムの概要を説明するための図である。
【0017】
[制振制御システムの概要]
制振制御システム1は、建物BLを制御対象にして、建物BLの制振制御を実施する。
【0018】
図1に示すように、制振制御システム1は、例えば、高層または超高層の建物(建築構造物)BLに設けられ、地震動の発生時など(以下、単に「振動発生時」と称する)に建物BLの揺れを抑制する。制振制御システム1は、例えば建物BLの長周期地震動対策として設けられるアクティブ型の制振制御システムである。本実施形態の制振制御システム1は、複数の制振装置11(応力調整部)と、複数のセンサ12(検出部)と、制御部13とを備えている。なお、制振装置11およびセンサ12は、それぞれ1つだけでもよい。なお、建物BLは、1又は複数の層を備えるものであってよい。例えば、制振制御システム1は、高層の建物BLに限らず、低層(例えば3階から5階建)の建物BLに適用されてもよい。例えば、建物BLにおいて、制振装置11が配置された層の構造は、制振装置11が配置されていない層の構造と所定の範囲内で同一である。図1に示す建物BLは、ラーメン構造を有し、地盤上に構築されている。上記の所定の範囲内で同一とは、制振装置11が配置された層の構造と、制振装置11が配置されていない層の構造とが同じ構造様式を有することをいう。
【0019】
制振装置11は、例えば建物BLの下層部(低層階)に配置される。制振装置11は、後述する回転型ダンパー23を含み、振動発生時に減衰力を作用させる。複数の制振装置11は、例えば建物BLの複数の層(階)に分かれて配置される。なお、制振装置11の設置個所は、建物BLの下層部に限らず、任意の層(階)でよい。
【0020】
センサ(振動センサ)12は、建物BLの任意の層に配置され、建物BLの振動に関する情報を検出する。センサ12は、例えば建物BLの振動を加速度として検出する加速度センサであるが、これに限定されない。例えば、センサ12は、設置された地点の振動を検出し、直交する3軸方向の成分に分けて出力する。
【0021】
センサ12は、例えば、制振装置11を配置した層より低層側(建物の基礎部、地階を含む。)の層に設置される。制振装置11を配置した層より低層側の層にセンサ12を配置することにより、低層側の揺れの状況を反映した制御がしやすくなる。なお、各層においてセンサ12を配置する位置には制限はなく、適宜選択してよい。以下の説明では、例えば、センサ12を当該層の床、つまり階に配置する場合を例示して説明する。
【0022】
なお、制振装置11を配置した層より低層側に設置するセンサ12に代えて、センサ(不図示)を、建物BLの敷地(以下、建物BLの地盤という。)に設置してもよく、制振装置11を配置した層より低層側の階と建物BLの地盤の双方に設置してもよい。例えば、複数のセンサ12は、建物BLの複数の階に分かれて配置される。複数のセンサ12は、建物BLの上層部(高層階)と、中層部(中層階)と、下層部(制振装置11を配置した層より低層階)又は建物BLの地盤とにそれぞれ設置されてもよい。複数のセンサ12を配置する層の位置は、建物BLの構造により、建物BLの振動の特徴を検出しやすい位置に配置するとよい。
【0023】
制御部13は、有線または無線を介して複数の制振装置11および複数のセンサ12と通信可能に接続される。制御部13は、センサ12からセンサ12の検出結果を取得する。そして、制御部13は、センサ12の検出結果に基づき、制振装置11に発生させる力の大きさおよびタイミングを計算する。そして、制御部13は、計算により求められた力の大きさおよびタイミングを示す情報に基づき、制振装置11を制御する。例えば、制御部13は、特定の層を挟む2つの床部分に作用する力を調整する。その方法は、建物BLの地盤の振動を示す振動データ、又は建物BLの振動を示す振動データに基づいて、上記の特定の層を挟む2つの床部分に作用する力を調整するものであってもよい。例えば、建物BLの振動の振動データは、後述する制振装置11を配置した層より低層側(低層側の層)の振動の振動データを含む振動の振動データに基づいて、前記特定の層を挟む2つの床部分に作用する力を調整するものであってもよい。
【0024】
制御部13は、例えば、制振制御システム1のプロセッサがプログラムを実行することで実現されるソフトウェア機能部である。ただし、制御部13は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよいし、ソフトウェア機能部とハードウェアとが協働することで実現されてもよい。
【0025】
次に、本実施形態の制振装置11について説明する。
図2は、実施形態の制振装置11が設置される建物BLの一部を示す図である。図2に示すように、建物BLは、例えば、建物BLの1フロアを形成する構造材の一部として、第1梁B1、第2梁B2、第1柱P1、第2柱P2、およびY形ブレースBrを有する。
【0026】
第1梁B1は、略水平方向に延びており、制振装置11が設置されるフロアの床部Fの一部を形成している。第2梁B2は、第1梁B1と略平行に配置され、略水平方向に延びており、制振装置11が設置されるフロアの天井部Cの一部を形成している。第1柱P1および第2柱P2は、それぞれ略鉛直方向に延びており、第1梁B1と第2梁B2とに亘っている。制振装置11は、例えば、第1梁B1、第2梁B2、第1柱P1、および第2柱P2により囲まれる空間Sに配置される。
【0027】
Y形ブレースBrは、第1ブレースBr1、第2ブレースBr2、および連結部Br3を有する。第1ブレースBr1の第1端部Br1aは、第2梁B2と第1柱P1との結合部に接続されている。第1ブレースBr1の第2端部Br1bは、第1端部Br1aに対して斜め下方に位置し、空間Sの水平方向の略中央部に位置する。同様に、第2ブレースBr2の第1端部Br2aは、第2梁B2と第2柱P2との結合部に接続されている。第2ブレースBr2の第2端部Br2bは、第1端部Br2aに対して斜め下方に位置し、空間Sの水平方向の略中央部に位置する。連結部(頂部)Br3は、第1ブレースBr1の第2端部Br1bと第2ブレースBr2の第2端部Br2bとを連結している。
【0028】
図2に示すように、本実施形態では、制振装置11は、Y形ブレースBrの連結部Br3と、第2柱P2との間に設置されている。制振装置11は、Y形ブレースBrの連結部Br3と、第2柱P2とに対してそれぞれ固定される。本願でいう「XXに対して固定」とは、「XX」に対して直接に固定される場合に限らず、別の部材を介在させて間接的に固定される場合も含む。言い換えると、「XXに対して固定」とは、「XXに対して相対的に固定」を意味する。Y形ブレースBrは、「第1部材」の一例である。第2柱P2は、「第2部材」の一例である。Y形ブレースBrおよび第2柱P2は、振動発生時に相対変位(相対変形)する部材の組の一例である。なお、制振装置11が設けられる建物BLの構造は、上記例に限定されない。
【0029】
次に、本実施形態の制振装置11の構成について説明する。
図3は、実施形態の制振装置11を示す断面図である。図3に示すように、制振装置11は、ケース21、固定部材22、回転型ダンパー23、固定機構24、伝達部25、およびアクチュエータ26を備えている。
【0030】
ケース21は、第1梁B1によって形成される床部Fの上に設置される。ケース21は、箱状に形成され、回転型ダンパー23の一部、固定機構24の第2固定部52、伝達部25、およびアクチュエータ26を収容している。ケース21は、回転型ダンパー23が通される開口部21aを有する。なお、ケース21は、必須の構成要素ではなく、省略されてもよい。
【0031】
固定部材(取付部材、連結部材)22は、ケース21と第2柱P2との間に設けられている。固定部材22は、第2柱P2(例えば、第2柱P2の脚部)に対して固定され、振動発生時に第2柱P2(例えば、第2柱P2の脚部)と一体に変位する。固定部材22には、ケース21、固定機構24の第2固定部52、およびアクチュエータ26が固定される。
【0032】
回転型ダンパー23は、Y形ブレースBrの連結部Br3と、固定部材22との間に配置されている。ここで、回転型ダンパー23の「軸方向AD」および「径方向R」を定義する。軸方向ADは、回転型ダンパー23の後述する軸部材36の軸方向(長手方向)である。径方向Rは、軸方向ADとは略直交する方向であり、例えば軸部材36から放射状に離れる方向である。また、以下の説明における「回転」とは、軸方向ADに延びた中心線周りの回転を意味する。
【0033】
本実施形態では、回転型ダンパー23は、軸方向ADを略水平にして配置されている。回転型ダンパー23は、ケース21に設けられた開口部21aを通じて、ケース21の内部からケース21の外部に突出している。詳しく述べると、回転型ダンパー23の外筒31は、軸方向ADの両端部として、第1端部31aと、第2端部31bとを有する。第1端部31aは、ケース21の外部において、Y形ブレースBrの連結部Br3とケース21の外面との間に位置する。一方で、第2端部31bは、第1端部31aとは反対側に位置し、ケース21の内部に収容されている。
【0034】
例えば、回転型ダンパー23は、外筒31の内部に回転体32を備えており、外筒31に対する回転体32の回転による減衰特性を有する。例えば、回転型ダンパー23は、オイルダンパー、粘性ダンパー、粘弾性ダンパーなどのいずれでもよい。
【0035】
次に、固定機構24、伝達部25、およびアクチュエータ26について説明する。固定機構24は、回転型ダンパー23を建物BLに対して固定する。固定機構24は、第1固定部51と、第2固定部52とを含む。
【0036】
第1固定部51は、外筒31から突出した軸部材36の端部に取り付けられる。第1固定部51は、軸部材36の前記端部を、Y形ブレースBrの連結部Br3に対して固定する。言い換えると、第1固定部51は、Y形ブレースBrの連結部Br3に対して軸部材36の軸方向ADの位置(相対位置)を固定する。これにより、振動発生時にY形ブレースBrの連結部Br3が軸方向ADに変位する場合、回転型ダンパー23の軸部材36は、Y形ブレースBrの連結部Br3と一体に軸方向ADに変位する。例えば、回転型ダンパー23の軸部材36は、第1固定部51によって、Y形ブレースBrの連結部Br3に対して回転しないように固定されている。
【0037】
第2固定部52は、回転型ダンパー23の外筒31の第2端部31bと固定部材22との間に設けられている。第2固定部52は、回転型ダンパー23の外筒31を、固定部材22に固定する。言い換えると、第2固定部52は、回転型ダンパー23の外筒31を、固定部材22を介して例えば建物BLの第2柱P2の脚部に固定する。すなわち、第2固定部52は、第2柱P2の脚部に対して外筒31の軸方向ADの位置(相対位置)を固定する。これにより、振動発生時に第2柱P2が軸方向ADに変位する場合、回転型ダンパー23の外筒31は、第2柱P2の脚部と一体に軸方向ADに変位する。ただし、本実施形態の構成は、上記例に限定されない。例えば、第2固定部52は、直接、または固定部材22やケース21などを介して床部Fに固定されてもよい。この場合、回転型ダンパー23の外筒31は、第2柱P2と一体に変位することに代えて、床部Fと一体に変位してもよい。また、別の例として、回転型ダンパー23の外筒31は、第2柱P2や床部Fとは異なる部材と一体に変位してもよい。
【0038】
本実施形態の第2固定部52は、第2柱P2に対して回転型ダンパー23の外筒31を回転可能に支持する。詳しく述べると、第2固定部52は、支持軸56と、回転支持機構57とを有する。
【0039】
支持軸56は、回転型ダンパー23の外筒31の第2端部31bに固定され、外筒31と一体に回転可能である。支持軸56は、軸方向ADに沿って、外筒31の第2端部31bから固定部材22に向けて延びている。支持軸56のなかで固定部材22の近くに位置する端部は、支持軸56の直径が大きくなった拡径部56aを有する。
【0040】
回転支持機構57は、固定部材22に固定されている。回転支持機構57は、軸受57aと、ホルダ57bとを有する。軸受57aは、固定部材22に対して(すなわち第2柱P2に対して)支持軸56および外筒31を回転可能に支持する。
【0041】
以上のような構成により、第2固定部52は、第2柱P2(例えば、第2柱P2の脚部)に対して外筒31の軸方向ADの位置を固定するとともに、第2柱P2に対して外筒31を回転可能に支持する。言い換えると、外筒31は、第2固定部52によって、建物BL、ケース21、およびアクチュエータ26に対して回転可能に支持されている。
【0042】
次に、伝達部25について説明する。
伝達部25は、アクチュエータ26と回転型ダンパー23の外筒31との間に設けられ、アクチュエータ26からの動力を回転型ダンパー23の外筒31に伝える。伝達部25は、例えば、外筒31の外周面に設けられたギアである。伝達部25は、例えば、外筒31の外周面に沿う環状に形成され、外筒31の外周面の全周に亘って設けられている。なお、伝達部25は、アクチュエータ26からの動力を回転型ダンパー23の外筒31に伝えることができる部材であれば、構成や取付位置などは限定されない。伝達部25は、外筒31とは別体に形成されて外筒31に取り付けられていてもよく、外筒31と一体に成形されていてもよい。また、伝達部25は、ギアに限定されず、高摩擦部材(例えばゴム部材)などでもよい。
【0043】
アクチュエータ26は、回転型ダンパー23の外部に設けられている。アクチュエータ26は、例えば電動アクチュエータであり、モータ(駆動源)61、減速機62、およびギア63を有する。減速機62は、モータ61に接続されており、モータ61から動力が伝達される。ギア63は、減速機62に接続されており、減速機62から動力が伝達される。ギア63は、回転型ダンパー23の外筒31に設けられた伝達部25に係合している。モータ61は、減速機62を介してギア63を回転させることで、伝達部25に動力(回転トルク)を作用させる。なお、減速機62は、必須の構成要素ではなく、省略されてもよい。この場合、モータ61が直接にギア63に接続されてもよい。
【0044】
アクチュエータ26は、伝達部25に動力を作用させることで、伝達部25を介して回転型ダンパー23の外筒31に動力(回転トルク)を直接に作用させる。これにより、アクチュエータ26は、建物BLに対して回転型ダンパー23の外筒31を回転させる。なお、「回転型ダンパーの外筒に動力を直接に作用させる」とは、回転型ダンパー23の軸部材36を介さずに、回転型ダンパー23の外筒31に動力を作用させる(軸部材36を介さずに外筒31を回転させる)ことを意味する。言い換えると、「回転型ダンパーの外筒に動力を直接に作用させる」とは、外筒31に対する軸部材36の位置や移動速度(回転体32の回転速度)とは関係なく、外筒31を外部から強制的に回転させることを意味する。
【0045】
アクチュエータ26は、建物BLに対して外筒31を回転させることで、回転型ダンパー23の回転体32に対して外筒31を回転させる。これにより、アクチュエータ26は、外筒31と回転体32との間の相対回転速度を変化させ、外筒31と回転体32との間に作用する減衰力の大きさや発生タイミングを変化させることで、制振装置11の減衰特性を変化させる。
【0046】
例えば、アクチュエータ26は、軸部材36に入力された外力(例えば、Y形ブレースBrと第2柱P2の脚部(または床部F)との間の相対変位により軸部材36に作用する力)によって軸部材36が移動し、外筒31に対して回転体32が第1方向に回転する場合に、回転体32に対して外筒31を前記第1方向とは反対の第2方向に回転させる動力を出力することができる。アクチュエータ26は、第1方向に回転する回転体32に対してその反対方向に外筒31を回転させることで、制振装置11の減衰力を高めることができる。
【0047】
また、アクチュエータ26は、軸部材36に入力された外力によって軸部材36が移動し、外筒31に対して回転体32が第1方向に回転する場合に、回転体32に対して外筒31を前記第1方向と同じ方向に回転させる動力を出力することができる。アクチュエータ26は、第1方向に回転する回転体32に対して同じ方向に外筒31を回転させることで、制振装置11の減衰力を小さくするまたはゼロにすることができる。
【0048】
以上説明したような制振装置11によれば、アクチュエータ26によって回転型ダンパー23の外筒31を回転させることで、制振装置11の減衰特性を動的に変化させ、建物BLの振動をより効果的に減衰させることができる。例えば、制振装置11は、建物BLの振動に応じてアクチュエータ26の出力(モータ61の回転速度など)を変化させることで、回転型ダンパー23の外筒31の回転状態を変化させ、建物BLの振動をより効果的に抑制することができる。
【0049】
次に、本実施形態の制振制御システム1の動作の概要について説明する。図4は、実施形態の制振制御システム1の制御系の構成図である。制振制御システム1は、実空間にある建物BLの制振制御を実施する。
【0050】
制御部13(図4ではコントローラ13)は、建物BLを制御対象にして、センサ12が出力する振動データに基づいた建物BLの状態を示す状態値(状態s)を帰還させるフィードバック制御を実施する。なお、帰還させる状態値は、不図示の遅延要素によって適宜遅延されたものであってよい。この制振制御システム1における制御目標は、外乱が生じても建物BLが振動しないこと、又は外乱により生じた振動を減衰させることである。地震動などは、建物BLに作用する外乱の一例である。
【0051】
このような制御部13は、センサ12による振動の検出結果(振動データ)に基づき、制振装置11のアクチュエータ26を制御して、回転型ダンパー23の外筒31を回転させる。
【0052】
これにより、制振制御システム1は、振動発生時に、Y形ブレースBrの連結部Br3と第2柱P2の脚部(または床部F)との間の相対変位に基づき回転型ダンパー23の軸部材36が移動することで回転体32が回転することに加え、アクチュエータ26によって外筒31を追加で回転させることで、回転型ダンパー23の外筒31と回転体32との間に作用する減衰力の大きさや発生タイミングを調整することができる。さらに、これにより、制振制御システム1は、アクティブ方式の制振作用を奏し、パッシブ方式の制振よりも効果的な制振を行うことが可能となる。
【0053】
なお、実施形態の制御部13は、制御対象である建物BLの振動を模擬する振動シミュレータ110を用いて学習処理がなされたニューラルネット13NN(第1人工ニューラルネット。以下、単にNNという。)を備える。制御部13のNNは、建物BLの各部の動きを表す物理量に基づいて制振装置11に対する制御量を生成する。建物BLの各部の動きを表す物理量は、例えば、センサ12の振動データである。このような制御部13は、センサ12の振動データに基づいて、NNにより制振装置11を制御することができる。上記のNNの構成例については後述する。
【0054】
なお、制振装置11に対する制御量は、例えば、回転型ダンパー23の軸長、軸伸縮速度、軸剛性、軸力の何れかを調整するものであってよい。上記の軸長とは、例えば、回転型ダンパー23における外筒31に対する軸部材36の突出量のことである。軸伸縮速度とは、軸部材36の移動方向において、外筒31に対する軸部材36の相対的な移動速度のことである。軸剛性とは、軸部材36の軸周りの捩じり剛性のことである。軸力とは、外筒31に対して軸部材36が移動する際の抵抗力のことである。このように定められた制振装置11に対する制御量に基づいて、建物BLにおいて制振装置11が配置された特定の層を挟む2つの床部分に作用する水平方向の偶力を調整することができる。
【0055】
次に、制御部13のNNの学習について説明する。実施形態の制御部13のNNは、実際の建物BLに適用する前に、学習によって決定された振動制御ルールを獲得する。これにより、制御部13としての応答特性が調整される。この制御部13のNNの学習は、機械学習器10による強化学習によって実施される。なお、制御部13のNNは、実際の建物BLに適用された後に、その振動制御ルールを獲得すること、例えば、その応答特性が再調整されることを制限するものではない。
【0056】
図5を参照して、実施形態の機械学習器10について説明する。図5は、実施形態の機械学習器10の構成図である。
【0057】
機械学習器10(振動解析装置)は、振動解析部100と、報酬生成部150と、学習制御部170とを備える。
【0058】
振動解析部100は、振動シミュレータ110と、コントローラ130とを備える。
【0059】
振動シミュレータ110は、実際の建物BLに代わる仮想建物(仮想建築構造物モデル)の振動をシミュレーションする。実施形態の振動シミュレータ110は、仮想アクチュエータ111と、仮想センサ112と、仮想建物本体113とを含む。仮想アクチュエータ111と、仮想センサ112とは、制振装置11と、センサ12とにそれぞれ対応するものであってよい。仮想建物本体113は、主に建物BLの構造部材に対応する。
【0060】
仮想アクチュエータ111は、制御に応じて仮想建物本体113に応力を作用する。仮想建物本体113に作用する応力は、少なくとも特定の層を挟む2つの床部分に偶力が作用する場合を含む。振動シミュレータ110は、仮想建物本体113に、所定の振動データに基づいた外乱と、仮想アクチュエータ111による応力とが作用した場合に、仮想建物本体113に生じる振動を再現する。
【0061】
仮想センサ112は、仮想建物本体113における所定の位置の振動を検出する。例えば、振動は、変位、速度、加速度などの大きさと方向とを有する物理量として検出され、時系列の振動データとして記録される。
【0062】
振動シミュレータ110は、図6に示す仮想建築構造物モデルを用いた振動シミュレーションを実施する。図6は、実施形態の仮想建築構造物モデルを説明するための図である。図6(a)に、地盤に建てられた建物BLの多質点モデルを示す。M1からMmは、第1層から第m層までの各層の質点を示す。外乱としての地震動が地盤側から建物BLの最下層(基礎)に伝わる。
【0063】
図6(b)は、図6(a)の多質点モデルを振動モデルとして示したものである。この図6によれば、制振装置11が、最下層と第1層との間と、第1層と第2層との間とに設けられ、それ以外の層(層間)には設けられていない状態を示す。この場合、最下層と第1層との間に要素k1、c1、y1があり、第1層と第2層との間に要素k2、c2、y2があり、第2層と第3層との間に要素k3がある。記載を省略するが第3層以上も要素k4からkmがある。要素k1からkmは、ばね定数である。要素c1、c2は減衰係数である。要素y1、y2は、アクチュエータによる制御量である。
【0064】
実施形態の振動シミュレータ110は、振動シミュレーションにより上記の多質点モデルを用いて建物BLの振動を再現させる。
【0065】
図5に戻り、コントローラ130について説明する。コントローラ130は、図1に示す制御部13をモデル化したものであり、制御部13のNNと同様の構成をモデル化したNN131(第2人工ニューラルネット)を備える。
【0066】
振動解析部100は、振動シミュレータ110と、コントローラ130とを連系させることにより、実際の制振制御システム1の制御系と同様に、フィードバック制御による仮想建築構造物モデルの制振制御を実施する。
【0067】
報酬生成部150は、振動解析部100による解析結果に基づいた報酬rを生成する。
報酬rは、強化学習に用いられる。実施形態の報酬生成部150は、コントローラ130の制御を受けた場合の仮想建築構造物モデルの振動の大きさ(状態s)に基づいて、報酬rを生成する。例えば、式(1)に報酬rを算出するための関数R(・)を示す。
【0068】
r=R(s)=R(x x’ x’’) ・・・(1)
【0069】
式(1)において、sは状態を示すベクトルである。x、x’、x’’は、振動量を示し、各層の変位、速度、加速度をそれぞれ示すベクトルである。関数Rは、状態sを変数にとるか、或いは、各層の変位、速度、加速度のうちの一部または全部を変数にとる。このような関数Rは、線形又は非線形の演算式として定めることができる。なお、関数Rは、複数の演算式の組み合わせにより構成されてもよい。上記の演算式には、行列式、差分方程式などを含めてもよい。
【0070】
例えば、x、x’、x’’のそれぞれの絶対値を加算して負の係数を掛ける関数Rを規定する。この関数R(x x’ x’’)は、各変数の値が小さければ、より大きな値を示すものになる。関数Rが、建物BLの振動量が多いほど、又は振動が激しいほど負の値が大きくなる。報酬生成部150は、振動の大きさに応じた値の報酬rを算出する。報酬rの値により、建物BLの振動量が少ない状態、又は振動が緩やかな状態を識別することにより、より好ましい状態に学習できていることを識別できる。
【0071】
なお、関数Rは、これに制限されることなく、各係数や、他の形態の演算式を適宜設定してもよい。報酬生成部150は、上記の式(1)を用いて報酬rを算出する。
【0072】
学習制御部170は、後述する更新式及び報酬rに基づいて、現在の状態変数(状態s)及び取り得る行動(行動a)に対応する行動方策又は行動価値を更新する。
【0073】
例えば、上記の振動解析部100は、学習制御部170から行動方策の指示を受ける。実施形態における行動方策には、NN131の特性情報、シミュレーションに適用する振動波形の種別などが含まれる。NN131の特性情報には、例えば、後述する重みWなどが含まれる。NN131の特性情報は、強化学習(深層強化学習)によって最適化される。
【0074】
なお、図5に示す機械学習器10の各構成を下記のように捉えてもよい。振動シミュレータ110と報酬生成部150とを纏めて「環境110E」とする。学習制御部170とコントローラ130とを纏めて「エージェント170A」とする。「環境110E」と「エージェント170A」を含む機械学習器10は、所謂強化学習の一形態として扱える。
【0075】
次に、実施形態に適用する強化学習アルゴリズムの一例として、Q学習法(Q-learning)とグレディー(ε-greedy)法を適用した場合について説明する。
【0076】
Q学習法は、或る環境状態s(以下、単に状態sという。)の下で、行動aを選択する価値関数Q(sk,ak)(以下、関数Q(s,a)と言い、その値をQ値という。)を学習する方法である。以下、価値関数Q(sk,ak)のことを単に関数Q(s,a)と言いう。
【0077】
例えば、或る状態sのとき、価値の最も高い行動aを最適な行動として選択することが要求される。このような状態sにおいて行動aを選択した場合の価値を関数Q(s,a)により求まるQ値で示す。
【0078】
なお、正しい行動aを選択可能とする程度まで近似できていない関数Q(s,a)を用いても、正しいQ値を得ることができない。そこで、より良い行動aが選択されたことをよしとする報酬rを与える学習を実施することにより、学習制御部170は、関数Qの適格性を高める。学習制御部170は、或る状態sの下で行動aを選択する試行を繰り返すことにより、より良い行動aが選択できる関数Q(s,a)を学習する。
【0079】
行動を行った結果から、短期的な価値を得ることより、将来に渡って得られる報酬の合計が大きくなる(最大化する)ことを目標に最適化された関数Q(s,a)を導出する。関数Q(s,a)の更新式を式(2)に示す。
【0080】
【数1】
【0081】
ここで、skは時刻kにおける環境の状態を表し、akは時刻kにおける行動を表す。行動akにより、状態はsk+1に変化する。rk+1は、その状態の変化により貰える報酬を表している。また、maxの付いた項は、状態sk+1の下でとり得る行動aを試行した中で最も高いQ値にγを乗じたものになる。γは割引率であって、0<γ≦1の範囲の値をとる。αは学習係数であって、0<α≦1の範囲の値をとる。
【0082】
この式(2)は、行動akの結果得られた報酬rk+1を元に、状態skにおける行動akの評価値であるQ(sk,ak)を更新する一例を表している。
【0083】
上記のように関数Q(s,a)を用いた強化学習により、Q値すなわち評価価値が高かった所望の振動制御ルール(応答特性)のNNを得ることができる。
【0084】
次に、ε-グレディー法(ε-greedy)についてその概要を説明する。
ある程度学習が進むと、関数Q(s,a)の値を最大にする行動aが、実際に選択すべき行動に近いものになる。ただし、条件により、所望の学習が進行しなくなる場合がある。
【0085】
そこで、コントローラ130は、行動aを選択するに当たり、関数Q(s,a)の値を最大にする行動aを選ぶだけではなく、ある割合εでランダムな行動を、割合(1-ε)で関数Q(s,a)の値が最大になる行動を選択する(ε-greedy法)。これにより、演算の過程で関数Q(s,a)が最大になる行動が必ずしも最適な行動とは限らないということを条件に含めて試行することができる。
【0086】
なお、制御部13の最適化のための処理については、後述する。
【0087】
次に、図7図8とを参照して、実施形態のNNについて説明する。図7は、実施形態のニューロンのモデルを示す模式図である。NNは、例えば図7に示すようなニューロンのモデルを模した演算装置及びメモリ等で構成される。
【0088】
図7に示すように、ニューロンは、複数の入力x(ここでは一例として、入力x~入力x)に対する出力yを出力するものである。各入力x~xには、この入力xに対応する重みw(w~w)が掛けられる。これにより、ニューロンは、次の式により表現される出力yを出力する。なお、入力x、出力y、及び重みwは、全てベクトルである。上記の関係を式(3)に示す。
【0089】
【数2】
【0090】
上記の式(3)において、θはバイアスであり、fkは活性化関数である。活性化関数として、シグモイド曲線を模したもの、量子化された離散値を示すものなどを適用してもよい。
【0091】
次に、上述したニューロンを組み合わせたNNの一例について、図8を参照して説明する。図8は、実施形態のNNを示す模式図である。図8に示すNNは、D1~D3の3層構造である。D1が入力層であり、D2が中間層であり、D3が出力層である。
【0092】
図8に示すように、NNの左側から複数の入力x(ここでは一例として、入力x1~入力x3)が入力され、右側から結果y(ここでは一例として、結果y1と結果y2)が出力される。
【0093】
具体的には、入力層D1において、3つのニューロンN11~N13が、入力x1~入力x3の各々に対して対応する重みを掛けて総和をとり、活性化関数によって生成したZ11~Z13をそれぞれ出力する。これらの重みは、まとめてW1と標記されている。これらのZ11~Z13をまとめて特徴ベクトルZ1と標記する。特徴ベクトルZ1は、入力x1~入力x3を要素とする入力ベクトルから導かれた特徴量を示す。
【0094】
中間層D2において、2つのニューロンN21、N22が、特徴ベクトルZ1の要素であるZ11~Z13の各々に対して対応する重みを掛けて総和をとり、活性化関数によって生成したZ21、Z22をそれぞれ出力する。これらの重みは、まとめてW2と標記されている。これらのZ21、Z22をまとめて特徴ベクトルZ2と標記する。特徴ベクトルZ2は、特徴ベクトルZ1から導かれた特徴量を示す。
【0095】
出力層D3において、2つのニューロンN31、N32が、特徴ベクトルZ2の要素であるZ21、Z22の各々に対して対応する重みを掛けて総和をとり、活性化関数によって生成した結果y1と結果y2をそれぞれ出力する。これらの重みは、まとめてW3と標記されている。結果y1と結果y2は、特徴ベクトルZ1から導かれる。
【0096】
学習段階でNNの構成及び重みW1~W3が確定する。確定したNNの構成及び重みW1~W3は、実際の建物BLの制振制御システム1の制御部13のNNに適用される。このようなNNの層数は、中間層を複数にして、3層以上に増やすことも可能である。
【0097】
コントローラ130のNN131は、例えば、上記のようなNNを含む。NN131は、学習制御部170による行動方策の指示に対応付けてNN131の重みWを調整する。NN131は、仮想センサ112の測定データに基づいた状態sの下で、行動方策に対応する重みWを用いて行動aを算出する。つまり、重みWは、関数(S,a)に関連付けられている。例えば、重みWは、ルックアップテーブル形式で記憶領域に格納されていてもよい。算出された行動aは、仮想アクチュエータ111に対する制御指令である。
【0098】
コントローラ130は、行動方策の指示に従いNN131を調整した後、仮想センサ112の測定データに基づいた状態sの下で仮想アクチュエータ111に対する制御指令値を逐次算出する。なお、コントローラ130は、NNの結果y1と結果y2の何れかを制御指令値にしてもよく、NNの結果y1と結果y2を組み合わせて導出された値を制御指令値にしてもよい。例えば、コントローラ130は、NNの結果y1と結果y2のなかの最大値を制御指令値にする。
【0099】
振動解析部100において、コントローラ130は、振動シミュレータ110が出力する状態sを帰還させたフィードバック制御系を構成する。この制御系の制御目標は、外乱が生じても仮想建築構造物モデルが振動しないこと、又は外乱により生じた振動を減衰させることである。
【0100】
振動解析部100は、振動シミュレータ110とコントローラ130とを連系させて、仮想建築構造物モデルの振動解析シミュレーションを実施して、その結果として仮想センサ112の測定データに基づいた状態sを出力する。
【0101】
次に、本発明の実施例に係る機械学習器10の動作について説明する。
【0102】
実施形態の機械学習器10は、制御部13を調整する過程で、実際の建物BLを用いた振動解析(強化学習)に代えて、建物BLの仮想建築構造物モデルを用いた数値解析による振動シミュレーション(強化学習)を実施する。
【0103】
これにより、制振制御システム1は、下記のことを可能にする。例えば、制御部13を最適化するために、実際の建物BLを利用することが困難なことがあっても、振動シミュレーションを利用することによって制振制御システム1を構築できる。また、建物BLの位置に地震波が到来することはまれであり、強化学習を効率よく実施できるほど多くはないが、振動シミュレーションを利用することによって、十分な学習を短い期間で効率よく実施できる。これにより、実際の建物BLに制振制御システム1を適用した当初の段階から、実際に発生した地震に対して適切な制振効果が得られる。更に、建物BLの設計段階などでは対象の建物BLが実在しない場合に、振動シミュレーションを利用することで、将来予定される建物BLの解析も実施できる。
【0104】
実施形態の機械学習器10において、振動解析部100は、建物BLをモデル化した仮想建築構造物モデルと、建物BLに対する外乱にあたる振動データ(以下、外乱データという。)とに基づいて、振動シミュレーションにより仮想建築構造物モデルにおける各部の振動を模擬する。これにより、振動解析部100は、制御部13の調整に利用するためのデータを生成する。
【0105】
例えば、外乱データによる振動が仮想建物に伝わると仮想建築構造物モデルが搖動する。振動解析部100は、上記の仮想建築構造物モデルの挙動を再現する。さらに、振動解析部100は、外乱データが示す振動による仮想建築構造物モデルに加わる応力の他、仮想アクチュエータ111が仮想建築構造物モデルに作用させる応力を再現する。振動解析部100は、実際のセンサ12に代わって各部の振動に関する振動データを出力する。
【0106】
実施形態の機械学習器10は、制御部13の最適化のための強化学習処理を下記の手順で実施する。図9は、実施形態の強化学習処理の手順を示すフローチャートである。
【0107】
ステップSA11:
振動解析部100は、建物BLの仮想建築構造物モデルと、制振装置11の特性と配置位置に関する情報を取得する。
【0108】
ステップSA12:
振動解析部100は、強化学習のための状態s、報酬r、行動aの初期値を定める。
【0109】
ステップSA13:
振動解析部100は、振動シミュレーションに適用する外乱データを決定する。例えば、外乱データは、エピソード1回分の振動シミュレーションに適用する全ての波形を含む。
【0110】
ステップSA14:
学習制御部170は、振動解析部100に対して行動方策を指示して、外乱データに基づいた振動シミュレーションを実施させる。
【0111】
ステップSA15:
振動解析部100は、上記の行動方策に従い、エピソード中の状態sに基づいた行動ak+1を決定し、外乱データに基づいた振動シミュレーションを実施して、その結果である状態sk+1を逐次記録する。このステップSA15の処理は、エピソードの始めから終わりまで遂次実施される。
【0112】
ステップSA16:
報酬生成部150は、エピソード1回分の振動シミュレーションの結果である状態sk+1に基づいて、報酬rk+1を導出する。なお、この報酬rk+1の導出は、ステップSA15の処理を終えた後に実施してもよく、ステップSA15の処理と並行して実施してもよい。
【0113】
ステップSA17:
学習制御部170は、行動aと状態sk+1と報酬rk+1に基づいて、次の行動方策に対応するQ値を定めて、それを振動解析部100に通知する。
【0114】
学習制御部170は、上記のステップSA13からSA17の処理を、次のエピソードの解析処理として繰り返し、予定回数のエピソードの解析処理を実施する。
【0115】
なお、上記の強化学習(機械学習)に用いる外乱データとしての地震動波形は、当該建物BLの敷地において観測された観測記録を用いてもよく、建物BLから離れた地点において観測された観測記録又は既往波の観測記録を用いてもよい。また、観測ではなく計算により算出された加速度波形でもよい。
【0116】
上記の実施形態によれば、制振制御システム1の制御部13は、建物BLの振動を模擬する振動シミュレータ110を用いて学習処理がなされたNNを含む。制御部13は、建物BL内の特定の層を挟む2つの床部分に応力調整部が水平方向の偶力として作用する力を、NNの出力に基づいて調整することにより、より簡易な方法で、制御対象の建物の振動を抑制できる。例えば、実施形態の振動シミュレータ110は、建物BLの仮想建築構造物モデルの特定の層を挟む2つの床部分に水平方向の偶力を作用させることで、特定の層の変形量を増加させることができ、実際の建物BLに対する制振制御の効果の検証を実際の建物BLを利用することなく容易に実施できる。
【0117】
また、制振制御システム1は、振動シミュレータ110を用いた強化学習(深層強化学習)によって、実際の建物BLに適用可能な制御系の振動制御モデルを獲得することにより、制振制御システム1における振動抑制性能を高め、所望の制御状態に対する精度を高めることができる。
【0118】
また、センサ12によって、制御対象の建物BLの動き(搖動)を検出することができれば、制御部13のNNは、実際の建物BLの動きを表す物理量に基づいて制振装置11を制御することができる。この場合のセンサ12の位置は、建物BLの仮想建築構造物モデルに配置した仮想センサ112を配置した位置に整合させるとよい。なお、建物BLの動きを表す物理量は、例えば、層間変形角(層間変位)や層の絶対変位、速度、加速度などのように層の変形に関するものの何れかであってよい。また、その物理量として、各フロアの中の複数の位置で検出された物理量の最大値や平均値などを適宜定義してもよい。
【0119】
制振装置11は、建物BLの特定の層を挟む2つの床部分に、上記の制御により調整された偶力を掛けて、建物BLの振動を抑制することができる。
【0120】
また、実施形態によれば、応答解析を実施することにより状態値(状態s)が生成される。学習制御部170は、その状態値(状態s)に基づいた振動制御の度合い(程度)を報酬rにした強化学習の実施によって、NN131の特徴情報を決定する。これにより、制御部13のNNの特徴情報が決定される。
【0121】
なお、制御部13は、強化学習によってNNの特徴情報が事前に決定されるが、その特徴情報として、互いに特徴が異なる複数の特徴情報を所定の記憶領域に格納してもよい。このように複数の特徴情報にそれぞれ対応する制御モデルが規定されることよって、制御部13のNNに最適な制御方法を瞬時に選択して適用できる。
【0122】
制振制御システム1は、振動シミュレータ110を用いた強化学習(深層強化学習)により、性能と精度の高い制御系の振動制御モデルを獲得する。
【0123】
例えば、仮想建築構造物モデルへの入力である外乱データは、水平2方向と上下1方向との中の一部又は全部の成分を含む加速度データ(地動加速度)であって、時刻歴波形を示すものである。
【0124】
(第1の実施形態の第1変形例)
第1変形例は、第1の実施形態とは異なる強化学習アルゴリズムを適用した事例である。本変形例の制御部13は、強化学習によって決定された振動制御ルールに基づいて、制御部13としての応答特性が調整されたものである。以下、強化学習に、方策勾配法を適用した場合について説明する。
【0125】
方策勾配法は、或る環境の状態sの下で、行動aを選択するための行動方策を最適化することにより、より適した行動を選択できるようにする学習方法である。その行動方策を式(4)に示す方策関数(以下、関数P(s,a)と言う。)で定義する。
【0126】
例えば、学習制御部170は、或る状態sのときにとった行動aの確率又は回数に基づいて関数P(s,a)を学習する。例えば、式(4)に示す関数P(s,a)は、状態sのときに行動aをとった回数N1と、行動aをとらなかった回数N2とに基づいて更新される。
【0127】
【数3】
【0128】
上記の式(4)において、α1とα2は、予め定められた定数である。報酬rが期待値以上の場合に行動aが選択されやすく、報酬rが期待値を満たさない場合に行動aが選択されにくくするように、α1とα2の値を定める。
【0129】
学習制御部170は、方策に基づいて所定のエピソードの評価を実施する度に、上記の式(4)の関数P(s,a)を更新する。実施形態におけるエピソードとは、建物BLに加わる所定の外乱の種類の全部又は一部を用いた試行を1回実施する処理単位のことである。学習制御部170は、その際に、エピソード毎の試行の結果による報酬rに基づいて、その振動の大きさが所定値以下の場合に「+α1」を、その振動の大きさが所定値を超える場合に「-α2」を、関数P(s,a)に加える。
【0130】
なお、学習の結果が局所最適解に留まることを避けるように、上記式(4)に基づき推奨される行動aとは異なる行動a’をランダムに発生させて関数P(s,a)の学習を進めてもよい。
【0131】
上記の式(4)による関数P(s,a)が適宜更新されることによって、ある状態sにおいて行動aを実施するとよいという方策を導く関数が導かれる。
【0132】
ここで導出された関数P(s,a)は、状態sの下でとり得る行動aのなかから適した行動aが選択された場合に、より大きな値になるように決定されている。
【0133】
学習制御部170は、NN131に関する行動方策についての学習を、上記の学習手法に従い実施する。上記のように関数P(s,a)を用いた強化学習により決定された振動制御ルールが所望のものになることにより、これと同じ振動制御ルールの制御部13のNNであれば、所望の応答特性を有するものになる。
【0134】
なお、上記の第1の実施形態と上記の第1変形例などに示したように強化学習を用いることで、学習の効率と、学習結果の精度を高めているが、上記の強化学習の手法に限らず、既知のNNに対する学習手法を適用してもよい。
【0135】
(第2の実施形態)
第2の実施形態において振動解析部100による振動シミュレーションのより具体的な一例を示す。振動解析部100は、仮想建築構造物モデルを駆動して、仮想建築構造物モデルの各部の動きを表す状態値を生成する応答解析を実施する。
【0136】
振動解析部100は、仮想建築構造物モデルとしての解析モデルを生成するため、この解析モデルを生成する基本モデル(後述する式(5))と、設計図書などにおける解析対象の地盤及び建物の動特性マトリクス(後述する質量、減衰及び剛性各々のマトリクス)を演算するための設計データとを記憶領域から読み出す。この設計データは、例えば、地盤各層毎の物性値(密度、弾性波速度、減衰定数など)や、建物の振動特性を示す各階の定数(質量、剛性、減衰定数など)がある。
【0137】
また、上記解析モデルは、質点系モデルまたは立体骨組モデルとすることができる。この質点系モデルとする場合は、建物の立体骨組弾塑性解析モデル(立体フレームモデル)などから、各階の定数(質量、剛性、減衰定数など)を求めることができる。
質点系モデルの一例としては、せん断多質点系モデルがある。せん断多質点系モデルの地震応答は、以下の式(5)に示す運動方程式を解くことによって求めることができる。
【0138】
[M0]{x’’} + [C0]{x’} + [K0]{x}={P} ・・・(5)
【0139】
この式(5)において、[M0]は質量マトリクスであり、[C0]は減衰マトリクスであり、[K0]は剛性マトリクスである。また、質量マトリクス[M0]、減衰マトリクス[C0]、剛性マトリクス[K0]の各々のマトリクス要素(以下、単に要素とする)は、要素の列数及び行数がディフォルト値となっている。一般に、地震応答解析における外力{P}は地震動(地動加速度)により各質点に作用する力(慣性力)とする。
【0140】
また、この式(5)において、x’’は質点の相対加速度(地表面に対して平行な方向における加速度)を示し、x’は相対速度、xは相対変位を示している。{x’’}は地表面に対して垂直方向における解析位置(評価対象位置)である質点の地表面における、各質点の平行方向の加速度を示す列ベクトル(m×1型の行列)である。以下に示すように、式(5)における加速度{x’’}、速度{x’}、変位{x}および外力{P}の各々は、下記式(6)に示す列ベクトルである。以下の式においては、建物の階数を便宜的にm階としている。
【0141】
{x’’}=[x1’’x2’’x3’’・・・xm’’]
{x’}=[x1’x2’x3’・・・xm’]
{x}=[x1 x2 x3 ・・・xm ]
{P}=[P1 P2 P3 ・・・Pm ]
・・・(6)
【0142】
すなわち、式(6)における列ベクトルである相対加速度{x’’}は、地表面に対して垂直な方向の解析位置である各質点(例えば、建物の階数に対応)における、地表面に対して平行な方向の加速度を示す列ベクトルである。相対速度{x’}は、地表面に対して垂直な方向の解析位置である各質点における、地表面に対して平行な方向の速度を示す列ベクトルである。相対変位{x}は、地表面に対して垂直な方向の解析位置である各質点における、地表面に対して平行な方向の変位を示す列ベクトルである。外力{P}は、地表面に対して垂直な方向の解析位置である各質点における、地表面に対して平行な方向に作用する慣性力を示す列ベクトルである。
【0143】
振動解析部100は、式(6)における質量マトリクス[M0]、減衰マトリクス[C0]及び剛性マトリクス[K0]の各々のディフォルトの次元のマトリクス要素を、建物BLの階数、及び上記設計データからそれぞれ有限要素法などにより算出して求めた次元のマトリクス要素に変更する。
【0144】
また、各マトリクスの要素を予め設計データから算出し、建物BLの階数及び設計データに対応させてデータベース16に予め書き込んで記憶させておく。そして、振動解析部100がデータベース16から、建物BLに対応して各マトリクスの要素を読み出し、このマトリクス各々の要素の次元にあわせて基本モデルを拡張して変更し、建物の解析モデルを生成するようにしても良い。
【0145】
そして、振動解析部100は、基本モデルにおける質量マトリクス[M0]、減衰マトリクス[C0]及び剛性マトリクス[K0]の各々の要素の次元を建物BLの階数に対応させて変更(拡張して変更)することにより、質量マトリクス[MD]、減衰マトリクス[CD]及び剛性マトリクス[KD]を求め、加速度{x’’}、速度{x’}、変位{x}の列ベクトルを階数に応じてベクトルの要素数を拡張する。そして、振動解析部100は、この求めた質量マトリクス[MD]、減衰マトリクス[CD]及び剛性マトリクス[KD]と、加速度{x’’}、速度{x’}、変位{x}の列ベクトルとを用いて、式(6)を以下の式(7)に変更し、解析対象の建物BLの解析モデルを生成する。
【0146】
[MD]{x’’} + [CD]{x’} + [KD]{x}=-[MD]{1}y0’’
・・・(7)
【0147】
この式(7)において、x’’は質点の相対加速度(地表面に対して平行な方向における加速度)を示し、x’は相対速度、xは相対変位を示している。また、y0’’は地震動による加速度(地動加速度)を示しており、式(7)の右辺は地震動により各質点に作用する慣性力を外力として明示的に表している。この加速度{x’’}、速度{x’}、変位{x}は、すでに説明したように、各階を質点とした応答値とした構成である。
【0148】
ここで、第1層にf1、第2層にf2の大きさの偶力を加える。このとき、第1層の上下階(基礎と質点1)に向きが逆の一対の力(+f1と-f1)が同時に作用する。同様に、第2層の上下階(質点1と質点2)に向きが逆の一対の力(+f2と-f2)が同時に作用する。上階側に作用する力の向きを正(+)とすると、各質点に作用する力{F}は、下記の式(8)ように表される。
【0149】
{F}=[F1 F2 F3 F4 ・・・ Fm]
F1=f1―f2,F2=f2,F3=F4=・・・=Fm=0
・・・(8)
【0150】
層間に加えた偶力は、各質点に作用する等価な外力{F}として、運動方程式(5)の右辺に加えることにより考慮することができる。
【0151】
[MD]{x’’} + [CD]{x’} + [KD]{x}={P}+{F}
・・・(9)
【0152】
仮想アクチュエータ111が層間に作用させる力(偶力)を、上記の運動方程式(9)における外力項{F}として適用することで、質点系モデルの地震応答解析において仮想アクチュエータ111による制御力を考慮することができる。
【0153】
そして、振動解析部100は、生成した式(9)の解析モデルを、建物BLに対応させて(建物BLを識別する識別情報に対応させて)、不図示の記憶部に書き込んで記憶させる。
【0154】
振動シミュレータ110は、振動解析を行う対象の建物BLに対応する式(9)を記憶部から読み出し、この式(9)に対して想定する地震動による地動加速度y0’’と、建物の層間に配置された仮想アクチュエータ111によって作用する外力{F}を用いて、質点としての各階における列ベクトルである加速度{x’’}、速度{x’}、変位{x}の各々の応答値を求める(応答解析を実施する)。
【0155】
すなわち、振動シミュレータ110は、細かい時間間隔Δt毎に式(9)の運動方程式に地震動により作用する慣性力{P}と仮想アクチュエータ111により作用する力{F}を代入することにより、列ベクトルである加速度{x’’}、速度{x’}、変位{x}の各々を算出する。
【0156】
なお、地震動により作用する慣性力{P}と、仮想アクチュエータ111により作用する力{F}とを、剛性マトリクス[KD]を用いた強制変位により規定してもよい。
【0157】
上記の実施形態によれば、制振装置11によって、建物BLの特定の層の歪を増やす力を再現する振動シミュレーションを可能にする。
【0158】
上記の実施形態によれば、第1の実施形態と同様の効果を奏することの他、仮想建築構造物モデルを駆動して、仮想建築構造物モデルの各部の動きを表す状態値を生成する応答解析を実施することができる。
【0159】
以上、本発明の実施形態について説明したが、制振制御システム1と機械学習器10は、内部にコンピュータシステムを有している。そして、上述した処理に関する一連の処理の過程は、プログラムの形式でコンピュータ読み取り可能な記憶媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここで、コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリなどをいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。また、ここでいう「コンピュータシステム」とは、OSなども含むものとする。
【0160】
以上、本発明の一実施形態について説明したが、本発明の実施形態は上記のものに限定されない。例えば、各実施形態とその変形例に例示した手法は、例示した組合せ以外の組みにしてもよい。また、本発明の実施形態は、上記の実施形態を次のように変形したものとすることができる。
【0161】
例えば、上記の実施形態では、本発明に関連する構成を便宜上、機械学習器10を、振動解析部100と、報酬生成部150と、学習制御部170とに分けて説明した。機械学習器10の分割を、上記に例示したものと変更してもよく、各機能部同士を一体化してもよい。また、各機能部の一部を、他の機能部に含めてもよい。また、機械学習器10の一部を振動解析装置としてもよく、例えば、振動シミュレータ110が振動解析装置の一例であってもよい。
【0162】
また、制御部13は、コンピュータシステムであってもよく、その一部または全部がハードウェア機能部であってもよい。
【0163】
また、上記の回転型ダンパー23は、建物BLの振動エネルギーを熱に変換することにより、振動発生時に減衰力を建物BLに作用させる振動減衰機能と、回転型ダンパー23の外筒31から軸部材36の突出量を能動的に調整する軸長調整機能とを併せ持つものである。これに代えて、回転型ダンパー23の機能を、振動減衰機能を有するダンパーと、軸長調整機能を有するアクチュエータとに配分してもよい。この場合、そのダンパーとアクチュエータとを直列に配置することで、ダンパーの軸部材の軸長をアクチュエータが代わりに調整することができる。
【符号の説明】
【0164】
1 制振制御システム1、10 機械学習器(振動解析装置)、11 制振装置、12 センサ、13 制御部(コントローラ)、13NN ニューラルネット(第1人工ニューラルネット)、100 振動解析部、110 振動シミュレータ、111 仮想アクチュエータ(仮想応力調整部)、130 コントローラ、131 NN(第2人工ニューラルネット)、150 報酬生成部、170 学習制御部、110E 環境、170A エージェント
図1
図2
図3
図4
図5
図6
図7
図8
図9
【手続補正書】
【提出日】2023-01-19
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
制御対象を制御する制御器にモデルを適用するために、
前記制御対象に生じ得る実現象を再現又は模擬するシミュレーションを実施して、前記シミュレーションの結果を前記モデルの強化学習に活用する強化学習処理部
を備える学習装置。
【請求項2】
前記強化学習処理部は、
前記強化学習のための状態情報を前記シミュレーションの結果から生成し、前記状態情報前記モデルの強化学習に活用する、
請求項1に記載の学習装置。
【請求項3】
前記モデルの特性は、前記モデルに対応付けられる人工ニューラルネットの特性情報によって特徴づけられる、
請求項1に記載の学習装置。
【請求項4】
前記モデルの強化学習は、深層強化学習である、
請求項1から請求項3の何れか1項に記載の学習装置。
【請求項5】
前記強化学習処理部は、
実現象を再現又は模擬するシミュレーションの結果を学習過程の評価に活用して、前記モデルの強化学習を実施する、
請求項1から請求項3の何れか1項に記載の学習装置。
【請求項6】
前記強化学習処理部は、
制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用する前に実施して、前記シミュレーションの結果を前記モデルの強化学習に活用する
請求項1から請求項3の何れか1項に記載の学習装置。
【請求項7】
制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を前記モデルの強化学習に活用するステップ
を含む学習方法。
【請求項8】
制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習によって生成されたモデルを用いる制御部
を備える制御装置。
【請求項9】
制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習によって生成されるモデルを含み、前記シミュレーションによって前記再現又は前記模擬する対象物の制振制御を実施する制振制御部
を備える建築構造物。
【請求項10】
制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習を実施して学習済みモデルを生成するステップ
を含む学習済みモデルの生成方法。
【請求項11】
コンピュータに、
制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習を実施して学習済みモデルを生成するステップ
を実行させるためのプログラム。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0001
【補正方法】変更
【補正の内容】
【0001】
本発明は、学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラムに関する。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0002
【補正方法】変更
【補正の内容】
【0002】
制振制御システムにおける制振技術には、パッシブ方式とアクティブ方式が含まれる。アクティブ方式は、対象物に設けられたセンサによる計測値に基づいて、対象物に応力を掛けるアクチュエータを制御して、能動的に対象物の振動を抑制する。建築分野におけるアクティブ方式の制振制御システムとして、制御対象を定常かつ線形のシステムとして扱う制御理論を適用したものが知られている。
人工ニューラルネットなどを含めて構成されるモデルの学習に、測定により検出された結果に基づいたデータなどを用いる場合があった。
【手続補正5】
【補正対象書類名】明細書
【補正対象項目名】0004
【補正方法】変更
【補正の内容】
【0004】
しかしながら、実際の建築構造物に応力を生じさせる地震動などの実現象は非定常であり、これに対応する解析用のデータを得ることが難しい。モデルの学習には十分な解析用のデータが必要であり、実現象に適応可能なモデルを、人工ニューラルネットなどを含めて構成することが困難な場合があった。
【手続補正6】
【補正対象書類名】明細書
【補正対象項目名】0005
【補正方法】変更
【補正の内容】
【0005】
本発明が解決しようとする課題は、より簡易な方法でモデルの強化学習実施できる学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラムを提供することである。
【手続補正7】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正の内容】
【0006】
本発明の一態様の学習装置は、制御対象を制御する制御器にモデルを適用するために、前記制御対象に生じ得る実現象を再現又は模擬するシミュレーションを実施して、前記シミュレーションの結果を前記モデルの強化学習に活用する強化学習処理部を備える学習装置である。
本発明の一態様の学習装置における前記強化学習処理部は、前記強化学習のための状態情報を前記シミュレーションの結果から生成し、前記状態情報を前記モデルの強化学習に活用する。
本発明の一態様の学習装置における前記モデルの特性は、前記モデルに対応付けられる人工ニューラルネットの特性情報によって特徴づけられる。
本発明の一態様の学習装置における前記モデルの強化学習は、深層強化学習である。
本発明の一態様の学習装置における前記強化学習処理部は、実現象を再現又は模擬するシミュレーションの結果を学習過程の評価に活用して、前記モデルの強化学習を実施する。
本発明の一態様の学習装置における前記強化学習処理部は、制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用する前に実施して、前記シミュレーションの結果を前記モデルの強化学習に活用する。
本発明の一態様は、制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を前記モデルの強化学習に活用するステップを含む学習方法である。
本発明の一態様は、制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習によって生成されたモデルを用いる制御部を備える制御装置である。
本発明の一態様は、制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習によって生成されるモデルを含み、前記シミュレーションによって前記再現又は前記模擬する対象物の制振制御を実施する制振制御部を備える建築構造物である。
本発明の一態様は、制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習を実施して学習済みモデルを生成するステップを含む学習済みモデルの生成方法である。
本発明の一態様は、コンピュータに、制御対象に生じ得る実現象を再現又は模擬するシミュレーションを、前記制御対象を制御する制御器にモデルを適用するために実施して、前記シミュレーションの結果を活用した強化学習を実施して学習済みモデルを生成するステップを実行させるためのプログラムである。
本発明の一態様に係る制振制御システムは、複数の層を備える建築構造物の振動を模擬する振動シミュレータを用いて学習処理がなされた第1人工ニューラルネット(以下、第1NNという。)を含み、前記複数の層のうちの特定の層を挟む2つの床部分に応力調整部が水平方向の偶力として作用させる力を、前記第1NNにより調整する制御部を備える制振制御システムである。
【手続補正8】
【補正対象書類名】明細書
【補正対象項目名】0013
【補正方法】変更
【補正の内容】
【0013】
本発明によれば、より簡易な方法でモデルの強化学習実施できる学習装置、学習方法、制御装置、建築構造物、学習済みモデルの生成方法、及びプログラムを提供できる。