(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023038920
(43)【公開日】2023-03-17
(54)【発明の名称】水処理方法および水処理装置
(51)【国際特許分類】
C02F 1/44 20230101AFI20230310BHJP
B01D 61/02 20060101ALI20230310BHJP
B01D 61/12 20060101ALI20230310BHJP
B01D 61/58 20060101ALI20230310BHJP
B01D 69/02 20060101ALI20230310BHJP
【FI】
C02F1/44 E
B01D61/02 500
B01D61/12
B01D61/58
B01D69/02
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022138434
(22)【出願日】2022-08-31
(31)【優先権主張番号】P 2021145474
(32)【優先日】2021-09-07
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000004400
【氏名又は名称】オルガノ株式会社
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】若山 聖
(72)【発明者】
【氏名】中野 徹
(72)【発明者】
【氏名】高田 明広
【テーマコード(参考)】
4D006
【Fターム(参考)】
4D006GA03
4D006GA06
4D006GA07
4D006GA14
4D006HA01
4D006HA41
4D006HA61
4D006JA53Z
4D006JA57Z
4D006JA58Z
4D006KA01
4D006KA02
4D006KA52
4D006KA53
4D006KA54
4D006KA56
4D006KA57
4D006KA63
4D006KA69
4D006KB13
4D006KB17
4D006KB30
4D006KE12R
4D006KE15R
4D006MA01
4D006MA03
4D006MB06
4D006MC18
4D006MC54
4D006MC63
4D006PA01
4D006PB08
4D006PB23
4D006PB27
4D006PB28
4D006PC80
(57)【要約】
【課題】アンモニアおよびシリカを含む被処理水を、シリカ濃度を低減して濃縮することができる水処理方法および水処理装置を提供する。
【解決手段】アンモニアおよびシリカを含む被処理水を濃縮する水処理方法であって、被処理水のpHをpH調整装置13で7~9の範囲に調整するpH調整工程と、pHを調整した被処理水についてナノろ過装置11でナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過工程と、を含み、被処理水は、アンモニウムイオンを1000mg/L以上、2価アニオンを1000mg/L以上、シリカを5mg/L以上含有する、水処理方法である。
【選択図】
図1
【特許請求の範囲】
【請求項1】
アンモニアおよびシリカを含む被処理水を濃縮する水処理方法であって、
前記被処理水のpHを7~9の範囲に調整するpH調整工程と、
pHを調整した前記被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過工程と、
を含み、
前記被処理水は、アンモニウムイオンを1000mg/L以上、2価アニオンを1000mg/L以上、シリカを5mg/L以上含有することを特徴とする水処理方法。
【請求項2】
請求項1に記載の水処理方法であって、
前記pH調整工程において前記被処理水のpHを8~9の範囲に調整し、
前記ナノろ過工程で排出されるアンモニアガスを処理するためのアンモニア処理工程をさらに含むことを特徴とする水処理方法。
【請求項3】
請求項1または2に記載の水処理方法であって、
前記ナノろ過工程の後段に、前記NF濃縮水について半透膜を用いて濃縮水と希釈水とを得る半透膜処理工程をさらに含むことを特徴とする水処理方法。
【請求項4】
請求項1または2に記載の水処理方法であって、
前記ナノろ過膜は、膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が0~20%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が90%~100%の範囲であることを特徴とする水処理方法。
【請求項5】
アンモニアおよびシリカを含む被処理水を濃縮する水処理装置であって、
前記被処理水のpHを7~9の範囲に調整するpH調整手段と、
pHを調整した前記被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段と、
を備え、
前記被処理水は、アンモニウムイオンを1000mg/L以上、2価アニオンを1000mg/L以上、シリカを5mg/L以上含有することを特徴とする水処理装置。
【請求項6】
請求項5に記載の水処理装置であって、
前記pH調整手段において前記被処理水のpHを8~9の範囲に調整し、
前記ナノろ過手段で排出されるアンモニアガスを処理するためのアンモニア処理手段をさらに備えることを特徴とする水処理装置。
【請求項7】
請求項5または6に記載の水処理装置であって、
前記ナノろ過手段の後段に、前記NF濃縮水について半透膜を用いて濃縮水と希釈水とを得る半透膜処理手段をさらに備えることを特徴とする水処理装置。
【請求項8】
請求項5または6に記載の水処理装置であって、
前記ナノろ過膜は、膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が0~20%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が90%~100%の範囲であることを特徴とする水処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アンモニアおよびシリカを含む被処理水を濃縮する水処理方法および水処理装置に関する。
【0002】
近年、半導体工場等から排出される排水のうち硫酸やアンモニア等を含有する排水から、エバポレータや膜蒸留等の蒸発法を用いて有価物を回収する手法が用いられている。しかし、蒸発法は膨大なエネルギーが必要となるため、特許文献1のように、蒸発法の前段において逆浸透膜法で排水を減容化する方法が一般的に用いられている。
【0003】
一方、排水中に含有されるイオンを高濃度に濃縮する方法として、特許文献2のように逆浸透膜モジュールの濃縮液の硬質成分または濁質成分をナノろ過膜または限外ろ過膜で除去した後、その透過水を半透膜モジュールで濃縮する方法が開発されている。
【0004】
半導体工場等から排出される排水等の被処理水中にはスケール成分が含まれていることがあるために半透膜処理で高濃縮した際に膜閉塞が生じ、濃縮が困難となる場合がある。特に、被処理水中にシリカ(SiO2)が含まれている場合には、半透膜処理の前処理でシリカを除去することが望ましいが、シリカの濃度が高いと分散剤等の薬品で対応することは困難な場合がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平10-323664号公報
【特許文献2】特開2021-045736号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、アンモニアおよびシリカを含む被処理水を、シリカ濃度を低減して濃縮することができる水処理方法および水処理装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、アンモニアおよびシリカを含む被処理水を濃縮する水処理方法であって、前記被処理水のpHを7~9の範囲に調整するpH調整工程と、pHを調整した前記被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過工程と、を含み、前記被処理水は、アンモニウムイオンを1000mg/L以上、2価アニオンを1000mg/L以上、シリカを5mg/L以上含有する、水処理方法である。
【0008】
前記水処理方法において、前記pH調整工程において前記被処理水のpHを8~9の範囲に調整し、前記ナノろ過工程で排出されるアンモニアガスを処理するためのアンモニア処理工程をさらに含むことが好ましい。
【0009】
前記水処理方法において、前記ナノろ過工程の後段に、前記NF濃縮水について半透膜を用いて濃縮水と希釈水とを得る半透膜処理工程をさらに含むことが好ましい。
【0010】
前記水処理方法において、前記ナノろ過膜は、膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が0~20%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が90%~100%の範囲であることが好ましい。
【0011】
本発明は、アンモニアおよびシリカを含む被処理水を濃縮する水処理装置であって、前記被処理水のpHを7~9の範囲に調整するpH調整手段と、pHを調整した前記被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段と、を備え、前記被処理水は、アンモニウムイオンを1000mg/L以上、2価アニオンを1000mg/L以上、シリカを5mg/L以上含有する、水処理装置である。
【0012】
前記水処理装置において、前記pH調整手段において前記被処理水のpHを8~9の範囲に調整し、前記ナノろ過手段で排出されるアンモニアガスを処理するためのアンモニア処理手段をさらに備えることが好ましい。
【0013】
前記水処理装置において、前記ナノろ過手段の後段に、前記NF濃縮水について半透膜を用いて濃縮水と希釈水とを得る半透膜処理手段をさらに備えることが好ましい。
【0014】
前記水処理装置において、前記ナノろ過膜は、膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が0~20%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が90%~100%の範囲であることが好ましい。
【発明の効果】
【0015】
本発明によって、アンモニアおよびシリカを含む被処理水を、シリカ濃度を低減して濃縮することができる水処理方法および水処理装置を提供することができる。
【図面の簡単な説明】
【0016】
【
図1】本発明の実施形態に係る水処理装置の一例を示す概略構成図である。
【
図2】本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
【
図3】本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
【
図4】本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
【
図5】本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
【
図6】本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
【
図7】本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
【
図8】本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。
【
図9】実施例1におけるシリカの阻止率の結果を示すグラフである。
【発明を実施するための形態】
【0017】
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
【0018】
本発明の実施形態に係る水処理装置の一例の概略を
図1に示し、その構成について説明する。
【0019】
図1に示す水処理装置1は、アンモニアおよびシリカを含む被処理水を濃縮する装置である。水処理装置1は、被処理水のpHを7~9の範囲に調整するpH調整手段として、pH調整装置13と、pHを調整した被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段として、ナノろ過装置11と、を備える。水処理装置1は、半透膜12で仕切られた第一空間(濃縮側)14と第二空間(透過側)16とを有する半透膜モジュールを用いて、ナノろ過装置11のNF濃縮水を第一空間14に通水し、第一空間14を加圧してNF濃縮水に含まれる水を半透膜12を透過させることによって濃縮水を得るとともに、第二空間16に、NF濃縮水の一部を通水して希釈水を得る半透膜処理手段として、例えば、膜モジュール10を備えてもよい。水処理装置1は、NF濃縮水を貯留するNF濃縮水槽をナノろ過装置11と膜モジュール10との間に備えてもよい。水処理装置1は、ナノろ過装置11で排出されるアンモニアガスを処理するためのアンモニア処理手段として、アンモニア処理装置35を備えてもよい。
【0020】
図1の水処理装置1において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。ナノろ過装置11のNF透過水出口とアンモニア処理装置35の入口とは、配管27により接続されている。アンモニア処理装置35の出口には、配管37が接続されている。ナノろ過装置11のNF濃縮水出口と、膜モジュール10の第一空間入口とは、ポンプ18を介して配管24により接続され、ポンプ18の下流側で配管24から分岐した配管26がバルブ22を介して膜モジュール10の第二空間入口に接続されている。膜モジュール10の第一空間出口にはバルブ23を介して配管28が接続され、膜モジュール10の第二空間出口と配管25におけるポンプ21の上流側とは、配管30により接続されている。
【0021】
ポンプ18は、例えば、入力された駆動周波数に応じた回転速度で駆動され、NF濃縮水を吸入して膜モジュール10に加圧吐出する加圧ポンプである。ポンプ18には、例えば、入力された指令信号に対応する駆動周波数をポンプ18に出力するインバーター20が設置されている。ポンプ21は、例えば、入力された駆動周波数に応じた回転速度で駆動され、被処理水を吸入してナノろ過装置11に加圧吐出する加圧ポンプである。バルブ22、バルブ23は、例えば、手動または自動で開閉度を調節可能なバルブである。
【0022】
膜モジュール10は、半透膜12で仕切られた第一空間14および第二空間16を有し、NF濃縮水を膜モジュール10の第一空間入口から第一空間14と第二空間入口から第二空間16とに通水し、第一空間14を加圧することによって、その第一空間14のNF濃縮水に含まれる水を半透膜12を介して第二空間16に透過させて水を濃縮する装置である。すなわち、水処理装置1において、半透膜12を用いてNF濃縮水が濃縮される。膜モジュール10は、膜モジュール10の第一空間14と第二空間16の両方にNF濃縮水を供給して濃縮処理を行う装置である。
【0023】
水処理装置1において、アンモニアおよびシリカを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られる(ナノろ過工程)。NF透過水は、配管27を通して排出される。NF透過水は系外へ排出し、河川等へ放流してもよいし、さらに高度水処理法を設けて水回収してもよい。
【0024】
pH調整工程において被処理水のpHはpH7~9の範囲に調整される。被処理水のpHがpH7~9の範囲に調整されることによって、アンモニアおよびシリカはナノろ過膜を透過し、アンモニアおよびシリカの大部分はNF透過水に含有される。なお、シリカは一例であり、非荷電成分であれば他成分でもナノろ過膜を透過すると考えられる。このとき、pH7未満であると、アンモニアおよびシリカのナノろ過膜の透過率が低くなる場合があり、pH9を超えると、シリカがイオン化し、荷電反発の影響によりシリカの透過率が低くなる場合がある。
【0025】
pH調整工程において被処理水のpHを8~9の範囲に調整した場合、被処理水中のアンモニアはガス化される。この場合、pH8~9の範囲にpH調整が行われた被処理水は、ナノろ過装置11へ供給され、ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られ(ナノろ過工程)、NF透過水は、配管27を通してアンモニア処理装置35へ送液され、アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理され、処理水が得られる(アンモニア処理工程)。アンモニア処理工程では、NF透過水からアンモニアガスが回収処理されるか、またはアンモニアガスが分解処理される。
【0026】
ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。ナノろ過装置11で得られたNF濃縮水は、バルブ23が開状態で、ポンプ18により配管24を通して、膜モジュール10の第一空間入口から第一空間14へ加圧送液され、通水される。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。また、NF濃縮水は、バルブ22が開状態で、配管24から分岐した配管26を通して、膜モジュール10の第二空間入口から第二空間16へ送液され、通水される。加圧されたNF濃縮水に含まれる水の一部は半透膜12を介して第一空間14から第二空間16に向かって透過する。このとき、NF濃縮水に含まれるイオン類等の大部分は半透膜12を透過することができないので、半透膜12を透過しなかった第一空間14内の水が濃縮される。一方、第二空間16では、配管26を通して通水されたNF濃縮水の一部と、半透膜12を透過したイオン濃度の低い透過水とが合流するため、希釈効果が働く。第一空間14で得られた濃縮水は、第一空間出口から配管28を通して排出され、第二空間16で得られた希釈水は、第二空間出口から配管30を通して排出され、希釈水の少なくとも一部はナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。ここで、膜モジュール10において、第一空間14が加圧されてその第一空間14のNF濃縮水に含まれる水が半透膜12を介して第二空間16に透過され、第一空間14で濃縮水が得られる(濃縮工程)とともに、第二空間16で希釈水が得られる(希釈工程)(以上、半透膜処理工程)。
【0027】
ここで、配管24,26、ポンプ18等が、膜モジュール10の第一空間14と第二空間16の両方にNF濃縮水を供給する供給手段として機能する。配管30等が膜モジュール10で得られる希釈水の少なくとも一部をナノろ過装置11の前段に返送する返送手段として機能する。
【0028】
第二空間16で得られた希釈水は、配管30を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよく、再利用されてもよい。希釈水の少なくとも一部は、例えば配管25におけるポンプ21の上流側に返送されてNF濃縮水と混合されてもよい。希釈水の少なくとも一部について、さらに他の処理、例えば逆浸透膜処理が行われてもよい。
【0029】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0030】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水が回収され、被処理水の減容化が行われる。
【0031】
膜モジュール10の第一空間14と第二空間16にNF濃縮水を通水することによって、半透膜12の第一空間14側と第二空間16側の浸透圧差を小さくし、より少ない消費エネルギーでNF濃縮水中の高濃度のイオンを濃縮することができる。すなわち、高濃度でイオンを含むNF濃縮水を低コストで濃縮可能であり、高イオン濃度の廃液量を低減することができる。
【0032】
半導体工場等から排出される排水等の被処理水中にはスケール成分が含まれていることがあるために半透膜処理で高濃縮した際に膜閉塞が生じ、濃縮が困難となる場合がある。特に、被処理水中にシリカ(SiO2)が含まれている場合には、半透膜処理の前処理でシリカを除去することが望ましいが、シリカの濃度が高いと分散剤等の薬品で対応することは困難な場合がある。
【0033】
本実施形態に係る水処理装置および水処理方法では、被処理水中にシリカが含まれていても、ナノろ過装置11により被処理水中のシリカを、ナノろ過膜を選択的に透過させ、シリカ濃度を低減させたNF濃縮水を膜モジュール10の第一空間14または第一空間14と第二空間16の両側に通水することによって、安定して濃縮対象物質を高濃縮することができる。
【0034】
第二空間16で得られた希釈水の少なくとも一部がナノろ過装置11の前段に返送されることが好ましく、希釈水量の50~100%がナノろ過装置11の前段に返送されることがより好ましく、希釈水量の70~100%がナノろ過装置11の前段に返送されることがさらに好ましい。ナノろ過装置11の前段に膜モジュール10から排出される希釈水を所定量以上戻して循環させることによって、被処理水中にシリカが含まれていても、ナノろ過装置11に供給される被処理水中のアンモニウムイオン濃度に対するシリカ濃度の比率を下げ、半透膜処理の濃縮工程におけるシリカスケール析出リスクを低減させることができる。
【0035】
膜モジュール10へのNF濃縮水の供給流量と透過水流量と濃縮水流量とを調節する調節方法として、例えば、以下の方法を行えばよい。
【0036】
ポンプ18に駆動周波数を制御するインバーター20を設け、膜モジュール10へのNF濃縮水の供給流量を調節する。ポンプ18にインバーター20を設置することが好ましいが、設置しなくてもよい。NF濃縮水の供給を第一空間14側と第二空間16側の両方に行い、第二空間16の入口前にバルブ22を設け、第一空間14の出口にバルブ23を設け、バルブ22とバルブ23の開度を手動または自動で調節することにより第一空間14側への供給水流量と第二空間16側への供給水流量との比を調節すればよい。
【0037】
透過水流量、濃縮水流量が不足する場合は、ポンプ18のインバーター20の周波数を上げてNF濃縮水の供給量を増やせばよい。
【0038】
配管28の第一空間14の出口に開閉度を調節できるバルブ23を設け、バルブ23の開度によって濃縮水流量や第一空間14の入口および第一空間14の出口の圧力調整を行うことができる。
【0039】
これらの操作によって所定の第一空間14側の圧力、各種流量に調節することができる。
【0040】
また、NF濃縮水の第一空間14側、第二空間16側への供給を別々のポンプにより行ってもよい。別々のポンプによってNF濃縮水の供給を行う場合には、個々のポンプに駆動周波数を制御するインバーターを設けてもよい。
【0041】
第一空間14側と第二空間16側の両方に対して同一または近い濃度のNF濃縮水を通水することによって、半透膜12により生じる浸透圧を低減し、必要圧力を低減することができる。その結果、従来の逆浸透膜法では濃縮することができなかった濃度のNF濃縮水を濃縮することができる。
【0042】
このように、アンモニアおよびシリカを含む被処理水を、シリカ濃度を低減して濃縮することができる。また、被処理水から有価物を高濃度で回収することができる。被処理水中にシリカが含まれていても、シリカ濃度を低減させたNF濃縮水を半透膜処理することによって、半透膜処理の濃縮工程におけるシリカスケール析出リスクを低減させることができる。
【0043】
本発明の実施形態に係る水処理装置の他の例の概略を
図2に示し、その構成について説明する。
【0044】
図2に示す水処理装置2は、被処理水のpHを7~9の範囲に調整するpH調整手段として、pH調整装置13と、pHを調整した被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段として、ナノろ過装置11と、を備える。水処理装置2は、半透膜12で仕切られた第一空間(濃縮側)14と第二空間(透過側)16とを有する半透膜モジュールを用いて、ナノろ過装置11のNF濃縮水を第一空間14に通水し、第一空間14を加圧してNF濃縮水に含まれる水を半透膜12を透過させることによって濃縮水を得るとともに、第二空間16に、濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段として、例えば、膜モジュール10を備えてもよい。水処理装置2は、NF濃縮水を貯留するNF濃縮水槽をナノろ過装置11と膜モジュール10との間に備えてもよい。水処理装置2は、ナノろ過装置11で排出されるアンモニアガスを処理するためのアンモニア処理手段として、アンモニア処理装置35を備えてもよい。
【0045】
図2の水処理装置2において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。ナノろ過装置11のNF透過水出口とアンモニア処理装置35の入口とは、配管27により接続されている。アンモニア処理装置35の出口には、配管37が接続されている。ナノろ過装置11のNF濃縮水出口と、膜モジュール10の第一空間入口とは、ポンプ18を介して配管24により接続されている。膜モジュール10の第一空間出口にはバルブ23を介して配管28が接続されている。バルブ23の上流側で配管28から分岐した配管34がバルブ32を介して膜モジュール10の第二空間入口に接続されている。膜モジュール10の第二空間出口と配管25におけるポンプ21の上流側とは、配管36により接続されている。
【0046】
ポンプ18は、例えば、入力された駆動周波数に応じた回転速度で駆動され、NF濃縮水を吸入して膜モジュール10に加圧吐出する加圧ポンプである。ポンプ18には、例えば、入力された指令信号に対応する駆動周波数をポンプ18に出力するインバーター20が設置されている。ポンプ21は、例えば、入力された駆動周波数に応じた回転速度で駆動され、被処理水を吸入してナノろ過装置11に加圧吐出する加圧ポンプである。バルブ23、バルブ32は、例えば、手動または自動で開閉度を調節可能なバルブである。
【0047】
膜モジュール10は、半透膜12で仕切られた第一空間14および第二空間16を有し、NF濃縮水を膜モジュール10の第一空間入口から第一空間14に通水するとともに、膜モジュール10の第一空間14の第一空間出口から排出された濃縮水の少なくとも一部を膜モジュール10の第二空間入口から第二空間16に通水し、第一空間14を加圧することによって、その第一空間14のNF濃縮水に含まれる水を半透膜12を介して第二空間16に透過させて水を濃縮する装置である。すなわち、水処理装置2において、半透膜12を用いてNF濃縮水が濃縮される。膜モジュール10は、膜モジュール10の第一空間14にNF濃縮水を供給し、第一空間14の出口から得られた濃縮水の少なくとも一部を膜モジュール10の第二空間16に供給して濃縮処理を行う装置である。
【0048】
水処理装置2において、アンモニアおよびシリカを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られる(ナノろ過工程)。NF透過水は、配管27を通して排出される。
【0049】
pH調整工程において被処理水のpHはpH7~9の範囲に調整される。被処理水のpHがpH7~9の範囲に調整されることによって、アンモニアおよびシリカはナノろ過膜を透過し、アンモニアおよびシリカの大部分はNF透過水に含有される。pH調整工程において被処理水のpHを8~9の範囲に調整した場合、pH8~9の範囲にpH調整が行われた被処理水は、ナノろ過装置11へ供給され、ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られ(ナノろ過工程)、NF透過水は、配管27を通してアンモニア処理装置35へ送液され、アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理され、処理水が得られる(アンモニア処理工程)。アンモニア処理工程では、NF透過水からアンモニアガスが回収処理されるか、またはアンモニアガスが分解処理される。
【0050】
ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。ナノろ過装置11で得られたNF濃縮水は、バルブ23が開状態で、ポンプ18により配管24を通して、膜モジュール10の第一空間入口から第一空間14へ加圧送液され、通水される。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。加圧されたNF濃縮水に含まれる水の一部は半透膜12を介して第一空間14から第二空間16に向かって透過する。このとき、イオン類等の大部分は半透膜12を透過することができないので、半透膜12を透過しなかった第一空間14内の水が濃縮される。一方、第二空間16では、配管34を通して通水された濃縮水の一部と、半透膜12を透過したイオン濃度の低い透過水とが合流するため、希釈効果が働く。第一空間14で得られた濃縮水は、第一空間出口から配管28を通して排出され、濃縮水の少なくとも一部は、バルブ32が開状態で、配管28から分岐した配管34を通して、膜モジュール10の第二空間入口から第二空間16へ送液され、通水される。第二空間16で得られた希釈水は、第二空間出口から配管36を通して排出され、希釈水の少なくとも一部はナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。ここで、膜モジュール10において、第一空間14が加圧されてその第一空間14のNF濃縮水に含まれる水が半透膜12を介して第二空間16に透過され、第一空間14で濃縮水が得られる(濃縮工程)とともに、第二空間16で希釈水が得られる(希釈工程)(以上、半透膜処理工程)。
【0051】
ここで、配管24,28,34、ポンプ18等が、膜モジュール10の第一空間14にNF濃縮水を供給し、第一空間14の出口から得られた濃縮水の少なくとも一部を膜モジュール10の第二空間16に供給する供給手段として機能する。配管36等が膜モジュール10で得られる希釈水の少なくとも一部をナノろ過装置11の前段に返送する返送手段として機能する。
【0052】
第二空間16で得られた希釈水は、配管36を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよく、再利用されてもよい。希釈水の少なくとも一部は、例えば配管25におけるポンプ21の上流側に返送されてNF濃縮水と混合されてもよい。希釈水の少なくとも一部について、さらに他の処理、例えば逆浸透膜処理が行われてもよい。
【0053】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0054】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水が回収され、被処理水の減容化が行われる。
【0055】
膜モジュール10の第一空間14にNF濃縮水を通水し、第二空間16に第一空間14で得られた濃縮水の少なくとも一部を通水することによって、半透膜12の第一空間14側と第二空間16側の浸透圧差を小さくし、より少ない消費エネルギーでNF濃縮水中の高濃度のイオンを濃縮することができる。すなわち、高濃度でイオンを含むNF濃縮水を低コストで濃縮可能であり、高イオン濃度の廃液量を低減することができる。
【0056】
膜モジュール10へのNF濃縮水の供給流量と透過水流量と濃縮水流量とを調節する調節方法として、例えば、以下の方法を行えばよい。
【0057】
ポンプ18に駆動周波数を制御するインバーター20を設け、膜モジュール10へのNF濃縮水の供給流量を調節する。ポンプ18にインバーター20を設置することが好ましいが、設置しなくてもよい。NF濃縮水の供給を第一空間14側に行い、第一空間14の出口にバルブ23を設け、第二空間16の入口前にバルブ32を設け、バルブ23、バルブ32の開度を手動または自動で調節することにより第一空間14側への供給水流量と第二空間16側への供給水流量との比を調節すればよい。
【0058】
透過水流量、濃縮水流量が不足する場合は、ポンプ18のインバーター20の周波数を上げてNF濃縮水の供給量を増やせばよい。
【0059】
配管28の第一空間14の出口に開閉度を調節できるバルブ23を設け、バルブ23の開度によって濃縮水流量や第一空間14の入口および第一空間14の出口の圧力調整を行うことができる。
【0060】
これらの操作によって所定の第一空間14側の圧力、各種流量に調節することができる。
【0061】
また、配管34の途中に濃縮水を貯留する濃縮水槽を設け、NF濃縮水の第一空間14側、濃縮水の第二空間16側への供給を別々のポンプにより行ってもよい。別々のポンプによってNF濃縮水および濃縮水の供給を行う場合には、個々のポンプに駆動周波数を制御するインバーターを設けてもよい。
【0062】
第一空間14側に対してNF濃縮水を通水し、第二空間16側に対して近い濃度の濃縮水を通水することによって、半透膜12により生じる浸透圧を低減し、必要圧力を低減することができる。その結果、従来の逆浸透膜法では濃縮することができなかった濃度のNF濃縮水を濃縮することができる。
【0063】
第一空間14の入口圧力は、7MPa以下の範囲とすることが好ましく、第二空間16の入口圧力は第一空間14の入口圧力よりも小さい圧力とすることが好ましく、第二空間16の入口圧力は第一空間14の入口圧力の50%以下にすることがより好ましい。これによって、圧力による半透膜の破損リスクを低減することができる。
【0064】
第一空間14側の流量を第二空間16側の流量よりも大きくすることが好ましい。第一空間14側の流量が第二空間16側の流量以下であると、透過流束が高くなりすぎる場合がある。例えば、ポンプ18、インバーター20、バルブ22、バルブ23、バルブ32等が、第一空間の流量を第二空間の流量よりも大きくなるようにする流量調節手段として機能する。
【0065】
透過流束が大きすぎると濃度差が大きくなり、ファウリングリスクが高くなる、圧力が高くなりすぎるといった問題が生じる場合がある。また、透過流束が小さすぎると、濃縮効率が悪くなる場合がある。これらの点から、膜モジュール10の透過流束を、0.005m/d~0.05m/dの範囲とすることが好ましく、0.015m/d~0.04m/dの範囲とすることがより好ましい。なお、透過流束は、単位時間、単位膜面積当たりの透過流量として定義される。例えば、ポンプ18、インバーター20、バルブ22、バルブ23、バルブ32等が、透過流束を上記範囲に制御する透過流束調節手段として機能する。
【0066】
なお、バルブの設置位置や設置数は一例にすぎず、
図1、
図2に示している数よりも多くてもよく、他の配管のうち少なくとも1つに設置してもよい。また、流量を測定する流量測定手段として流量計や、圧力を測定する圧力測定手段として圧力計を、各配管のうち少なくとも1つに設置してもよい。
【0067】
本実施形態に係る水処理方法および水処理装置において、多段式の半透膜モジュールを用いてもよい。このような構成の水処理装置の例を
図3、
図4、
図5に示す。
図3、
図4、
図5に示す水処理装置は、半透膜モジュールが直列で3段に組み合わせた構造を有している。
【0068】
図3に示す水処理装置3は、被処理水のpHを7~9の範囲に調整するpH調整手段として、pH調整装置13と、pHを調整した被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段として、ナノろ過装置11と、を備える。水処理装置3は、半透膜12で仕切られた第一空間(濃縮側)14と第二空間(透過側)16とを有する、複数段に接続された半透膜モジュールを用いて、ナノろ過装置11のNF濃縮水を第1段の半透膜モジュールの第一空間14に通水し、第一空間14を加圧してNF濃縮水に含まれる水を半透膜12を透過させることによって濃縮水を得て、その濃縮水をさらに次段以降の半透膜モジュールを用いて濃縮水を得るとともに、各段の半透膜モジュールの第二空間16に、NF濃縮水の一部または濃縮水の一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュール10a、2段目膜モジュール10b、3段目膜モジュール10cを備えてもよい。それぞれの膜モジュールは、半透膜12で仕切られた第一空間14および第二空間16を有する。水処理装置3は、1段目膜モジュール10aからの希釈水を貯留する希釈水槽60a、2段目膜モジュール10bからの希釈水を貯留する希釈水槽60b、3段目膜モジュール10cからの希釈水を貯留する希釈水槽60cを備えてもよい。膜モジュール10は、第1段の膜モジュールの第一空間および第二空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールの第一空間および第二空間に供給して濃縮処理を行う装置である。水処理装置3は、NF濃縮水を貯留するNF濃縮水槽をナノろ過装置11と膜モジュール10との間に備えてもよい。水処理装置3は、ナノろ過装置11で排出されるアンモニアガスを処理するためのアンモニア処理手段として、アンモニア処理装置35を備えてもよい。
【0069】
図3の水処理装置3において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。ナノろ過装置11のNF透過水出口とアンモニア処理装置35の入口とは、配管27により接続されている。アンモニア処理装置35の出口には、配管37が接続されている。ナノろ過装置11のNF濃縮水出口と、1段目膜モジュール10aの第一空間入口とはポンプ18を介して配管40により接続されている。配管40のポンプ18の下流側から分岐した配管42がバルブ22aを介して膜モジュール10aの第二空間入口に接続されている。1段目膜モジュール10aの第二空間出口と希釈水槽60aの入口とは、配管46により接続されている。1段目膜モジュール10aの第一空間出口と2段目膜モジュール10bの第一空間入口とは、配管44により接続されている。配管44から分岐した配管48がバルブ22bを介して2段目膜モジュール10bの第二空間入口に接続されている。2段目膜モジュール10bの第二空間出口と希釈水槽60bの入口とは、配管52により接続されている。2段目膜モジュール10bの第一空間出口と3段目膜モジュール10cの第一空間入口とは、配管50により接続されている。配管50から分岐した配管54がバルブ22cを介して3段目膜モジュール10cの第二空間入口に接続されている。3段目膜モジュール10cの第二空間出口と希釈水槽60cの入口とは、配管58により接続されている。3段目膜モジュール10cの第一空間出口には、バルブ23を介して配管56が接続されている。希釈水槽60aの出口と配管25におけるポンプ21の上流側とは、配管59により接続されている。希釈水槽60bの出口と配管59とは、配管61により接続されている。希釈水槽60cの出口と配管59とは、配管63により接続されている。
【0070】
膜モジュール10は、半透膜12で仕切られた第一空間14および第二空間16を有する多段式の膜モジュールを用い、第1段の膜モジュールの第一空間および第二空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールの第一空間および第二空間に供給し、各段の第一空間14を加圧することによってその第一空間14に含まれる水を半透膜12を介して第二空間16に透過させて水を濃縮する装置である。すなわち、膜モジュール10において、半透膜12を用いてNF濃縮水が濃縮され、その濃縮水がさらに次の段の半透膜12を用いて濃縮される。
【0071】
水処理装置3において、アンモニアおよびシリカを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られる(ナノろ過工程)。NF透過水は、配管27を通して排出される。
【0072】
pH調整工程において被処理水のpHはpH7~9の範囲に調整される。被処理水のpHがpH7~9の範囲に調整されることによって、アンモニアおよびシリカはナノろ過膜を透過し、アンモニアおよびシリカの大部分はNF透過水に含有される。pH調整工程において被処理水のpHを8~9の範囲に調整した場合、pH8~9の範囲にpH調整が行われた被処理水は、ナノろ過装置11へ供給され、ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られ(ナノろ過工程)、NF透過水は、配管27を通してアンモニア処理装置35へ送液され、アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理され、処理水が得られる(アンモニア処理工程)。アンモニア処理工程では、NF透過水からアンモニアガスが回収処理されるか、またはアンモニアガスが分解処理される。
【0073】
ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。ナノろ過装置11で得られたNF濃縮水は、バルブ23が開状態で、ポンプ18により配管40を通して、1段目膜モジュール10aの第一空間14aへ送液され、配管40から分岐されたNF濃縮水は、バルブ22aが開状態で、配管42を通して、1段目膜モジュール10aの第二空間16aへ送液される。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。1段目膜モジュール10aにおいて、第一空間14aが加圧されてその第一空間14aに含まれる水が半透膜12aを介して第二空間16aに透過される(濃縮工程(1段目))とともに、第二空間16aで希釈水が得られる(希釈工程(1段目))。1段目膜モジュール10aの第二空間16aで得られた希釈水は、配管46を通して必要に応じて希釈水槽60aに貯留される。希釈水の少なくとも一部は配管59を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0074】
1段目膜モジュール10aの第一空間14aで得られた濃縮水は、配管44を通して、2段目膜モジュール10bの第一空間14bへ送液され、配管44から分岐された濃縮水は、バルブ22bが開状態で、配管48を通して、2段目膜モジュール10bの第二空間16bへ送液される。2段目膜モジュール10bにおいて、第一空間14bが加圧されてその第一空間14bに含まれる水が半透膜12bを介して第二空間16bに透過される(濃縮工程(2段目))とともに、第二空間16bで希釈水が得られる(希釈工程(2段目))。2段目膜モジュール10bの第二空間16bで得られた希釈水は、配管52を通して必要に応じて希釈水槽60bに貯留される。希釈水の少なくとも一部は配管61,59を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0075】
2段目膜モジュール10bの第一空間14bで得られた濃縮水は、配管50を通して、3段目膜モジュール10cの第一空間14cへ送液され、配管50から分岐された濃縮水は、バルブ22cが開状態で、配管54を通して、3段目膜モジュール10cの第二空間16cへ送液される。3段目膜モジュール10cにおいて、第一空間14cが加圧されてその第一空間14cに含まれる水が半透膜12cを介して第二空間16cに透過される(濃縮工程(3段目))とともに、第二空間16cで希釈水が得られる(希釈工程(3段目))(以上、半透膜処理工程)。3段目膜モジュール10cの第二空間16cで得られた希釈水は、配管58を通して必要に応じて希釈水槽60cに貯留される。3段目膜モジュール10cの第一空間14cで得られた濃縮水は、配管56を通して排出される。希釈水の少なくとも一部は配管63,59を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0076】
ここで、ポンプ18、配管40,42,44,48,50,54等が、各段の膜モジュール10a,10b,10cの第一空間14a,14b,14c、第二空間16a,16b,16cにNF濃縮水または濃縮水を供給する供給手段として機能する。配管59,61,63等が膜モジュール10で得られる希釈水の少なくとも一部をナノろ過装置11の前段に返送する返送手段として機能する。
【0077】
各段の膜モジュール10a,10b,10cの第二空間16a,16b,16cで得られた希釈水は、系外へ排出されてもよいし、必要に応じて希釈水槽60a,60b,60cへ送液されて貯留された後、系外へ排出されてもよく、再利用されてもよい。希釈水の少なくとも一部は、例えば配管25におけるポンプ21の上流側に返送されてNF濃縮水と混合されてもよい。希釈水の少なくとも一部について、さらに他の処理、例えば逆浸透膜処理が行われてもよい。
【0078】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0079】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。
【0080】
図4に示す水処理装置4は、被処理水のpHを7~9の範囲に調整するpH調整手段として、pH調整装置13と、pHを調整した被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段として、ナノろ過装置11と、を備える。水処理装置4は、半透膜12で仕切られた第一空間(濃縮側)14と第二空間(透過側)16とを有する、複数段に接続された半透膜モジュールを用いて、ナノろ過装置11のNF濃縮水を第1段の半透膜モジュールの第一空間14に通水し、第一空間14を加圧してNF濃縮水に含まれる水を半透膜12を透過させることによって濃縮水を得て、その濃縮水をさらに次段以降の半透膜モジュールを用いて濃縮水を得るとともに、各段の半透膜モジュールの第二空間16に、濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュール10a、2段目膜モジュール10b、3段目膜モジュール10cを備えてもよい。それぞれの膜モジュールは、半透膜12で仕切られた第一空間14および第二空間16を有する。水処理装置4は、1段目膜モジュール10aからの希釈水を貯留する希釈水槽62a、2段目膜モジュール10bからの希釈水を貯留する希釈水槽62b、3段目膜モジュール10cからの希釈水を貯留する希釈水槽62cを備えてもよい。膜モジュール10は、第1段の膜モジュールの第一空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールの第一空間および自身の第二空間に供給して濃縮処理を行う装置である。水処理装置4は、NF濃縮水を貯留するNF濃縮水槽をナノろ過装置11と膜モジュール10との間に備えてもよい。水処理装置4は、ナノろ過装置11で排出されるアンモニアガスを処理するためのアンモニア処理手段として、アンモニア処理装置35を備えてもよい。
【0081】
図4の水処理装置4において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。ナノろ過装置11のNF透過水出口とアンモニア処理装置35の入口とは、配管27により接続されている。アンモニア処理装置35の出口には、配管37が接続されている。ナノろ過装置11のNF濃縮水出口と、1段目膜モジュール10aの第一空間入口とはポンプ18を介して配管40により接続されている。1段目膜モジュール10aの第一空間出口と2段目膜モジュール10bの第一空間入口とは、配管44により接続されている。配管44から分岐した配管64がバルブ32aを介して膜モジュール10aの第二空間入口に接続されている。1段目膜モジュール10aの第二空間出口と希釈水槽62aの入口とは、配管66により接続されている。2段目膜モジュール10bの第一空間出口と3段目膜モジュール10cの第一空間入口とは、配管50により接続されている。配管50から分岐した配管68がバルブ32bを介して膜モジュール10bの第二空間入口に接続されている。2段目膜モジュール10bの第二空間出口と希釈水槽62bの入口とは、配管70により接続されている。3段目膜モジュール10cの第一空間出口には、バルブ23を介して配管56が接続されている。バルブ23の上流側で配管56から分岐した配管72がバルブ32cを介して膜モジュール10cの第二空間入口に接続されている。3段目膜モジュール10cの第二空間出口と希釈水槽62cの入口とは、配管74により接続されている。希釈水槽62aの出口と配管25におけるポンプ21の上流側とは、配管59により接続されている。希釈水槽62bの出口と配管59とは、配管61により接続されている。希釈水槽62cの出口と配管59とは、配管63により接続されている。
【0082】
膜モジュール10は、半透膜12で仕切られた第一空間14および第二空間16を有する多段式の膜モジュールを用い、第1段の膜モジュールの第一空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールの第一空間および自身の第二空間に供給し、各段の第一空間14を加圧することによってその第一空間14に含まれる水を半透膜12を介して第二空間16に透過させて水を濃縮する装置である。すなわち、膜モジュール10において、半透膜12を用いてNF濃縮水が濃縮され、その濃縮水がさらに次の段の半透膜12を用いて濃縮される。
【0083】
水処理装置4において、アンモニアおよびシリカを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られる(ナノろ過工程)。NF透過水は、配管27を通して排出される。
【0084】
pH調整工程において被処理水のpHはpH7~9の範囲に調整される。被処理水のpHがpH7~9の範囲に調整されることによって、アンモニアおよびシリカはナノろ過膜を透過し、アンモニアおよびシリカの大部分はNF透過水に含有される。pH調整工程において被処理水のpHを8~9の範囲に調整した場合、pH8~9の範囲にpH調整が行われた被処理水は、ナノろ過装置11へ供給され、ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られ(ナノろ過工程)、NF透過水は、配管27を通してアンモニア処理装置35へ送液され、アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理され、処理水が得られる(アンモニア処理工程)。アンモニア処理工程では、NF透過水からアンモニアガスが回収処理されるか、またはアンモニアガスが分解処理される。
【0085】
ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。ナノろ過装置11で得られたNF濃縮水は、バルブ23が開状態で、ポンプ18により配管40を通して、1段目膜モジュール10aの第一空間14aへ送液される。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。1段目膜モジュール10aにおいて、第一空間14aが加圧されてその第一空間14aに含まれる水が半透膜12aを介して第二空間16aに透過される(濃縮工程(1段目))とともに、第二空間16aで希釈水が得られる(希釈工程(1段目))。1段目膜モジュール10aの第一空間14aで得られた濃縮水は、配管44を通して、2段目膜モジュール10bの第一空間14bへ送液され、配管44から分岐された濃縮水は、バルブ32aが開状態で、配管64を通して、1段目膜モジュール10aの第二空間16aへ送液される。1段目膜モジュール10aの第二空間16aで得られた希釈水は、配管66を通して必要に応じて希釈水槽62aに貯留される。希釈水の少なくとも一部は配管59を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0086】
2段目膜モジュール10bにおいて、第一空間14bが加圧されてその第一空間14bに含まれる水が半透膜12bを介して第二空間16bに透過される(濃縮工程(2段目))とともに、第二空間16bで希釈水が得られる(希釈工程(2段目))。2段目膜モジュール10bの第一空間14bで得られた濃縮水は、配管50を通して、3段目膜モジュール10cの第一空間14cへ送液され、配管50から分岐された濃縮水は、バルブ32bが開状態で、配管68を通して、2段目膜モジュール10bの第二空間16bへ送液される。2段目膜モジュール10bの第二空間16bで得られた希釈水は、配管70を通して必要に応じて希釈水槽62bに貯留される。希釈水の少なくとも一部は配管61,59を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0087】
3段目膜モジュール10cにおいて、第一空間14cが加圧されてその第一空間14cに含まれる水が半透膜12cを介して第二空間16cに透過される(濃縮工程(3段目))とともに、第二空間16cで希釈水が得られる(希釈工程(3段目))(以上、半透膜処理工程)。3段目膜モジュール10cの第一空間14cで得られた濃縮水は、配管56を通して排出される。配管56から分岐された濃縮水は、バルブ32cが開状態で、配管72を通して、3段目膜モジュール10cの第二空間16cへ送液される。3段目膜モジュール10cの第二空間16cで得られた希釈水は、配管74を通して必要に応じて希釈水槽62cに貯留される。希釈水の少なくとも一部は配管63,59を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0088】
ここで、ポンプ18、配管40,44,64,50,68,56,72等が、各段の膜モジュール10a,10b,10cの第一空間14a,14b,14c、第二空間16a,16b,16cにNF濃縮水または濃縮水を供給する供給手段として機能する。配管59,61,63等が膜モジュール10で得られる希釈水の少なくとも一部をナノろ過装置11の前段に返送する返送手段として機能する。
【0089】
各段の膜モジュール10a,10b,10cの第二空間16a,16b,16cで得られた希釈水は、系外へ排出されてもよいし、必要に応じて希釈水槽62a,62b,62cへ送液されて貯留された後、系外へ排出されてもよく、再利用されてもよい。希釈水の少なくとも一部は、例えば配管25におけるポンプ21の上流側に返送されてNF濃縮水と混合されてもよい。希釈水の少なくとも一部について、さらに他の処理、例えば逆浸透膜処理が行われてもよい。
【0090】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0091】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。
【0092】
多段式の膜モジュールを用いる場合、第二空間側の通水を直列的に行ってもよい。このような構成の水処理装置の一例を
図5に示す。
【0093】
図5に示す水処理装置5は、被処理水のpHを7~9の範囲に調整するpH調整手段として、pH調整装置13と、pHを調整した被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段として、ナノろ過装置11と、を備える。水処理装置5は、半透膜12で仕切られた第一空間(濃縮側)14と第二空間(透過側)16とを有する、複数段に接続された半透膜モジュールを用いて、ナノろ過装置11のNF濃縮水を第1段の半透膜モジュールの第一空間14に通水し、第一空間14を加圧してNF濃縮水に含まれる水を半透膜12を透過させることによって濃縮水を得て、その濃縮水をさらに次段以降の半透膜モジュールを用いて濃縮水を得るとともに、各段の半透膜モジュールの第二空間16に、濃縮水の少なくとも一部または他の半透膜モジュールから得られる希釈水の少なくとも一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュール10a、2段目膜モジュール10b、3段目膜モジュール10cを備えてもよい。それぞれの膜モジュールは、半透膜12で仕切られた第一空間14および第二空間16を有する。膜モジュール10は、第1段の膜モジュールの第一空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールの第一空間に供給して濃縮処理を行う装置である。水処理装置5は、NF濃縮水を貯留するNF濃縮水槽をナノろ過装置11と膜モジュール10との間に備えてもよい。水処理装置5は、ナノろ過装置11で排出されるアンモニアガスを処理するためのアンモニア処理手段として、アンモニア処理装置35を備えてもよい。
【0094】
図5の水処理装置5において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。ナノろ過装置11のNF透過水出口とアンモニア処理装置35の入口とは、配管27により接続されている。アンモニア処理装置35の出口には、配管37が接続されている。ナノろ過装置11のNF濃縮水出口と、1段目膜モジュール10aの第一空間入口とはポンプ18を介して配管40により接続されている。1段目膜モジュール10aの第一空間出口と2段目膜モジュール10bの第一空間入口とは、配管44により接続されている。2段目膜モジュール10bの第一空間出口と3段目膜モジュール10cの第一空間入口とは、配管50により接続されている。3段目膜モジュール10cの第一空間出口には、バルブ23を介して配管56が接続されている。バルブ23の上流側で配管56から分岐した配管76がバルブ32を介して膜モジュール10cの第二空間入口に接続されている。3段目膜モジュール10cの第二空間出口と2段目膜モジュール10bの第二空間入口とは、配管78により接続されている。2段目膜モジュール10bの第二空間出口と1段目膜モジュール10aの第二空間入口とは、配管80により接続されている。1段目膜モジュール10aの第二空間出口と配管25におけるポンプ21の上流側とは、配管82により接続されている。
【0095】
膜モジュール10は、半透膜12で仕切られた第一空間14および第二空間16を有する多段式の膜モジュールを用い、第1段の膜モジュールの第一空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールの第一空間に直列的に通水し、最終段の膜モジュールの濃縮水の少なくとも一部を自身の第二空間に供給し、得られる希釈水をその前段の膜モジュールの第二空間に直列的に通水し、各段の第一空間14を加圧することによってその第一空間14に含まれる水を半透膜12を介して第二空間16に透過させて水を濃縮する装置である。すなわち、膜モジュール10において、半透膜12を用いてNF濃縮水が濃縮され、その濃縮水がさらに次の段の半透膜12を用いて濃縮される。
【0096】
水処理装置5において、アンモニアおよびシリカを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られる(ナノろ過工程)。NF透過水は、配管27を通して排出される。
【0097】
pH調整工程において被処理水のpHはpH7~9の範囲に調整される。被処理水のpHがpH7~9の範囲に調整されることによって、アンモニアおよびシリカはナノろ過膜を透過し、アンモニアおよびシリカの大部分はNF透過水に含有される。pH調整工程において被処理水のpHを8~9の範囲に調整した場合、pH8~9の範囲にpH調整が行われた被処理水は、ナノろ過装置11へ供給され、ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られ(ナノろ過工程)、NF透過水は、配管27を通してアンモニア処理装置35へ送液され、アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理され、処理水が得られる(アンモニア処理工程)。アンモニア処理工程では、NF透過水からアンモニアガスが回収処理されるか、またはアンモニアガスが分解処理される。
【0098】
ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。ナノろ過装置11で得られたNF濃縮水は、バルブ23が開状態で、ポンプ18により配管40を通して、1段目膜モジュール10aの第一空間14aへ送液される。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。一方、後述する3段目膜モジュール10cの第二空間16c、2段目膜モジュール10bの第二空間16bを経由して送液された希釈水が配管80を通して、1段目膜モジュール10aの第二空間16aへ送液される。1段目膜モジュール10aにおいて、第一空間14aが加圧されてその第一空間14aに含まれる水が半透膜12aを介して第二空間16aに透過される(濃縮工程(1段目))とともに、第二空間16aで希釈水が得られる(希釈工程(1段目))。1段目膜モジュール10aの第一空間14aで得られた濃縮水は、配管44を通して、2段目膜モジュール10bの第一空間14bへ送液される。1段目膜モジュール10aの第二空間16aで得られた希釈水は、配管82を通して排出される。希釈水の少なくとも一部は配管82を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0099】
2段目膜モジュール10bにおいて、後述する3段目膜モジュール10cの第二空間16cを経由して送液された希釈水が配管78を通して、2段目膜モジュール10bの第二空間16bへ送液される。第一空間14bが加圧されてその第一空間14bに含まれる水が半透膜12bを介して第二空間16bに透過される(濃縮工程(2段目))とともに、第二空間16bで希釈水が得られる(希釈工程(2段目))。2段目膜モジュール10bの第一空間14bで得られた濃縮水は、配管50を通して、3段目膜モジュール10cの第一空間14cへ送液される。2段目膜モジュール10bの第二空間16bで得られた希釈水は、配管80を通して1段目膜モジュール10aの第二空間16aへ送液される。
【0100】
3段目膜モジュール10cにおいて、下記の通り3段目膜モジュール10cの第一空間14cで得られた濃縮水が、配管56,76を通して第二空間16cへ送液される。第一空間14cが加圧されてその第一空間14cに含まれる水が半透膜12cを介して第二空間16cに透過される(濃縮工程(3段目))とともに、第二空間16cで希釈水が得られる(希釈工程(3段目))(以上、半透膜処理工程)。3段目膜モジュール10cの第一空間14cで得られた濃縮水は、配管56を通して排出される。配管56から分岐された濃縮水は、バルブ32が開状態で、配管76を通して、3段目膜モジュール10cの第二空間16cへ送液される。3段目膜モジュール10cの第二空間16cで得られた希釈水は、配管78を通して2段目膜モジュール10bの第二空間16bへ送液される。
【0101】
ここで、ポンプ18、配管40,44,50、56,76,78,80等が、各段の膜モジュール10a,10b,10cの第一空間14a,14b,14c、第二空間16a,16b,16cにNF濃縮水または濃縮水または希釈水を供給する供給手段として機能する。配管82等が膜モジュール10で得られる希釈水の少なくとも一部をナノろ過装置11の前段に返送する返送手段として機能する。
【0102】
膜モジュール10aの第二空間16aで得られた希釈水は、系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよく、再利用されてもよい。希釈水の少なくとも一部は、例えば配管25におけるポンプ21の上流側に返送されてNF濃縮水と混合されてもよい。希釈水の少なくとも一部について、さらに他の処理、例えば逆浸透膜処理が行われてもよい。
【0103】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0104】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。
【0105】
図3に示す水処理装置3、
図4に示す水処理装置4、
図5に示す水処理装置5では、1段目から後段の膜モジュールに行くにつれて各膜モジュールに供給される濃縮水は濃縮されていくため、高濃度となっていく。最終的に高濃度に濃縮されるため、浸透圧を低減することが可能な本方法によって、従来の逆浸透膜法では浸透圧の影響により濃縮が困難であった濃度にまで濃縮することが可能となる。
【0106】
1段目膜モジュール10aにNF濃縮水が供給される際に例えば7MPa以下の圧力を加え、後段の膜モジュールへの濃縮水の供給は1段目膜モジュール10aに加えられた圧力により行われればよい。各膜モジュールにおける第一空間14の入口圧力は、7MPa以下の範囲とすることが好ましく、第二空間16の入口圧力は第一空間14の入口圧力よりも小さい圧力とすることが好ましく、第二空間16の入口圧力は第一空間14の入口圧力の50%以下にすることがより好ましい。これによって、圧力による半透膜の破損リスクを低減することができる。
【0107】
各膜モジュール10における第一空間14側の流量を第二空間16側の流量よりも大きくすることが好ましい。第一空間14側の流量が第二空間16側の流量以下であると、後段の膜モジュールの第一空間14側の流量が不足する場合がある。例えば、ポンプ18、インバーター20、バルブ22a,22b,22c、バルブ23、バルブ32a,32b,32c、バルブ32等が、第一空間の流量を第二空間の流量よりも大きくなるようにする流量調節手段として機能する。
【0108】
透過流束が大きすぎると膜面の濃度分極が大きくなり、ファウリングリスクが高くなる、圧力が高くなりすぎるといった問題が生じる場合がある。また、透過流束が小さすぎると、濃縮効率が悪くなる場合がある。これらの点から、各膜モジュール10の透過流束を、0.005m/d~0.05m/dの範囲とすることが好ましく、0.015m/d~0.04m/dの範囲とすることがより好ましい。例えば、ポンプ18、インバーター20、バルブ22a,22b,22c、バルブ23、バルブ32a,32b,32c、バルブ32等が、透過流束を上記範囲に制御する透過流束調節手段として機能する。
【0109】
なお、バルブの設置位置や設置数は一例にすぎず、
図3、
図4、
図5に示している数よりも多くてもよく、他の配管のうち少なくとも1つに設置してもよい。また、流量を測定する流量測定手段として流量計や、圧力を測定する圧力測定手段として圧力計を、各配管のうち少なくとも1つに設置してもよい。
【0110】
また、
図3、
図4、
図5は装置構成の一例であり、半透膜モジュールの配列や供給水の供給方法等は、適宜変更してもよい。
【0111】
図5の水処理装置は、各段の膜モジュールの第一空間および第二空間のそれぞれに直列的に通水していくため、
図3、
図4の水処理装置に比べて、全体の水量を抑制することができ、ポンプの動力を低減することができるため、好ましい。
【0112】
本実施形態に係る水処理方法および水処理装置において、多段式の膜モジュールを用いて、各段の膜モジュールとして、並列的に接続された複数本の膜モジュールを備える膜モジュールユニットを用いてもよい。このような構成の水処理装置の例を
図6、
図7に示す。
図6、
図7に示す水処理装置は、1段目では半透膜モジュールを4列の並列に組み合わせ、2段目では半透膜モジュールを4列の並列に組み合わせ、3段目では半透膜モジュールを2列の並列に組み合わせ、4段目には半透膜モジュールを2列の並列に組み合わせて、直列で4段に接続した構造を有している。
【0113】
図6に示す水処理装置6は、被処理水のpHを7~9の範囲に調整するpH調整手段として、pH調整装置13と、pHを調整した被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段として、ナノろ過装置11と、を備える。水処理装置6は、半透膜12で仕切られた第一空間(濃縮側)14と第二空間(透過側)16とを有する、複数段に接続された半透膜モジュールを用いて、ナノろ過装置11のNF濃縮水を第1段の半透膜モジュールの第一空間14に通水し、第一空間14を加圧してNF濃縮水に含まれる水を半透膜12を透過させることによって濃縮水を得て、その濃縮水をさらに次段以降の半透膜モジュールを用いて濃縮水を得るとともに、各段の半透膜モジュールの第二空間16に、NF濃縮水の一部または濃縮水の一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュールユニット100a、2段目膜モジュールユニット100b、3段目膜モジュールユニット100c、4段目膜モジュールユニット100dを備えてもよい。1段目膜モジュールユニット100aは、例えば、並列的に接続された4本の膜モジュールを備え、2段目膜モジュールユニット100bは、例えば、並列的に接続された4本の膜モジュールを備え、3段目膜モジュールユニット100cは、例えば、並列的に接続された2本の膜モジュールを備え、4段目膜モジュールユニット100dは、例えば、並列的に接続された2本の膜モジュールを備える。それぞれの膜モジュール10は、半透膜12で仕切られた第一空間14および第二空間16を有する。水処理装置6は、NF濃縮水を貯留するNF濃縮水槽84と、4段目膜モジュールユニット100dからの濃縮水を貯留する濃縮水槽86と、を備えてもよい。膜モジュールユニット100は、第1段の膜モジュールユニットの各膜モジュールの第一空間および第二空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールユニットの各膜モジュールの第一空間および第二空間に供給して濃縮処理を行う装置である。水処理装置6は、ナノろ過装置11で排出されるアンモニアガスを処理するためのアンモニア処理手段として、アンモニア処理装置35を備えてもよい。
【0114】
図6の水処理装置6において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。ナノろ過装置11のNF透過水出口とアンモニア処理装置35の入口とは、配管27により接続されている。アンモニア処理装置35の出口には、配管37が接続されている。ナノろ過装置11のNF濃縮水出口と、NF濃縮水槽84の入口とは、配管29により接続されている。NF濃縮水槽84の出口と1段目膜モジュールユニット100aの各膜モジュールの第一空間入口および第二空間入口とは、ポンプ18を介して配管88により接続されている。1段目膜モジュールユニット100aの各膜モジュールの第一空間出口と2段目膜モジュールユニット100bの各膜モジュールの第一空間入口および第二空間入口とは、配管90により接続されている。2段目膜モジュールユニット100bの各膜モジュールの第一空間出口と3段目膜モジュールユニット100cの各膜モジュールの第一空間入口および第二空間入口とは、配管94により接続されている。3段目膜モジュールユニット100cの各膜モジュールの第一空間出口と4段目膜モジュールユニット100dの各膜モジュールの第一空間入口および第二空間入口とは、配管98により接続されている。4段目膜モジュールユニット100dの各膜モジュールの第一空間出口と濃縮水槽86の入口とは、配管104により接続されている。1段目膜モジュールユニット100aの各膜モジュールの第二空間出口には、配管92が接続され、2段目膜モジュールユニット100bの各膜モジュールの第二空間出口には、配管96が接続され、3段目膜モジュールユニット100cの各膜モジュールの第二空間出口には、配管102が接続され、4段目膜モジュールユニット100dの各膜モジュールの第二空間出口には、配管106が接続され、配管96、102,106は、配管92に合流してもよい。配管92は、配管25におけるポンプ21の上流側に接続されている。
【0115】
膜モジュールユニット100は、半透膜12で仕切られた第一空間14および第二空間16を有する膜モジュール10を備える多段式の膜モジュールユニットを用い、第1段の膜モジュールユニットの各膜モジュールの第一空間および第二空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールユニットの各膜モジュールの第一空間および第二空間に供給し、各段の膜モジュールの第一空間14を加圧することによってその第一空間14に含まれる水を半透膜12を介して第二空間16に透過させて水を濃縮する装置である。すなわち、膜モジュールユニット100において、半透膜12を用いてNF濃縮水が濃縮され、その濃縮水がさらに次の段の半透膜12を用いて濃縮される。
【0116】
水処理装置6において、アンモニアおよびシリカを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られる(ナノろ過工程)。NF透過水は、配管27を通して排出される。
【0117】
pH調整工程において被処理水のpHはpH7~9の範囲に調整される。被処理水のpHがpH7~9の範囲に調整されることによって、アンモニアおよびシリカはナノろ過膜を透過し、アンモニアおよびシリカの大部分はNF透過水に含有される。pH調整工程において被処理水のpHを8~9の範囲に調整した場合、pH8~9の範囲にpH調整が行われた被処理水は、ナノろ過装置11へ供給され、ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られ(ナノろ過工程)、NF透過水は、配管27を通してアンモニア処理装置35へ送液され、アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理され、処理水が得られる(アンモニア処理工程)。アンモニア処理工程では、NF透過水からアンモニアガスが回収処理されるか、またはアンモニアガスが分解処理される。
【0118】
ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。ナノろ過装置11で得られたNF濃縮水は、必要に応じてNF濃縮水槽84に貯留された後、NF濃縮水槽84からポンプ18により配管88を通して、1段目膜モジュールユニット100aの各膜モジュールの第一空間14および第二空間16へ送液される。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。1段目膜モジュールユニット100aの各膜モジュールにおいて、第一空間14aが加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(1段目))とともに、第二空間16で希釈水が得られる(希釈工程(1段目))。1段目膜モジュール10の第二空間16で得られた希釈水は、配管92を通して必要に応じて希釈水槽に貯留された後、排出される。希釈水の少なくとも一部は配管92を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0119】
1段目膜モジュールユニット100aの各膜モジュールの第一空間14で得られた濃縮水は、配管90を通して、2段目膜モジュールユニット100bの各膜モジュールの第一空間14および第二空間16へ送液される。2段目膜モジュールユニット100bの各膜モジュールにおいて、第一空間14が加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(2段目))とともに、第二空間16で希釈水が得られる(希釈工程(2段目))。2段目膜モジュールユニット100bの各膜モジュールの第二空間16で得られた希釈水は、配管96を通して必要に応じて希釈水槽に貯留された後、排出される。希釈水の少なくとも一部は配管96,92を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0120】
2段目膜モジュールユニット100bの各膜モジュールの第一空間14で得られた濃縮水は、配管94を通して、3段目膜モジュールユニット100cの各膜モジュールの第一空間14および第二空間16へ送液される。3段目膜モジュールユニット100cの各膜モジュールにおいて、第一空間14が加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(3段目))とともに、第二空間16で希釈水が得られる(希釈工程(3段目))。3段目膜モジュールユニット100cの各膜モジュールの第二空間16で得られた希釈水は、配管102を通して必要に応じて希釈水槽に貯留された後、排出される。希釈水の少なくとも一部は配管102,96,92を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0121】
3段目膜モジュールユニット100cの各膜モジュールの第一空間14で得られた濃縮水は、配管98を通して、4段目膜モジュールユニット100dの各膜モジュールの第一空間14および第二空間16へ送液される。4段目膜モジュールユニット100dの各膜モジュールにおいて、第一空間14が加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(4段目))とともに、第二空間16で希釈水が得られる(希釈工程(4段目))(以上、半透膜処理工程)。4段目膜モジュールユニット100dの各膜モジュールの第一空間14で得られた濃縮水は、配管104を通して、必要に応じて濃縮水槽86に貯留された後、排出される。4段目膜モジュールユニット100dの各膜モジュールの第二空間16で得られた希釈水は、配管106を通して必要に応じて希釈水槽に貯留された後、排出される。希釈水の少なくとも一部は配管106,102,96,92を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0122】
ここで、ポンプ18、配管88,90,94,98等が、各段の膜モジュールユニット100a,100b,100c,100dの各膜モジュールの第一空間14、第二空間16にNF濃縮水または濃縮水を供給する供給手段として機能する。配管92,96,102,106等が膜モジュール10で得られる希釈水の少なくとも一部をナノろ過装置11の前段に返送する返送手段として機能する。
【0123】
各段の膜モジュールユニット100a,100b,100c,100dの各膜モジュールの第二空間16で得られた希釈水は、系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよく、再利用されてもよい。希釈水の少なくとも一部は、例えば配管25におけるポンプ21の上流側に返送されてNF濃縮水と混合されてもよい。希釈水の少なくとも一部について、さらに他の処理、例えば逆浸透膜処理が行われてもよい。
【0124】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0125】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。
【0126】
図7に示す水処理装置7は、被処理水のpHを7~9の範囲に調整するpH調整手段として、pH調整装置13と、pHを調整した被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段として、ナノろ過装置11と、を備える。水処理装置7は、半透膜12で仕切られた第一空間(濃縮側)14と第二空間(透過側)16とを有する、複数段に接続された半透膜モジュールを用いて、ナノろ過装置11のNF濃縮水を第1段の半透膜モジュールの第一空間14に通水し、第一空間14を加圧してNF濃縮水に含まれる水を半透膜12を透過させることによって濃縮水を得て、その濃縮水をさらに次段以降の半透膜モジュールを用いて濃縮水を得るとともに、各段の半透膜モジュールの第二空間16に、濃縮水の少なくとも一部または他の半透膜モジュールから得られる希釈水の少なくとも一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュールユニット100a、2段目膜モジュールユニット100b、3段目膜モジュールユニット100c、4段目膜モジュールユニット100dを備えてもよい。1段目膜モジュールユニット100aは、例えば、並列的に接続された4本の膜モジュールを備え、2段目膜モジュールユニット100bは、例えば、並列的に接続された4本の膜モジュールを備え、3段目膜モジュールユニット100cは、例えば、並列的に接続された2本の膜モジュールを備え、4段目膜モジュールユニット100dは、例えば、並列的に接続された2本の膜モジュールを備える。それぞれの膜モジュール10は、半透膜12で仕切られた第一空間14および第二空間16を有する。水処理装置7は、NF濃縮水を貯留するNF濃縮水槽84と、4段目膜モジュールユニット100dからの濃縮水を貯留する濃縮水槽86と、を備えてもよい。膜モジュールユニット100は、第1段の膜モジュールの第一空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールの第一空間に供給して濃縮処理を行う装置である。水処理装置7は、ナノろ過装置11で排出されるアンモニアガスを処理するためのアンモニア処理手段として、アンモニア処理装置35を備えてもよい。
【0127】
図7の水処理装置7において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。ナノろ過装置11のNF透過水出口とアンモニア処理装置35の入口とは、配管27により接続されている。アンモニア処理装置35の出口には、配管37が接続されている。ナノろ過装置11のNF濃縮水出口と、NF濃縮水槽84の入口とは、配管29により接続されている。NF濃縮水槽84の出口と1段目膜モジュールユニット100aの各膜モジュールの第一空間入口とは、ポンプ18を介して配管108により接続されている。1段目膜モジュールユニット100aの各膜モジュールの第一空間出口と2段目膜モジュールユニット100bの各膜モジュールの第一空間入口とは、配管110により接続されている。2段目膜モジュールユニット100bの各膜モジュールの第一空間出口と3段目膜モジュールユニット100cの各膜モジュールの第一空間入口とは、配管112により接続されている。3段目膜モジュールユニット100cの各膜モジュールの第一空間出口と4段目膜モジュールユニット100dの各膜モジュールの第一空間入口とは、配管114により接続されている。4段目膜モジュールユニット100dの各膜モジュールの第一空間出口と濃縮水槽86の入口とは、配管116により接続されている。配管116から分岐した配管118が、4段目膜モジュールユニット100dの各膜モジュールの第二空間入口に接続されている。4段目膜モジュールユニット100dの各膜モジュールの第二空間出口と、3段目膜モジュールユニット100cの各膜モジュールの第二空間入口とは、配管120により接続されている。3段目膜モジュールユニット100cの各膜モジュールの第二空間出口と、2段目膜モジュールユニット100bの各膜モジュールの第二空間入口とは、配管122により接続されている。2段目膜モジュールユニット100bの各膜モジュールの第二空間出口と、1段目膜モジュールユニット100aの各膜モジュールの第二空間入口とは、配管124により接続されている。1段目膜モジュールユニット100aの各膜モジュールの第二空間出口と配管25におけるポンプ21の上流側とは、配管126により接続されている。
【0128】
膜モジュールユニット100は、半透膜12で仕切られた第一空間14および第二空間16を有する膜モジュール10を備える多段式の膜モジュールユニットを用い、第1段の膜モジュールユニットの各膜モジュールの第一空間にNF濃縮水を供給し、その濃縮水を順次次段の膜モジュールユニットの各膜モジュールの第一空間に直列的に通水し、最終段の膜モジュールユニットの各膜モジュールの濃縮水の少なくとも一部を自身の第二空間に供給し、得られる希釈水をその前段の膜モジュールユニットの各膜モジュールの第二空間16に直列的に通水し、各段の第一空間14を加圧することによってその第一空間14に含まれる水を半透膜12を介して第二空間16に透過させて水を濃縮する装置である。すなわち、膜モジュールユニット100において、半透膜12を用いてNF濃縮水が濃縮され、その濃縮水がさらに次の段の半透膜12を用いて濃縮される。
【0129】
水処理装置7において、アンモニアおよびシリカを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られる(ナノろ過工程)。NF透過水は、配管27を通して排出される。
【0130】
pH調整工程において被処理水のpHはpH7~9の範囲に調整される。被処理水のpHがpH7~9の範囲に調整されることによって、アンモニアおよびシリカはナノろ過膜を透過し、アンモニアおよびシリカの大部分はNF透過水に含有される。pH調整工程において被処理水のpHを8~9の範囲に調整した場合、pH8~9の範囲にpH調整が行われた被処理水は、ナノろ過装置11へ供給され、ナノろ過装置11において、被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とが得られ(ナノろ過工程)、NF透過水は、配管27を通してアンモニア処理装置35へ送液され、アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理され、処理水が得られる(アンモニア処理工程)。アンモニア処理工程では、NF透過水からアンモニアガスが回収処理されるか、またはアンモニアガスが分解処理される。
【0131】
ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。ナノろ過装置11で得られたNF濃縮水は、必要に応じてNF濃縮水槽84に貯留された後、NF濃縮水槽84からポンプ18により配管108を通して、1段目膜モジュールユニット100aの各膜モジュールの第一空間14へ送液される。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。一方、後述する4段目膜モジュールユニット100dの各膜モジュールの第二空間16、3段目膜モジュールユニット100cの各膜モジュールの第二空間16、2段目膜モジュールユニット100bの各膜モジュールの第二空間16を経由して送液された希釈水が配管124を通して、1段目膜モジュールユニット100aの各膜モジュールの第二空間16へ送液される。1段目膜モジュールユニット100aの各膜モジュールにおいて、第一空間14が加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(1段目))とともに、第二空間16で希釈水が得られる(希釈工程(1段目))。1段目膜モジュールユニット100aの各膜モジュールの第一空間14で得られた濃縮水は、配管110を通して、2段目膜モジュールユニット100bの各膜モジュールの第一空間14へ送液される。1段目膜モジュールユニット100aの各膜モジュールの第二空間16で得られた希釈水は、配管126を通して排出される。希釈水の少なくとも一部は配管126を通してナノろ過装置11の前段である配管25におけるポンプ21の上流側に返送されてもよい(返送工程)。
【0132】
2段目膜モジュールユニット100bの各膜モジュールにおいて、後述する4段目膜モジュールユニット100dの各膜モジュールの第二空間16、3段目膜モジュールユニット100cの各膜モジュールの第二空間16を経由して送液された希釈水が配管122を通して、2段目膜モジュールユニット100bの各膜モジュールの第二空間16へ送液される。第一空間14が加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(2段目))とともに、第二空間16で希釈水が得られる(希釈工程(2段目))。2段目膜モジュールユニット100bの各膜モジュールの第一空間14で得られた濃縮水は、配管112を通して、3段目膜モジュールユニット100cの各膜モジュールの第一空間14へ送液される。2段目膜モジュールユニット100bの各膜モジュールの第二空間16で得られた希釈水は、配管124を通して1段目膜モジュールユニット100aの各膜モジュールの第二空間16へ送液される。
【0133】
3段目膜モジュールユニット100cの各膜モジュールにおいて、後述する4段目膜モジュールユニット100dの各膜モジュールの第二空間16を経由して送液された希釈水が配管120を通して、3段目膜モジュールユニット100cの各膜モジュールの第二空間16へ送液される。第一空間14が加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(3段目))とともに、第二空間16で希釈水が得られる(希釈工程(3段目))。3段目膜モジュールユニット100cの各膜モジュールの第一空間14で得られた濃縮水は、配管114を通して、4段目膜モジュールユニット100dの各膜モジュールの第一空間14へ送液される。3段目膜モジュールユニット100cの各膜モジュールの第二空間16で得られた希釈水は、配管122を通して2段目膜モジュールユニット100bの各膜モジュールの第二空間16へ送液される。
【0134】
4段目膜モジュールユニット100dの各膜モジュールにおいて、下記の通り4段目膜モジュールユニット100dの各膜モジュールの第一空間14で得られた濃縮水が、配管116,118を通して第二空間16へ送液される。第一空間14が加圧されてその第一空間14に含まれる水が半透膜12を介して第二空間16に透過される(濃縮工程(4段目))とともに、第二空間16で希釈水が得られる(希釈工程(4段目))(以上、半透膜処理工程)。4段目膜モジュールユニット100dの各膜モジュールの第一空間14で得られた濃縮水は、配管116を通して、必要に応じて濃縮水槽86に貯留された後、排出される。配管116から分岐された濃縮水は、配管118を通して、4段目膜モジュールユニット100dの各膜モジュールの第二空間16へ送液される。4段目膜モジュールユニット100dの各膜モジュールの第二空間16で得られた希釈水は、配管120を通して3段目膜モジュールユニット100cの各膜モジュールの第二空間16へ送液される。
【0135】
ここで、ポンプ18、配管108,110,112、114,116,118,120,122,124等が、各段の膜モジュールユニット100a,100b,100c,100dの各膜モジュールの第一空間14、第二空間16にNF濃縮水または濃縮水または希釈水を供給する供給手段として機能する。配管126等が膜モジュール10で得られる希釈水の少なくとも一部をナノろ過装置11の前段に返送する返送手段として機能する。
【0136】
膜モジュールユニット100aの各膜モジュールの第二空間16で得られた希釈水は、系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよく、再利用されてもよい。希釈水の少なくとも一部は、例えば配管25におけるポンプ21の上流側に返送されてNF濃縮水と混合されてもよい。希釈水の少なくとも一部について、さらに他の処理、例えば逆浸透膜処理が行われてもよい。
【0137】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0138】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水(最終段の濃縮水)が回収され、被処理水の減容化が行われる。
【0139】
1段目膜モジュールユニット100aの各膜モジュールにNF濃縮水が供給される際に例えば7MPa以下の圧力を加え、後段の膜モジュールユニットへの濃縮水の供給は1段目膜モジュールユニット100aの各膜モジュールに加えられた圧力により行われればよい。各膜モジュールにおける第一空間14の入口圧力は、7MPa以下の範囲とすることが好ましく、第二空間16の入口圧力は第一空間14の入口圧力よりも小さい圧力とすることが好ましく、第二空間16の入口圧力は第一空間14の入口圧力の50%以下にすることがより好ましい。これによって、圧力による半透膜の破損リスクを低減することができる。
【0140】
各膜モジュール10における第一空間14側の流量を第二空間16側の流量よりも大きくすることが好ましい。第一空間14側の流量が第二空間16側の流量以下であると、後段の膜モジュールの第一空間14側の流量が不足する場合がある。例えば、ポンプ18等が、第一空間の流量を第二空間の流量よりも大きくなるようにする流量調節手段として機能する。
【0141】
透過流束が大きすぎると濃度差が大きくなり、ファウリングリスクが高くなる、圧力が高くなりすぎるといった問題が生じる場合がある。また、透過流束が小さすぎると、濃縮効率が悪くなる場合がある。これらの点から、各膜モジュール10の透過流束を、0.005m/d~0.05m/dの範囲とすることが好ましく、0.015m/d~0.04m/dの範囲とすることがより好ましい。例えば、ポンプ18等が、透過流束を上記範囲に制御する透過流束調節手段として機能する。
【0142】
なお、各配管のうち少なくとも1つにバルブを設置してもよく、バルブの設置位置や設置数は特に制限はない。また、流量を測定する流量測定手段として流量計や、圧力を測定する圧力測定手段として圧力計を、各配管のうち少なくとも1つに設置してもよい。
【0143】
また、
図6、
図7は装置構成の一例であり、半透膜モジュールの段数、並列数、配列や供給水の供給方法等は、適宜変更してもよい。
【0144】
膜モジュールにおいてNF濃縮水中の回収したい物質を好ましい濃度まで濃縮するために、膜モジュールは直列で複数段組むことが好ましい。水処理装置3,4,5,6,7のように多段式の膜モジュールを用いる場合、膜モジュールの段数は、目的の処理水の濃度等によって決めればよい。例えば、より薄い濃度のNF濃縮水からより濃い濃度の処理水を得たい場合には、膜モジュールユニットの段数を増やせばよい。
【0145】
水処理装置6,7のように各段の膜モジュールとして、並列的に接続された複数本の膜モジュールを備える膜モジュールユニットを用いる場合、各膜モジュールユニットにおける膜モジュールの本数は、NF濃縮水の流量等によって決めればよい。
【0146】
1つ以上の段の膜モジュールに、濃縮水槽や希釈水槽を設けてもよいし、各段の膜モジュールに、濃縮水槽や希釈水槽を設けてもよい。
【0147】
被処理水である被処理水は、アンモニアおよびシリカを含む水であればよく、特に制限はない。被処理水は、例えば、硫酸イオン等の2価アニオンとアンモニウムイオンとシリカとを含む水であり、例えば、半導体工場から排出される排水、化学工場から排出される排水等が挙げられる。特に半導体工場では、ウエハの洗浄等のためにアンモニアが使用され、アンモニアを処理するスクラバ処理のために硫酸が使用される。そのため、排水中にアンモニウムイオンと硫酸イオン等の2価アニオンとが含まれている。排水の有効活用として、排水中のアンモニアと硫酸等を回収し再利用する。
【0148】
ナノろ過装置11へ送液される前(前処理手段を備える場合は、前処理後であってナノろ過装置11へ送液される前)の被処理水は、例えば、アンモニウムイオンを1000mg/L以上含有し、2000~100000mg/L含有することが好ましい。被処理水は、さらに、例えば、硫酸イオン等の2価アニオンを1000mg/L以上、シリカを5mg/L以上含有し、硫酸イオン等の2価アニオンを6000~250000mg/L、シリカを5~50mg/L含有することが好ましい。
【0149】
ナノろ過装置11としては、被処理水についてナノろ過膜(NF膜)を用いてNF透過水とNF濃縮水とを得ることができるものであればよく、特に制限はない。
【0150】
ここで、ナノろ過膜は、2000mg/リットルの濃度のNaCl水溶液を操作圧力1.5MPa、25℃の条件でろ過したときのNaCl阻止率が10%~70%である膜を指す。膜材質は、特に限定されないが、例えば、酢酸セルロース系樹脂等のセルロース系樹脂、ポリエーテルスルホン系樹脂等のポリスルホン系樹脂、ポリアミド系樹脂等が挙げられる。膜の形状は、特に限定されないが、スパイラル型、中空糸型等が挙げられる。運転のときの一次側圧力は、0.5MPa~10MPaの範囲とすることが好ましい。
【0151】
ナノろ過膜は、膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が0~20%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が90%~100%の範囲である膜であることが好ましく、シリカ阻止率が5~18%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が95%~100%の範囲である膜であることがより好ましい。ナノろ過膜のシリカ阻止率が20%を超えると、被処理水中にシリカが含まれる場合に、膜モジュール10におけるシリカスケール析出リスクが高くなる場合がある。ナノろ過膜のアンモニウムイオン阻止率および硫酸イオン阻止率が90%未満であると、アンモニアと硫酸の回収率が低下する場合がある。
【0152】
ここで、ナノろ過膜の特性を決定するためのシリカ、アンモニウムイオン、硫酸イオンの各成分の阻止率は下記式により求めることができる。阻止率(%)=100-100×{[A/((B+C)/2)]}
A:透過水中の各成分のイオン濃度(mg/L)
B:給水中の各成分のイオン濃度(mg/L)
C:濃縮水中の各成分のイオン濃度(mg/L)
上記のナノろ過膜のシリカ、アンモニウムイオン、硫酸イオン阻止率を決定するための給水およびナノろ過膜処理条件は下記の通りとする。
給水:硫酸アンモニウムを16500mg/Lの濃度、シリカを20mg/Lで含有する水溶液
ナノろ過膜処理条件:水温25℃、透過流束0.4m3/m2/d、回収率15%
ここで、回収率(%)=100×[ナノろ過膜処理における透過水の量(m3/h)]/[ナノろ過膜処理に付した給水の量(m3/h)
【0153】
膜モジュールが備える半透膜12としては、例えば、逆浸透膜(RO膜)、正浸透膜(FO膜)、ナノろ過膜(NF膜)等の半透膜が挙げられる。半透膜は、逆浸透膜、正浸透膜、ナノろ過膜が好ましい。
【0154】
半透膜12を構成する材料としては、特に限定されないが、例えば、酢酸セルロース系樹脂等のセルロース系樹脂、ポリエーテルスルホン系樹脂等のポリスルホン系樹脂、ポリアミド系樹脂等が挙げられる。
【0155】
半透膜12の形状としては、平膜、中空糸膜、スパイラル膜等が挙げられる。半透膜の表面積を大きくすることができる等の点から中空糸膜が好ましい。
【0156】
濃縮水から回収される回収物は、NF濃縮水に含まれる溶解固形成分(TDS)等であり、溶解固形成分としては、例えば、硫酸ナトリウム、硫酸カルシウム、塩化ナトリウム、塩化カルシウム等の無機塩等が挙げられる。
【0157】
本実施形態に係る水処理方法および水処理装置は、ナノろ過工程(ナノろ過手段)の前段に、例えば、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)等を用いる膜処理工程(膜処理手段)、逆浸透膜処理工程(逆浸透膜処理手段)、凝集沈殿処理工程(凝集沈殿処理手段)、有機物除去処理工程(有機物除去処理手段)、pH調整工程(pH調整手段)、温度調整工程(温度調整手段)のうち少なくとも1つの前処理工程(前処理手段)を含んでもよい。
【0158】
濁質が含まれる場合には、ナノろ過工程(ナノろ過装置11)の前段で、凝集沈殿、膜分離、加圧浮上等の前処理を行ってもよい。
【0159】
ナノろ過工程(ナノろ過装置11)の前段で、被処理水の温度調整が行われてもよい。このような構成の水処理装置の一例を
図8に示す。
【0160】
図8の水処理装置8は、例えば
図2の水処理装置2の構成に加えて、ナノろ過工程(ナノろ過装置11)の前段に、被処理水の温度調整を行う温度調整手段として、温度調整装置15をさらに備えてもよい。
【0161】
図8の水処理装置8において、pH調整装置13の入口には、配管31が接続されている。pH調整装置13の出口と温度調整装置15の入口とは、配管33により接続されている。温度調整装置15の出口とナノろ過装置11の入口とは、ポンプ21を介して配管25により接続されている。pH調整装置13と温度調整装置15の接続順序は逆でもよい。その他の構成は、
図2の水処理装置2の構成と同様である。
図1、
図3~
図7の水処理装置1,3~7において、温度調整装置15が設けられてもよい。
【0162】
水処理装置8において、被処理水であるアンモニアを含む被処理水は、配管31を通してpH調整装置13へ送液される。pH調整装置13において、被処理水のpH調整が行われる(pH調整工程)。pH7~9の範囲にpH調整が行われた被処理水は、配管33を通して温度調整装置15へ送液される。温度調整装置15において、被処理水の温度調整が行われる(温度調整工程)。pH調整装置13と温度調整装置15の接続順序は逆でもよく、被処理水の温度調整が行われた(温度調整工程)後、温度調整が行われた被処理水のpH調整が行われてもよい(pH調整工程)。
【0163】
pH調整、温度調整が行われた被処理水は、ポンプ21によって配管25を通してナノろ過装置11へ供給される。その後、
図2の水処理装置2と同様にして、ナノろ過工程が行われる。ナノろ過装置11と膜モジュール10への通水は、ポンプ21のみを用いて行ってもよい。アンモニア処理装置35においてナノろ過工程で排出されるアンモニアガスが処理されてもよい。ナノろ過装置11で得られたNF濃縮水について半透膜を用いて半透膜処理が行われてもよい。
【0164】
以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、アンモニアおよびシリカの含有量が低下した濃縮水が回収され、被処理水の減容化が行われる。また、NF透過水、濃縮水、希釈水は再利用が可能である。
【0165】
または、以上のようにして、処理対象である、アンモニアおよびシリカを含む被処理水から、シリカが低減されたアンモニア濃縮水が回収され、被処理水の減容化が行われる。
【0166】
pH調整装置13は、例えば、pH調整剤添加配管等のpH調整剤添加手段、pH測定装置、pH調整槽等を有する。pH調整槽においてpH調整剤を添加して、被処理水のpHをpH7~9の範囲に、好ましくはpH8~9の範囲に調整することが好ましい。pH調整は、pH調整槽を設けずに、配管等において行われてもよい。
【0167】
pH調整剤としては、塩酸、硫酸等の酸や、水酸化ナトリウム等のアルカリ等が挙げられる。
【0168】
温度調整装置15は、例えば、温度調整槽、ヒーター等の加熱装置、クーラー等の冷却装置、熱交換器、ヒートポンプ等を有する。被処理水の温度を20℃~35℃の範囲に調整することが好ましく、シリカスケールの析出を抑制するために、25~35℃の範囲に調整することがより好ましい。被処理水の温度が20℃未満であると、シリカの析出濃度が低下する場合があり、35℃を超えると、ナノろ過膜と半透膜の阻止性能が低下する場合がある。
【0169】
ナノろ過装置11の後段で半透膜モジュールに通水する前に、再度、pH調整と温度調整が行われてもよい。半透膜モジュールでの通水のときのpH、水温は、被処理水の水質、半透膜モジュールの材質等によりに決定すればよい。例えば、被処理水のpHは、7~9の範囲、水温は、20℃~35℃の範囲とすることが好ましい。
【0170】
pH調整は、例えば、pH調整槽を設け、pH調整槽においてpH調整剤を添加してpHを調整すればよい。
【0171】
水温調整は、例えば、水温調整槽を設け、水温調整槽においてヒータ等の加熱装置によって加熱してもよいし、熱交換器を設けて調整してもよい。
【0172】
アンモニア処理装置35としては、NF透過水からアンモニアガスが回収処理するか、またはアンモニアガスを分解処理するものであればよく、特に制限はない。アンモニア処理装置35としては、例えば、アンモニアストリッピング処理装置等が挙げられる。
【0173】
アンモニアストリッピング処理装置は、例えば、蒸留塔の内部に多孔板や充填物等が設置されたものであり、被処理水であるアンモニア含有水が蒸留塔の上部から流入し、蒸気が下部から吹き込まれ、被処理水と蒸気とが接触されることにより、アンモニア含有水中の遊離アンモニアが蒸気側に追い出される。追い出されたアンモニアガスは、アンモニアガス配管を通してアンモニアガス分解処理装置に送られ、分解処理される。このアンモニアガス分解処理としては、例えば、触媒を充填した触媒反応塔を通して無害な窒素に分解する方法、硫酸と反応させて硫酸アンモニウムにする方法等があり、アンモニア水として回収再利用することも可能である。
【0174】
本明細書は、以下に示す実施形態を含む。
(1)アンモニアおよびシリカを含む被処理水を濃縮する水処理方法であって、
前記被処理水のpHを7~9の範囲に調整するpH調整工程と、
pHを調整した前記被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過工程と、
を含み、
前記被処理水は、アンモニウムイオンを1000mg/L以上、2価アニオンを1000mg/L以上、シリカを5mg/L以上含有する、水処理方法。
【0175】
(2)(1)に記載の水処理方法であって、
前記pH調整工程において前記被処理水のpHを8~9の範囲に調整し、
前記ナノろ過工程で排出されるアンモニアガスを処理するためのアンモニア処理工程をさらに含む、水処理方法。
【0176】
(3)(1)または(2)に記載の水処理方法であって、
前記ナノろ過工程の後段に、前記NF濃縮水について半透膜を用いて濃縮水と希釈水とを得る半透膜処理工程をさらに含む、水処理方法。
【0177】
(4)(1)~(3)のいずれか1つに記載の水処理方法であって、
前記ナノろ過膜は、膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が0~20%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が90%~100%の範囲である、水処理方法。
【0178】
(5)アンモニアおよびシリカを含む被処理水を濃縮する水処理装置であって、
前記被処理水のpHを7~9の範囲に調整するpH調整手段と、
pHを調整した前記被処理水についてナノろ過膜を用いてNF透過水とNF濃縮水とを得るナノろ過手段と、
を備え、
前記被処理水は、アンモニウムイオンを1000mg/L以上、2価アニオンを1000mg/L以上、シリカを5mg/L以上含有する、水処理装置。
【0179】
(6)(5)に記載の水処理装置であって、
前記pH調整手段において前記被処理水のpHを8~9の範囲に調整し、
前記ナノろ過手段で排出されるアンモニアガスを処理するためのアンモニア処理手段をさらに備える、水処理装置。
【0180】
(7)(5)または(6)に記載の水処理装置であって、
前記ナノろ過手段の後段に、前記NF濃縮水について半透膜を用いて濃縮水と希釈水とを得る半透膜処理手段をさらに備える、水処理装置。
【0181】
(8)(5)~(7)のいずれか1つに記載の水処理装置であって、
前記ナノろ過膜は、膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が0~20%の範囲であり、アンモニウムイオン阻止率および硫酸イオン阻止率が90%~100%の範囲である、水処理装置。
【実施例0182】
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
【0183】
<実施例1>
アンモニウムイオン濃度16500mg/L、シリカ濃度30mg/Lの被処理水(被処理水)を、スパイラル型NF膜(膜面有効圧力1MPa、25℃、pH7の条件下でシリカ阻止率が15%であり、アンモニウムイオン阻止率および硫酸イオン阻止率が99%である膜)を用いて濃縮した。その際、被処理水のpHを4~9の範囲で変動させた。NF膜通水後の被処理水、濃縮水、透過水中のシリカ濃度をモリブデン黄吸光光度法で測定した。各シリカ濃度からシリカ阻止率を算出した。阻止率は:阻止率%=(1-(NF透過水シリカ濃度/NF供給水シリカ濃度))×100で算出される。NF膜の運転条件は、供給水量840L/h、NF濃縮水量720L/h、NF透過水量120L/hで行った。シリカの阻止率の結果を
図9に示す。
【0184】
また、
図2の水処理装置2を用い、NF膜の回収率60%で濃縮し、後段の半透膜モジュールでシリカの析出濃度である120mg/Lまで濃縮した場合の各pH条件(水温25±1℃)における被処理水中のアンモニウムイオン濃度に対する半透膜モジュールでの濃縮水のアンモニウムイオン濃度の倍率を表1に示す。半透膜モジュールの希釈水のNF膜モジュール前段への返送率は100%とした。
【0185】
【0186】
図9に示すように、被処理水のpHを上げるほどNF膜のシリカの阻止率は低下し、シリカはNF膜の透過側に抜けた。すなわち、NF濃縮水側のシリカ濃度は濃縮されることなく、他の共存濃縮対象物質を濃縮することが可能となる。表1に示すように、被処理水のpHが高くなり、シリカの阻止率が低下することによって、最終濃縮水の濃度も高くすることができた。pH9では今回の濃度条件において硫酸アンモニウムの溶解度を超える濃度まで濃縮が可能であった。
【0187】
<実施例2>
NF膜を用いてアンモニウムイオン濃度4500mg/L、硫酸イオン濃度12000mg/L、シリカ濃度30mg/Lの被処理水を、pH7、水温25±1℃でNF膜での回収率60%で濃縮し、後段の半透膜モジュールでシリカの析出濃度である120mg/Lまで濃縮した。NF膜の前段に返送する半透膜モジュールの希釈水の返送率を0%、50%、100%の3パターンに変更した場合の被処理水中のアンモニウムイオン濃度に対する半透膜モジュールの濃縮水のアンモニウムイオン濃度の倍率を表2に示す。
【0188】
【0189】
表2に示すように、半透膜モジュールの希釈水返送量が0%の場合には、半透膜モジュールの最終濃縮水の濃縮倍率は9.5倍であったが、返送率を50%、100%にするとそれぞれ12.2倍、14.9倍と、最終濃縮水中のアンモニウムイオン濃度は高くなった。
【0190】
このように、実施例の装置および方法によって、アンモニアおよびシリカを含む被処理水を、シリカ濃度を低減して濃縮することができた。
1,2,3,4,5,6,7,8 水処理装置、10,10a,10b,10c 膜モジュール、11 ナノろ過装置、12,12a,12b,12c 半透膜、13 pH調整装置、14,14a,14b,14c 第一空間、15 温度調整装置、16,16a,16b,16c 第二空間、18,21 ポンプ、20 インバーター、22,22a,22b,22c,23,32,32a,32b,32c バルブ、24,25,26,27,28,29,30,31,33,34,36,37,40,42,44,46,48,50,52,54,56,58,59,61,63,64,66,68,70,72,74,76,78,80,82,88,90,92,94,96,98,102,104,106,108,110,112,114,116,118,120,122,124,126 配管、35 アンモニア処理装置、60a,60b,60c,62a,62b,62c 希釈水槽、84 NF濃縮水槽、86 濃縮水槽、100,100a,100b,100c,100d 膜モジュールユニット。