(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023039032
(43)【公開日】2023-03-20
(54)【発明の名称】三次元造形方法及び三次元造形装置
(51)【国際特許分類】
B22F 10/85 20210101AFI20230313BHJP
B22F 10/366 20210101ALI20230313BHJP
B22F 3/16 20060101ALI20230313BHJP
B22F 10/28 20210101ALI20230313BHJP
B29C 64/153 20170101ALI20230313BHJP
B29C 64/393 20170101ALI20230313BHJP
B33Y 50/02 20150101ALI20230313BHJP
B33Y 10/00 20150101ALI20230313BHJP
B33Y 30/00 20150101ALI20230313BHJP
G01N 21/71 20060101ALI20230313BHJP
B22F 12/13 20210101ALN20230313BHJP
G01B 11/00 20060101ALN20230313BHJP
【FI】
B22F10/85
B22F10/366
B22F3/16
B22F10/28
B29C64/153
B29C64/393
B33Y50/02
B33Y10/00
B33Y30/00
G01N21/71
B22F12/13
G01B11/00 H
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2021145971
(22)【出願日】2021-09-08
(71)【出願人】
【識別番号】000000099
【氏名又は名称】株式会社IHI
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100170818
【弁理士】
【氏名又は名称】小松 秀輝
(72)【発明者】
【氏名】山田 雅人
(72)【発明者】
【氏名】垣内 良二
【テーマコード(参考)】
2F065
2G043
4F213
4K018
【Fターム(参考)】
2F065AA03
2F065FF01
2F065JJ03
2F065JJ26
2G043AA03
2G043CA06
2G043EA11
2G043FA01
2G043FA03
2G043NA01
4F213AP05
4F213AQ01
4F213AR06
4F213AR18
4F213WA25
4F213WB01
4F213WL03
4F213WL13
4F213WL43
4F213WL44
4F213WL85
4K018AA06
4K018AA07
4K018AA14
4K018BA03
4K018BA04
4K018BA08
(57)【要約】
【課題】造形物が所望の造形品質を有することを担保する。
【解決手段】三次元造形方法は、エネルギビームによって粉末材料Pに与えられる入熱量を規定するパラメータの許容範囲を示す入熱量設定及びエネルギビームの照射位置を規定する軌跡情報を含むビームの照射設定に従って、プレート51上に向けてエネルギビームを照射しながら、プレート51上を撮影してエネルギビームの照射点が含まれた動画mを取得する第1準備工程と、動画mを解析することにより、入熱量を規定するパラメータの計測結果を取得する第2準備工程と、計測結果が許容範囲に含まれるか否かを判定する、第3準備工程と、プレート51上に粉末材料Pを敷き均しながら、敷き均した粉末材料Pにエネルギビームを照射することによって造形物PAを造形する造形工程と、を備える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
エネルギビームによって粉末材料に与えられる入熱量を規定するパラメータの許容範囲を示す入熱量設定及び前記エネルギビームの照射位置を規定する軌跡情報を含むビームの照射設定に従って、プレート上に向けて前記エネルギビームを照射しながら、前記プレート上を撮影して前記エネルギビームの照射点が含まれた動画を取得する第1準備工程と、
前記動画を解析することにより、前記入熱量を規定するパラメータの計測結果を取得する第2準備工程と、
前記計測結果が前記許容範囲に含まれるか否かを判定する、第3準備工程と、
前記プレート上に粉末材料を敷き均しながら、敷き均した前記粉末材料に前記エネルギビームを照射することによって三次元造形物を造形する造形工程と、
を備える、三次元造形方法。
【請求項2】
前記第2準備工程は、
前記動画をフレームごとに前記エネルギビームの照射点が含まれているか否かを判定することによって前記エネルギビームが連続的に映るフレーム数をカウントし、
前記エネルギビームの照射点が移るフレーム数、前記エネルギビームの前記軌跡の長さ、及び前記動画のフレームレートに基づいて、前記エネルギビームの前記照射点が前記軌跡に沿って移動する速度を前記計測結果として取得する、請求項1に記載の三次元造形方法。
【請求項3】
前記第1準備工程は、前記エネルギビームの前記軌跡が円形になるように前記ビームを照射する、請求項1又は2に記載の三次元造形方法。
【請求項4】
前記第1準備工程は、前記エネルギビームが前記軌跡に沿って移動する速度が一定になるように前記エネルギビームを照射する、請求項1~3のいずれか一項に記載の三次元造形方法。
【請求項5】
エネルギビームによって粉末材料に与えられる入熱量を規定するパラメータの許容範囲を示す入熱量設定及び前記エネルギビームの照射位置を規定する軌跡情報を含むビームの照射設定に従って、プレート上に向けて前記エネルギビームを照射する照射部と、
前記プレート上を撮影して前記エネルギビームの照射点が含まれた動画を出力する撮影部と、
前記動画を解析することにより、前記入熱量を規定するパラメータの計測結果を取得し、前記計測結果が前記許容範囲に含まれるか否かを判定する制御部と、を備え、
前記照射部は、前記プレート上に粉末材料を敷き均しながら、敷き均した前記粉末材料に前記エネルギビームを照射することによって三次元造形物を造形する、三次元造形装置。
【請求項6】
前記制御部は、
前記動画をフレームごとに前記エネルギビームの照射点が含まれているか否かを判定することによって前記エネルギビームが連続的に映るフレーム数をカウントする計数部と、
前記エネルギビームが映るフレーム数、前記エネルギビームの前記軌跡の長さ、及び前記動画のフレームレートに基づいて、前記エネルギビームの前記照射点が前記軌跡に沿って移動する速度を前記計測結果として取得する速度算出部と、を有する、
請求項5に記載の三次元造形装置。
【請求項7】
前記制御部は、前記エネルギビームの前記軌跡が円形になるように、前記照射部による前記エネルギビームの照射を制御する、請求項5又は6に記載の三次元造形装置。
【請求項8】
前記制御部は、前記エネルギビームが前記軌跡に沿って移動する速度が一定になるように、前記照射部による前記エネルギビームの照射を制御する、請求項5~7のいずれか一項に記載の三次元造形装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、三次元造形方法及び三次元造形装置に関する。
【背景技術】
【0002】
特許文献1には、チャンバ内で敷き均される粉末材料に対し電子ビームを照射し、粉末材料を溶融し凝固させて、三次元の物体を造形する装置及び方法が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
三次元造形装置によって製造される部品の造形品質は、造形動作中の様々な影響を受ける。造形品質は、例えば、造形物の単位体積当りに与えられる熱量(以下、「入熱量」という。)の影響を受ける。例えば、入熱量が少ないと粉末材料が溶けずに欠陥が残ったり、入熱量が多いと粉末材料が溶け落ちたりする。入熱量は、入熱量を定めるパラメータ(例えばビームの出力、速度等)に依存する。しかし、実際の造形動作中において、入熱量を定めるパラメータの計測は困難であるため、実際の入熱量が不明であった。その結果、造形物が所望の造形品質を有するか否かの判断ができなかった。
【0005】
そこで、本開示は、造形物が所望の造形品質を有することを担保することが可能な三次元造形方法及び三次元造形装置を説明する。
【課題を解決するための手段】
【0006】
本開示の一態様に係る三次元造形方法は、エネルギビームによって粉末材料に与えられる入熱量を規定するパラメータの許容範囲を示す入熱量設定及びエネルギビームの照射位置を規定する軌跡情報を含むビームの照射設定に従って、プレート上に向けてエネルギビームを照射しながら、プレート上を撮影してエネルギビームの照射点が含まれた動画を取得する第1準備工程と、動画を解析することにより、入熱量を規定するパラメータの計測結果を取得する第2準備工程と、計測結果が許容範囲に含まれるか否かを判定する、第3準備工程と、プレート上に粉末材料を敷き均しながら、敷き均した粉末材料にエネルギビームを照射することによって三次元造形物を造形する造形工程と、を備える。
【0007】
この三次元造形方法は、入熱量を規定するパラメータの許容範囲及びビームの移動を規定する情報を含むビームの照射設定に従ったエネルギビームが照射された点を撮影し、動画を取得する。三次元造形方法は、動画を解析してパラメータの計測結果を取得する。三次元造形方法は、計測結果が許容範囲に含まれるか否かを判定する。この場合、実際のパラメータの計測結果が、パラメータの許容範囲に含まれるかが判定される。計測結果が許容範囲内であれば、三次元造形物に対する入熱量の範囲が許容範囲であることがわかる。これにより、造形物が所望の造形品質を有することを担保することが可能となる。
【0008】
第2準備工程は、動画をフレームごとにエネルギビームの照射点が含まれているか否かを判定することによってエネルギビームが連続的に映るフレーム数をカウントし、エネルギビームが映るフレーム数、エネルギビームの軌跡の長さ、及び動画のフレームレートに基づいて、エネルギビームの照射点が軌跡に沿って移動する速度を計測結果として取得してもよい。この場合、計測結果として、実際にエネルギビームが照射された速度が取得される。これにより、速度により定まる入熱量が許容範囲内にあることをより精緻に担保できる。従って、造形物が所望の造形品質を有することを担保することが可能となる。
【0009】
第1準備工程は、エネルギビームの軌跡が円形になるようにビームを照射してもよい。この場合、プレート上の狭い領域であっても、エネルギビームが照射された距離が長くなるため、照射軌跡をより正確に判別することが可能となる。その結果、計測結果をより正確にすることができる。
【0010】
第1準備工程は、エネルギビームが軌跡に沿って移動する速度が一定になるようにエネルギビームを照射してもよい。この場合、エネルギビームの照射中において、エネルギビームが動画のフレームに一定の速度で現れる。その結果、計測結果をより正確に取得することができる。
【0011】
本開示の一態様に係る三次元造形装置は、エネルギビームによって粉末材料に与えられる入熱量を規定するパラメータの許容範囲を示す入熱量設定及びエネルギビームの照射位置を規定する軌跡情報を含むビームの照射設定に従って、プレート上に向けてエネルギビームを照射する照射部と、プレート上を撮影してエネルギビームの照射点が含まれた動画を出力する撮影部と、動画を解析することにより、入熱量を規定するパラメータの計測結果を取得し、計測結果が許容範囲に含まれるか否かを判定する制御部と、を備える。照射部は、プレート上に粉末材料を敷き均しながら、敷き均した粉末材料にエネルギビームを照射することによって三次元造形物を造形する。この三次元造形装置では、上述した理由により、造形物が所望の造形品質を有することを担保することが可能となる。
【0012】
制御部は、動画をフレームごとにエネルギビームの照射点が含まれているか否かを判定することによってエネルギビームが連続的に映るフレーム数をカウントする計数部と、エネルギビームが映るフレーム数、エネルギビームの軌跡の長さ、及び動画のフレームレートに基づいて、エネルギビームの照射点が軌跡に沿って移動する速度を計測結果として取得する速度算出部と、を有してもよい。この場合であっても、上述した理由により、造形物が所望の造形品質を有することを担保することが可能となる。
【0013】
制御部は、エネルギビームの軌跡が円形になるように、照射部によるエネルギビームの照射を制御してもよい。この場合であっても、上述した理由により、計測結果をより正確にすることができる。
【0014】
制御部は、エネルギビームが軌跡に沿って移動する速度が一定になるように、照射部によるエネルギビームの照射を制御してもよい。この場合であっても、上述した理由により、計測結果をより正確にすることができる。
【発明の効果】
【0015】
本開示の三次元造形方法及び三次元造形装置によれば、造形物が所望の造形品質を有することを担保することができる。
【図面の簡単な説明】
【0016】
【
図1】
図1は、三次元造形装置の構成を示す概略図である。
【
図2】
図2は、パラメータの計測に係る主要な構成を示すブロック図である。
【
図3】
図3は、制御部のハードウェア構成の一例を示す図である。
【
図4】
図4は、軌跡情報の例を示す図である。
図4(a)は、円形の軌跡を示す。
図4(b)は、断続的な軌跡を示す。
図4(c)は、加減速が行われる軌跡を示す。
【
図5】
図5は、計数部の処理の一例を示すフローチャートである。
【
図6】
図6は、三次元造形装置の動作を示すフローチャートである。
【発明を実施するための形態】
【0017】
以下、本開示の三次元造形方法及び三次元造形装置について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一の符号を付し、重複する説明は省略する。
【0018】
図1に示す三次元回転積層造形物製造装置(以下「三次元造形装置1」という)は、粉末材料Pから造形物PA(三次元造形物)を製造するいわゆる3Dプリンタである。三次元造形装置1は、例えばエネルギビームとして電子ビームを採用する。例えば、三次元造形装置1は、いわゆる電子銃粉末床溶融方式を採用する。
【0019】
粉末材料Pは、金属の粉末であり、例えばチタン系金属粉末、インコネル粉末又はアルミニウム粉末等である。また、粉末材料Pは、金属粉末に限定されない。粉末材料Pは、例えばCFRP(Carbon Fiber Reinforced Plastics)など、炭素繊維と樹脂とを含む粉末であってもよい。また、粉末材料Pは、導電性を有するその他の粉末でもよい。なお、本開示における粉末は、導電性を有するものには限定されない。例えばエネルギビームとしてレーザを用いる場合には、粉末材料Pは導電性を有しなくてもよい。
【0020】
三次元造形装置1は、粉末材料Pにエネルギを付与する。換言すると、三次元造形装置1は、粉末材料Pの温度を上昇させる。その結果、粉末材料Pは溶融又は焼結する。そして、三次元造形装置1がエネルギの付与を停止すると、粉末材料Pの温度が下がるので、凝固する。つまり、三次元造形装置1は、エネルギの付与と停止とを複数回繰り返すことにより、造形物PAを製造する。なお、本開示で言う「粉末材料Pを固める」とは、融点より高い温度まで加熱されて液体となった粉末材料Pが凝固する態様と、融点より低い温度まで加熱されることにより焼結する態様と、を含む。造形物PAは、例えば機械部品である。造形物PAは、その他の構造物であってもよい。
【0021】
三次元造形装置1は、駆動ユニット2と、処理ユニット3と、制御部4と、ハウジング5と、窓部6と、カメラ7(撮影部)と、を有する。駆動ユニット2は、造形に要する種々の動作を実現する。処理ユニット3は、粉末材料Pを処理することによって、造形物PAを得る。粉末材料Pの処理は、粉末材料Pの供給処理と、粉末材料Pの予熱処理と、粉末材料Pの造形処理と、を含む。制御部4は、三次元造形装置1の装置全体の制御を司る。ハウジング5は、複数のコラムによって支持されている。ハウジング5は、造形空間Sを形成する。造形空間Sは、処理ユニット3による粉末材料Pの処理を行うための減圧可能な気密空間である。窓部6は、三次元造形装置1の装置外部から造形空間Sを視認可能な覗き窓である。窓部6はハウジング5に設けられている。カメラ7は後述するプレート51上を撮影する。
【0022】
造形空間Sには、プレート51と造形タンク52とが配置されている。プレート51は、造形処理が行われる処理台である。プレート51は、例えば円板を呈し、造形物PAの原料である粉末材料Pが配置される。プレート51は、その中心軸線がハウジング5の中心軸線と重複するように配置される。プレート51には、駆動ユニット2が接続されている。従って、プレート51は、駆動ユニット2によって、回転と、回転軸線に沿った直線移動と、を行う。造形タンク52は、粉末材料Pを収容する容器である。造形タンク52は、プレート51を囲うように配置される。
【0023】
駆動ユニット2は、プレート51を回転及び昇降させる。駆動ユニット2は、回転駆動機構21と、昇降駆動機構22と、を有する。回転駆動機構21は、プレート51を回転させる。回転駆動機構21の上端は、プレート51に連結されている。回転駆動機構21の下端は、駆動源に取り付けられている。昇降駆動機構22は、プレート51を造形タンク52に対して相対的に昇降させる。この昇降は、回転駆動機構21の回転軸線に沿っている。なお、駆動ユニット2は、プレート51を回転及び昇降させることができる機構であればよく、駆動ユニット2は、上記の機構に限定されない。
【0024】
処理ユニット3は、プレート51上に配置されている。処理ユニット3は、プレート51のプレート主面51aに対面している。処理ユニット3は、フィーダ3a、ヒータ3b、及びビーム源3c(照射部)を有している。フィーダ3aは、粉末材料Pの供給処理を行う。ヒータ3bは、粉末材料Pの予熱処理を行う。ビーム源3cは、粉末材料Pの造形処理を行う。
【0025】
フィーダ3aは、プレート51に粉末材料Pを供給する。例えば、フィーダ3aは、原料タンクと均し部とを有する。原料タンクは、粉末材料Pを貯留すると共にプレート51に粉末材料Pを供給する。均し部は、プレート51上の粉末材料Pの表面を均す。例えば、プレート51上の粉末材料Pの表面層は、プレート51の回転に伴って均し部に当接して敷き均される。なお、三次元造形装置1は、均し部に替えて、ローラ部、棒状部材、刷毛部などを有してもよい。フィーダ3aは、プレート主面51aに供給領域を形成する。供給領域は、粉末材料Pがプレート51に供給され、均される領域である。供給領域は、例えば、プレート51の直径方向(半径方向)を長手方向とする矩形状の形状を呈するが、これに限定されない。
【0026】
ヒータ3bは、プレート51に配置された粉末材料Pを加熱する。ヒータ3bは、放射熱によって粉末材料Pの温度を上昇させる。ヒータ3bとして、例えば赤外線ヒータを用いてもよい。ここでいう予熱とは、予熱領域における粉末材料Pの温度が供給領域における粉末材料Pよりも高くなるように加熱する処理であることを意味する。このような加熱処理は、例えば、粉末材料Pを仮焼結する処理であってもよい。仮焼結とは、粉末材料P同士が拡散現象によって最小点で拡散して接合した状態である。ヒータ3bは、一例として、粉末材料Pの融点の半分以上の温度まで粉末材料Pを加熱する。これは、焼結の拡散現象が活発になるのが、一般的に融点の半分以上であることに基づく。例えば、粉末材料Pがチタンである場合、仮焼結温度は、700℃以上800℃以下である。なお、チタン合金の融点は約1500℃以上1600℃以下である。また、粉末材料Pがアルミニウムである場合、仮焼結温度は、300℃である。なお、アルミニウムの融点は約660℃である。ヒータ3bは、プレート主面51aに予熱領域を形成する。予熱領域は、粉末材料Pの温度を上昇させる領域である。予熱領域は、例えば扇状の形状を呈するが、これに限定されない。
【0027】
例えば、ビーム源3cは、プレート51に配置された粉末材料Pに対して電子ビームを照射する。ビーム源3cは、例えば電子銃である。電子銃は、カソードとアノードとの間に生じる電位差に応じた電子ビームを発生させる。ビーム源3cは、プレート主面51aに造形領域を形成する。造形領域は、粉末材料Pの温度を上昇させる領域であるが、当該温度は予熱領域における温度よりも高い。つまり、造形領域における粉末材料Pの温度は、造形物PAを形成可能な温度(焼結温度、融解温度)である。ビーム源3cは、造形領域内の所望の部分に電子ビームを照射する。造形領域の形状は、例えば円形であるが、これに限定されない。造形領域は、ビーム源3cの照射範囲(照射可能範囲)と一致してもよいし、一致していなくてもよい。
【0028】
供給領域、予熱領域及び造形領域の位置関係は、フィーダ3a、ヒータ3b及びビーム源3cの位置関係に対応する。供給領域、予熱領域及び造形領域は、プレート51の回転方向に沿ってこの順に形成されていればよい。供給領域、予熱領域及び造形領域のそれぞれ占める領域は、適宜変更してよい。
【0029】
制御部4は、駆動ユニット2及び処理ユニット3の動作を制御して、三次元造形物を造形する。昇降駆動機構22は、プレート51を上方へ移動させる。プレート51は、造形タンク52の上部の位置に配置される。回転駆動機構21は、プレート51を回転させる。フィーダ3aは、プレート51に粉末材料Pを供給し、粉末材料Pの表面層を均す。粉末材料Pは、プレート51と共に回転しながら供給される。ヒータ3bは、電子ビームが照射される前の粉末材料Pを予備加熱する。粉末材料Pは、プレート51と共に回転しながら加熱される。ビーム源3cは、粉末材料Pに対して電子ビームを照射する。これにより、粉末材料Pが溶融又は焼結され、造形物PAが造形されていく。昇降駆動機構22は、プレート51を降下させる。プレート51は、造形物PAの造形が進むに連れて降下する。プレート51の降下は、プレート51の回転と同期させてもよいが、完全には同期させなくてもよい。そして、全ての層について造形が完了したら、造形物PAの造形が完了する。
【0030】
制御部4はまた、電子ビームによって粉末材料Pに与えられる入熱量を規定するパラメータの計測を行う。パラメータは、例えば電子ビームの出力、走査速度等である。走査速度とは、電子ビームの照射点が軌跡に沿って移動する速度である。入熱量は、造形物PAの単位体積当りに与えられる熱量であり、パラメータに依存する。
図2は、パラメータの計測に係る主要な構成を示すブロック図である。
図2に示されるように、制御部4は、記憶部41と、ビーム制御部42と、取得部43と、計数部44と、距離算出部45と、速度算出部46と、比較部47と、を有する。制御部4は、ビーム源3c及びカメラ7と電気的に接続されている。
【0031】
記憶部41は、入熱量設定及びビームの照射設定を記憶している。入熱量設定とは、電子ビームによって粉末材料Pに与えられる入熱量を規定するパラメータの許容範囲である。許容範囲は、パラメータの基準値と許容誤差とによって規定される。許容範囲は、例えば、走査速度:960[mm/sec],許容誤差:±20[mm/sec]等のように規定される。ビームの照射設定は、例えば、電子ビームの出力、走査速度、電子ビームの照射位置を規定する軌跡情報等を含む。軌跡情報は、例えば、照射位置の始点及び終点、並びに照射位置が移動する経路等を規定する。軌跡情報の詳細については後述する。
【0032】
ビーム制御部42は、電子ビームの照射制御を行う。ビーム制御部42は、ビームの照射設定に従った制御信号φをビーム源3cに出力する。ビーム源3cは、制御信号φに従って、プレート51上に向けて電子ビームを照射する。パラメータの計測を行う際には、プレート51は回転しておらず、昇降の位置も固定されている。また、プレート51上には粉末材料Pが供給されていない。すなわち、ビーム源3cは、プレート51のプレート主面51aに電子ビームを照射する。
【0033】
カメラ7は、プレート51上を撮影した動画mを制御部4に出力する。動画mは、電子ビームの照射が開始される前、電子ビームが照射されている間、及び電子ビームの照射が停止した後のそれぞれの時点におけるプレート51上の画像(フレーム)を含む。動画mのフレームレート(1秒当りのフレーム数)は限定されず、例えば240[Frame/sec]である。カメラ7は、例えばデジタルカメラ、ハイスピードカメラ等である。カメラ7は、三次元造形装置1の装置外部から窓部6を介してプレート51上を撮影する。
【0034】
取得部43は、カメラ7から動画mを取得する。動画mには電子ビームの照射点が含まれる。照射点とは、プレート51上に電子ビームが照射されている位置である。
【0035】
計数部44は、動画mをフレームごとに電子ビームの照射点が含まれているか否かを判定する。電子ビームがプレート51上に照射されると、照射点が高温になり発光する。本実施形態では、輝度に関する閾値よりも高い輝度を有する画素が、所定の個数以上ある状態を発光として説明する。動画mのうち、電子ビームが照射されている間の画像には、発光が連続して現れる。計数部44は、電子ビームが連続的に映るフレーム数をカウントする。計数部44の処理の詳細については後述する。
【0036】
距離算出部45は、電子ビームの走査長を算出する。走査長とは、電子ビームの軌跡の長さである。距離算出部45は、動画mを用いて画像解析によって走査長を算出する。画像解析による走査長の算出は公知の技術を用いてよい。また、距離算出部45は、外部の計測装置により計測した値を、入力装置105から入力されることによって取得してもよい。例えば、電子ビームの照射後にプレート51に残る照射痕を実測してもよい。
【0037】
速度算出部46は、電子ビームが映るフレーム数、電子ビームの走査長、及び動画のフレームレートに基づいて、走査速度を算出する。速度算出部46は、フレームレートと計数部44によりカウントされたフレーム数とによって、電子ビームが連続的に映る時間を得る。速度算出部46は、電子ビームが連続的に映る時間と電子ビームの走査長(距離)とによって走査速度を算出する。走査速度はパラメータの計測結果の一例である。
【0038】
比較部47は、計測結果が許容範囲に含まれるか否かを判定する。例えば、比較部47は、走査速度が許容誤差内に含まれるか否かを判定する。許容範囲が走査速度:960[mm/sec],許容誤差:±20[mm/sec]である場合、比較部47は、計測した走査速度が940~980[mm/sec]の範囲に含まれるか否かを判定する。
【0039】
制御部4は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。各機能は、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び又は間接的に接続し、これら複数の装置により実現されてもよい。
【0040】
図3は、制御部のハードウェア構成の一例を示す図である。
図3に示されるように、制御部4は、物理的には、プロセッサ101と、メモリ102と、ストレージ103と、通信装置104と、入力装置105と、出力装置106と、バス107等を含むコンピュータ装置として構成されてもよい。制御部4における各機能は、プロセッサ101、メモリ102等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ101が演算を行い、通信装置104による通信、あるいは、メモリ102及びストレージ103におけるデータの読み出し及び書き込みを制御することで実現される。
【0041】
プロセッサ101は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ101は、中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、制御部4の各種処理等は、プロセッサ101で実現されてもよい。また、プロセッサ101は、プログラム(プログラムコード)、ソフトウェアモジュール、及びデータを、ストレージ103又は通信装置104からメモリ102に読み出し、これらに従って各種の処理を実行する。制御部4の各種処理を実行する機能は、メモリ102に格納され、プロセッサ101で動作する制御プログラムによって実現されてもよい。なお、制御部4における各種処理は、1つのプロセッサ101で実行されてもよいが、2以上のプロセッサ101により同時又は逐次に実行されてもよい。
【0042】
メモリ102は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。
【0043】
ストレージ103は、コンピュータ読み取り可能な記録媒体である。ストレージ103は、例えば、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク、CD-ROM(Compact Disc ROM)などの光ディスク等の少なくとも1つで構成されてもよい。上述の記憶媒体は、例えば、メモリ102及びストレージ103等を含むデータベース、サーバ又はその他の適切な媒体であってもよい。
【0044】
通信装置104は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのデバイスである。例えば、制御部4の各種処理の一部は、通信装置104で実現されてもよい。
【0045】
入力装置105は、外部からの入力を受け付ける入力デバイス(例えば、キーボード等)である。出力装置106は、外部への出力を実施する出力デバイス(例えば、ディスプレイ等)である。
【0046】
上記の各装置は、情報を通信するためのバス107で接続される。バス107は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
【0047】
図4を参照しつつ、軌跡情報の例を説明する。本開示の軌跡情報は、いわゆる一筆書きの軌跡であること、電子ビームの照射中に走査速度が変動しないこと、及びプレート51上且つカメラ7の撮影視野にあること、の3つの条件を満たす必要がある。これらの条件を満たしていれば、軌跡の形状は問わない。
【0048】
図4(a)に示される軌跡情報T1は、上述した3つの条件をすべて満たす。軌跡情報T1は、始点STから終点EDまで、時計回りCWに円を描く経路を有する。円の直径Dは、例えば200mm程度である。円の中心は、例えばプレート51の中心軸線上にある。ビーム源3cは、軌跡情報T1に沿ってプレート51上に電子ビームを照射する。照射点が軌跡情報T1に沿って移動すると、プレート51上には加熱によって円形の軌跡が残る。円形の軌跡は、電子ビームの幅に対応する幅W(例えば100μm)を有する。このような軌跡情報T1は、記憶部41に記憶されている。なお、軌跡情報T1が示す軌跡は、正確な円形に限定されない。軌跡情報T1が示す軌跡は、軌跡の長さを取得可能な形状であればよい。例えば、軌跡情報T1は、楕円を描く経路を有してもよい。さらに、軌跡情報T1が直径Dによって示される円形の軌跡を規定する場合に、実際に電子ビームが照射された軌跡が設定した軌跡と完全に一致することも要求されない。軌跡情報T1が示す軌跡に対して許される実際の軌跡のずれは、入熱量の判定において許される誤差に基づいて設定されてもよい。
【0049】
図4(b)に示される軌跡情報T2は、上述した条件を満たさない参考例を示す。軌跡情報T2の始点ST及び終点EDは円周上に位置している。また、始点STは、円の中心を通る直線LNの一端側に位置しており、終点EDは直線LNの他端側に位置している。軌跡情報T2は、始点STから直線LNの他端まで時計回りに弧を描く経路T2aを有する。また、軌跡情報T2は、直線LN上を通り直線LNの他端から一端に移動する経路T2bを有する。さらに軌跡情報T2は、直線LNの一端から終点EDまで反時計回りに弧を描く経路T2cを有する。軌跡情報T2では、直線LN上を通る際に電子ビームが非照射となる。軌跡情報T2は、複数のビーム源3cによる移動経路を有してもよい。軌跡情報T2は、例えば、始点STから終点EDまで時計回りに弧を描く第1経路と共に、第2照射点は始点STから終点EDまで反時計回りに弧を描く第2経路を有してもよい。このような軌跡情報T2は、一筆書きの条件を満たさないため、記憶部41に記憶されなくてよい。
【0050】
図4(c)に示される軌跡情報T3は、上述した条件を満たさない参考例を示す。軌跡情報T3では、略四角状に移動する一筆書きの経路を有する。軌跡情報T3では、始点STから近い順に第1辺、第2辺、第3辺及び第4辺とし、それぞれの辺を2つの区間(前半区間及び後半区間)に分割する。軌跡情報T3は、第1辺の後半区間A1で減速し、第2辺の前半区間A2で加速し、第2辺の後半区間A3で減速し、第3辺の前半区間A4で加速する経路を有する。このような軌跡情報T3は、走査速度が変動するため、記憶部41に記憶されなくてよい。
【0051】
図5に示すフローチャートを参照しながら、計数部44の処理の一例を説明する。計数部44は、処理対象のフレームの番号(以下、「フレームNo.」と言う。)及び電子ビームが連続的に映るフレーム数Fを初期化する(工程S1)。例えば、計数部44は、フレームNo.を1とし、フレーム数Fを0とする。次に、処理対象のフレームについて、画像解析を実行する(工程S2)。計数部44は、例えば、フレームNo.1の画像を解析して、各画素の輝度を取得する。計数部44は、輝度に関する閾値である輝度Lu以上の画素の個数をカウントする。
【0052】
計数部44は、輝度Lu以上の画素の個数が閾値E個以上であるか否かを判定する(工程S3)。輝度Lu以上の画素の個数が閾値E個以上の場合、処理対象のフレームが電子ビームの照射中の画像であることを示す。一方、輝度Lu以上の画素の個数が閾値E個未満のとき、処理対象のフレームが電子ビームの照射前、又は照射後の画像であることを示す。
【0053】
輝度Lu以上の画素の個数が閾値E個以上である場合(工程S3においてYes)、処理は工程S4に進む。計数部44は、フレーム数をインクリメントする(工程S4)。換言すると、計数部44は、現在のフレーム数に1を加算することにより、フレーム数を数え上げる。続いて、計数部44は、フレームNo.をインクリメントする(工程S5)。換言すると、計数部44は、処理対象のフレームを次のフレームに移す。
【0054】
輝度Lu以上の画素の個数が閾値E個以上でない場合(工程S3においてNo)、処理は工程S6に進む。計数部44は、フレーム数Fが0であるか否かを判定する(工程S6)。フレーム数Fが0であるとき、処理対象のフレームが電子ビームの照射前であることを示す。この場合(工程S6においてYes)、処理は工程S5に進む。フレーム数が0でないとき(工程S6においてNo)、処理は終了する。
【0055】
工程S5の後、処理は工程S2に戻る。処理が工程S2に戻ることにより、処理対象のフレームが順次切り替えられていく。処理がすべて終了すると、計数部44はフレーム数Fを出力する。フレーム数Fは、電子ビームの照射中の画像数を示す。
【0056】
次に、
図6に示すフローチャートを参照しながら、三次元造形装置1により実行される三次元造形方法について説明する。記憶部41には、予め入熱量設定及びビームの照射設定が記憶されているものとする。以下、入熱量設定におけるパラメータの許容範囲は、走査速度:960[mm/sec],許容誤差:±20[mm/sec]であるものとする。
【0057】
三次元造形装置1は、第1準備工程として、プレート51上を撮影する(工程S10)。三次元造形装置1は、ビームの照射設定に従って、プレート51上に向けて電子ビームを照射しながら、プレート51上を撮影する。そして、三次元造形装置1は、電子ビームの照射点が含まれた動画mを取得する。より具体的には、カメラ7によってプレート51上の撮影を開始した後、ビーム源3cによってプレート51に電子ビームを照射する。制御部4は、電子ビームの軌跡が円形になるように、ビーム源3cによる電子ビームの照射を制御する。また、制御部4は、走査速度が一定になるように、ビーム源3cによる電子ビームの照射を制御する。走査速度が一定でない場合、入熱量も走査速度に依存して変動し得る。本開示では、走査速度の意図しない揺れが、計測精度に影響を及ぼさない範囲であれば走査速度が「一定」であるとする。入熱量設定であるパラメータの許容範囲内であることを「一定」であると定義する。制御部4は、走査速度が許容範囲になるように、電子ビームの照射を制御する。電子ビームの照射が停止すると、カメラ7は動画mを制御部4に出力する。
【0058】
三次元造形装置1は、動画mをフレームごとに解析する(工程S11)。三次元造形装置1は、
図4に示す処理によって、動画mに基づいて電子ビームが連続的に映るフレーム数Fを取得する。
【0059】
三次元造形装置1は、電子ビームの走査長を算出する(工程S12)。距離算出部45は、動画mを用いて走査長を算出する。距離算出部45は、例えば、電子ビームの照射後のフレームに対するエッジ検出によって電子ビームの軌跡を検出し、該軌跡の長さを算出する。
【0060】
三次元造形装置1は、電子ビームの走査速度を算出する(工程S13)。動画mのフレームレートをc[Frame/sec]とすると、カメラ7のシャッター間隔は1/c[sec]である。カメラ7の撮影タイミングが電子ビームの照射の開始及び停止と同時であると仮定すると、走査時間tは、フレーム数F[Frame]を用いて次式(1)により表すことができる。
【0061】
【0062】
しかしながら、カメラ7の撮影タイミングと、電子ビームの照射の開始及び停止の少なくとも一方は必ずしも同期しない。そのため、照射の開始及び停止の少なくとも一方において、最大で1/c[sec]分の撮影漏れが発生し得る。従って、実際の走査時間t[sec]は、次式(2)の範囲を満たす。
【0063】
【0064】
ここで、走査速度をvとし、走査長をL[mm]とすると、走査速度vは走査長L/走査時間tにより算出される。式(1),(2)より、走査速度vは次式(3)の範囲を満たす。
【0065】
【0066】
そこで、計測結果から考え得る上限値と下限値との平均により、次式(4)で表される速度の計測値をvm[mm/sec]として定義する。
【0067】
【0068】
三次元造形装置1は、式(4)により、パラメータの計測結果として走査速度vmを取得する。上述した工程S11~S13は、動画mを解析することにより、入熱量を規定するパラメータの計測結果を取得する第2準備工程とみなすことができる。
【0069】
三次元造形装置1は、第3準備工程として、走査速度vmを評価する(工程S14)。比較部47は、計測した走査速度vmが許容範囲の940~980[mm/sec]に含まれるか否かを判定することによって、走査速度vmを評価する。
【0070】
走査速度vmが許容範囲に含まれる場合には、実際に粉末材料Pに与えられる入熱量が適切であると言える。従って、この走査速度vmを計測した直前又は直後に行われる造形動作では、粉末材料Pへの入熱が適切に行われているといえる。入熱量が適切であるということは、入熱量に基づいて評価される造形物の品質が基準を満たしているといえる。
【0071】
三次元造形装置1は、造形工程として、プレート51上に粉末材料Pを敷き均しながら、敷き均した粉末材料Pに電子ビームを照射することによって、造形物PAを造形する(工程S15)。
【0072】
三次元造形方法は、電子ビームによって粉末材料Pに与えられる入熱量を規定するパラメータの許容範囲を示す入熱量設定及び電子ビームの照射位置を規定する軌跡情報を含むビームの照射設定に従って、プレート51上に向けて電子ビームを照射しながら、プレート51上を撮影して電子ビームの照射点が含まれた動画mを取得する第1準備工程と、動画mを解析することにより、入熱量を規定するパラメータの計測結果を取得する第2準備工程と、計測結果が許容範囲に含まれるか否かを判定する、第3準備工程と、プレート51上に粉末材料Pを敷き均しながら、敷き均した粉末材料Pに電子ビームを照射することによって造形物PAを造形する造形工程と、を備える。
【0073】
この三次元造形方法は、入熱量を規定するパラメータの許容範囲及びビームの移動を規定する情報を含むビームの照射設定に従った電子ビームが照射された点を撮影し、動画mを取得する。三次元造形方法は、動画mを解析してパラメータの計測結果を取得する。三次元造形方法は、計測結果が許容範囲に含まれるか否かを判定する。この場合、実際のパラメータの計測結果が、パラメータの許容範囲に含まれるかが判定される。計測結果が許容範囲内であれば、造形物PAに対する入熱量の範囲が許容範囲であることがわかる。これにより、造形物PAが所望の造形品質を有することを担保することが可能となる。
【0074】
第2準備工程は、動画mをフレームごとに電子ビームの照射点が含まれているか否かを判定することによって電子ビームが連続的に映るフレーム数Fをカウントし、電子ビームが映るフレーム数F、電子ビームの軌跡の長さ、及び動画mのフレームレートに基づいて、電子ビームの照射点が軌跡に沿って移動する速度を計測結果として取得する。この場合、計測結果として、実際に電子ビームが照射された速度が取得される。これにより、速度により定まる入熱量が許容範囲内にあることをより精緻に担保できる。従って、造形物PAが所望の造形品質を有することを担保することが可能となる。
【0075】
第1準備工程は、電子ビームの軌跡が円形になるようにビームを照射する。この場合、プレート51上の狭い領域であっても、電子ビームが照射された距離が長くなるため、照射軌跡をより正確に判別することが可能となる。その結果、計測結果をより正確にすることができる。
【0076】
第1準備工程は、電子ビームが軌跡に沿って移動する速度が一定になるように電子ビームを照射する。この場合、電子ビームの照射中において、電子ビームが動画mのフレームに一定の速度で現れる。その結果、計測結果をより正確に取得することができる。
【0077】
ところで、積層造形技術は、比較的新しい製造技術である。積層造形によって得られる造形物PAは、所望の形状を有するだけでなく、強度などのような機械的特性も要求される。しかし、積層造形技術によって製造された造形物PAが所望の品質を備えたものであるかを評価する手法は、未だ確立されていない。造形物PAの品質に影響するパラメータとして、入熱量が挙げられる。入熱量が多すぎる又は少なすぎると、造形物PAの内部に欠陥などが生じてしまう。従って、入熱量が適切に管理されていることを確認できれば、少なくとも入熱量の不備によって発生する欠陥などがないことを証明できる。そこで、発明者らは、造形物PAの入熱量を品質管理に適用できる程度に高精度に測定可能な手法を鋭意検討した結果、本開示の三次元造形方法及び三次元造形装置1を想到するに至った。
【0078】
三次元造形装置1は、電子ビームによって粉末材料Pに与えられる入熱量を規定するパラメータの許容範囲を示す入熱量設定及び電子ビームの照射位置を規定する軌跡情報を含むビームの照射設定に従って、プレート51上に向けて電子ビームを照射するビーム源3cと、プレート51上を撮影して電子ビームの照射点が含まれた動画mを出力するカメラ7と、動画mを解析することにより、入熱量を規定するパラメータの計測結果を取得し、計測結果が許容範囲に含まれるか否かを判定する制御部4と、を備える。ビーム源3cは、プレート51上に粉末材料Pを敷き均しながら、敷き均した粉末材料Pに電子ビームを照射することによって造形物PAを造形する。この三次元造形装置1では、上述した理由により、造形物PAが所望の造形品質を有することを担保することが可能となる。
【0079】
制御部4は、動画mをフレームごとに電子ビームの照射点が含まれているか否かを判定することによって電子ビームが連続的に映るフレーム数Fをカウントする計数部44と、電子ビームが映るフレーム数F、電子ビームの軌跡の長さ、及び動画mのフレームレートに基づいて、電子ビームの照射点が軌跡に沿って移動する速度を計測結果として取得する速度算出部46と、を有する。この場合であっても、上述した理由により、造形物PAが所望の造形品質を有することを担保することが可能となる。
【0080】
制御部4は、電子ビームの軌跡が円形になるように、ビーム源3cによる電子ビームの照射を制御する。この場合であっても、上述した理由により、計測結果をより正確にすることができる。
【0081】
制御部4は、電子ビームが軌跡に沿って移動する速度が一定になるように、ビーム源3cによる電子ビームの照射を制御する。この場合であっても、上述した理由により、計測結果をより正確にすることができる。
【0082】
本開示の三次元造形方法及び三次元造形装置は、前述した実施形態に限定されず、本開示の要旨を逸脱しない範囲で種々の変形が可能である。
【0083】
実施形態では、計測結果として走査速度を取得する例を説明したが、計測結果は走査長、電子ビームの出力等であってもよい。そのほか、三次元造形方法は、工程S15の処理を工程S10の前に実行してもよい。これらの場合であっても、計測結果が許容範囲内であれば、造形物PAに対する入熱量の範囲が許容範囲であることがわかる。これにより、造形物PAが所望の造形品質を有することを担保することが可能となる。
【0084】
三次元造形方法は、工程S10~S14の処理により第1計測結果を取得し、工程S15の処理の後、さらに工程S10~S14の処理を実行し、第2計測結果を取得してもよい。この場合、第1計測結果と第2計測結果とが所定の範囲内にある場合、造形工程(工程S15)ではパラメータの計測結果が安定していると評価することができる。
【0085】
カメラ7は、動画mとは別に、プレート51上を撮影した画像を制御部4に出力してもよい。カメラ7は、例えば、走査長を算出するために電子ビームの照射が停止した後のプレート51の画像を制御部4に出力してもよい。カメラ7は三次元造形装置1の装置内部に設けられていてもよい。パラメータの計測中にプレート51が回転していてもよく、プレート51上に粉末材料Pが配置されていてもよい。これらの場合であっても、上述した理由により、造形物PAが所望の造形品質を有することを担保することが可能となる。
【符号の説明】
【0086】
1 三次元造形装置
2 駆動ユニット
3 処理ユニット
3a フィーダ
3b ヒータ
3c ビーム源
4 制御部
5 ハウジング
6 窓部
7 カメラ
21 回転駆動機構
22 昇降駆動機構
41 記憶部
42 ビーム制御部
43 取得部
44 計数部
45 距離算出部
46 速度算出部
47 比較部
51 プレート
51a プレート主面
52 造形タンク
101 プロセッサ
102 メモリ
103 ストレージ
104 通信装置
105 入力装置
106 出力装置
107 バス
φ 制御信号
m 動画
P 粉末材料
PA 造形物
S 造形空間