(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023039722
(43)【公開日】2023-03-22
(54)【発明の名称】ガラス不織布、ガラス繊維強化プラスチック成形体、ガラスチョップドストランド、およびガラス不織布の製造方法
(51)【国際特許分類】
D04H 3/004 20120101AFI20230314BHJP
D04H 3/018 20120101ALI20230314BHJP
D04H 3/12 20060101ALI20230314BHJP
B29B 15/12 20060101ALI20230314BHJP
B29K 105/08 20060101ALN20230314BHJP
【FI】
D04H3/004
D04H3/018
D04H3/12
B29B15/12
B29K105:08
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021146982
(22)【出願日】2021-09-09
(71)【出願人】
【識別番号】000232243
【氏名又は名称】日本電気硝子株式会社
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】平野 翔太郎
(72)【発明者】
【氏名】角間 真人
(72)【発明者】
【氏名】粟津 望
【テーマコード(参考)】
4F072
4L047
【Fターム(参考)】
4F072AA04
4F072AA07
4F072AA08
4F072AB09
4F072AB29
4F072AG03
4L047AA05
4L047AB03
4L047AB09
4L047BA12
4L047CA02
4L047CA05
4L047CC13
4L047DA00
(57)【要約】
【課題】高い強度を有するとともに実用的な生産性を有するガラス不織布を実現する。
【解決手段】ガラス不織布(1)は、横断面が扁平形状であり、下記(i)、(ii)および(iii)の条件を満足するガラスフィラメント(10)を含有する:(i)横断面の扁平比(長径/短径)の平均値が1.5以上8.0以下;(ii)横断面の円相当径の平均値が5μm以上20μm以下;(iii)前記円相当径の分布における標準偏差が0.5以上4.0以下。
【選択図】
図1
【特許請求の範囲】
【請求項1】
横断面が扁平形状であり、下記(1)、(2)および(3)の条件を満足するガラスフィラメントを含有する、ガラス不織布:
(1)横断面の扁平比(長径/短径)の平均値が1.5以上8.0以下;
(2)横断面の円相当径の平均値が5μm以上20μm以下;
(3)前記円相当径の分布における標準偏差が0.5以上4.0以下。
【請求項2】
複数本の前記ガラスフィラメントの特定の総数に対する、或る扁平比範囲に分類されるガラスフィラメントの数の割合を配合率として、
(i)1.5以上3.0未満の第1の扁平比区分に分類される扁平比を有する前記ガラスフィラメントの配合率の合計が0~20%、(ii)3.0以上5.0未満の第2の扁平比区分に分類される扁平比を有する前記ガラスフィラメントの配合率の合計が30~70%、(iii)5.0以上8.0以下の第3の扁平比区分に分類される扁平比を有する前記ガラスフィラメントの配合率の合計が30~60%であり、
前記複数本のガラスフィラメントについて、横軸を扁平比、縦軸を配合率とし、階級幅を0.25として扁平比の分布を示すヒストグラムが、少なくとも2つの峰を有する、請求項1に記載のガラス不織布。
【請求項3】
前記ガラス不織布の表面の少なくとも一部を被覆する二次バインダをさらに備え、
前記二次バインダは、強熱減量が5~30質量%である、請求項1または2に記載のガラス不織布。
【請求項4】
前記扁平比の分布における標準偏差が0.5以上1.5以下である、請求項1~3のいずれか一項に記載のガラス不織布。
【請求項5】
請求項1~4のいずれか一項に記載のガラス不織布を1層以上含有する、ガラス繊維強化プラスチック成形体。
【請求項6】
横断面が扁平形状であり、下記(1)、(2)および(3)の条件を満足するガラスフィラメントを含有する、ガラスチョップドストランド:
(1)横断面の扁平比(長径/短径)の平均値が1.5以上8.0以下;
(2)横断面の円相当径の平均値が5μm以上20μm以下;
(3)前記円相当径の分布における標準偏差が0.5以上4.0以下。
【請求項7】
横断面が扁平形状であり、下記(1)、(2)および(3)の条件を満足するガラスフィラメントを含有するガラスチョップドストランドを準備する準備工程と、
(1)横断面の扁平比(長径/短径)の平均値が1.5以上8.0以下;
(2)横断面の円相当径の平均値が5μm以上20μm以下;
(3)前記円相当径の分布における標準偏差が0.5以上4.0以下;
前記ガラスチョップドストランドを白水中に浸漬させて撹拌する開繊工程と、
前記白水を用いてガラス不織布を抄紙する抄紙工程と、を含むガラス不織布の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラスフィラメントを含有するガラス不織布等に関する。
【背景技術】
【0002】
近年、電気絶縁板、プリント配線板等の更なる小型化または機械特性向上を目的として、種々の検討が行われている。例えば、基板の補強材料として、ガラス不織布が用いられる。
【0003】
扁平ガラス繊維を含むガラス不織布は、円形ガラス繊維を含むガラス不織布よりも優れた機械的特性を有する。そのため、厚さを薄くしても比較的高い強度を有する。
【0004】
特許文献1には、扁平ガラス繊維を含み、バインダの含有量を増やすことなく高密度化したガラス不織布が記載されている。また、特許文献2には、扁平ガラス繊維とバインダとを含み、バインダの含有量が3~8重量%であるガラス不織布が記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平6-257042号公報
【特許文献2】特開2004-100142号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
電子機器部品の更なる軽量化および小型化に対する需要の高まりを受けて、ガラス不織布の強度および生産性の更なる向上が求められている。
【0007】
本発明の一態様は、高い強度を有するとともに実用的な生産性を有するガラス不織布を実現することを目的とする。
【課題を解決するための手段】
【0008】
上記の課題を解決するために、本発明の一態様に係るガラス不織布は、横断面が扁平形状であり、下記(1)、(2)および(3)の条件を満足するガラスフィラメントを含有する:(1)横断面の扁平比(長径/短径)の平均値が1.5以上8.0以下;(2)横断面の円相当径の平均値が5μm以上20μm以下;(3)前記円相当径の分布における標準偏差が0.5以上4.0以下。
【0009】
また、本発明の一態様におけるガラスチョップドストランドは、横断面が扁平形状であり、下記(1)、(2)および(3)の条件を満足するガラスフィラメントを含有する:(1)横断面の扁平比(長径/短径)の平均値が1.5以上8.0以下;(2)横断面の円相当径の平均値が5μm以上20μm以下;(3)前記円相当径の分布における標準偏差が0.5以上4.0以下。
【0010】
また、本発明の一態様におけるガラス不織布の製造方法は、横断面が扁平形状であり、下記(1)、(2)および(3)の条件を満足するガラスフィラメントを含有するガラスチョップドストランドを準備する準備工程と、(1)横断面の扁平比(長径/短径)の平均値が1.5以上8.0以下;(2)横断面の円相当径の平均値が5μm以上20μm以下;(3)前記円相当径の分布における標準偏差が0.5以上4.0以下;前記ガラスチョップドストランドを白水中に浸漬させて撹拌する開繊工程と、前記白水を用いてガラス不織布を抄紙する抄紙工程と、を含む。
【発明の効果】
【0011】
本発明の一態様によれば、高い強度を有するとともに実用的な生産性を有するガラス不織布を実現することができる。
【図面の簡単な説明】
【0012】
【
図1】本発明の一実施形態におけるガラス不織布について部分的に拡大して撮像した光学顕微鏡写真である。
【
図2】ガラスフィラメントを長手方向に垂直な平面(横断面)で切断した断面図である。
【
図3】本発明の一実施形態におけるガラス不織布に含まれるガラスフィラメントの扁平比の分布を示すヒストグラムである。
【
図4】本発明の一実施形態におけるガラス繊維強化プラスチック成形体の構成を示す模式図である。
【発明を実施するための形態】
【0013】
以下、本発明の一実施形態について説明する。なお、以下の記載は発明の趣旨をよりよく理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。
【0014】
本発明の一実施形態では、先ず、溶融ガラスをブッシングから引き出して冷却することによって数μmから数十μmの円相当径を有するフラットファイバーを形成する。次いで、フラットファイバーに処理剤を塗布して束ねることによりストランドを形成する。そして、ストランドを所定の長さに切断してチョップドストランドを得る。
【0015】
ガラス繊維は、ガラスフィラメントの集合体(例えば100本以上の束)、および、ガラス繊維から分散した(ガラス繊維が開繊して生じる)単独の単繊維の総称である。ガラス繊維を構成する単繊維をガラスフィラメントと呼び、ガラスフィラメント繊維が複数集まった集合体をガラスストランド、それらを所定の長さに切断したものをチョップドストランド(ガラスチョップドストランド)と称する。
【0016】
また、本明細書において、「扁平比」は、算出対象とする面の形状における短径の長さに対する長径の長さの比を意味する。そして、ガラスフィラメントの「横断面の扁平比」は、以下のような意味で用いる。すなわち、ガラスフィラメントの横断面における扁平比を測定する際には、通常、ガラスフィラメントを切断して断面を形成することなく、ガラスフィラメントの端面を観察する。このとき、端面は必ずしも平面であるとは限らないが、ガラスフィラメントの長手方向に平行な視線にて端面を視たときの、端面の外縁により形成される形状(例えば楕円形または角丸長方形)を、ガラスフィラメントの「横断面」の形状とみなして扁平比を算出する。
【0017】
扁平比の分布とは、度数分布を意味し、例えば横軸を扁平比、縦軸を度数(個数)または相対度数(配合率)としたヒストグラムによって複数のガラスフィラメントの扁平比の分布が把握される。扁平比の分布は、特定の総数の測定対象物(例えばガラスフィラメント)の集合における扁平比の偏りおよびバラつきを示す。
【0018】
(発明の知見の概略的な説明)
本発明の一態様におけるガラス不織布の説明に先立って、本発明者らの見出した知見の概要について説明すれば以下のとおりである。
【0019】
ガラス不織布は、一般に、白水中に複数のガラス繊維(チョップドストランド)を分散させた後、抄紙して乾燥させることにより製造される。ガラス繊維は、白水中においてガラスフィラメントの集合体に分散(開繊)する。その後、時間経過とともに白水中にてガラスフィラメントは凝集し得る。ガラスフィラメントが凝集した状態で抄紙した場合、製品としては不適格な外観のガラス不織布が得られることになる。そのため、白水中におけるガラス繊維の分散性(換言すれば、耐凝集性)が悪いほど、ガラス不織布の生産性が低下し得る。
【0020】
本発明者らは、ガラス不織布の製造に用いられるチョップドストランドおよびガラス不織布に含まれるガラスフィラメントの形状(扁平比および円相当径)、白水中でのチョップドストランド(複数のガラス繊維)の耐凝集性、並びに、得られるガラス不織布の強度、等の関係について詳細に検討した。その結果、扁平な断面形状を有するガラスフィラメントを用いるとともに、ガラスフィラメントの扁平比および円相当径を所定範囲内にすることによって、向上した性能を有するガラス不織布を実現できることを見出した。
【0021】
ガラス不織布およびチョップドストランドに含まれるガラスフィラメントの扁平比の平均値を適切な範囲内とすることによって、白水中にてガラスフィラメントの凝集が生じ難くできるとともに、ガラス不織布の強度を高めることができる。円形状の断面を有するガラスフィラメントは、白水中にて比較的凝集しやすい。また、ガラス不織布は複数のガラスフィラメントが織り混ぜられて形成されており、複数のガラスフィラメント同士の接着面積が大きいほど高い結合力を有する。扁平形状の断面を有するガラスフィラメントを含むガラス不織布は、ガラスフィラメント同士の接着面積を大きくできるため、比較的高い引張強度を有する。
【0022】
また、ガラス不織布およびチョップドストランドに含まれるガラスフィラメントの円相当径の平均値を適切な範囲内とすることによって、白水中にてガラスフィラメントの凝集が生じ難くできるとともに、ガラス不織布の強度を高めることができる。例えば、一定量の白水中に添加するチョップドストランドの重量(すなわちガラスフィラメントの重量)を一定とすると、以下のことが言える。すなわち、ガラスフィラメントの円相当径が小さい場合、円相当径が大きいガラスフィラメントを白水中に添加する場合に比べて、白水中に含まれるガラスフィラメントの個数(本数)が多くなる。その結果、白水中においてガラスフィラメントが比較的絡まり易くなることによって、凝集開始時間が短くなる。一方で、白水中に含まれるガラスフィラメントの個数(本数)が多くなると、ガラス不織布におけるガラスフィラメント同士の接着点が多くなるため、ガラス不織布の引張強度が比較的高くなる。
【0023】
さらに、ガラス不織布およびチョップドストランドに含まれるガラスフィラメントの円相当径の分布における標準偏差を適度な範囲内とすることについても重要であることがわかった。ガラス不織布及びチョップドストランドに含まれるガラスフィラメントの円相当径の分布が広い(分布における標準偏差が大きい)場合、比較的細いガラスフィラメントと比較的太いガラスフィラメントとが混在しており、白水中での凝集開始時間が短くなり易いとともに、ガラス不織布の引張強度が低下し易い。これは、比較的細いガラスフィラメントは、白水中において絡まり易く、ガラス不織布に比較的太いガラスフィラメントを含むことによれば、ガラスフィラメント同士の接着点が少なくなることによりガラス不織布の引張強度が低下し易いためである。
【0024】
本発明の一態様におけるガラス不織布は、上記の知見に基づいて想到されたものであって、白水中での耐凝集性を確保して製造可能であるとともに、高い強度を有する。
【0025】
(ガラス不織布)
図1は、本実施形態におけるガラス不織布1について部分的に拡大して撮像した光学顕微鏡写真である。
図1に示すように、ガラス不織布1は、複数のガラスフィラメント10が互いに絡み合って形成されている。本実施形態におけるガラス不織布1は、その大部分がガラスフィラメント10によって形成されている。
図1では、観察光に対する透光性を有する物質(下記の二次バインダ等)を撮像することは困難であるため、ガラスフィラメント10の像が主に示されている。
【0026】
ガラス不織布1は、ガラスフィラメント10以外に、二次バインダを有していてよく、その他の添加成分を有していてもよい。二次バインダは、強熱減量が5質量%以上30質量%以下であってよく、10質量%以上20質量%以下であってよい。二次バインダとして、例えばアクリル樹脂またはエポキシ樹脂等を用いることができる。強熱減量は、JIS R 3420(2013)に準拠して測定することができる。ガラス不織布1におけるその他の添加成分の含有量は3質量%以下であってよく、2質量%以下であってよい。その他の添加成分としては、例えば、ガラス繊維に含まれていた処理剤(一次バインダ)が挙げられる。上記処理剤は、製造過程において白水に溶解するが、ガラス不織布1に多少混入することが有り得る。
【0027】
(ガラスフィラメント)
ガラス不織布1において、ガラスフィラメント10の含有率は、特に限定されるものではないが、例えば、70質量%以上95質量%以下であってよく、80質量%以上90質量%以下であってよい。
【0028】
図2は、ガラスフィラメント10を長手方向に垂直な平面(横断面)で切断した断面図である。ガラスフィラメント10の断面形状における長径を長径L1、短径を短径L2とする。なお、本明細書では、ガラスフィラメント10の横断面において外縁上の2点を結ぶ最も長い線分の長さを「ガラスフィラメント10の長径」、ガラスフィラメント10の横断面において長径に垂直な方向における最も長い線分の長さを「ガラスフィラメント10の短径」として定義して使用する。
【0029】
なお、ガラスフィラメント10の横断面の形状は、楕円形に限定されるものではない。ガラスフィラメント10は、異形断面を有する扁平形状を有しており、例えば、長円形、楕円形、または角丸長方形のような扁平形状を有していてよい。ガラスフィラメント10は、長円形の扁平形状を有することが好ましい。
【0030】
本実施形態におけるガラス不織布1に含まれるガラスフィラメント10は、以下の条件(1)~(3)を全て満たす。
【0031】
(1)横断面の扁平比(長径L1/短径L2)の平均値が1.5以上8.0以下;
(2)横断面の円相当径の平均値が5μm以上20μm以下;
(3)上記円相当径の分布における標準偏差が0.5以上4.0以下。
【0032】
上記(1)について、ガラス不織布1に含まれるガラスフィラメント10の横断面の扁平比の平均値が1.5未満である場合、ガラスフィラメント10同士の接着面積が小さくなる傾向にあり、引張強度が高くなりにくい。一方で、ガラスフィラメント10の横断面の扁平比の平均値が8.0より大きいと、ガラスフィラメント10が折れやすくなり、ガラス不織布1の引張強度を十分に得ることができない。
【0033】
上記(2)について、ガラス不織布1に含まれるガラスフィラメント10の横断面の円相当径の平均値が5μm未満である場合、抄紙工程においてガラスフィラメント10が割れることがある。一方で、ガラス不織布1に含まれるガラスフィラメント10の横断面の円相当径の平均値が20μmを超えると、ガラス不織布1の空隙率が高くなり、ガラスフィラメント10同士の接着点の数が少なくなる。そのため、ガラス不織布1の引張強度が低下する。
【0034】
上記(3)について、ガラス不織布1に含まれるガラスフィラメント10の横断面の円相当径の分布における標準偏差が0.5未満である場合、より均一な断面形状を有するガラスフィラメント10が数百~数千本束ねられているため、白水中においてガラス繊維が開繊しにくくなる。一方で、上記円相当径の分布における標準偏差が4.0よりも大きい場合、凝集しやすい比較的細いガラスフィラメント10、および、強度低下につながる比較的太いガラスフィラメント10のそれぞれの数が多すぎる結果、凝集開始時間が短くなるとともに、ガラス不織布1の引張強度が低下する。
【0035】
本実施形態におけるガラス不織布1は、含有するガラスフィラメント10が上記(1)~(3)を満足することにより、高い強度を有するとともに、製造工程における抄紙時にガラスフィラメントの凝集を生じ難くする(凝集開始時間を長くする)ことができ、実用的な生産性を有する。
【0036】
ガラスフィラメント10の組成は、高い強度を有するとともに実用的な生産性を有するガラス不織布1を製造可能であればよく、本実施形態におけるガラス不織布1に含まれるガラスフィラメント10の組成は特に限定されるものではない。ガラスフィラメント10の組成は、例えば、Eガラス、ECRガラス、Aガラス、ARガラス、Cガラス、Dガラス、Sガラス、Tガラス、NEガラス、Hガラス、等であってよい。
【0037】
ガラスフィラメント10は、横断面における短径L2が3~15μmであってよく、5~12μmであってよい。また、ガラスフィラメント10は、横断面における長径L1が10~50μmであってよく、15~30μmであってよい。
【0038】
(扁平比分布)
本実施形態におけるガラス不織布1に含まれるガラスフィラメント10の扁平比分布について、以下に説明する。なお、ガラス不織布1中に含まれるガラスフィラメント10の扁平比の分布は、ガラス不織布1の製造過程において用いられるチョップドストランドに含まれるガラスフィラメント10の扁平比の分布とほぼ同じになる。そのため、以下に説明する扁平比分布の測定には、ガラス不織布1の製造過程にて用いたチョップドストランドを使用してもよい。
【0039】
先ず、扁平比分布の測定について説明する。すなわち、複数本のガラスフィラメントの特定の総数について、扁平比分布を測定する。この「特定の総数」とは、扁平比を測定したガラスフィラメント10の総数であってよく、例えば1000本以上であってよい。以下では、特定の総数をN個と表現することがある。ガラスフィラメント10の断面を観察するために、常温硬化樹脂テクノビット(Kulzer社製)に複数本のガラスフィラメント10を垂直に埋設し、樹脂硬化後に研磨を行う。次に、電子顕微鏡でガラスフィラメント10の断面形状を観察するとともに、観察したガラスフィラメント10の長径L1および短径L2のそれぞれの長さを測定し、扁平比を算出する。そして、扁平比を算出した特定の総数のガラスフィラメント10のそれぞれを、複数の扁平比範囲に分類することにより、各扁平比範囲における配合率を数値化した。
【0040】
ガラス不織布1は、上記のようにして測定されるガラスフィラメント10の扁平比の分布が以下のようになっていてよい。すなわち、複数本のガラスフィラメント10の特定の総数に対する、或る扁平比区分に分類されるガラスフィラメントの数の割合を配合率として、(i)1.5以上3.0未満の扁平比区分(以下、第1の扁平比区分A1と称する)に分類される扁平比を有するガラスフィラメント10の配合率の合計が0~20%であり、(ii)3.0以上5.0未満の扁平比区分(以下、第2の扁平比区分A2と称する)に分類される扁平比を有するガラスフィラメント10の配合率の合計が30~70%であり、(iii)5.0以上8.0以下の扁平比区分(以下、第3の扁平比区分A3と称する)に分類される扁平比を有する前記ガラスフィラメントの配合率の合計が30~60%となっている。ガラスフィラメント10の扁平比の分布を上記のとおりにすることにより、抄紙工程における白水中のガラスフィラメント10の耐凝集性を良好にできるとともに、ガラス不織布1の強度を高めることができる。
【0041】
さらに、ガラス不織布1は、ガラスフィラメント10の扁平比分布が複数の峰を含むヒストグラムを示すことが好ましい。このことについて、
図3を参照して以下に説明する。
図3は、本実施形態のガラス不織布1に含まれるガラスフィラメント10の扁平比の分布を示すヒストグラムである。
【0042】
図3に示すヒストグラムは、横軸をガラスフィラメント10の扁平比、縦軸をガラスフィラメント10の配合率、階級幅を0.25として作成した、扁平比分布を示すヒストグラムである。また、
図3では、上述の第1~第3の扁平比区分のそれぞれにおける累積配合率(ヒストグラムにおける累積相対度数)についてもグラフ中に示している。累積配合率の値は右側の軸に示している。本実施形態におけるガラス不織布1は、
図3に示すように、扁平比分布を示すヒストグラムにおいて少なくとも2つの峰(ピークとも言える)を有する。
【0043】
ここで、比較的扁平比の小さいガラスフィラメント10は、円形状に近い断面を有するとともに比較的円相当径が小さい傾向にあり、このようなガラスフィラメント10は、前述のように白水中にて凝集しやすい。また、比較的扁平比の大きいガラスフィラメント10は、比較的円相当径が大きい傾向にあり、このようなガラスフィラメント10は、前述のようにガラス不織布1の強度を低下させ得る。本発明の一態様におけるガラス不織布1は、含有するガラスフィラメント10が前述の(1)~(3)の条件を満足するとともに、さらに、ガラス不織布1に含まれるガラスフィラメント10の横断面の扁平比の分布における標準偏差が0.5以上1.5以下であってもよい。上記の構成によれば、ガラス不織布1に含まれる、ガラスフィラメント10の平均扁平比よりも高度に扁平比の小さいガラスフィラメント10、および平均扁平比よりも高度に扁平比の大きいガラスフィラメント10の存在割合(本数)を低減できる。そのため、抄紙工程にて白水中にガラスフィラメント10を分散させる際、ガラスフィラメント10が適切な分散性を有するとともに良好な耐凝集性を有し、かつ、ガラス不織布1の強度を高めることができる。
【0044】
なお、チョップドストランドに含まれる多数のガラスフィラメント10は、製造過程の違いにより、様々なる扁平比の分布を有し得る。例えば、溶融ガラスを引き出すブッシングの孔形状(孔の配列)および各種の製造温度などの条件を調整することによって、ストランドの扁平比分布を変化させることができる。一方、ガラスフィラメントの扁平比分布における中央値が異なる2種以上のチョップドストランドを単純に混合した場合、2種以上のチョップドストランドのそれぞれの中央値の間の扁平比を有するガラスフィラメントの存在割合が大きくなる。その結果、峰を含まない(例えば半値幅が2.0以上、または半値幅が存在しない)ヒストグラムを示すチョップドストランドが得られ得る。すなわち、2種以上のチョップドストランドを単純に混合して白水中に分散させて抄紙する場合よりも、本発明の一態様におけるガラス不織布1は、向上した性能を有する。
【0045】
(円相当径分布)
本実施形態におけるガラス不織布1に含まれるガラスフィラメント10の円相当径分布についても、扁平比分布を測定する際に用いた前述の手法と同様にして、複数本のガラスフィラメントの特定の総数について円相当径分布を測定することができる。
【0046】
図示を省略するが、ガラス不織布1では、円相当径の分布における標準偏差が0.5以上4.0以下であるとともに、単峰性のヒストグラムを示してよい。
【0047】
ここで、ガラス不織布1に含まれるガラスフィラメント10の扁平比の分布と円相当径の分布とは互いに関連する。ガラス不織布1の製造に用いるストランドの製造工程において、通常、チョップドストランドに含まれるガラスフィラメント10の扁平比の分布が広くなるほど、ガラスフィラメント10の円相当径の分布も広くなるという関係がある。そのため、ガラス不織布1に含まれるガラスフィラメント10が上述のような扁平比の分布(少なくとも2つの峰を有するヒストグラム)を示すことによれば、ガラス不織布1に含まれるガラスフィラメント10の円相当径の分布における標準偏差を0.5以上4.0以下とし易くできる。
【0048】
(ガラス不織布の製造方法)
本実施形態におけるガラス不織布1の製造方法について説明する。本実施形態のガラス不織布1の製造方法は、準備工程と、開繊工程と、抄紙工程とを含む。
【0049】
準備工程は、前述の条件(1)~(3)を満足するガラスフィラメントを含有する、チョップドストランドを準備する工程である。準備工程では、まず、所望のガラス組成となるように原料を秤量し、秤量したガラス原料を溶融炉で溶融する。次に、得られた溶融ガラスを白金製ブッシングよりフラットファイバーとして引き出す。次に、引き出された円相当径が5~20μmの数百~数千本のフラットファイバーに、ロールコーター法により処理剤(ガラス繊維用集束剤)を一次バインダとして塗布する。その後、上記フラットファイバーを集束させた後、回転するコレットに配置した紙管に巻き取って巻回体とする。次いで、必要に応じて切断や乾燥等を行うことにより、チョップストランドが作製される。例えば、溶融ガラスを引き出すブッシングの孔形状(孔の配列)および各種の製造条件を調整することによって、チョップドストランドの扁平比分布を変化させることができる。上記のような準備工程によって準備されるチョップドストランドについても、本願発明の範疇に入る。
【0050】
チョップドストランドに含まれる、ガラスフィラメント10の集束体であるガラス繊維は、その表面を、アミノシラン、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、オレフィン樹脂、潤滑剤、帯電防止剤などの各成分を含む有機物からなる集束剤で被膜されていてもよい。上記集束剤の成分の配合比は、使用する目的に応じて決定する。ガラスフィラメント10と上記集束剤との合計質量に対する上記集束剤の質量割合は、0.01~0.2質量%であることが好ましい。
【0051】
開繊工程は、チョップドストランドを白水中に浸漬させて撹拌する工程である。白水としては、一般にガラス繊維等を抄紙する際に使用される従来公知のものであってよく、白水の具体的な成分は特に限定されない。白水の具体的な成分は、ガラス不織布1の引張強度に大きく影響するものではない。
【0052】
白水の粘度は、公知の方法で測定することが可能であり、例えばJIS Z8803(2011)に準拠して測定することができる。白水の粘度は例えば1~40cPであってよく、1~20cPであってよい。また、チョップドストランドを白水中に浸漬させた後の撹拌速度は200rpm~500rpmであってよい。例えば、白水500mlに対するチョップドストランドの投入量が1g~100gであってよい。チョップドストランドの長さは、3mm~30mmであってよい。
【0053】
開繊工程では、白水に投入したチョップドストランドが開繊することにより、白水中にガラスフィラメント10が分散すると、白水は白濁する。その後、時間経過に伴って、白水中においてガラスフィラメント10が凝集すると、目視可能な凝集体が生じる。この凝集体は、例えば3mm径程度の大きさである。
【0054】
白水にチョップドストランドを投入した時点から、凝集体が目視したタイミングまでの時間を、凝集開始時間として特定する。例えば、所定の時間間隔で撮像した写真、または撮像した動画に基づいて、凝集開始時間(凝集体の生成タイミング)を特定すればよい。
【0055】
抄紙工程は、ガラスフィラメント10が分散した白水であって、凝集体が生じる前の状態の白水を用いて、ガラス不織布1を抄紙する工程である。抄紙工程では、抄紙機を用いて、ガラスフィラメント10が分散した白水を抄紙した後、スプレー装置などにより二次バインダを塗布する。その後、乾燥させることにより、ガラス不織布1を作成することができる。抄紙工程としては、従来用いられている湿式抄造法が適用されてよい。
【0056】
ガラス不織布1の表面の少なくとも一部を被覆する二次バインダは、強熱減量が5質量%以上30質量%以下であってよく、10質量%以上20質量%以下であってよい。二次バインダとして、例えばアクリル樹脂またはエポキシ樹脂等を用いることができる。強熱減量は、JIS R 3420(2013)に準拠して測定することができる。
【0057】
本実施形態におけるガラス不織布1の製造方法では、チョップドストランドを粘度20cPの白水中に浸漬させ、200rpmで攪拌した場合の凝集開始時間(分)をAとし、上記白水を用いて抄紙して得られたガラス不織布1の引張強度(N/100mm)をBとして、A×B≧50000を満たすことが好ましい。
【0058】
(ガラス繊維強化プラスチック成形体)
図4は、本実施形態におけるガラス繊維強化プラスチック成形体50の構成を示す模式図である。
図4に示すように、ガラス繊維強化プラスチック成形体50は、互いに対向する一対の導体層51と、複数のプリプレグ52とを有している。
【0059】
プリプレグ52は、ガラス不織布1に樹脂を含浸させた部材である。上記樹脂は、熱硬化性樹脂または熱可塑性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリカーボネート、ポリプロピレン、ポリアミド、ポリエーテルイミド、ポリエチレンテレフタレート(PET)などのポリエステルを用いることができる。加熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂を用いることができる。
【0060】
ガラス繊維強化プラスチック成形体50は、ガラス不織布を1層以上含有しており、例えば、以下のようにして製造することができる。まず、一方の導体層51に所望の数のプリプレグ52を載置する。次に、積層したプリプレグ52の上記一方の導体層51とは反対側に他方の導体層51を載置する。次に、一対の導体層51を、それぞれプリプレグ52を載置した方向に向けて押圧する。これにより、一対の導体層51の間に複数のプリプレグ52(換言すれば、ガラス不織布1)が配置されたガラス繊維強化プラスチック成形体50を製造することができる。
【0061】
〔附記事項〕
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、上記説明において開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【実施例0062】
以下、本発明の一態様におけるガラス不織布の実施例について説明するが、本発明はこれらの実施例によって限定されない。
【0063】
まず、下記の表1に示すように扁平比分布等を調整したEガラス組成のガラス繊維を含む、長さ13mmのチョップドストランドを白水中で分散させ、抄紙機を用いて実施例1~7および比較例1~4のガラス不織布を作製した。
【0064】
作成したガラス不織布に対して、下記に示す測定方法により、引張強度および凝集開始時間を測定した。
【0065】
<引張強度>
JIS R-3420 7 4に準拠し、精密万能試験機((株)島津製作所製 オートグラフAGS-X 10kN)を使用して引張強度を測定した。
【0066】
<凝集開始時間>
25℃で20cPの粘度に調整したポリアクリル酸ソーダ水溶液を1000mL入れた内径110mmのビーカーを準備した。次に、ビーカーの底から10mmの位置に、回転直径75mm、高さ30mm、厚み3mmの二枚羽根を配設し、当該二枚羽根を200rpmで回転させ、ポリアクリル酸ソーダ水溶液中に長さ13mmに切断したチョップドストランドを3g投入した。チョップドストランドが開繊した後、ガラスフィラメントが凝集するまでに要した時間を測定した。なお、凝集したかどうかは目視で判定した。
【0067】
(評価)
本発明の一態様におけるガラス不織布の実施例では、得られたガラス不織布について、引張強度が196N/100mm以上である場合に高い強度を有すると評価した。また、凝集開始時間が150分以上である場合に耐凝集性がよい、すなわち、実用的な生産性を有すると評価した。
【0068】
(試験結果)
実施例1~7および比較例1~4のガラス不織布について、ガラス不織布に含有されているガラスフィラメントのデータおよび上記の試験の試験結果を表1に示す。表1において「扁平比分布のピーク数」は、扁平比分布を示すヒストグラムにおける峰(ピーク)の数を示している。
【0069】
【0070】
表1に示すように、本発明の条件(1)~(3)を全て満たす、実施例1~7のガラス不織布は、高い強度を有するとともに実用的な生産性を有していた。
【0071】
一方で、比較例1~4のガラス不織布においては、本発明の条件(1)~(3)のいずれかを満たしておらず、引張強度および耐凝集性の少なくとも何れかが不十分であった。