IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 宇部興産機械株式会社の特許一覧

<>
  • 特開-射出成形方法 図1
  • 特開-射出成形方法 図2
  • 特開-射出成形方法 図3
  • 特開-射出成形方法 図4
  • 特開-射出成形方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023045616
(43)【公開日】2023-04-03
(54)【発明の名称】射出成形方法
(51)【国際特許分類】
   B29C 45/78 20060101AFI20230327BHJP
   B29C 45/26 20060101ALI20230327BHJP
【FI】
B29C45/78
B29C45/26
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021154142
(22)【出願日】2021-09-22
(71)【出願人】
【識別番号】300041192
【氏名又は名称】UBEマシナリー株式会社
(72)【発明者】
【氏名】有馬 祐一朗
(72)【発明者】
【氏名】岡本 昭男
(72)【発明者】
【氏名】福田 裕一郎
【テーマコード(参考)】
4F202
4F206
【Fターム(参考)】
4F202AP05
4F202AR02
4F202AR05
4F202AR06
4F202AR07
4F202CA11
4F202CB01
4F202CK06
4F206AP05
4F206AR02
4F206AR06
4F206AR07
4F206JA07
4F206JL02
4F206JM04
4F206JN11
4F206JP13
4F206JP17
4F206JQ81
(57)【要約】
【課題】金型キャビティ内に射出充填された計量樹脂を適切な温度状態に調整することができる、射出成形法を提供することを目的とする。
【解決手段】計量工程でスクリュ回転数と背圧を調整して、所定量の計量樹脂を射出シリンダ11内に貯蔵し、射出工程でスクリュ14の射出速度を調整して、計量樹脂を金型キャビティ23内に射出充填する射出成形方法において、射出工程中の金型キャビティ23内に射出充填される計量樹脂の充填温度を計測する温度計測手段50を備え、温度計測手段50の計測データから計量樹脂の充填温度波形Zを求め、充填温度波形Zが基準温度波形Kに対して設定された許容温度H、Lの範囲外である場合に温度補正処理を行う。
【選択図】図5
【特許請求の範囲】
【請求項1】
計量工程でスクリュ回転数と背圧を調整して、所定量の計量樹脂を射出シリンダ内に貯蔵し、射出工程で前記スクリュの射出速度を調整して、前記計量樹脂を金型キャビティ内に射出充填する射出成形方法において、
前記射出工程中の前記金型キャビティ内に射出充填される前記計量樹脂の充填温度を計測する温度計測手段を備え、
前記温度計測手段の計測データから前記計量樹脂の充填温度波形を求め、前記充填温度波形が基準温度波形に対して設定された許容温度の範囲外である場合に温度補正処理を行う、ことを特徴とする射出成形方法。
【請求項2】
前記温度計測手段は、前記金型キャビティのゲートから射出充填される前記計量樹脂の流動方向に沿って、射出成形金型に組み込まれた複数の温度センサである、請求項1記載の射出成形方法。
【請求項3】
前記温度計測手段は、前記計量樹脂の射出充填の完了から所定の時間の経過後に、前記金型キャビティを開放して、前記計量樹脂の熱画像を撮影するサーモカメラである、請求項1記載の射出成形方法。
【請求項4】
前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記スクリュ回転数の補正を行う、請求項1から3のいずれか1項に記載の射出成形方法。
【請求項5】
前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記背圧の補正を行う、請求項1から3のいずれか1項に記載の射出成形方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、計量工程でスクリュ回転数と背圧を調整して、所定量の計量樹脂を射出シリンダ内に貯蔵し、射出工程で前記スクリュの射出速度を調整して、計量樹脂を金型キャビティ内に射出充填する射出成形方法に関するものである。
【0002】
射出成形は、温度調整された射出シリンダ内に材料供給装置を用いて樹脂材料を供給する。供給された樹脂材料は、螺旋状のフライトを有するスクリュの回転運動によるせん断発熱と、射出シリンダに設けたヒータ等の熱量によって、可塑化し溶融樹脂となってスクリュ先端側に回転輸送され、射出シリンダ内に計量樹脂として貯蔵される。計量樹脂の貯蔵に伴いスクリュは後退動作し、所定の後退位置でスクリュの回転運動を停止してスクリュ位置が保持される(計量工程という)。このスクリュの後退動作に抵抗力を負荷して、貯蔵される成形材料の溶融混錬性を調整する(背圧制御という)。
【0003】
次いで、スクリュを前進動作させて、計量樹脂を金型キャビティ内に射出充填する射出工程と、溶融状態の計量樹脂の冷却固化収縮を補う保圧工程と、溶融状態の計量樹脂を金型キャビティ内で冷却固化させる冷却工程を経て、型開して金型キャビティから射出成形品として取り出す。この一連の成形動作を必要な成形品の個数を得るまで繰り返す。
【0004】
ここで、射出成形品の品質は、成形動作の起点である計量工程で貯蔵される、計量樹脂の溶融混錬の程度を示す樹脂温度の安定性に依存される。例えば、樹脂温度が変動すると、金型キャビティ内の計量樹脂の流動状態が変動し、その結果、製品ショート、樹脂バリ、製品重量の変動、ウエルドやフローマーク等の外観不良、ボイドや未溶融樹脂の混在、製品変形や製品寸法誤差、面ハリ不良や転写不良等の樹脂温度の変動に起因する成形不良となる。計量樹脂の変動は、計量工程に続く射出工程や保圧工程で補正することは困難である。そのために、古くから計量樹脂の安定に関する提案が多くなされている。
【0005】
例えば、特許文献1に示すような、射出シリンダから金型までの範囲に温度センサを取付け、射出工程中に計量樹脂の温度分布を計測して、射出シリンダのヒータ配置に割付けし、ヒータの温度設定を補正するとしている。さらに、この温度補正に加えて、スクリュの回転数や背圧値を補正するとしている。これにより、計量樹脂の温度の均一化を得ることができるとされている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2000-176983号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ここで、特許文献1に示すように、射出シリンダ内の計量樹脂の温度を均一に調整できたとしても、その後の射出工程において、金型キャビティ内を計量樹脂が流動する際にせん断発熱を受けて、樹脂温度は大きく変わってしまう。このせん断発熱は、せん断速度と材料粘度に関係する。せん断速度は、計量樹脂の流速と計量樹脂が通過する流路面積に関係し、流速の上昇に伴いせん断発熱の程度も大きくなり、流路が狭くなるにつれてせん断発熱も大きくなる。例えば、流路の狭いゲート部を通過する際にせん断発熱量が大きくなり、樹脂温度は上昇する。また、材料粘度は樹脂温度に関係し、樹脂温度の低下に伴い材料粘度が高くなり、せん断発熱量も大きくなる。射出成形の品質は、金型キャビティ内に射出充填された計量樹脂の温度状態に大きく影響を受けるので、特許文献1では射出成形品の品質の安定化が約束されるものではない。
【0008】
そこで本発明は、金型キャビティ内に射出充填された計量樹脂を適切な温度状態に調整することができる、射出成形法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の射出成形方法は、
計量工程でスクリュ回転数と背圧を調整して、所定量の計量樹脂を射出シリンダ内に貯蔵し、射出工程で前記スクリュの射出速度を調整して、前記計量樹脂を金型キャビティ内に射出充填する射出成形方法において、
前記射出工程中の前記金型キャビティ内に射出充填される前記計量樹脂の充填温度を計測する温度計測手段を備え、
前記温度計測手段の計測データから前記計量樹脂の充填温度波形を求め、前記充填温度波形が基準温度波形に対して設定された許容温度の範囲外である場合に温度補正処理を行う、ことを特徴とする。
【0010】
本発明の射出成形方法において、
前記温度計測手段は、前記金型キャビティのゲートから射出充填される前記計量樹脂の流動方向に沿って、射出成形金型に組み込まれた複数の温度センサである、ことが好ましい。
【0011】
また、本発明の射出成形方法において、
前記温度計測手段は、前記計量樹脂の射出充填の完了から所定の時間の経過後に、前記金型キャビティを開放して、前記計量樹脂の熱画像を撮影するサーモカメラである、ことが好ましい。
【0012】
さらに、本発明の射出成形方法において、
前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記スクリュ回転数の補正を行う、ことが好ましい。
【0013】
また、本発明の射出成形方法において、
前記温度補正処理は、前記充填温度波形が前記許容温度の範囲外となる位置を補正位置とし、前記補正位置を前記射出工程中の前記スクリュ位置に変換し、変換後の前記スクリュ位置を補正スクリュ位置とし、前記補正スクリュ位置に基づいて、前記計量工程の前記背圧の補正を行う、ことが好ましい。
【発明の効果】
【0014】
本発明によれば、金型キャビティ内に射出充填された計量樹脂を適切な温度状態に調整することができる、射出成形法を提供することができる。
【図面の簡単な説明】
【0015】
図1】本発明の実施形態に係る射出成形機の概念図である。
図2】本発明の実施形態に係る温度計測手段の概念図である。
図3図1に示す射出成形装置を用いた成形動作を示す図である。
図4】金型キャビティ内の計量樹脂の流動状態を示す図である。
図5】本発明の実施形態に係る射出成形方法を示す図である。
【発明を実施するための形態】
【0016】
以下、本発明を実施するための好適な実施形態について図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組合せの全てが、各請求項に係る発明の解決手段に必須であるとは限らない。また、本実施形態においては、各構成要素の尺度や寸法が誇張されて示されている場合や、一部の構成要素が省略されている場合がある。
【0017】
[射出成形機]
先ず、本発明の実施形態に係る射出成形機について、図1を用いて説明する。なお、以下の説明では、本発明の実施形態に係る射出成形機として、横型射出成形機をベースとしたが、これに限定されるものではない。図1に示す射出成形機100は、射出装置10と、射出成形金型20と、射出駆動部30と、射出制御部40と、を備える。
【0018】
射出装置10は、円筒状の射出シリンダ11と、射出シリンダ11内に配置されるスクリュ14と、を備える。射出制御部40は、射出駆動部30を操作してスクリュ14の回転動作と前後進動作を調整する。ここで、スクリュ14の動作に関して、射出成形金型10に近い方向を前方F、前方Fへの動作を前進動作、射出成形金型10から離れる方向を後方B、後方Bの動作を後退動作と定義する。また、射出装置10は、図示しない駆動装置等により、射出装置10と射出成形金型20の接続と離間が操作され、射出成形を行う際は接続状態である。
【0019】
射出シリンダ11は、外周面に複数のヒータ12が所定の間隔で配置され、図示しない温度調節装置によりヒータ12を温度制御して、射出シリンダ11が所定の温度に調整される。また、射出シリンダ11の後方に材料ホッパ13を備え、図示しない材料供給装置等により材料ホッパ13から射出シリンダ11内へ樹脂材料が供給される。
【0020】
スクリュ14は、後方Bから前方Fに向かって螺旋状のフライト15を備える。スクリュ14の回転方向に対して、材料ホッパ13から供給した樹脂材料を前方Fへ回転輸送できるように、フライト15の螺旋状の向きと角度を設定する。なお、図1に示すように、フライト15は一定の間隔で一定の角度で1条の配置としたが、これに限定されることなく、例えば、間隔や角度を可変してもよく、複数条の配列としても良い。あるいは、スクリュ14の一部の範囲のみフライト15を複数条の配列としても良い。
【0021】
また、スクリュ14は、後方Bから前方Fに向かって直径が段階的に大きくなる円柱形状とする。つまり、スクリュ14と射出シリンダ11との隙間の容積が、後方Bから前方Fに向かって段階的に小さくなるように、例えば、輸送ゾーン、圧縮ゾーン、溶融ゾーンというように設定する。これにより、材料ホッパ13から供給された樹脂材料は、スクリュ14とフライト15の回転動作により前方輸送され、容積の縮小により圧縮作用とせん断発熱が樹脂材料に作用し、ヒータ12からの熱量付与の相乗効果により、段階的に溶融し(可塑化という)、スクリュ14の前方Fに向かって溶融樹脂が生成され、スクリュ14の先端部に配置される逆流防止装置16内の流路を通って、スクリュ14の前方F側の貯蔵エリア17に溶融樹脂が貯蔵される(計量樹脂という)。計量樹脂の増加に伴い、スクリュ14は後方B側に後退し、所定の後退位置でスクリュ14の回転動作を停止し、その停止位置を保持する(計量工程という)。このスクリュ14の後退動作に制限をかけて(計量背圧という)、成形材料の溶融混錬性を調整する(背圧制御という)。射出工程は、スクリュ14を前進させて計量樹脂を射出成形金型20に向けて射出充填する。この射出工程では、逆流防止装置16内の流路は閉鎖されている。
【0022】
射出成形金型20は、固定金型21と可動金型22が図示しない型締装置に支持され、型締装置により固定金型21に対して可動金型22は進退自在に動作する。ここで、可動金型22の動作に関して、固定金型21に近づく動作を型閉動作、固定金型21から離れる動作を型開動作と定義する。また、型閉動作で固定金型21と可動金型22が当接した位置を金型タッチ点、金型タッチ点から更に型閉動作方向の動作を型締動作、型締動作の完了位置を型締限、型締限から金型タッチ点までの動作を降圧動作と定義する。金型タッチ点から型締限の範囲内で、金型キャビティ23が形成される。また、固定金型21には、樹脂材料が流動する樹脂流路24と、樹脂流路24の開閉を行うバルブゲート25と、金型キャビティ23に樹脂流路24を接続するゲート26、とを備える。樹脂流路24は、射出シリンダ11と同様に所定の温度に調整される。
【0023】
ここで、射出成形に用いる樹脂材料として、例えば、自動車内装部品においては、ポリプロピレン(PP)樹脂やポリエチレン(PE)樹脂等の熱可塑性樹脂に、黒や赤や青等の着色剤を添加して部品の色調を調整することが一般的である。また、熱可塑性樹脂に対して柔軟性を与える可塑剤、結晶性樹脂に対して結晶化度を制御する核剤や透明化剤、燃焼を抑制する難燃剤、静電気の帯電を抑制する帯電防止剤、流動性や離型性を改善する滑剤、紫外線による劣化を抑制する対候剤や紫外線劣化防止剤、ガラス繊維や炭素繊維等の強化剤等の各種の添加剤が適宜選択さる。また、ポリプロピレン(PP)樹脂やポリエチレン(PE)樹脂等の汎用樹脂、ポリアミド(PA)樹脂やポリカーボネイト(PC)樹脂等のエンジニアリング樹脂、ポリフェニレンサルファイド(PPS)樹脂やポリエーテルエーテルケトン(PEEK)樹脂等の超エンジニアリング樹脂等の熱可塑性樹脂が適宜選択される。熱可塑性樹脂と添加剤を合わせて樹脂材料という。なお、熱可塑性樹脂の代わりに、例えば、フェノール(PF)樹脂やメラニン(MF)樹脂等の熱硬化性樹脂を用いても良い。
【0024】
[温度計測手段]
次に、本発明の実施形態に係る、射出工程で金型キャビティ内に射出充填された計量樹脂の充填温度を計測する温度計測手段について、図2を用いて説明する。
【0025】
先ず、図2(a)に示すように、温度計測手段50として、金型キャビティ23のゲート26から、射出充填される計量樹脂の流動方向に沿って、複数の温度センサ51を可動金型22に配置する。複数の温度センサ51で計測した温度データは、温度受信部52で射出工程中の計量樹脂の充填温度に編集し、編集データを射出制御部40へ送信する。なお、図2(a)においては、ゲート26から下側の金型キャビティ23に沿って温度センサ51を配置したが、これに限定されることなく、例えば、金型キャビティ23の全範囲に温度センサ51を配置するとしても良い。また、温度センサ51を固定金型21に配置しても良く、金型キャビティ23から一定の距離に離して配置しても良い。
【0026】
また、図2(b)に示すように、温度計測手段50として、熱画像を撮影するサーモカメラ54を用いる。具体的には、金型キャビティ23内に計量樹脂を射出充填後、任意のタイミングで可動金型22を型開動作して、計量樹脂が完全に冷却固化していない状態の成形品53をサーモカメラ54で撮影する。サーモカメラ54で撮影した熱画像データを、画像受信部55で射出工程中の計量樹脂の充填温度として編集し、編集データを射出制御部40へ送信する。なお、図2(b)に示す手段は、計量樹脂の射出充填後から温度計測するまでに時間が経過していることから、図2(a)に示す手段と比べて精度は劣るもの、充填温度を把握するには好適である。また、図2(b)では、1つのサーモカメラ54で温度計測するとしたが、複数のサーモカメラ54を用いても良い。また、成形品53が固定金型21についた状態で温度計測したが、例えば、ロボット等で成形品53を移送中に温度計測しても良い。
【0027】
これらの手段の他に、例えば、CAE流動解析手法のCAE流動解析データから、射出工程中の充填温度を求めたものを用いても良い。この場合、充填温度とスクリュ14との位置関係を容易に表示でき、後述する温度補正処理に利用することができる。また、これらの温度計測手段は、単独で用いても良く、必要に応じて組み合わせて用いても良い。なお、樹脂流路24よりも射出装置10側に温度計測手段を設けた場合は、樹脂流路24やゲート26等を計量樹脂が通過する際に、せん断発熱を受けるので好ましくない。
【0028】
[射出成形動作]
次に、本発明の実施形態に係る射出成形動作について、図3を用いて説明する。図3(a)は、計量工程の射出シリンダ11と射出成形金型20の断面図を示し、図3(b)は、横軸にスクリュ位置S、縦軸に射出速度とした射出工程の射出制御パターンを示す。
【0029】
先ず、図3(a)に示すように、射出シリンダ11の加熱温度、スクリュ14の回転数、背圧、計量完了位置KE等の計量条件が設定された計量制御パターンに基づいて、射出制御部40は射出駆動部30を操作して計量工程が開始される。スクリュ14の位置が計量完了位置KEに達すると、貯蔵エリア17に所定量の計量樹脂が貯蔵され計量工程を終える。計量工程においては、バルブゲート25は閉鎖状態である。また、計量完了位置KEは、引き続き行われる射出工程の射出開始位置SSとなる(KE=SS)。
【0030】
射出工程は、図3(b)に示すように、樹脂材料の特性や金型キャビティ23の形状等によって設定された多段の射出速度の射出制御パターンに基づいて、射出制御部40は射出駆動部30を操作して射出工程を開始する。スクリュ11は、射出開始位置SSから射出保圧切替え位置VPに向かって前進動作し、金型キャビティ23内に計量樹脂が射出充填される。スクリュ位置Sが射出保圧切替え位置VPに到達後は、計量樹脂の冷却固化収縮量を補う保圧工程に移行し、その後、冷却工程を経て射出成形金型20を型開して成形品53を金型キャビティ23から取り出す。射出工程および保圧工程中は、バルブゲート25は開放状態である。なお、図3(b)においては、射出速度の射出制御パターンとしたが、これに限定されることなく、例えば、射出圧力の射出制御パターンとしても良い。この場合は、射出圧力の設定と連動して射出速度が変化する。
【0031】
ここで、射出工程において、計量樹脂は樹脂流路24から金型キャビティ23の範囲で計量樹脂が流動する際に、せん断発熱の影響を大きく受ける。このせん断発熱はせん断速度と材料粘度に関係し、せん断速度が大きいほど、材料粘度が高いほど、せん断発熱は大きくなり、計量樹脂は発熱され温度上昇する。
【0032】
せん断速度は、計量樹脂の流速と計量樹脂が通過する流路面積に関係し、流速の上昇に伴いせん断発熱は大きくなり、また、流路面積の縮小に伴いせん断発熱は大きくなる。例えば、流路面積が最も小さいバルブゲート25あるいはゲート26を計量樹脂が通過する際に、せん断発熱が大きくなり、その結果、通過後の計量樹脂の温度が大きく上昇する。さらに、射出制御パターンの射出速度によっても、せん断発熱は大きく変わってくる。例えば、図3(b)に示すように、高速射出設定の領域Bではせん断発熱が最も大きく、次いで中速射出設定の領域Aのせん断発熱が大きく、低速射出設定の領域Cのせん断発熱が最も小さくなる。その結果、1ショットの射出充填の範囲内でも、射出速度の変化に伴うせん断発熱の大小により、計量樹脂の温度は大きく変動する。
【0033】
また、材料粘度は樹脂温度に関係し、樹脂温度の低下に伴い材料粘度は上昇し、せん断発熱も大きくなる。例えば、領域Cでは、領域Aおよび領域Bと比べて、射出充填の開始からの時間経過が長く、また、明らかに計量樹脂の温度よりは低い温度に調整された射出成形金型と触れて、金型キャビティ20内を流動中に、計量樹脂は冷やされ温度が低下する。そうなると、材料粘度が上昇してせん断発熱が大きくなるので、計量樹脂は温度上昇する。しかしながら、低速射出設定によりせん断発熱は低く抑えられ、結局は、実際の金型キャビティ23内に射出充填された計量樹脂の温度分布を測定することが正しいとの結論に至る。つまり、射出成形品の品質管理は、射出シリンダ11内に貯蔵される計量樹脂の温度管理よりも、金型キャビティ23内に射出充填された計量樹脂の温度管理することが正しいとなる。
【0034】
[射出成形方法]
次に、本発明の実施形態に係る射出成形方法について、図4図5を用いて説明する。図4は、射出工程中の金型キャビティ23内の計量樹脂の射出充填状態を示す。また、図5は、射出工程中の充填温度に基づいて計量樹脂を温度補正処理する手順について示す。ここでは、図3(a)に示す計量工程を終え、図3(b)に示す射出制御パターンに基づいて射出工程を開始したところから説明を行う。
【0035】
先ず、図4(a)に示すように、スクリュ14の前進動作により、貯蔵エリア17の計量樹脂は、樹脂流路24、開放されたバルブゲート25、ゲート26を通過して、金型キャビティ23内に射出充填される。スクリュ14の前進動作に伴い、金型キャビティ23内は計量樹脂で充満されていく。次に、図4(b)に示すように、スクリュ15が射出保圧切替え位置VPに到達すると射出工程を終え、保圧工程に切り替わり、スクリュ14を所定の圧力で押圧して保圧充填を行う。この射出工程の完了の時点では、金型キャビティ23内は計量樹脂で充満状態となり、成形品53の元を得る。射出工程および保圧工程中は、バルブゲート25は開放状態である。この射出工程中に、図2に示す温度計測手段を用いて、金型キャビティ23内に射出充填される計量樹脂の充填温度を計測する。また、金型キャビティ23内の計量樹脂は、ゲート26から充填され(射出充填位置G)、最終の射出充填位置Mに向かって流動する。
【0036】
次に、射出制御部40で充填温度の計測データから、図5(a)に示すように、横軸に成形品53の射出充填位置、縦軸に充填温度とした充填温度波形Z(図中の破線)を求める。これに、良品成形を得ることができる基準温度波形K(図中の実線)と、上下限の許容温度(H、L)を重ね書き表示する。この基準温度波形Kおよび許容温度(H、L)は、例えば、過去の射出成形の量産実績から求めて射出制御部40に設定する。または、CAE流動解析の演算結果から求めても良い。なお、図5(a)において、許容温度(H、L)を上下限の2点の設定としたが、これに限定されることなく、例えば、充填温度波形Zの状態から設定点数を増やしても良い。あるいは、計量工程の計量制御パターンに応じて設定点数を選択するとしても良い。
【0037】
充填温度波形Zが、基準温度波形に対して設定した良品成形を得るための許容温度(H、L)の範囲内である場合は、良品成形の安定生産が保証されるとして、補正を行うことなく射出成形の運転を継続する。充填温度波形Zが、許容温度(H、L)の範囲外である場合は、良品成形の安定生産が困難として、以下に示す温度補正処理を行う。
【0038】
先ず、充填温度波形Zと許容値(H、L)が交差する射出充填位置を、補正位置(S1~S3)とする。次に、補正位置(S1~S3)を射出工程中のスクリュ14の位置に変換する。この変換は、例えば、CAE流動解析を用いても良いが、実際の射出工程を分割して再現させたショートショット充填法を用いることが好ましい。ショートショット充填法とは、図3(a)に示す計量完了位置KEから、図4(b)に示す射出保圧切替え位置VPまでの範囲で、図4(a)に示すように、射出工程のスクリュ14を途中で停止させて、ショートショットの状態の成形品53を得る手段である。このスクリュ14の途中停止位置を細かく分割することで、射出工程中のスクリュ14の位置と、金型キャビティ23内の計量樹脂の流動状態を正確に把握することができる。そのために、射出成形の現場において広く使われている手段である。なお、射出工程中のスクリュ14の位置は、計量工程中のスクリュ14の位置でもある。
【0039】
次に、図5(b)に示すように、変換後の補正位置(S1~S3)を補正スクリュ位置(HS1~HS3)として、横軸を計量工程中のスクリュ14の位置とした計量制御パターンを示すグラフに重ね書き表示させ、温度補正処理の補正パターンを設定する。ここで、温度補正処理の調整項目として、計量工程中のスクリュ回転数と背圧とした。これは、射出工程で射出成形品の品質の良否を予測し、直ちに計量工程で適正に補正処理を行い、次ショットから良品の安定生産を得る狙いで、即効性と確実性の観点から選択した。なお、ヒータ12を調整して射出シリンダ11の温度を調整する手段は、温度調整に時間を要し即効性が期待できないことと、貯蔵エリア17の狭い範囲の計量樹脂の温度を細かく調整することが極めて困難なことから、好ましくはない。
【0040】
先ず、スクリュ回転数を用いた温度補正処理について説明する。計量開始位置KSから補正スクリュ位置HS1の範囲は、充填温度波形Zが許容値(H、L)の範囲内にあるので、予め設定した計量制御パターンのスクリュ回転数N0とする。補正スクリュ位置HS1からHS2の範囲は、充填樹脂温度波形Zが上限の許容値Hを超えているので、計量樹脂の温度を下げるために、スクリュ回転数N1を下げる(N1<N0)。これにより、スクリュ14の回転動作によるせん断発熱が減少し、その結果、低い温度の計量樹脂が貯蔵される。補正スクリュ位置HS2からHS3の範囲は、充填温度波形Zが許容値(H、L)の範囲内にあるので、予め設定した計量制御パターンのスクリュ回転数N0とする。補正スクリュ位置HS3から計量完了位置KEの範囲は、充填樹脂温度波形Zが下限の許容値Lより低下しているので、計量樹脂の温度を上げるために、スクリュ回転数N2を上げる(N2>N0)。これにより、スクリュ14の回転動作によるせん断発熱が増大し、その結果、高い温度の計量樹脂が貯蔵される。これらの温度補正処理を計量工程の中で行うことで、金型キャビティ23内に射出充填する計量樹脂の温度の適正化を図ることができる。
【0041】
次に、背圧を用いた温度補正処理について説明する。この場合も、スクリュ回転数と同様に、充填温度波形Zと基準波形Kの許容値(H、L)と補正スクリュ位置(HS1~HS3)に基づいて、許容値(H、L)の範囲内では補正を行わずに予め設定した計量制御パターンの背圧BP0とする。許容値Hよりも高い場合は、せん断発熱を減少させて低い温度の計量樹脂とするために、計量背圧BP1を下げる(BP1<BP0)。許容値Lよりも低い場合は、せん断発熱を増大させて高い温度の計量樹脂とするために、計量背圧BP2を高くする(BP2>BP0)。背圧を用いた温度補正処理も計量工程の中で行い、金型キャビティ23内に射出充填する計量樹脂の温度の適正化を図ることができる。
【0042】
ここで、スクリュ回転数と背圧を組合せて温度補正処理を行うとしても良い。例えば、高い温度の計量樹脂を得るために、スクリュ14の回転数を過度に上げた場合、完全に溶融していない樹脂材料(未溶融樹脂という)が計量樹脂に混ざって、異物混入等の成形不良となることがある。この場合は、スクリュ14の回転数を下げて、未溶融樹脂の発生を抑制し、せん断発熱の不足分は背圧を高くすることで補うとする。また、高いせん断発熱を得ようとして、過度に高い背圧を設定した場合、計量樹脂の貯蔵スピードが遅くなり、計量工程の時間が長くなって生産性が大きく低下することがある。この場合は、背圧を少し下げて、スクリュ14の回転数を上げて、せん断発熱を補いつつ計量工程の時間短縮を図るものとする。
【0043】
[効果]
このように、射出工程中の計量樹脂の充填温度に基づいて、計量工程の計量制御パターンを補正することで、金型キャビティ内に射出充填した計量樹脂を適正な状態に調整できる。その結果、高品質な射出成形品の安定生産を確保することができる。また、射出工程に続く計量工程で補正処理を、次ショットの射出成形は補正処理した状態で行うことができる。これにより、不良品の連続生産を回避でき、高い生産効率の射出成形を提供することができる。
【0044】
以上、本発明の好適な実施形態について説明したが、本発明の技術範囲は、上述した実施形態に記載された範囲には限定されない。上記の実施形態には多様な変更または改良を加えることが可能である。
【符号の説明】
【0045】
100 射出成形機
10 射出装置
11 射出シリンダ
12 ヒータ
13 材料ホッパ
14 スクリュ
15 フライト
16 逆流防止装置
17 貯蔵エリア
F 前方
B 後方
20 射出成形金型
21 固定金型
22 可動金型
23 金型キャビティ
24 樹脂流路
25 バルブゲート
26 ゲート
30 射出駆動部
40 射出制御部
50 温度計測手段
51 温度センサ
52 温度受信部
53 成形品
54 サーモカメラ
55 画像受信部
KE 計量完了位置
KS 計量開始位置
SS 射出開始位置
VP 射出保圧切替え位置
A、B、C 領域
G、M 射出充填位置
Z 充填温度波形
K 基準温度波形
H、L 許容温度
S1~S3 補正位置
HS1~HS3 補正スクリュ位置
N0~N2 スクリュ回転数
BP0~BP2 背圧
図1
図2
図3
図4
図5