IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ホンダアクセスの特許一覧

<>
  • 特開-情報提供システム及び情報提供方法 図1
  • 特開-情報提供システム及び情報提供方法 図2
  • 特開-情報提供システム及び情報提供方法 図3
  • 特開-情報提供システム及び情報提供方法 図4
  • 特開-情報提供システム及び情報提供方法 図5
  • 特開-情報提供システム及び情報提供方法 図6
  • 特開-情報提供システム及び情報提供方法 図7
  • 特開-情報提供システム及び情報提供方法 図8
  • 特開-情報提供システム及び情報提供方法 図9
  • 特開-情報提供システム及び情報提供方法 図10
  • 特開-情報提供システム及び情報提供方法 図11
  • 特開-情報提供システム及び情報提供方法 図12
  • 特開-情報提供システム及び情報提供方法 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023048795
(43)【公開日】2023-04-07
(54)【発明の名称】情報提供システム及び情報提供方法
(51)【国際特許分類】
   G06Q 30/015 20230101AFI20230331BHJP
   G06Q 30/0601 20230101ALI20230331BHJP
【FI】
G06Q30/02 470
G06Q30/06 330
【審査請求】有
【請求項の数】13
【出願形態】OL
(21)【出願番号】P 2021158318
(22)【出願日】2021-09-28
(71)【出願人】
【識別番号】390005430
【氏名又は名称】株式会社ホンダアクセス
(74)【代理人】
【識別番号】100106002
【弁理士】
【氏名又は名称】正林 真之
(74)【代理人】
【識別番号】100120891
【弁理士】
【氏名又は名称】林 一好
(74)【代理人】
【識別番号】100160794
【弁理士】
【氏名又は名称】星野 寛明
(72)【発明者】
【氏名】吉岡 浩司
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049BB08
5L049BB22
(57)【要約】
【課題】より多くのユーザに対し満足度の高いアイテムを提案することができる情報提供システムを提供すること。
【解決手段】情報提供システム1は、ユーザプロファイルデータベース51に登録された情報及びアイテムプロファイルデータベース52に登録された情報に基づいて、対象ユーザと関連付けられるアイテムを含むマッチペアリストを生成するアイテムリスト生成部55と、ユーザインターフェース2を介して対象ユーザに対するセッションにおけるセッション情報を取得し、ユーザプロファイルデータベース51に登録された複数の登録ユーザの価値観を反映して形成されるソーシャル空間における対象ユーザの目標ソーシャルポジションをセッション情報に基づいて算出するセッション情報処理システム6と、マッチペアリスト及び目標ソーシャルポジションに基づいて、対象ユーザに対しアイテムを提案するアイテム提案部7と、を備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
アイテムプロファイルデータベースに登録された複数の登録アイテムの中から対象ユーザに適するアイテムを提案する情報提供システムであって、
ユーザプロファイルデータベースに登録された前記対象ユーザの情報及び前記アイテムプロファイルデータベースに登録された情報に基づいて、前記対象ユーザと関連付けられる1以上のアイテムを含むアイテムリストを生成するアイテムリスト生成部と、
前記対象ユーザのユーザインターフェースを介して当該対象ユーザに対するセッションにおけるセッション情報を取得し、前記ユーザプロファイルデータベースに登録された複数の登録ユーザの価値観を反映して形成されるソーシャル空間における前記対象ユーザの目標ソーシャルポジションを前記セッション情報に基づいて算出するセッション情報処理システムと、
前記アイテムリスト及び前記目標ソーシャルポジションに基づいて、前記対象ユーザに対し1以上のアイテムを提案するアイテム提案部と、を備えることを特徴とする情報提供システム。
【請求項2】
前記セッションは、前記アイテム提案部が前記対象ユーザへ暫定的に複数のアイテムを提案する提案工程と、前記対象ユーザが前記アイテム提案部から提案された複数のアイテムの中から少なくとも1つのアイテムを暫定的に選択する選択工程と、の複数回の繰り返しを含み、
前記セッション情報は、前記選択工程において前記対象ユーザによって選択されたアイテムに関する情報を含むことを特徴とする請求項1に記載の情報提供システム。
【請求項3】
前記セッション情報処理システムは、前記ソーシャル空間における前記対象ユーザのソーシャルポジションの前記セッション内の変化履歴に基づいて前記目標ソーシャルポジションを算出することを特徴とする請求項1又は2に記載の情報提供システム。
【請求項4】
前記セッション情報処理システムは、
前記ユーザプロファイルデータベースに登録された情報に基づいて前記登録ユーザ毎にユーザベクトルを生成するユーザベクトル生成部と、
前記ユーザベクトル生成部によって生成されたユーザベクトルを記憶するユーザベクトル記憶部と、を備え、
前記ソーシャル空間は、複数の前記登録ユーザのユーザベクトルに基づいて定義されることを特徴とする請求項1から3の何れかに記載の情報提供システム。
【請求項5】
前記セッション情報処理システムは、
前記アイテムプロファイルデータベースに登録された情報に基づいて前記登録アイテム毎にアイテムベクトルを生成するアイテムベクトル生成部と、
前記アイテムベクトル生成部によって生成されたアイテムベクトルを記憶するアイテムベクトル記憶部と、を備え、
前記アイテム提案部は、前記アイテムリストによって関連付けられる前記アイテムベクトル及び前記目標ソーシャルポジションに基づいて前記対象ユーザに対し1以上のアイテムを提案することを特徴とする請求項4に記載の情報提供システム。
【請求項6】
前記セッション情報処理システムは、前記セッション情報に基づいて前記ユーザベクトル記憶部に記憶された前記対象ユーザのユーザベクトルを更新するユーザベクトル更新部をさらに備えることを特徴とする請求項5に記載の情報提供システム。
【請求項7】
前記ユーザベクトル更新部は、前記セッション情報と関連付けられたアイテムベクトルに基づいて前記対象ユーザのユーザベクトルを更新することを特徴とする請求項6に記載の情報提供システム。
【請求項8】
前記セッション情報処理システムは、前記セッション情報と関連付けられたアイテムベクトルを選択アイテムベクトルとし、前記対象ユーザのユーザベクトルに基づいて前記アイテムベクトル記憶部に記憶された前記選択アイテムベクトルを更新するアイテムベクトル更新部をさらに備えることを特徴とする請求項5又は6に記載の情報提供システム。
【請求項9】
前記セッション情報処理システムは、前記ユーザベクトル記憶部に記憶された複数の前記登録ユーザのユーザベクトルのユーザベクトル空間における重心及び境界を算出する重心境界算出部をさらに備え、
前記ソーシャル空間は、前記重心及び前記境界に基づいて定義されることを特徴とする請求項5から8の何れかに記載の情報提供システム。
【請求項10】
前記セッション情報処理システムは、
前記対象ユーザのユーザベクトルに基づいて前記ソーシャル空間における前記対象ユーザのソーシャルポジションを算出するソーシャルポジション算出部と、
前記対象ユーザのソーシャルポジションの前記セッション内における変化履歴に基づいてセッションベクトルを生成するセッションベクトル生成部と、
前記対象ユーザのソーシャルポジション及び前記セッションベクトルに基づいて前記目標ソーシャルポジションを算出する目標ソーシャルポジション算出部と、をさらに備えることを特徴とする請求項9に記載の情報提供システム。
【請求項11】
前記目標ソーシャルポジション算出部は、前記対象ユーザの最新のソーシャルポジションと、前記セッションベクトルに基づいて推定される前記対象ユーザのソーシャルポジションの変化目標と、を合成することによって前記目標ソーシャルポジションを算出することを特徴とする請求項10に記載の情報提供システム。
【請求項12】
前記アイテム提案部は、前記目標ソーシャルポジション、前記セッションベクトル、及び前記アイテムベクトルに基づいて、前記アイテムリストに含まれる各アイテムに対するスコアを算出し、前記スコアが高いアイテムから順に提案することを特徴とする請求項10又は11の何れかに記載の情報提供システム。
【請求項13】
アイテムプロファイルデータベースに登録された複数の登録アイテムの中から対象ユーザに適するアイテムをコンピュータによって提案する情報提供方法であって、
ユーザプロファイルデータベースに登録された前記対象ユーザの情報及び前記アイテムプロファイルデータベースに登録された情報に基づいて、前記対象ユーザと関連付けられる1以上のアイテムを含むアイテムリストを生成する工程と、
前記対象ユーザのユーザインターフェースを介して当該対象ユーザに対するセッションにおけるセッション情報を取得する工程と、
前記ユーザプロファイルデータベースに登録された複数の登録ユーザの価値観を反映して形成されるソーシャル空間における前記対象ユーザの目標ソーシャルポジションを前記セッション情報に基づいて算出する工程と、
前記アイテムリスト及び前記目標ソーシャルポジションに基づいて、前記対象ユーザに対し1以上のアイテムを提案する工程と、を備えることを特徴とする情報提供方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報提供システム及び情報提供方法に関する。より詳しくは、アイテムプロファイルデータベースに登録された複数の登録アイテムの中から対象ユーザの趣味趣向に適するアイテムを提案する情報提供システム及び情報提供方法に関する。
【背景技術】
【0002】
特許文献1に示された情報提供方法は、実在の店舗及びインターネット上の仮想店舗上での顧客情報を収集するステップと、収集した顧客情報から顧客毎の個人別情報を抽出するステップと、これら個人別情報に基づいて各個人に応じた趣味や購入パターンを分析するステップ、これら分析の結果に関連した顧客に有益なニーズ情報を作成するステップと、これら作成されたニーズ情報を、インターネットを介して各顧客に提供するステップと、を含む。特許文献1に示された情報提供方法によれば、顧客が満足する情報を提供することができる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2001-282833号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
このように従来の情報提供方法では、キュレーションされたデータベースを用いることによって、ユーザの趣味趣向に適した情報を提供するものが多いが、これでは所謂フォロワー層と呼称されるユーザを中心として高々6~7割程度のユーザに対してしか満足度の高い情報を提供することができない。
【0005】
すなわち、キュレーションされたデータベースに基づく方法では、一般的な尺度に基づく提案に終始するため、志向性の強い一部のマニア層と呼称されるユーザに対しては追従性が悪い。また例えばインターネットにおけるレビューに基づいて生成したデータベースは静的であるため、飲食店のように流行り廃れの激しい業界では、フォロワー層のユーザに対しては有効であっても、常に新しいものを志向する所謂先進層と呼称されるユーザや、常に同種のものを志向する所謂定番層と呼称されるユーザに対しては、満足度の高い情報を提供することはできない。
【0006】
本発明は、より多くのユーザに対し満足度の高いアイテムを提案することができる情報提供システム及び情報提供方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
(1)本発明に係る情報提供システム(例えば、後述の情報提供システム1)は、アイテムプロファイルデータベース(例えば、後述のアイテムプロファイルデータベース52)に登録された複数の登録アイテムの中から対象ユーザに適するアイテムを提案するものであって、ユーザプロファイルデータベース(例えば、後述のユーザプロファイルデータベース51)に登録された前記対象ユーザの情報及び前記アイテムプロファイルデータベースに登録された情報に基づいて、前記対象ユーザと関連付けられる1以上のアイテムを含むアイテムリストを生成するアイテムリスト生成部(例えば、後述のアイテムリスト生成部55)と、前記対象ユーザのユーザインターフェース(例えば、後述のユーザインターフェース2)を介して当該対象ユーザに対するセッションにおけるセッション情報を取得し、前記ユーザプロファイルデータベースに登録された複数の登録ユーザの価値観を反映して形成されるソーシャル空間における前記対象ユーザの目標ソーシャルポジションを前記セッション情報に基づいて算出するセッション情報処理システム(例えば、後述のセッション情報処理システム6)と、前記アイテムリスト及び前記目標ソーシャルポジションに基づいて、前記対象ユーザに対し1以上のアイテムを提案するアイテム提案部(例えば、後述のアイテム提案部7)と、を備えることを特徴とする。
【0008】
(2)この場合、前記セッションは、前記アイテム提案部が前記対象ユーザへ暫定的に複数のアイテムを提案する提案工程(例えば、後述のステップST3参照)と、前記対象ユーザが前記アイテム提案部から提案された複数のアイテムの中から少なくとも1つのアイテムを暫定的に選択する選択工程(例えば、後述のステップST4参照)と、の複数回の繰り返しを含み、前記セッション情報は、前記選択工程において前記対象ユーザによって選択されたアイテムに関する情報を含むことが好ましい。
【0009】
(3)この場合、前記セッション情報処理システムは、前記ソーシャル空間における前記対象ユーザのソーシャルポジションの前記セッション内の変化履歴に基づいて前記目標ソーシャルポジションを算出することが好ましい。
【0010】
(4)この場合、前記セッション情報処理システムは、前記ユーザプロファイルデータベースに登録された情報に基づいて前記登録ユーザ毎にユーザベクトルを生成するユーザベクトル生成部(例えば、後述のユーザベクトル生成部62)と、前記ユーザベクトル生成部によって生成されたユーザベクトルを記憶するユーザベクトル記憶部(例えば、後述のユーザベクトル記憶部60)と、を備え、前記ソーシャル空間は、複数の前記登録ユーザのユーザベクトルに基づいて定義されることが好ましい。
【0011】
(5)この場合、前記セッション情報処理システムは、前記アイテムプロファイルデータベースに登録された情報に基づいて前記登録アイテム毎にアイテムベクトルを生成するアイテムベクトル生成部(例えば、後述のアイテムベクトル生成部63)と、前記アイテムベクトル生成部によって生成されたアイテムベクトルを記憶するアイテムベクトル記憶部(例えば、後述のアイテムベクトル記憶部61)と、を備え、前記アイテム提案部は、前記アイテムリストによって関連付けられる前記アイテムベクトル及び前記目標ソーシャルポジションに基づいて前記対象ユーザに対し1以上のアイテムを提案することが好ましい。
【0012】
(6)この場合、前記セッション情報処理システムは、前記セッション情報に基づいて前記ユーザベクトル記憶部に記憶された前記対象ユーザのユーザベクトルを更新するユーザベクトル更新部(例えば、後述のユーザベクトル更新部64)をさらに備えることが好ましい。
【0013】
(7)この場合、前記ユーザベクトル更新部は、前記セッション情報と関連付けられたアイテムベクトルに基づいて前記対象ユーザのユーザベクトルを更新することが好ましい。
【0014】
(8)この場合、前記セッション情報処理システムは、前記セッション情報と関連付けられたアイテムベクトルを選択アイテムベクトルとし、前記対象ユーザのユーザベクトルに基づいて前記アイテムベクトル記憶部に記憶された前記選択アイテムベクトルを更新するアイテムベクトル更新部(例えば、後述のアイテムベクトル更新部65)をさらに備えることが好ましい。
【0015】
(9)この場合、前記セッション情報処理システムは、前記ユーザベクトル記憶部に記憶された複数の前記登録ユーザのユーザベクトルのユーザベクトル空間における重心及び境界を算出する重心境界算出部(例えば、後述の重心境界算出部66)をさらに備え、前記ソーシャル空間は、前記重心及び前記境界に基づいて定義されることが好ましい。
【0016】
(10)前記セッション情報処理システムは、前記対象ユーザのユーザベクトルに基づいて前記ソーシャル空間における前記対象ユーザのソーシャルポジションを算出するソーシャルポジション算出部(例えば、後述のソーシャルポジション算出部67)と、前記対象ユーザのソーシャルポジションの前記セッション内における変化履歴に基づいてセッションベクトルを生成するセッションベクトル生成部(例えば、後述のセッションベクトル生成部68)と、前記対象ユーザのソーシャルポジション及び前記セッションベクトルに基づいて前記目標ソーシャルポジションを算出する目標ソーシャルポジション算出部(例えば、後述の目標ソーシャルポジション算出部69)と、をさらに備えることが好ましい。
【0017】
(11)この場合、前記目標ソーシャルポジション算出部は、前記対象ユーザの最新のソーシャルポジションと、前記セッションベクトルに基づいて推定される前記対象ユーザのソーシャルポジションの変化目標と、を合成することによって前記目標ソーシャルポジションを算出することが好ましい。
【0018】
(12)この場合、前記アイテム提案部は、前記目標ソーシャルポジション、前記セッションベクトル、及び前記アイテムベクトルに基づいて、前記アイテムリストに含まれる各アイテムに対するスコアを算出し、前記スコアが高いアイテムから順に提案することが好ましい。
【0019】
(13)本発明に係る情報提供方法は、アイテムプロファイルデータベース(例えば、後述のアイテムプロファイルデータベース52)に登録された複数の登録アイテムの中から対象ユーザに適するアイテムをコンピュータ(例えば、後述の情報提供システム1)によって提案する方法であって、ユーザプロファイルデータベース(例えば、後述のユーザプロファイルデータベース51)に登録された前記対象ユーザの情報及び前記アイテムプロファイルデータベースに登録された情報に基づいて、前記対象ユーザと関連付けられる1以上のアイテムを含むアイテムリストを生成する工程(例えば、後述のステップST2参照)と、前記対象ユーザのユーザインターフェースを介して当該対象ユーザに対するセッションにおけるセッション情報を取得する工程(例えば、後述のステップST4参照)と、前記ユーザプロファイルデータベースに登録された複数の登録ユーザの価値観を反映して形成されるソーシャル空間における前記対象ユーザの目標ソーシャルポジションを前記セッション情報に基づいて算出する工程(例えば、後述のステップST7参照)と、前記アイテムリスト及び前記目標ソーシャルポジションに基づいて、前記対象ユーザに対し1以上のアイテムを提案する工程(例えば、後述のステップST8参照)と、を備えることを特徴とする。
【発明の効果】
【0020】
(1)本発明に係る情報提供システムにおいて、アイテムリスト生成部は、ユーザプロファイルデータベースに登録された対象ユーザの情報及びアイテムプロファイルデータベースに登録された情報に基づいて、対象ユーザと関連付けられる1以上のアイテムを含むアイテムリストを生成し、セッション情報処理システムは、対象ユーザのユーザインターフェースを介してこの対象ユーザに対するセッションにおけるセッション情報を取得するとともに、複数の登録ユーザの価値観を反映して形成されるソーシャル空間における対象ユーザの目標ソーシャルポジションをセッション情報に基づいて算出し、アイテム提案部は、これらアイテムリスト及び目標ソーシャルポジションに基づいて1以上のアイテムを提案する。本発明によれば、先ず、ユーザプロファイルデータベース及びアイテムプロファイルデータベースに登録された情報に基づいて生成されたアイテムリストを用いて対象ユーザにアイテムを提案することにより、フォロワー層を中心とする多数のユーザに対し、満足度の高いアイテムを提案することができる。
【0021】
ところでイマヌエル・カントの人格性モデルによれば、「意志」とは、自己認識される「現状」から、在りたい自分としての「目的」に向かう実行として定めることができ、またその実行度合いを「幸福度」、すなわち満足度として定めることができる。本発明によれば、セッション情報処理システムは、対象ユーザに対するセッションにおいて取得したセッション情報に基づいてソーシャル空間における対象ユーザの目標ソーシャルポジションを算出することにより、対象ユーザのセッション実行時における上記人格性モデルで言うところの「目的」を目標ソーシャルポジションとして算出することができる。また本発明によれば、アイテム提案部は、アイテムリスト及び目標ソーシャルポジションに基づいて対象ユーザに対しアイテムを提案することにより、フォロワー層以外のマニア層、先進層、及び定番層等のユーザに対しても、満足度の高いアイテムを提案することができる。
【0022】
(2)セッション情報処理システムは、提案工程と選択工程との複数回にわたる繰り返しを含む対象ユーザに対するセッションにおいて、対象ユーザによって選択されたアイテムに関する情報をセッション情報として取得し、このセッション情報に基づいて目標ソーシャルポジションを算出することにより、対象ユーザのセッション実行時における趣味、趣向、及び興味等の価値観を反映して対象ユーザの目標ソーシャルポジションを算出することができるので、さらに多くのユーザに対し満足度の高いアイテムを提案することができる。
【0023】
(3)セッション情報処理システムは、ソーシャル空間における対象ユーザのソーシャルポジションのセッション内の変化履歴に基づいて目標ソーシャルポジションを算出することにより、対象ユーザのセッション実行時における価値観を精度良く反映して対象ユーザの目標ソーシャルポジションを算出することができるので、さらに多くのユーザに対し満足度の高いアイテムを提案することができる。
【0024】
(4)ユーザベクトル生成部は、ユーザプロファイルデータベースに登録された情報に基づいて登録ユーザ毎にユーザベクトルを生成し、ユーザベクトル記憶部は、ユーザベクトル生成部によって生成されたユーザベクトルを記憶する。また本発明において、セッション情報処理システムは、目標ソーシャルポジションが定義されるソーシャル空間を、複数の登録ユーザのユーザベクトルに基づいて定義する。これにより、ユーザプロファイルデータベースに登録されている複数の登録ユーザによって構成される仮想的な社会の価値観を反映してソーシャル空間を定義することができる。
【0025】
(5)アイテムベクトル生成部は、アイテムプロファイルデータベースに登録された情報に基づいて登録アイテム毎にアイテムベクトルを生成し、アイテムベクトル記憶部は、アイテムベクトル生成部によって生成されたアイテムベクトルを記憶し、アイテム提案部は、アイテムリストによって関連付けられるアイテムベクトル及び目標ソーシャルポジションに基づいて対象ユーザに対し1以上のアイテムを提案する。これにより、アイテムリストに含まれる複数のアイテムのうち、上記人格性モデルで言うところの「幸福度」を高めるようなアイテムを定量的に抽出し、対象ユーザに提案することができる。
【0026】
(6)ユーザベクトル更新部は、セッション情報に基づいてユーザベクトル記憶部に記憶された対象ユーザのユーザベクトルを更新する。これにより、対象ユーザのセッション実行時における価値観を、対象ユーザのユーザベクトルに反映させることができる。
【0027】
(7)ユーザベクトル更新部は、セッション情報と関連付けられたアイテムベクトルに基づいて対象ユーザのユーザベクトルを更新することにより、対象ユーザのセッション実行時における価値観を定量的に評価し、対象ユーザのユーザベクトルに反映させることができる。
【0028】
(8)登録アイテムの社会全体における価値は、アイテムプロファイルデータベースへの登録時から普遍ではなく、社会全体の価値観の変化と共に時々刻々と変化する。そこでアイテムベクトル更新部は、アイテムベクトル記憶部に記憶された複数のアイテムベクトルのうち、対象ユーザのセッション情報と関連付けられた選択アイテムベクトルを、この対象ユーザのユーザベクトルに基づいて更新する。これにより、社会全体の価値観の変化に合わせて、すなわち流行りや廃れに追従するようにアイテムベクトルを更新することができるので、アイテムベクトル記憶部に記憶されているアイテムベクトルの鮮度を高く維持することができる。またこのようにアイテムベクトルの鮮度を高く維持することにより、対象ユーザに対し満足度の高いアイテムを提案することができる。
【0029】
(9)社会全体の価値観は、社会の一部である自身の価値観の変化に関わらず時々刻々と変化する。特にマニア層や先進層のユーザの価値観の変遷は激しく、これに伴って社会全体の価値観も変化する。これに対し本発明では、重心境界算出部は、ユーザベクトル記憶部に記憶された複数の登録ユーザのユーザベクトルのユーザベクトル空間における重心及び境界を算出し、セッション情報処理システムは、複数の登録ユーザの重心及び境界に基づいてソーシャル空間を定義する。これにより、社会全体の価値観の変化に合わせてソーシャル空間を定義できるので、社会全体における対象ユーザのソーシャルポジションを社会全体の価値観の変化に合わせて是正することができる。
【0030】
(10)ソーシャルポジション算出部は、対象ユーザのユーザベクトルに基づいてソーシャル空間における対象ユーザのソーシャルポジションを算出し、セッションベクトル生成部は、対象ユーザのソーシャルポジションのセッション内における変化履歴に基づいてセッションベクトルを生成し、目標ソーシャルポジション算出部は、対象ユーザのソーシャルポジション及びこのソーシャルポジションの変化履歴を反映したセッションベクトルに基づいて目標ソーシャルポジションを算出する。これにより、対象ユーザのセッション実行時における価値観を反映した適切な目標ソーシャルポジションを算出することができる。
【0031】
(11)目標ソーシャルポジション算出部は、対象ユーザの最新のソーシャルポジションと、セッションベクトルに基づいて推定される対象ユーザのソーシャルポジションの変化目標と、を合成することによって目標ソーシャルポジションを算出する。これにより、対象ユーザ自身が認識できていない潜在的なニーズを汲み取って目標ソーシャルポジションを算出することができるので、個々人にパーソナライズされた満足度の高いアイテムを対象ユーザに提案することができる。
【0032】
(12)アイテム提案部は、目標ソーシャルポジション、セッションベクトル、及びアイテムベクトルに基づいて、アイテムリストに含まれる各アイテムに対するスコアを算出し、スコアが高いアイテムから順にアイテムを提案することにより、満足度の高いものから順にアイテムを提案することができる。
【0033】
(13)本発明によれば、上記情報提供システムに係る発明と同様の理由により、フォロワー層のユーザだけでなく、マニア層、先進層、及び定番層等のユーザに対しても満足度の高いアイテムを提案することができる。
【図面の簡単な説明】
【0034】
図1】本発明の一実施形態に係る情報提供システムの構成を示す図である。
図2】ユーザプロファイル推定部の構成を示す図である。
図3】アイテムプロファイル推定部の構成を示す図である。
図4】アイテムリスト生成部の構成を示す図である。
図5】ユーザベクトル生成部においてユーザベクトルを生成する手順を模式的に示す図である。
図6】アイテムベクトル生成部においてアイテムベクトルを生成する手順を模式的に示す図である。
図7】対象ユーザに対するセッションを構成する複数の工程を模式的に示す図である。
図8】ユーザベクトル更新部の構成を示す図である。
図9】アイテムベクトル更新部の構成を示す図である。
図10】2次元平面上に模式的に表されたソーシャル空間に、複数の登録ユーザのソーシャルポジションをプロットした図である。
図11】アイテム提案部の構成を示す図である。
図12】2次元平面上に模式的に表されたアイテムベクトル空間に、マッチペアリストに含まれる複数の登録アイテムのアイテムベクトルをプロットした図である。
図13】本実施形態に係る情報提供方法の手順を示すフローチャートである。
【発明を実施するための形態】
【0035】
以下、本発明の一実施形態に係る情報提供システム及び情報提供方法について図面を参照しながら説明する。
【0036】
図1は、本実施形態に係る情報提供システム1の構成を示す図である。情報提供システム1は、複数のユーザ(以下、「登録ユーザ」ともいう)が登録されたユーザプロファイルデータベース51及び複数のアイテム(以下、「登録アイテム」ともいう)が登録されたアイテムプロファイルデータベース52を備えており、以下で説明する情報提供方法に従って、複数の登録アイテムの中から登録ユーザの一人である対象ユーザに適した1つ以上のアイテムに関する情報を対象ユーザが所有するユーザインターフェース2に提案するアイテム提案サービスを管理するコンピュータである。
【0037】
なお本実施形態において「アイテム」とは、宿泊施設が提供する宿泊サービス、飲食店が提供する飲食サービス、及び体験施設が提供する体験サービスであり、「ユーザ」とは、アイテムを購入し上記サービスの提供を受ける消費者とした場合について説明するが、本発明はこれに限らない。「アイテム」は、サービスに限らず、動産及び不動産を含む商品としてもよい。また「ユーザ」は、消費者に限らず、サービスや商品を提供する提供者としてもよい。
【0038】
また本実施形態では、「ユーザインターフェース」は、上記アイテム提案サービスの提供を受けるためのアプリケーションソフトがインストールされた携帯情報端末(例えば、スマートフォン)とした場合について説明するが、本発明はこれに限らない。「ユーザインターフェース」は、情報提供システム1が管理するアイテム提案サービスを受けるためのソフトウェアがインストールされたコンピュータであればどのようなものでもよい。
【0039】
情報提供システム1は、ユーザインターフェース2や外部データソース3等と通信ネットワーク(例えば、インターネット)を介して接続され、上記アイテム提案サービスを管理するサーバシステムである。図1に示すように、サーバシステムとしての情報提供システム1は、主にデータベース51,52における情報の登録処理及び更新処理並びにデータベース51,52に登録されている情報に基づく処理を担う登録情報処理システム5と、主に対象ユーザに対するセッションの実行時に得られた情報に基づく処理を担うセッション情報処理システム6と、上記登録情報処理システム5及びセッション情報処理システム6における演算結果を利用して対象ユーザのユーザインターフェース2へアイテムに関する情報を提案するアイテム提案部7と、を備える。なお、情報提供システム1によるアイテム提案サービスにおける、対象ユーザに対するセッションの具体的な内容については、後に図7を参照しながら説明する。
【0040】
<登録情報処理システム>
先ず、登録情報処理システム5の構成について説明する。登録情報処理システム5は、ユーザプロファイルデータベース51と、アイテムプロファイルデータベース52と、ユーザプロファイル推定部53と、アイテムプロファイル推定部54と、アイテムリスト生成部55と、を備える。
【0041】
ユーザプロファイルデータベース51には、各登録ユーザの個人情報が、各登録ユーザに割り振られたユーザIDと関連付けられた状態で登録されている。ユーザプロファイルデータベース51に登録されている個人情報は、図1に示すように、ユーザ属性情報と、趣味趣向情報と、消費活動情報と、を含む。
【0042】
ユーザ属性情報とは、例えば、登録ユーザの性別や年齢等に関する情報を含み、ユーザプロファイルデータベース51には、例えば構造化データとして記憶されている。趣味趣向情報とは、例えば、登録ユーザの趣味趣向に関する情報を含み、ユーザプロファイルデータベース51には、例えば複数項目のフラグデータとして記憶されている。本実施形態では、登録ユーザの特定の趣向性の有無を示す複数種(例えば、100種程度)の趣向性フラグによって趣味趣向情報を表現した場合について説明するが、本発明はこれに限るものではない。
【0043】
また消費活動情報とは、例えば、登録ユーザの消費活動に関する情報を含み、ユーザプロファイルデータベース51には、例えば複数項目のスコアデータとして記憶されている。本実施形態では、登録ユーザの消費活動の対象を複数種(例えば、30種程度)の消費セグメントに分けた上、各消費セグメントに対する消費活動の強弱を示すスコア値によって消費活動情報を表現した場合について説明するが、本発明はこれに限るものではない。
【0044】
アイテムプロファイルデータベース52には、各登録アイテムに関するアイテム情報が、各登録アイテムに割り振られたアイテムIDと関連付けられた状態で登録されている。アイテムプロファイルデータベース52に登録されているアイテム情報は、図1に示すように、アイテム属性情報と、評価者情報と、アイテム評価情報と、を含む。
【0045】
アイテム属性情報とは、例えば、ユーザが登録アイテムを特定するために必要な、登録アイテムの属性に関する情報を含み、アイテムプロファイルデータベース52には、例えば構造化データとして記憶されている。本実施形態では、登録アイテムのカテゴリ(すなわち、本実施形態では、宿泊施設、飲食店、及び体験施設)に関する情報、登録アイテムの名称に関する情報、登録アイテムが存在する住所及び電話番号に関する情報、並びに登録アイテムの営業日及び営業時間に関する情報等によってアイテム属性情報を表現した場合について説明するが、本発明はこれに限らない。
【0046】
アイテム評価情報は、例えば、過去において登録アイテムを利用した消費者による登録アイテムの客観的な評価に関する情報(所謂、口コミ情報)や、登録アイテムを提供する提供者による登録アイテムの主観的な評価に関する情報(所謂、宣伝情報)等を含み、アイテムプロファイルデータベース52には、例えば前処理を経たテキストデータとして記憶されている。また評価者情報は、例えば、上記アイテム評価情報を提供した消費者に関する情報を含み、アイテムプロファイルデータベース52には、例えば構造化データとして記憶されている。
【0047】
ユーザプロファイル推定部53は、外部データソース3やユーザインターフェース2等から提供されるデータから登録ユーザの個人情報を抽出するとともに、抽出した個人情報をユーザプロファイルデータベース51に新規に登録したり、抽出した個人情報によってユーザプロファイルデータベース51に既に登録されている個人情報を更新したりする。
【0048】
ここで外部データソース3からユーザプロファイル推定部53へ提供されるデータには、例えば、登録ユーザと関連付けられたメールアカウントに関するデータ、このメールアカウントと関連付けられたメールの送受信データ、登録ユーザと関連付けられたSNS(Social Networking Service)アカウントに関するデータ、及びこのSNSアカウントと関連付けられたメッセージデータ等、登録ユーザのユーザ属性情報、趣味趣向情報、及び消費活動情報と関連のある様々なデータが含まれる。
【0049】
図2は、ユーザプロファイル推定部53の構成を示す図である。ユーザプロファイル推定部53は、ユーザ属性表現抽出部531と、ユーザ属性情報構造化処理部532と、ユーザ属性情報書き込み部533と、自然言語テキスト前処理部534と、趣味趣向情報スコアリング部536と、趣味趣向情報書き込み部537と、消費活動情報スコアリング部538と、消費活動情報書き込み部539と、を備え、これらを用いることによって所定の登録ユーザの個人情報を抽出し、ユーザプロファイルデータベース51のデータフィールドに書き込む。
【0050】
ユーザ属性表現抽出部531は、ユーザインターフェース2又は外部データソース3から提供されるデータを取得し、取得したデータを予め定められたユーザ属性表現抽出プログラムに従って処理することにより、登録ユーザのユーザ属性情報のみを抽出する。ユーザ属性情報構造化処理部532は、ユーザ属性表現抽出部531によって抽出されたユーザ属性情報を予め定められたユーザ属性情報構造化プログラムに従って処理することにより、ユーザ属性情報を構造化データに変換する。ユーザ属性情報書き込み部533は、ユーザ属性情報構造化処理部532から出力される構造化データをユーザプロファイルデータベース51のうちユーザ属性情報に関するデータフィールドに、登録ユーザのユーザIDと関連付けた状態で書き込む。
【0051】
自然言語テキスト前処理部534は、ユーザインターフェース2又は外部データソース3から提供されるデータのうち、登録ユーザの趣味趣向及び消費活動について自然言語で記述されたテキストデータを抽出し、抽出したテキストデータを予め定められた自然言語テキスト前処理プログラムに従って前処理することにより、抽出したテキストデータを後述の趣味趣向情報スコアリング部536や消費活動情報スコアリング部538における処理に適したデータに変換する。
【0052】
趣味趣向情報スコアリング部536は、自然言語テキスト前処理部534による前処理を経たテキストデータを機械学習によって構築された趣味趣向スコアリングアルゴリズムに従って処理することにより、登録ユーザの趣味趣向を示す複数項目のフラグ値を算出する。趣味趣向情報書き込み部537は、趣味趣向情報スコアリング部536から出力されるフラグデータをユーザプロファイルデータベース51のうち趣味趣向情報に関するデータフィールドに、登録ユーザのユーザIDと関連付けた状態で書き込む。
【0053】
消費活動情報スコアリング部538は、自然言語テキスト前処理部534による前処理を経たテキストデータを機械学習によって構築された消費活動スコアリングアルゴリズムに従って処理することにより、登録ユーザの消費活動を示す複数項目のスコア値を算出する。消費活動情報書き込み部539は、消費活動情報スコアリング部538から出力されるスコアデータをユーザプロファイルデータベース51のうち消費活動情報に関するデータフィールドに、登録ユーザのユーザIDと関連付けた状態で書き込む。
【0054】
図1に戻り、アイテムプロファイル推定部54は、外部データソース3から提供されるデータから登録アイテムのアイテム情報を抽出するとともに、抽出したアイテム情報をアイテムプロファイルデータベース52に新規に登録したり、抽出したアイテム情報によってアイテムプロファイルデータベース52に既に登録されているアイテム情報を更新したりする。
【0055】
ここで外部データソース3からアイテムプロファイル推定部54へ提供されるデータには、例えば、SNSにおける登録アイテムに対する評価を含むメッセージデータ、このメッセージデータを投稿した評価者に関するデータ、不特定多数の評価者による様々なアイテムに対する評価が掲載される評価サイトにおける登録アイテムに対する評価に関するデータ、及びその評価者に関するデータ等、登録アイテムのアイテム属性情報、アイテム評価情報、及び評価者情報と関連のある様々なデータが含まれる。
【0056】
図3は、アイテムプロファイル推定部54の構成を示す図である。アイテムプロファイル推定部54は、属性表現抽出部541と、アイテム属性情報構造化処理部542と、アイテム属性情報書き込み部543と、評価者情報構造化処理部544と、評価者情報書き込み部545と、自然言語テキスト前処理部546と、アイテム評価情報書き込み部547と、を備え、これらを用いることによって所定の登録アイテムのアイテム情報を抽出し、アイテムプロファイルデータベース52のデータフィールドに書き込む。
【0057】
属性表現抽出部541は、外部データソース3から提供されるデータを取得し、取得したデータを予め定められた属性表現抽出プログラムに従って処理することにより、登録アイテムのアイテム属性情報及び評価者情報のみを抽出する。
【0058】
アイテム属性情報構造化処理部542は、属性表現抽出部541によって抽出されたアイテム属性情報を予め定められたアイテム属性情報構造化プログラムに従って処理することにより、アイテム属性情報を構造化データに変換する。アイテム属性情報書き込み部543は、アイテム属性情報構造化処理部542から出力される構造化データをアイテムプロファイルデータベース52のうちアイテム属性情報に関するデータフィールドに、登録アイテムのアイテムIDと関連付けた状態で書き込む。
【0059】
評価者情報構造化処理部544は、属性表現抽出部541によって抽出された評価者情報を予め定められた評価者情報構造化プログラムに従って処理することにより、評価者情報を構造化データに変換する。評価者情報書き込み部545は、評価者情報構造化処理部544から出力される構造化データをアイテムプロファイルデータベース52のうち評価者情報に関するデータフィールドに、登録アイテムのアイテムIDと関連付けた状態で書き込む。
【0060】
自然言語テキスト前処理部546は、外部データソース3から提供されるデータのうち、登録アイテムの評価について自然言語で記述されたテキストデータを抽出し、抽出したテキストデータを予め定められた自然言語テキスト前処理プログラムに従って前処理することにより、抽出したテキストデータを後述のアイテムベクトル生成部63におけるディープニューラルネットワーク処理(以下、「DNN処理」という)に適したデータに変換する。アイテム評価情報書き込み部547は、自然言語テキスト前処理部546による前処理を経たテキストデータをアイテムプロファイルデータベース52のうちアイテム評価情報に関するデータフィールドに、登録アイテムのアイテムIDと関連付けた状態で書き込む。
【0061】
図1に戻り、アイテムリスト生成部55は、対象ユーザに対するセッションにおいて、ユーザプロファイルデータベース51に登録された対象ユーザに関する個人情報及びアイテムプロファイルデータベース52に登録された複数の登録アイテムのアイテム情報に基づいて、対象ユーザの個人情報と関連付けられる1以上の登録アイテムを含むマッチペアリストを生成する。
【0062】
図4は、アイテムリスト生成部55の構成を示す図である。アイテムリスト生成部55は、マッチペア生成部551と、マッチペアフィルタリング部552と、を備え、これらを用いることによって対象ユーザに対するマッチペアリストを生成する。
【0063】
始めにマッチペア生成部551は、ユーザプロファイルデータベース51及びアイテムプロファイルデータベース52からそれぞれ対象ユーザの個人情報及び複数の登録アイテムのアイテム情報を読出し、読み出した個人情報及びアイテム情報を予め定められたマッチペア生成プログラムに従って処理することにより、アイテムプロファイルデータベース52に登録された複数の登録アイテムの中から対象ユーザに適すると思われる複数の登録アイテムを抽出する。
【0064】
マッチペアフィルタリング部552は、ユーザインターフェース2から図示しない処理によって取得した対象ユーザの要望(例えば、地域や予算等)とマッチペア生成部551によって抽出された複数の登録アイテムのアイテム情報とを予め定められたマッチペアフィルタリングプログラムに従って処理することにより、抽出された複数の登録アイテムの中から対象ユーザの要望に合わない登録アイテムを除外することにより、対象ユーザの要望に合致しかつ予め登録された個人情報から推察される対象ユーザの価値観に合った1以上、より好ましくは複数の登録アイテムを含むマッチペアリストを生成する。
【0065】
図1に戻り、以上のように登録情報処理システム5は、データベース51,52に登録されている情報を外部データソース3から提供される情報によって適宜更新するとともに、対象ユーザに対するセッションでは、このセッション開始時にデータベース51,52に登録されている情報に基づいて、対象ユーザの価値観及び要望に合致する複数の登録アイテムを含むマッチペアリストを生成し、アイテム提案部7へ送信する。
【0066】
<セッション情報処理システム>
次に、セッション情報処理システム6の構成について説明する。セッション情報処理システム6は、ユーザベクトル記憶部60と、アイテムベクトル記憶部61と、ユーザベクトル生成部62と、アイテムベクトル生成部63と、ユーザベクトル更新部64と、アイテムベクトル更新部65と、重心境界算出部66と、ソーシャルポジション算出部67と、セッションベクトル生成部68と、目標ソーシャルポジション算出部69と、を備える。
【0067】
以下で説明するように、セッション情報処理システム6は、対象ユーザのユーザインターフェース2を介してこの対象ユーザに対するセッションにおけるセッション情報を取得し、ユーザプロファイルデータベース51に登録された複数の登録ユーザの価値観を反映して形成されるベクトル空間であるソーシャル空間における対象ユーザの目標ソーシャルポジションをセッション情報に基づいて算出し、アイテム提案部7へ送信する。すなわち、登録情報処理システム5はセッション開始前の登録情報を利用してマッチペアリストを生成するのに対し、セッション情報処理システム6は、セッション実行時に対象ユーザのユーザインターフェース2を介して取得されるセッション情報に基づき、セッション実行時における対象ユーザの価値観を反映して目標ソーシャルポジションを算出する。
【0068】
ユーザベクトル記憶部60は、ユーザプロファイルデータベース51に登録された全登録ユーザに対し、登録ユーザ毎に1つずつ定義されるユーザベクトルを記憶する。これらユーザベクトルが定義されるユーザベクトル空間は、ユーザの価値観を反映して定義される多次元(例えば、100~300次元程度)のベクトル空間である。
【0069】
ユーザベクトル記憶部60に記憶される複数のユーザベクトルは、後述のユーザベクトル生成部62によってユーザプロファイルデータベース51に登録ユーザ毎に登録された個人情報に基づいて生成される。ユーザベクトル記憶部60に記憶されている各登録ユーザのユーザベクトルは、ユーザプロファイルデータベース51に登録されている個人情報が変更された場合には、この変更による差分だけユーザベクトル生成部62によって更新される。またユーザベクトル記憶部60に記憶されている複数のユーザベクトルのうち、対象ユーザのユーザベクトルは、この対象ユーザに対するセッションの実行時に取得されるセッション情報に基づいて後述のユーザベクトル更新部64によって更新される。
【0070】
ユーザベクトル生成部62は、ユーザプロファイルデータベース51に登録ユーザ毎に登録された個人情報に基づいて、後述のDNN処理によって登録ユーザ毎に多次元のユーザベクトル空間におけるユーザベクトルを生成し、ユーザベクトル記憶部60に記憶させる。
【0071】
図5は、ユーザベクトル生成部62においてユーザベクトルを生成する手順を模式的に示す図である。ユーザベクトル生成部62は、ユーザプロファイルデータベース51から読み込んだ登録ユーザの個人情報(ユーザ属性情報、趣味趣向情報、及び消費活動情報)を入力するとその次元を圧縮し特徴量を出力する畳み込みニューラルネットワークとしてのエンコーダ621と、エンコーダ621から出力される特徴量を入力するとエンコーダ621への入力である個人情報を復元する逆畳み込みニューラルネットワークとしてのデコーダ622と、を組み合わせて構成されるオートエンコーダ620を備える。ユーザベクトル生成部62は、オートエンコーダ620を用いた既知のベクトル埋め込みアルゴリズムに基づいて、ユーザプロファイルデータベース51に登録された登録ユーザの個人情報をユーザベクトル空間に埋め込むことによって、各登録ユーザのユーザベクトルを生成する。またユーザベクトル生成部62は、ユーザプロファイルデータベース51の登録情報が更新された場合には、更新前の登録情報と更新後の登録情報との差分が補われるようにユーザベクトル記憶部60に記憶されているユーザベクトルを更新する。
【0072】
図1に戻り、アイテムベクトル記憶部61は、アイテムプロファイルデータベース52に登録された全登録アイテムに対し、登録アイテム毎に1つずつ定義されるアイテムベクトルを記憶する。これらアイテムベクトルが定義されるアイテムベクトル空間は、アイテムの情報を反映して定義される多次元(例えば、ユーザベクトル空間とほぼ同次元であり、100~300次元程度)のベクトル空間である。
【0073】
アイテムベクトル記憶部61に記憶される複数のアイテムベクトルは、後述のアイテムベクトル生成部63によってアイテムプロファイルデータベース52に登録アイテム毎に登録されたアイテム情報に基づいて生成される。アイテムベクトル記憶部61に記憶されている各登録アイテムのアイテムベクトルは、アイテムプロファイルデータベース52に登録されているアイテム情報が変更された場合には、この変更による差分だけアイテムベクトル生成部63によって更新される。またアイテムベクトル記憶部61に記憶されている複数のアイテムベクトルは、対象ユーザに対するセッションの実行時に取得されるセッション情報に基づいて後述のアイテムベクトル更新部65によって更新される。
【0074】
アイテムベクトル生成部63は、アイテムプロファイルデータベース52に登録アイテム毎に登録されたアイテム情報に基づいて、後述のDNN処理によって登録アイテム毎に多次元のアイテムベクトル空間におけるアイテムベクトルを生成し、アイテムベクトル記憶部61に記憶させる。
【0075】
図6は、アイテムベクトル生成部63においてアイテムベクトルを生成する手順を模式的に示す図である。アイテムベクトル生成部63は、アイテムプロファイルデータベース52から読み込んだ登録アイテムのアイテム情報(アイテム属性情報、評価者情報、及びアイテム評価情報)を入力するとその次元を圧縮し特徴量を出力する畳み込みニューラルネットワークとしてのエンコーダ631と、エンコーダ631から出力される特徴量を入力するとエンコーダ631への入力であるアイテム情報を復元する逆畳み込みニューラルネットワークとしてのデコーダ632と、を組み合わせて構成されるオートエンコーダ630を備える。アイテムベクトル生成部63は、オートエンコーダ630を用いた既知のベクトル埋め込みアルゴリズムに基づいて、アイテムプロファイルデータベース52に登録された登録アイテムのアイテム情報をアイテムベクトル空間に埋め込むことによって、各登録アイテムのアイテムベクトルを生成する。またアイテムベクトル生成部63は、アイテムプロファイルデータベース52の登録情報が更新された場合には、更新前の登録情報と更新後の登録情報との差分が補われるようにアイテムベクトル記憶部61に記憶されているアイテムベクトルを更新する。
【0076】
図1に戻り、ユーザベクトル更新部64は、セッション実行時における対象ユーザの価値観を対象ユーザのユーザベクトルに反映させるべく、対象ユーザに対するセッションにおいて取得されたセッション情報に基づいてユーザベクトル記憶部60に記憶されている対象ユーザのユーザベクトルを更新する。
【0077】
ここで対象ユーザに対するセッション及びこのセッションにおいて対象ユーザのユーザインターフェース2から取得されるセッション情報の構成について、図7を参照しながら説明する。
【0078】
図7は、対象ユーザに対するセッションを構成する複数の工程を模式的に示す図である。対象ユーザに対するセッションは、例えば、対象ユーザがユーザインターフェース2において情報提供システム1からアイテム提案サービスの提供を受けるためのアプリケーションを起動したことに応じて開始する。またこのセッションは、対象ユーザがユーザインターフェース2を操作することによって、情報提供システム1から提案された複数のアイテムの中から少なくとも1つのアイテムを確定するか又は対象ユーザが上記アプリケーションを停止したことに応じて終了する。
【0079】
図7に示すように、対象ユーザに対するセッションは、提案工程及び選択工程を交互に複数の設定回数(以下、設定回数をNsetと表記する)にわたり繰り返す絞り込み工程と、この絞り込み工程において対象ユーザのユーザインターフェース2を介して得られたセッション情報に基づいて情報提供システム1から対象ユーザへ複数のアイテムを最終的に提案する最終提案工程と、対象ユーザがユーザインターフェース2を操作することによって、最終提案工程において最終的に提案された複数のアイテムの中から少なくとも1つのアイテムを最終的に選択(すなわち、確定)する確定工程と、を含む。
【0080】
ここで提案工程では、アイテム提案部7は、対象ユーザへ暫定的に複数のアイテムを提案する。また選択工程では、対象ユーザは、ユーザインターフェース2を操作することによって、先の提案工程において暫定的に提案された複数のアイテムの中から少なくとも1つのアイテムを暫定的に選択する。なお絞り込み工程における設定回数Nsetは、例えば、2から所定の最大設定回数(以下、最大設定回数をNmaxと表記する)の間の整数に設定される。またこの対象ユーザに対するセッションにおいて、情報提供システム1が対象ユーザのユーザインターフェース2から得られるセッション情報には、例えば、各提案工程において対象ユーザへ暫定的に提案された複数のアイテムに関する情報や、各選択工程において対象ユーザによって暫定的に選択されたアイテムに関する情報等が含まれる。なお以下では、n回目の選択工程において対象ユーザによって暫定的に選択されたアイテムをn回目の選択アイテムともいう。
【0081】
図8は、ユーザベクトル更新部64の構成を示す図である。ユーザベクトル更新部64は、対象ユーザベクトル抽出部641と、選択アイテムベクトル抽出部642と、差成分抽出部643と、ベクトル更新部644と、を備える。
【0082】
対象ユーザベクトル抽出部641は、ユーザベクトル記憶部60に記憶された全登録ユーザのユーザベクトルから、対象ユーザのユーザベクトルを抽出し、この対象ユーザのユーザベクトルに関する情報を差成分抽出部643及びベクトル更新部644へ送信する。
【0083】
選択アイテムベクトル抽出部642は、対象ユーザのユーザインターフェース2から取得したセッション情報に基づいて、対象ユーザに対するセッションにおいて対象ユーザが暫定的に選択した選択アイテムを特定するとともに、アイテムベクトル記憶部61に記憶された全登録アイテムのアイテムベクトルから、特定した選択アイテムのアイテムベクトルを抽出し、この選択アイテムのアイテムベクトルに関する情報を差成分抽出部643へ送信する。
【0084】
差成分抽出部643は、対象ユーザのユーザベクトルと選択アイテムのアイテムベクトルとの間の差成分を算出し、ベクトル更新部644へ送信する。より具体的には、差成分抽出部643は、選択アイテムのアイテムベクトルを所定のアルゴリズムに基づいてユーザベクトル空間に射影することによって生成されるベクトルと対象ユーザのユーザベクトルとの間のユーザベクトル空間における差を差成分として算出する。
【0085】
ベクトル更新部644は、対象ユーザのユーザベクトルを差成分抽出部643によって算出された差成分に基づいて更新する。より具体的には、ベクトル更新部644は、上記差成分が小さくなるように対象ユーザのユーザベクトルを更新し、ユーザベクトル記憶部60に記憶させる。以上のように、ユーザベクトル更新部64は、対象ユーザのユーザベクトルが、選択アイテムのアイテムベクトルをユーザベクトル空間に射影することによって生成されるベクトルに近くなるように、対象ユーザのユーザベクトルを更新する。
【0086】
図1に戻り、アイテムベクトル更新部65は、セッション実行時における対象ユーザの価値観を、対象ユーザによって選択された選択アイテムのアイテムベクトルに反映させるべく、対象ユーザのユーザベクトルに基づいてアイテムベクトル記憶部61に記憶されている選択アイテムのアイテムベクトルを更新する。
【0087】
図9は、アイテムベクトル更新部65の構成を示す図である。アイテムベクトル更新部65は、対象ユーザベクトル抽出部651と、選択アイテムベクトル抽出部652と、差成分抽出部653と、ベクトル更新部654と、を備える。
【0088】
対象ユーザベクトル抽出部651は、ユーザベクトル記憶部60に記憶された全登録ユーザのユーザベクトルから、対象ユーザのユーザベクトルを抽出し、この対象ユーザのユーザベクトルに関する情報を差成分抽出部653へ送信する。
【0089】
選択アイテムベクトル抽出部652は、対象ユーザのユーザインターフェース2から取得したセッション情報に基づいて、対象ユーザに対するセッションにおいて対象ユーザが暫定的に選択した選択アイテムを特定するとともに、アイテムベクトル記憶部61に記憶された全登録アイテムのアイテムベクトルから、特定した選択アイテムのアイテムベクトルを抽出し、この選択アイテムのアイテムベクトルに関する情報を差成分抽出部653及びベクトル更新部654へ送信する。
【0090】
差成分抽出部653は、対象ユーザのユーザベクトルと選択アイテムのアイテムベクトルとの間の差成分を算出し、ベクトル更新部654へ送信する。より具体的には、差成分抽出部653は、対象ユーザのユーザベクトルを所定のアルゴリズムに基づいてアイテムベクトル空間に射影することによって生成されるベクトルと選択アイテムのアイテムベクトルとの間のアイテムベクトル空間における差を差成分として算出する。
【0091】
ベクトル更新部654は、選択アイテムのアイテムベクトルを差成分抽出部653によって算出された差成分に基づいて更新する。より具体的には、ベクトル更新部654は、上記差成分が小さくなるように選択アイテムのアイテムベクトルを更新し、アイテムベクトル記憶部61に記憶させる。以上のようにアイテムベクトル更新部65は、選択アイテムのアイテムベクトルが、対象ユーザのユーザベクトルをアイテムベクトル空間に射影することによって生成されるベクトルに近くなるように、選択アイテムのアイテムベクトルを更新する。
【0092】
図1に戻り、重心境界算出部66は、ユーザベクトル記憶部60に記憶された複数の登録ユーザ、より具体的には全登録ユーザのユーザベクトルのユーザベクトル空間における重心及び境界を算出し、これら重心及び境界に関する情報をソーシャルポジション算出部67へ送信する。上述のようにユーザベクトル記憶部60に記憶されているユーザベクトルは、ユーザベクトル生成部62及びユーザベクトル更新部64によって適宜更新されている。このため重心境界算出部66によって算出される全登録ユーザのユーザベクトルの重心及び境界もその都度変化する。
【0093】
ソーシャルポジション算出部67は、全登録ユーザの価値観を反映して定義される多次元空間であるソーシャル空間における対象ユーザの位置ベクトルを示すソーシャルポジションを、対象ユーザのユーザベクトルに基づいて算出する。より具体的には、ソーシャルポジション算出部67は、重心境界算出部66によって算出された全登録ユーザのユーザベクトルの重心及び境界に基づいて、ソーシャル空間の原点を定義するとともに、このソーシャル空間における対象ユーザのソーシャルポジションを対象ユーザのユーザベクトルに基づいて算出する。なおこのソーシャル空間の次元数は、ユーザベクトル空間の次元数と同程度であり、例えば100~300程度である。ソーシャルポジション算出部67は、対象ユーザに対するセッションにおいて、ユーザベクトル更新部64がセッション情報に基づいて対象ユーザのユーザベクトルを更新する度に、すなわち対象ユーザが暫定的に選択アイテムを選択する度に、新たなソーシャル空間を定義するとともにこのソーシャル空間における対象ユーザのソーシャルポジションを更新する。
【0094】
図10は、2次元平面上に模式的に表されたソーシャル空間に、複数の登録ユーザのソーシャルポジションをプロットした図である。図10に示すように、ソーシャル空間は、全登録ユーザのユーザベクトルに基づいて定義される多次元空間、すなわち全登録ユーザの価値観を反映して定義される多次元空間であるため、各登録ユーザのソーシャルポジションは、似た価値観(例えば、高齢者、安定志向を有する者、及び若者等)を持つ者同士が近くなるように分布する。またこのようなソーシャル空間の原点を、全登録ユーザのユーザベクトルの重心に基づいて定義することにより、ソーシャル空間におけるソーシャルポジションから各ユーザの人格形成の行動分布を得ることができる。
【0095】
セッションベクトル生成部68は、ソーシャルポジション算出部67によって算出される対象ユーザのソーシャルポジションの、対象ユーザに対するセッション内における変化履歴に基づいて、対象ユーザのセッションベクトルを生成又は更新する。ここでセッションベクトルとは、対象ユーザに対するセッションの内容を表すベクトルであり、多次元空間であるセッションベクトル空間内に定義される。上述のように1つのセッションは、最大でNmax回の絞り込み工程を繰り返すことから、ソーシャル空間の次元数をNsとした場合、このセッションベクトル空間の次元数はNs×Nmaxとなる。セッションベクトル生成部68は、対象ユーザに対するセッションにおいて、ソーシャルポジション算出部67によって対象ユーザのソーシャルポジションが更新される度にセッションベクトルを更新する。またセッションベクトル生成部68は、対象ユーザに対するセッションが終了すると、この対象ユーザに対するセッションベクトルもリセットする。従ってセッションベクトル生成部68によって生成又は更新されるセッションベクトルは、対象ユーザに対するセッションにおいて、対象ユーザのソーシャルポジションがソーシャル空間において辿った線に相当する。
【0096】
目標ソーシャルポジション算出部69は、ソーシャルポジション算出部67によって算出又は更新される対象ユーザのソーシャルポジション及びセッションベクトル生成部68によって生成又は更新されるセッションベクトルに基づいて、セッション実行時における対象ユーザが目標とするソーシャルポジションに相当する目標ソーシャルポジションを算出する。より具体的には、目標ソーシャルポジション算出部69は、セッションベクトル生成部68によって生成又は更新されるセッションベクトルに基づいて対象ユーザのソーシャル空間における変化目標を算出するとともに、この変化目標と、対象ユーザの最新のソーシャルポジションと、を合成することによって、対象ユーザの目標ソーシャルポジションを算出する。
【0097】
図1に戻り、アイテム提案部7は、アイテムリスト生成部55によって生成されたマッチペアリストと、アイテムベクトル記憶部61に記憶された各登録アイテムのアイテムベクトルと、セッションベクトル生成部68によって生成又は更新されるセッションベクトルと、目標ソーシャルポジション算出部69によって算出される目標ソーシャルポジションと、に基づいて、ユーザインターフェース2を介して対象ユーザに適した1以上のアイテムを提案する。
【0098】
図11は、アイテム提案部7の構成を示す図である。アイテム提案部7は、目標ソーシャルポジション取得部71と、セッションベクトル取得部72と、アイテムベクトル取得部73と、推薦スコア算出部74と、ソート・フィルタリング処理部75と、を備える。
【0099】
目標ソーシャルポジション取得部71は、対象ユーザの最新の目標ソーシャルポジションを目標ソーシャルポジション算出部69から取得し、この目標ソーシャルポジションに関する情報を推薦スコア算出部74へ送信する。
【0100】
セッションベクトル取得部72は、対象ユーザの最新のセッションベクトルをセッションベクトル生成部68から取得し、このセッションベクトルに関する情報を推薦スコア算出部74へ送信する。
【0101】
アイテムベクトル取得部73は、アイテムベクトル記憶部61に記憶された全登録アイテムのアイテムベクトルの中から、マッチペアリストに含まれる登録アイテムのアイテムベクトルを取得し、取得したアイテムベクトルに関する情報をマッチペアリストの記載順で推薦スコア算出部74へ送信する。
【0102】
推薦スコア算出部74は、目標ソーシャルポジション取得部71によって取得された目標ソーシャルポジションと、セッションベクトル取得部72によって取得されたセッションベクトルと、アイテムベクトル取得部73によって取得されたアイテムベクトルと、に基づいて、マッチペアリストに含まれる各登録アイテムに対し、対象ユーザに対する推薦度合いを数値化した推薦スコアを算出する。より具体的には、推薦スコア算出部74は、目標ソーシャルポジション、セッションベクトル、及びアイテムベクトルを入力すると、このアイテムベクトルと関連付けられる登録アイテムの対象ユーザに対する推薦スコアを出力するように機械学習によって構築されたDNNを備えており、このDNNを用いることによってマッチペアリストに含まれる各登録アイテムに対する推薦スコアを算出する。
【0103】
図12は、2次元平面上に模式的に表されたアイテムベクトル空間に、マッチペアリストに含まれる複数の登録アイテムのアイテムベクトルをプロットした図である。図12において、線L1は、1回目の提案工程においてアイテム提案部7によって対象ユーザに提案された登録アイテムが分布する領域を示し、線L2は、2回目の提案工程においてアイテム提案部7によって対象ユーザに提案された登録アイテムが分布する領域を示し、線L3は、3回目の提案工程においてアイテム提案部7によって対象ユーザに提案された登録アイテムが分布する領域を示す。
【0104】
ここでセッションベクトルは、上述のようにユーザベクトル更新部64、ユーザベクトル記憶部60、重心境界算出部66、ソーシャルポジション算出部67、及びセッションベクトル生成部68により、対象ユーザに対するセッション情報に基づいて生成されるため、対象ユーザに対するセッションにおけるアイテムの選択履歴を反映したものとなっている。このため、推薦スコア算出部74では、このようなセッションベクトルを入力に含むDNN処理によって登録アイテムに対する推薦スコアを算出することにより、先の提案工程においてアイテム提案部7によって暫定的に提案された複数の登録アイテムのうち、対象ユーザによって暫定的に選択された登録アイテムの近傍に分布する登録アイテムに対する推薦スコアを、対象ユーザによって暫定的に選択されなかった複数の登録アイテムの近傍に分布する登録アイテムに対する推薦スコアよりも高くすることができる。このため図12に示すように、アイテム提案部7が対象ユーザに提案する登録アイテムが分布する領域を徐々に絞り込むことができる。
【0105】
図11に戻り、ソート・フィルタリング処理部75は、マッチペアリストに含まれる複数の登録アイテムを推薦スコアの高いものから順に並び変えるとともに、推薦スコアが所定値未満の登録アイテムを除くことにより、推薦スコアが所定値以上である登録アイテムによって構成される提案リストを生成し、対象ユーザのユーザインターフェース2へ送信する。これによりアイテム提案部7は、対象ユーザに対し推薦スコアが高い登録アイテムから順に提案することができる。
【0106】
図13は、以上のような情報提供システム1によって対象ユーザに対しアイテムを提案する情報提供方法の手順を示すフローチャートである。
【0107】
始めにステップST1では、セッション情報処理システム6は、対象ユーザに対する前回のセッションにおいて生成したセッションベクトル及び絞り込み工程の繰り返し回数を計数するカウンタnをリセットし、ステップST2に移る。
【0108】
ステップST2では、登録情報処理システム5は、ユーザプロファイルデータベース51に登録された対象ユーザの個人情報及びアイテムプロファイルデータベース52に登録された各登録アイテムのアイテム情報に基づいて、対象ユーザに対するマッチペアリストを生成し、ステップST3に移る。
【0109】
ステップST3では、アイテム提案部7は、ステップST2において生成されたマッチペアリストと、セッション情報処理システム6において最新のセッション情報に基づいて生成される目標ソーシャルポジション及びセッションベクトルと、に基づいて、提案リストを生成し、提案リストに含まれる登録アイテムを、ユーザインターフェース2を介して対象ユーザに暫定的に提案し(提案工程)、ステップST4に移る。
【0110】
ステップST4では、セッション情報処理システム6は、対象ユーザのユーザインターフェース2を介して、先のステップST3においてアイテム提案部7から対象ユーザへ暫定的に提案された複数の登録アイテムのうち対象ユーザによって暫定的に選択された登録アイテムに関する情報をセッション情報として取得し(選択工程)、ステップST5に移る。
【0111】
ステップST5では、セッション情報処理システム6は、カウンタnを値1だけカウントアップし(n=n+1)、ステップST6に移る。
【0112】
ステップST6では、セッション情報処理システム6は、カウンタnの値は設定回数Nset以上であるか否かを判定する。ステップST6の判定結果がNOである場合、ステップST3に戻り、YESである場合、ステップST7に移る。すなわち、セッション情報処理システム6及びアイテム提案部7は、提案工程(ステップST3)及び選択工程(ステップST4)を、設定回数Nsetにわたり交互に繰り返し実行する。
【0113】
ステップST7では、セッション情報処理システム6は、最新のセッション情報に基づいて対象ユーザに対する目標ソーシャルポジション及びセッションベクトルを更新するとともに、これら目標ソーシャルポジション及びセッションベクトルをアイテム提案部7へ送信する。
【0114】
ステップST8では、アイテム提案部7は、マッチペアリスト、目標ソーシャルポジション、及びセッションベクトルに基づいて提案リストを生成し、提案リストに含まれる登録アイテムを、ユーザインターフェース2を介して対象ユーザに提案し(最終提案工程)、ステップST9に移る。
【0115】
ステップST9では、セッション情報処理システム6は、対象ユーザのユーザインターフェース2を介して、先のステップST8においてアイテム提案部7から対象ユーザへ最終的に提案された複数の登録アイテムのうち対象ユーザによって最終的に選択された登録アイテムを確定アイテムとし、図13に示す処理を終了する。
【0116】
本実施形態に係る情報提供システム1及び情報提供方法によれば、以下の効果を奏する。
(1)情報提供システム1において、アイテムリスト生成部55は、ユーザプロファイルデータベース51に登録された対象ユーザの個人情報及びアイテムプロファイルデータベース52に登録された各登録アイテムのアイテム情報に基づいて、対象ユーザと関連付けられる1以上の登録アイテムを含むマッチペアリストを生成し、セッション情報処理システム6は、対象ユーザのユーザインターフェース2を介してこの対象ユーザに対するセッションにおけるセッション情報を取得するとともに、複数の登録ユーザの価値観を反映して形成されるソーシャル空間における対象ユーザの目標ソーシャルポジションをセッション情報に基づいて算出し、アイテム提案部7は、これらマッチペアリスト及び目標ソーシャルポジションに基づいて1以上のアイテムを提案する。情報提供システム1及び情報提供方法によれば、先ず、ユーザプロファイルデータベース51及びアイテムプロファイルデータベース52に登録された情報に基づいて生成されたマッチペアリストを用いて対象ユーザにアイテムを提案することにより、フォロワー層を中心とする多数のユーザに対し、満足度の高いアイテムを提案することができる。
【0117】
また情報提供システム1及び情報提供方法によれば、セッション情報処理システム6は、対象ユーザに対するセッションにおいて取得したセッション情報に基づいてソーシャル空間における対象ユーザの目標ソーシャルポジションを算出することにより、対象ユーザのセッション実行時における上記人格性モデルで言うところの「目的」を、目標ソーシャルポジションとして算出することができる。また情報提供システム1及び情報提供方法によれば、アイテム提案部7は、マッチペアリスト及び目標ソーシャルポジションに基づいて対象ユーザに対しアイテムを提案することにより、フォロワー層以外のマニア層、先進層、及び定番層等のユーザに対しても、満足度の高いアイテムを提案することができる。
【0118】
(2)セッション情報処理システム6は、提案工程と選択工程との複数回にわたる繰り返しを含む対象ユーザに対するセッションにおいて、対象ユーザによって選択されたアイテムに関する情報をセッション情報として取得し、このセッション情報に基づいて目標ソーシャルポジションを算出することにより、対象ユーザのセッション実行時における趣味、趣向、及び興味等の価値観を反映して対象ユーザの目標ソーシャルポジションを算出することができるので、さらに多くのユーザに対し満足度の高いアイテムを提案することができる。
【0119】
(3)セッション情報処理システム6は、ソーシャル空間における対象ユーザのソーシャルポジションのセッション内の変化履歴に基づいて目標ソーシャルポジションを算出することにより、対象ユーザのセッション実行時における価値観を精度良く反映して対象ユーザの目標ソーシャルポジションを算出することができるので、さらに多くのユーザに対し満足度の高いアイテムを提案することができる。
【0120】
(4)ユーザベクトル生成部62は、ユーザプロファイルデータベース51に登録された個人情報に基づいて登録ユーザ毎にユーザベクトルを生成し、ユーザベクトル記憶部60は、ユーザベクトル生成部62によって生成されたユーザベクトルを記憶する。また情報提供システム1及び情報提供方法において、セッション情報処理システム6は、目標ソーシャルポジションが定義されるソーシャル空間を、複数の登録ユーザのユーザベクトルに基づいて定義する。これにより、ユーザプロファイルデータベース51に登録されている複数の登録ユーザによって構成される仮想的な社会の価値観を反映してソーシャル空間を定義することができる。
【0121】
(5)アイテムベクトル生成部63は、アイテムプロファイルデータベース52に登録されたアイテム情報に基づいて登録アイテム毎にアイテムベクトルを生成し、アイテムベクトル記憶部61は、アイテムベクトル生成部63によって生成されたアイテムベクトルを記憶し、アイテム提案部7は、マッチペアリストによって関連付けられるアイテムベクトル及び目標ソーシャルポジションに基づいて対象ユーザに対し1以上のアイテムを提案する。これにより、マッチペアリストに含まれる複数のアイテムのうち、上記人格性モデルで言うところの「幸福度」を高めるようなアイテムを定量的に抽出し、対象ユーザに提案することができる。
【0122】
(6)ユーザベクトル更新部64は、セッション情報に基づいてユーザベクトル記憶部60に記憶された対象ユーザのユーザベクトルを更新する。これにより、対象ユーザのセッション実行時における価値観を、対象ユーザのユーザベクトルに反映させることができる。
【0123】
(7)ユーザベクトル更新部64は、セッション情報と関連付けられたアイテムベクトルに基づいて対象ユーザのユーザベクトルを更新することにより、対象ユーザのセッション実行時における価値観を定量的に評価し、対象ユーザのユーザベクトルに反映させることができる。
【0124】
(8)登録アイテムの社会全体における価値は、アイテムプロファイルデータベース52への登録時から普遍ではなく、社会全体の価値観の変化と共に時々刻々と変化する。そこでアイテムベクトル更新部65は、アイテムベクトル記憶部61に記憶された複数のアイテムベクトルのうち、対象ユーザのセッション情報と関連付けられた選択アイテムベクトルを、この対象ユーザのユーザベクトルに基づいて更新する。これにより、社会全体の価値観の変化に合わせて、すなわち流行りや廃れに追従するようにアイテムベクトルを更新することができるので、アイテムベクトル記憶部61に記憶されているアイテムベクトルの鮮度を高く維持することができる。またこのようにアイテムベクトルの鮮度を高く維持することにより、対象ユーザに対し満足度の高いアイテムを提案することができる。
【0125】
(9)社会全体の価値観は、社会の一部である自身の価値観の変化に関わらず時々刻々と変化する。特にマニア層や先進層のユーザの価値観の変遷は激しく、これに伴って社会全体の価値観も変化する。これに対し情報提供システム1及び情報提供方法では、重心境界算出部66は、ユーザベクトル記憶部60に記憶された複数の登録ユーザのユーザベクトルのユーザベクトル空間における重心及び境界を算出し、セッション情報処理システム6は、複数の登録ユーザの重心及び境界に基づいてソーシャル空間を定義する。これにより、社会全体の価値観の変化に合わせてソーシャル空間を定義できるので、社会全体における対象ユーザのソーシャルポジションを社会全体の価値観の変化に合わせて是正することができる。
【0126】
(10)ソーシャルポジション算出部67は、対象ユーザのユーザベクトルに基づいてソーシャル空間における対象ユーザのソーシャルポジションを算出し、セッションベクトル生成部68は、対象ユーザのソーシャルポジションのセッション内における変化履歴に基づいてセッションベクトルを生成し、目標ソーシャルポジション算出部69は、対象ユーザのソーシャルポジション及びこのソーシャルポジションの変化履歴を反映したセッションベクトルに基づいて目標ソーシャルポジションを算出する。これにより、対象ユーザのセッション実行時における価値観を反映した適切な目標ソーシャルポジションを算出することができる。
【0127】
(11)目標ソーシャルポジション算出部69は、対象ユーザの最新のソーシャルポジションと、セッションベクトルに基づいて推定される対象ユーザのソーシャルポジションの変化目標と、を合成することによって目標ソーシャルポジションを算出する。これにより、対象ユーザ自身が認識できていない潜在的なニーズを汲み取って目標ソーシャルポジションを算出することができるので、個々人にパーソナライズされた満足度の高いアイテムを対象ユーザに提案することができる。
【0128】
(12)アイテム提案部7は、目標ソーシャルポジション、セッションベクトル、及びアイテムベクトルに基づいて、アイテムリストに含まれる各アイテムに対するスコアを算出し、スコアが高いアイテムから順にアイテムを提案することにより、満足度の高いものから順にアイテムを提案することができる。
【0129】
以上、本発明の一実施形態について説明したが、本発明はこれに限らない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。
【符号の説明】
【0130】
1…情報提供システム
2…ユーザインターフェース
3…外部データソース
5…登録情報処理システム
51…ユーザプロファイルデータベース
52…アイテムプロファイルデータベース
53…ユーザプロファイル推定部
54…アイテムプロファイル推定部
55…アイテムリスト生成部
6…セッション情報処理システム
60…ユーザベクトル記憶部
61…アイテムベクトル記憶部
62…ユーザベクトル生成部
63…アイテムベクトル生成部
64…ユーザベクトル更新部
65…アイテムベクトル更新部
66…重心境界算出部
67…ソーシャルポジション算出部
68…セッションベクトル生成部
69…目標ソーシャルポジション算出部
7…アイテム提案部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13