IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 吉田 貞夫の特許一覧

特開2023-5130骨格筋量推定システム、骨格筋量推定装置及びプログラム
<>
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図1
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図2
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図3
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図4
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図5
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図6
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図7
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図8
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図9
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図10
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図11
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図12
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図13
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図14
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図15
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図16
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図17
  • 特開-骨格筋量推定システム、骨格筋量推定装置及びプログラム 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023005130
(43)【公開日】2023-01-18
(54)【発明の名称】骨格筋量推定システム、骨格筋量推定装置及びプログラム
(51)【国際特許分類】
   G01N 33/70 20060101AFI20230111BHJP
【FI】
G01N33/70
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2021106857
(22)【出願日】2021-06-28
(11)【特許番号】
(45)【特許公報発行日】2022-08-04
【新規性喪失の例外の表示】特許法第30条第2項適用申請有り 令和3年4月20日に第36回日本臨床栄養代謝学会学術集会のウェブサイト内(https://www.congre.co.jp/jspen2021/program.html)で学会参加登録者に対して第36回日本臨床栄養代謝学会学術集会の抄録を公開した。
(71)【出願人】
【識別番号】521281472
【氏名又は名称】吉田 貞夫
(74)【代理人】
【識別番号】100205659
【弁理士】
【氏名又は名称】齋藤 拓也
(74)【代理人】
【識別番号】100160794
【弁理士】
【氏名又は名称】星野 寛明
(72)【発明者】
【氏名】吉田 貞夫
【テーマコード(参考)】
2G045
【Fターム(参考)】
2G045AA25
2G045CA26
2G045DA36
2G045DA42
2G045JA01
(57)【要約】
【課題】比較的一般的な血液データを用いて、従来よりも簡便で、迅速で、安価に骨格筋量を算出することが可能な骨格筋量推定システム、骨格筋量推定装置、データベース装置及びプログラムを提供すること。
【解決手段】実施形態の骨格筋量推定システムは、処理部を備える。処理部は、対象のeGFRcys及び対象のeGFRと、eGFRcys及びeGFRと骨格筋量との関係を示す第1の関数とを用いて、前記対象の推定骨格筋量を求める。
【選択図】図5
【特許請求の範囲】
【請求項1】
対象のeGFRcys及び前記対象のeGFRと、eGFRcys及びeGFRと骨格筋量との関係を示す第1の関数とを用いて、前記対象の推定骨格筋量を求める処理部を備える、骨格筋量推定システム。
【請求項2】
前記処理部は、前記対象のeGFRcys及び前記対象のeGFRに代えて前記対象のクレアチニン濃度及び前記対象のシスタチンC濃度を、eGFRcys及びeGFRと骨格筋量との関係を示す前記第1の関数に代えてクレアチニン濃度及びシスタチンC濃度と骨格筋量との関係を示す第2の関数を用いる、請求項1に記載の骨格筋量推定システム。
【請求項3】
前記処理部は、複数の被験者の骨格筋量測定値、eGFRcys及びeGFRを用いて、曲線あてはめにより前記第1の関数を決定する、請求項1又は請求項2に記載の骨格筋量推定システム。
【請求項4】
前記第1の関数は、男女で異なる、請求項1乃至請求項3のいずれか1項に記載の骨格筋量推定システム。
【請求項5】
前記処理部は、前記推定骨格筋量が第1の閾値以下である場合に、前記対象の骨格筋量が低下していると判定する、請求項1乃至請求項4のいずれか1項に記載の骨格筋量推定システム。
【請求項6】
前記処理部は、前記対象の骨格筋量が低下しており、前記対象の握力が第2の閾値以下である場合、前記対象がサルコペニアであると判定する、請求項5に記載の骨格筋量推定システム。
【請求項7】
前記処理部は、前記対象がサルコペニアであると判定し、前記対象の歩行速度が第3の閾値以下である場合、前記対象が重度のサルコペニアであると判定する、請求項6に記載の骨格筋量推定システム。
【請求項8】
前記処理部は、前記推定骨格筋量を用いて前記対象が低栄養であるか否かを判定する、請求項1乃至請求項7のいずれか1項に記載の骨格筋量推定システム。
【請求項9】
対象のeGFRcys及び前記対象のeGFRと、eGFRcys及びeGFRと骨格筋量との関係を示す第1の関数とを用いて、又は前記対象のクレアチニン濃度及び前記対象のシスタチンC濃度と、クレアチニン濃度及びシスタチンC濃度と骨格筋量との関係を示す第2の関数とを用いて前記対象の推定骨格筋量を求める処理部を備える、骨格筋量推定装置。
【請求項10】
複数の被験者の骨格筋量測定値、eGFRcys及びeGFRを記憶する記憶部と、
前記記憶部に記憶された前記骨格筋量測定値、前記eGFRcys及び前記eGFRを用いて曲線あてはめによりeGFRcys及びeGFRと骨格筋量との関係を示す第1の関数を決定する決定部と、を備えるデータベース装置。
【請求項11】
複数の被験者の骨格筋量測定値、クレアチニン濃度及びシスタチンC濃度を記憶する記憶部と、
前記記憶部に記憶された前記骨格筋量測定値、前記クレアチニン濃度及び前記シスタチンC濃度を用いて曲線あてはめによりクレアチニン濃度及びシスタチンC濃度と骨格筋量との関係を示す第2の関数を決定する決定部と、を備えるデータベース装置。
【請求項12】
骨格筋量推定装置が備えるプロセッサーを、対象のeGFRcys及び前記対象のeGFRと、eGFRcys及びeGFRと骨格筋量との関係を示す第1の関数とを用いて、又は前記対象のクレアチニン濃度及び前記対象のシスタチンC濃度と、クレアチニン濃度及びシスタチンC濃度と骨格筋量との関係を示す第2の関数とを用いて前記対象の推定骨格筋量を求める処理部として機能させるプログラム。
【請求項13】
データベース装置が備えるプロセッサーを、
複数の被験者の骨格筋量測定値、eGFRcys及びeGFRを記憶する記憶部に記憶された前記骨格筋量測定値、前記eGFRcys及び前記eGFRを用いて曲線あてはめによりeGFRcys及びeGFRと骨格筋量との関係を示す第1の関数を決定する決定部として機能させるプログラム。
【請求項14】
データベース装置が備えるプロセッサーを、
複数の被験者の骨格筋量測定値、クレアチニン濃度及びシスタチンC濃度を記憶する前記記憶部に記憶された前記骨格筋量測定値、前記クレアチニン濃度及び前記シスタチンC濃度を用いて曲線あてはめによりクレアチニン濃度及びシスタチンC濃度と骨格筋量との関係を示す第2の関数を決定する決定部として機能させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、血液中の物質の分析結果を用いた骨格筋量の計算とサルコペニア、低栄養の判定を行う骨格筋量推定システム、骨格筋量推定装置、データベース装置及びプログラムに関する。
【背景技術】
【0002】
WHO(World Health Organization)などによれば、世界的に高齢者人口の増加が認められ、急速に高齢化が進行している。日本も例外ではなく、2020年には、65歳以上の人口は、3600万人を超え、80歳以上の人口も1000万人を超えた。
【0003】
高齢者は、骨格筋量が低下し、身体機能が低下するサルコペニアの状態となることが多い。また、高齢者は、歩行が不安定となり、転倒、骨折を繰り返し、入院のリスクとなるフレイルの状態であることも多い。サルコペニア及びフレイルは、いずれも、おもな原因は骨格筋量の低下で、その背景には低栄養があると考えられている。
【0004】
サルコペ二アの評価に使用するアルゴリズムには、EWGSOP2(European Working Group on Sarcopenia in Older People)(非特許文献1)及びAWGS2019(Asian Working Group for Sarcopenia)(非特許文献2)などがある。しかしながら、これらのアルゴリズムを使用する場合、サルコペニアを確定するためには、骨格筋量の測定が必須である。
【0005】
骨格筋量の測定は、例えば骨格筋指標(SMI(skeletal muscle mass index))を用いる。SMIの算出には、例えば二重X線エネルギー吸収法(DXA(dual-energy X-ray absorptiometry))又は生体インピーダンス法(BIA(bioelectrical impedance analysis))などの機器を用いる。本邦には、3000台以上のDXA機器が稼働しているといわれている。しかしながら、これらDXA機器は、骨粗鬆症の評価に特化したもので、全身の骨格筋量を測定できるものではない。また、DXA機器は、X線を使用するため、弱いながらも放射線被曝の問題がある。全身の骨格筋量を測定する装置は大型で、本邦ではほとんど普及していない。また、現在1万台以上のBIA機器が稼働しているといわれているが、測定前に30分ほどの安静が必要で、安静時間も含めると測定には1時間弱を要することもある。このため、1日に測定できる人数は限られている。また、DXA機器及びBIA機器は、高額である。このため、個人病院、診療所及び高齢者施設などではDXA機器及びBIA機器の購入が困難である。したがって、高齢者のケアを行う現場において、骨格筋量の測定は普及しているとはいいがたい。
【0006】
また、ふくらはぎの周囲長などを測定し、骨格筋量を推測する試みも行われている。しかしながら、測定者によって数値がばらつき、精度は高くなく、浮腫などの影響を受けると、過大評価となるリスクが高い。
【0007】
このように骨格筋量の測定ができない現状では、サルコペニアの判定を正しく行うことができないばかりか、サルコペニアの前段階とも考えられているフレイルについても、適切な対応を開始することができない。
【0008】
フレイルを放置し、サルコペニアが進行すると、転倒、骨折の原因となる(非特許文献3、非特許文献4)。高齢者では、大腿骨及び腰椎などの骨折が多く、長期の入院が必要となる。平成30年度国民医療費の概況によれば、本邦の高齢者の筋骨格系及び結合組織の疾患に対する医療費は1兆7383億円にものぼる。治療が終了しても、長期間にわたり介護が必要となることも多く、本邦の医療、介護行政の大きな負担となっている。
【0009】
転倒、骨折がなくても、サルコペニアは日常生活動作(ADL(activities of daily living))及び手段的日常生活動作(IADL(instrumental activities of daily living))が低下する原因となり、長期間にわたり介護が必要となる。このため、介護に関する、コスト、マンパワーのさらなる増大が危惧される。
【0010】
また、サルコペニアは、心血管疾患、慢性呼吸器疾患、糖尿病、認知症などを発症するリスクとなることが報告されている。これらの疾患による医療費も膨大で、本邦の医療行政の大きな負担となる。
【0011】
骨格筋量を簡便に算出することで、サルコペニアを早期に判定し、適切な対策を行うことで、骨折や疾患の発症を防ぎ、高齢者を中心とした国民の健康を守り、医療、介護の負担を軽減することは、今後の本邦の社会において、きわめて重要なことだと考えられる。
【0012】
骨格筋量の減少の最大の原因は加齢であるが、低栄養も原因のひとつと考えられている。国際的に制定された低栄養の診断基準であるGLIM(Global Leadership Initiative on Malnutrition)クライテリアでは、低栄養の表現型のひとつとして、骨格筋量の減少が挙げられている。したがって、骨格筋量を測定しない限り、低栄養を正確に判定することができない。サルコペニア又はフレイルの高齢者で、低栄養状態を改善すべきと考えられる場合においても、低栄養の正確な判定を行うことができないため、適切な支援を開始することができないこととなる。
【0013】
これまで、血液データとサルコペニアの関連を見出そうとする研究が複数行われている。C反応性タンパクを用いた研究では、C反応性タンパクが高値だった群では、サルコペニアと判定されるものが多いという結果が得られたが、これは、骨格筋量の減少のためではなく、握力など、筋力の低下によるものだった(非特許文献6)。したがって、骨格筋量の減少と筋力の低下は、別な要因だと考えられる。その他の文献も、血液データとサルコペニアの関連を見ているものがほとんどで、骨格筋量に焦点をあてているものは少ない。
【0014】
N末タイプ3プロコラーゲンプロペプチド、C末アグリンフラグメント22(CAF22)、オステオネクチン、イリジン、脂肪酸結合タンパク3、又はマクロファージ遊走阻止因子などを用いた研究では、CAF22、オステオネクチン及びイリジンで、骨格筋量との相関が認められたが、相関はあまり強いものではなく(非特許文献7)、骨格筋量の推定には使用不可能である。また、いずれも研究レベルで使用されている指標で、分析に時間と多額のコストを要し、大量検体の分析は困難である。
【先行技術文献】
【非特許文献】
【0015】
【非特許文献1】Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019.
【非特許文献2】Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc 2020.
【非特許文献3】Schaap LA, Van Schoor NM, Lips P, Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: The longitudinal aging study Amsterdam. Journals Gerontol - Ser A Biol Sci Med Sci 2018;73:1199-204.
【非特許文献4】Yeung SSY, Reijnierse EM, Pham VK, Trappenburg MC, Lim WK, Meskers CGM, et al. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2019.
【非特許文献5】Cederholm T, Jensen GL, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. Clin Nutr 2019;38:1-9.
【非特許文献6】Shokri-Mashhadi N, Moradi S, Heidari Z, Saadat S. Association of circulating C-reactive protein and high-sensitivity C-reactive protein with components of sarcopenia: A systematic review and meta-analysis of observational studies. Exp Gerontol 2021;150:111330.
【非特許文献7】Shokri-Mashhadi N, Moradi S, Heidari Z, Saadat S. Association of circulating C-reactive protein and high-sensitivity C-reactive protein with components of sarcopenia: A systematic review and meta-analysis of observational studies. Exp Gerontol 2021;150:111330.
【非特許文献8】Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis Off J Natl Kidney Found 2009;53:982-92.
【非特許文献9】Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis Off J Natl Kidney Found 2013;61:197-203.
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明の実施形態は、比較的一般的な血液データを用いて、簡便で、迅速で、安価に骨格筋量を算出することが可能な骨格筋量推定システム、骨格筋量推定装置、データベース装置及びプログラムを提供すること。
【課題を解決するための手段】
【0017】
実施形態の骨格筋量推定システムは、処理部を備える。処理部は、対象のeGFRcys及び対象のeGFRと、eGFRcys及びeGFRと骨格筋量との関係を示す第1の関数とを用いて、前記対象の推定骨格筋量を求める。
【発明の効果】
【0018】
本発明は、比較的一般的な血液データを用いて、簡便で、迅速で、安価に骨格筋量を算出することができる。
【図面の簡単な説明】
【0019】
図1】実施形態に係る診断システム及び当該診断システムに含まれる構成要素の要部構成の一例を示すブロック図。
図2図1中の端末装置のプロセッサーによる処理の一例を示すフローチャート。
図3図1中の端末装置のプロセッサーによる処理の一例を示すフローチャート。
図4図1中のサーバー装置のプロセッサーによる処理の一例を示すフローチャート。
図5図1中のサーバー装置のプロセッサーによる処理の一例を示すフローチャート。
図6図1中の表示デバイスに表示される入力画面の一例を示す図。
図7】複数の男性の被験者のSMIとeGFR比の値をプロットしたグラフ。
図8】複数の女性の被験者のSMIとeGFR比の値をプロットしたグラフ。
図9図1中の表示デバイスに表示される結果画面の一例を示す図。
図10図1中の表示デバイスに表示される判定入力画面の一例を示す図。
図11図1中の表示デバイスに表示される低栄養結果画面の一例を示す図。
図12】男性のeGFRとeGFRcysの結果の差異を示すグラフ。
図13】女性のeGFRとeGFRcysの結果の差異を示すグラフ。
図14】男性のROC曲線の一例を示すグラフ。
図15】女性のROC曲線の一例を示すグラフ。
図16】骨格筋量のデータが無い場合のサルコペニアの判定結果の分布の一例を示すグラフ。
図17】骨格筋量算出後のサルコペニアの判定結果の分布の一例を示すグラフ。
図18】低栄養と判定された人数とその割合を示すグラフ。
【発明を実施するための形態】
【0020】
以下、実施形態に係る診断システムについて図面を用いて説明する。なお、以下の実施形態の説明に用いる各図面は、説明のため、構成を省略して示している場合がある。また、各図面及び本明細書中において、同一の符号は同様の要素を示す。
図1は、実施形態に係る診断システム1及び診断システム1に含まれる構成要素の要部構成の一例を示すブロック図である。診断システム1は、例えば、患者などのユーザーの骨格筋量の推定及びサルコペニアの判定などを行うためのシステムである。診断システム1は、一例として、サーバー装置100及び端末装置200を含む。診断システム1は、骨格筋量推定システムの一例である。
【0021】
サーバー装置100及び端末装置200は、ネットワークNWに接続する。ネットワークNWは、典型的にはインターネットを含む通信網である。ネットワークNWは、典型的にはWAN(wide area network)を含む通信網である。ネットワークNWは、イントラネットなどのプライベートネットワークを含む通信網であっても良い。ネットワークNWは、LAN(local area network)を含む通信網であっても良い。また、ネットワークNWは、無線回線でも良いし有線回線でも良く、無線回線と有線回線とが混在していても良い。また、ネットワークNWは、専用線又は公衆携帯電話網などを含む通信網であっても良い。
【0022】
サーバー装置100は、骨格筋量の推定及びサルコペニアの判定などに用いられる各種データの保存及び各種処理などを行う。サーバー装置100は、一例として、プロセッサー110、ROM(read-only memory)120、RAM(random-access memory)130、補助記憶装置140及び通信I/F(interface)150を含む。そして、バス160などが、これら各部を接続する。なお、サーバー装置100は、骨格筋量推定装置の一例である。サーバー装置100は、データベース装置の一例である。なお、プロセッサー110は、処理部の一例である。
【0023】
プロセッサー110は、サーバー装置100の動作に必要な演算及び制御などの処理を行うコンピューターの中枢部分であり、各種演算及び処理などを行う。プロセッサー110は、例えば、CPU(central processing unit)、MPU(micro processing unit)、SoC(system on a chip)、DSP(digital signal processor)、GPU(graphics processing unit)、ASIC(application specific integrated circuit)、PLD(programmable logic device)又はFPGA(field-programmable gate array)などである。あるいは、プロセッサー110は、これらのうちの複数を組み合わせたものである。また、プロセッサー110は、これらにハードウェアアクセラレーターなどを組み合わせたものあっても良い。プロセッサー110は、ROM120又は補助記憶装置140などに記憶されたファームウェア、システムソフトウェア及びアプリケーションソフトウェアなどのプログラムに基づいて、サーバー装置100の各種の機能を実現するべく各部を制御する。また、プロセッサー110は、当該プログラムに基づいて後述する処理を実行する。なお、当該プログラムの一部又は全部は、プロセッサー110の回路内に組み込まれていても良い。
【0024】
ROM120及びRAM130は、プロセッサー110を中枢としたコンピューターの主記憶装置である。
ROM120は、専らデータの読み出しに用いられる不揮発性メモリである。ROM120は、上記のプログラムのうち、例えばファームウェアなどを記憶する。また、ROM120は、プロセッサー110が各種の処理を行う上で使用するデータなども記憶する。
RAM130は、データの読み書きに用いられるメモリである。RAM130は、プロセッサー110が各種の処理を行う上で一時的に使用するデータを記憶するワークエリアなどとして利用される。RAM130は、典型的には揮発性メモリである。
【0025】
補助記憶装置140は、プロセッサー110を中枢としたコンピューターの補助記憶装置である。補助記憶装置140は、例えばEEPROM(electric erasable programmable read-only memory)、HDD(hard disk drive)又はフラッシュメモリなどである。補助記憶装置140は、上記のプログラムのうち、例えば、システムソフトウェア及びアプリケーションソフトウェアなどを記憶する。また、補助記憶装置140は、プロセッサー110が各種の処理を行う上で使用するデータ、プロセッサー110での処理によって生成されたデータ及び各種の設定値などを記憶する。
【0026】
補助記憶装置140が記憶するアプリケーションソフトウェアは、骨格筋量の推定及びサルコペニアの判定用のアプリケーションソフトウェアのうち、サーバー装置100用のアプリケーションソフトウェア(以下「サーバー用アプリ」という。)を含む。
【0027】
また、補助記憶装置140は、骨格筋量DB(database)141及びユーザーDB142を含む。骨格筋量DB141は、骨格筋量の推定及びサルコペニアの判定などに用いられるデータなどを記憶及び管理するデータベースである。ユーザーDB142は、診断システム1を利用する各ユーザーのデータなどを記憶及び管理するデータベースである。プロセッサー110は、骨格筋量DB141及びユーザーDB142を作成する。あるいは、サーバー装置100以外の装置が骨格筋量DB141及びユーザーDB142を作成する。なお、補助記憶装置140は、被験者の骨格筋量測定値、eGFRcys及びeGFRを記憶する記憶部の一例である。
【0028】
通信I/F150は、サーバー装置100がネットワークNWなどを介して通信するためのインターフェースである。
【0029】
バス160は、コントロールバス、アドレスバス及びデータバスなどを含み、サーバー装置100の各部で授受される信号を伝送する。
【0030】
端末装置200は、例えば、骨格筋量の推定及びサルコペニアの判定などのために医療従事者又は患者などが操作する装置である。端末装置200は、骨格筋量の推定及びサルコペニアの判定などに用いる専用の装置であっても良いし、PC(personal computer)、タブレット端末又はスマートフォンなどの汎用の装置であっても良い。端末装置200は、一例として、プロセッサー210、ROM220、RAM230、補助記憶装置240、通信I/F250、入力デバイス260及び表示デバイス270を含む。そして、バス280などが、これら各部を接続する。
【0031】
プロセッサー210は、端末装置200の動作に必要な演算及び制御などの処理を行うコンピューターの中枢部分であり、各種演算及び処理などを行う。プロセッサー210は、例えば、CPU、MPU、SoC、DSP、GPU、ASIC、PLD又はFPGAなどである。あるいは、プロセッサー210は、これらのうちの複数を組み合わせたものである。また、プロセッサー210は、これらにハードウェアアクセラレーターなどを組み合わせたものあっても良い。プロセッサー210は、ROM220又は補助記憶装置240などに記憶されたファームウェア、システムソフトウェア及びアプリケーションソフトウェアなどのプログラムに基づいて、端末装置200の各種の機能を実現するべく各部を制御する。また、プロセッサー210は、当該プログラムに基づいて後述する処理を実行する。なお、当該プログラムの一部又は全部は、プロセッサー210の回路内に組み込まれていても良い。なお、プロセッサー210は、処理部の一例である。
【0032】
ROM220及びRAM230は、プロセッサー210を中枢としたコンピューターの主記憶装置である。
ROM220は、専らデータの読み出しに用いられる不揮発性メモリである。ROM220は、上記のプログラムのうち、例えばファームウェアなどを記憶する。また、ROM220は、プロセッサー210が各種の処理を行う上で使用するデータなども記憶する。
RAM230は、データの読み書きに用いられるメモリである。RAM230は、プロセッサー210が各種の処理を行う上で一時的に使用するデータを記憶するワークエリアなどとして利用される。RAM230は、典型的には揮発性メモリである。
【0033】
補助記憶装置240は、プロセッサー210を中枢としたコンピューターの補助記憶装置である。補助記憶装置240は、例えばEEPROM、HDD又はフラッシュメモリなどである。補助記憶装置240は、上記のプログラムのうち、例えば、システムソフトウェア及びアプリケーションソフトウェアなどを記憶する。また、補助記憶装置240は、プロセッサー210が各種の処理を行う上で使用するデータ、プロセッサー210での処理によって生成されたデータ及び各種の設定値などを記憶する。
補助記憶装置240が記憶するアプリケーションソフトウェアは、骨格筋量の推定及びサルコペニアの判定用のアプリケーションソフトウェアのうち、端末装置200用のアプリケーションソフトウェア(以下「端末用アプリ」という。)を含む。
【0034】
通信I/F250は、端末装置200がネットワークNWなどを介して通信するためのインターフェースである。
【0035】
入力デバイス260は、端末装置200の操作者による操作を受け付ける。入力デバイス260は、例えば、キーボード、キーパッド、タッチパッド、マウス又はコントローラーなどである。また、入力デバイス260は、音声入力用のデバイスであっても良い。
【0036】
表示デバイス270は、端末装置200の操作者に各種情報を通知するための画面を表示する。表示デバイス270は、例えば、液晶ディスプレイ又は有機EL(electro-luminescence)ディスプレイなどのディスプレイである。また、入力デバイス260及び表示デバイス270としては、タッチパネルを用いることもできる。すなわち、タッチパネルが備える表示パネルを表示デバイス270として、タッチパネルが備えるタッチパッドを入力デバイス260として用いることができる。
【0037】
バス280は、コントロールバス、アドレスバス及びデータバスなどを含み、端末装置200の各部で授受される信号を伝送する。
【0038】
以下、実施形態に係る診断システム1の動作を図2図4などに基づいて説明する。なお、以下の動作説明における処理の内容は一例であって、同様な結果を得ることが可能な様々な処理を適宜に利用できる。
図2及び3は、端末装置200のプロセッサー210による処理の一例を示すフローチャートである。プロセッサー210は、例えば、ROM220又は補助記憶装置240などに記憶された端末用アプリなどのプログラムに基づいて図2及び3の処理を実行する。プロセッサー210は、例えば、端末用アプリの起動にともない、図2及び図3に示す処理を開始する。
図4及び5は、サーバー装置100のプロセッサー110による処理の一例を示すフローチャートである。プロセッサー110は、例えば、ROM120又は補助記憶装置140などに記憶されたサーバー用アプリなどのプログラムに基づいて図4及び5の処理を実行する。プロセッサー110は、例えば、サーバー用アプリの起動にともない、図4及び5に示す処理を開始する。
【0039】
ステップST11においてプロセッサー210は、ログイン画面に対応した画像を生成する。そして、プロセッサー210は、生成したこの画像を表示するように表示デバイス270に対して指示する。表示の指示を受けて表示デバイス270は、ログイン画面を表示する。なお、文字は画像の一種である。
【0040】
ログイン画面は、例えば、ログインに必要な情報を入力するための画面である。ログイン画面は、例えば、ログインに必要な情報としてログインID(identifier)及びパスワードを入力するための入力欄を含む。また、ログイン画面は、例えば、ログインを開始する場合に操作するためのログインボタンを含む。あるいは、ログイン画面は、ログインに必要な情報として、生体認証用の生体情報の入力を待ち受けるための画面であっても良い。あるいは、ログイン画面は、ログインに必要な情報として、ログイン用のIC(integrated circuit)カード又は磁気ストライプカードなどのカードなどに記憶された情報の入力を待ち受けるための画面であっても良い。また、ログイン画面は、例えば、ユーザー登録を開始するための登録開始ボタンを含む。
【0041】
ステップST12においてプロセッサー210は、ユーザー登録を開始する操作が行われたか否かを判定する。すなわちプロセッサー210は、登録開始ボタンを操作するなどの予め定められた操作が行われたか否かを判定する。プロセッサー210は、ユーザー登録を開始する操作が行われないならば、ステップST12においてNoと判定してステップST13へと進む。
【0042】
ステップST13においてプロセッサー210は、ログインに必要な情報を送信するか否かを判定する。プロセッサー210は、例えば、ログインID及びパスワードが入力された状態でログインボタンが操作されたならば、ログインに必要な情報を送信すると判定する。プロセッサー210は、例えば、生体情報が入力された場合にログインに必要な情報を送信すると判定する。プロセッサー210は、例えば、ログイン用のカードなどに記憶された情報が入力された場合にログインに必要な情報を送信すると判定する。プロセッサー210は、ログインに必要な情報を送信すると判定しないならば、ステップST13においてNoと判定してステップST12へと戻る。かくして、プロセッサー210は、ユーザー登録を開始する操作が行われるか、ログインに必要な情報を送信すると判定するまでステップST12及びステップST13を繰り返す待受状態となる。
【0043】
プロセッサー210は、ステップST12及びステップST13の待受状態にあるときにユーザー登録を開始する操作が行われたならば、ステップST12においてYesと判定してステップST14へと進む。
ステップST14においてプロセッサー210は、登録画面に対応した画像を生成する。そして、プロセッサー210は、生成したこの画像を表示するように表示デバイス270に対して指示する。表示の指示を受けて表示デバイス270は、登録画面を表示する。
【0044】
登録画面は、例えば、ユーザー登録に必要な情報を入力するための画面である。登録に必要な情報は、ユーザー情報及び認証情報を含む。ユーザー情報は、例えば、ユーザーの年齢が分かる情報及びユーザーの性別を含む。ユーザーの年齢が分かる情報は、例えば、ユーザーの生年月日などである。また、認証情報は、ログイン時の認証に用いられる情報である。認証情報は、例えば、ログインID及びパスワード、生体認証用の生体情報、又はログイン用のカードなどに記憶された情報である。また、登録画面は、例えば、登録ボタンを含む。登録ボタンは、例えば、ユーザー登録に必要な情報の入力終了後に操作するためのボタンである。登録ボタンは、例えば、ユーザー登録に必要な情報をサーバー装置100に送信するように端末装置200に指示する場合に操作するためのボタンである。なお、ユーザーは、推定骨格筋量を求める対象の一例である。
【0045】
ステップST15においてプロセッサー210は、登録に必要な情報を送信するように指示する操作が行われるのを待ち受ける。すなわちプロセッサー210は、登録ボタンを操作するなどの予め定められた操作が行われるのを待ち受ける。プロセッサー210は、登録に必要な情報を送信するように指示する操作が行われたならば、ステップST15においてYesと判定してステップST16へと進む。
【0046】
ステップST16においてプロセッサー210は、登録情報を生成する。登録情報は、登録画面において入力された登録に必要な情報を含む。登録情報は、登録処理を行うようにサーバー装置100に要求する情報である。プロセッサー210は、登録情報を生成した後、当該登録情報をサーバー装置100に送信するように通信I/F250に対して指示する。この送信の指示を受けて通信I/F250は、当該登録情報をサーバー装置100に送信する。送信された当該登録情報は、サーバー装置100の通信I/F150によって受信される。
【0047】
一方、図4のステップST41においてサーバー装置100のプロセッサー110は、通信I/F150によって登録情報が受信されたか否かを判定する。プロセッサー110は、登録情報が受信されないならば、ステップST41においてNoと判定してステップST42へと進む。
【0048】
ステップST42においてプロセッサー110は、通信I/F150によってログイン情報が受信されたか否かを判定する。プロセッサー110は、ログイン情報が受信されないならば、ステップST42においてNoと判定してステップST43へと進む。
【0049】
ステップST43においてプロセッサー110は、通信I/F150によって測定値情報が受信されたか否かを判定する。プロセッサー110は、測定値情報が受信されないならば、ステップST43においてNoと判定してステップST44へと進む。
【0050】
ステップST44においてプロセッサー110は、通信I/F150によって入力情報が受信されたか否かを判定する。プロセッサー110は、入力情報が受信されないならば、ステップST44においてNoと判定してステップST41へと戻る。かくして、プロセッサー110は、登録情報、ログイン情報、測定値情報又は入力情報が受信されるまでステップST41~ステップST44を繰り返す待受状態となる。なお、ログイン情報、測定値情報及び入力情報については後述する。
【0051】
プロセッサー110は、ステップST41~ステップST44の待受状態にあるときに登録情報が受信されたならば、ステップST41においてYesと判定してステップST45へと進む。
ステップST45においてプロセッサー110は、当該登録情報に基づきユーザー登録のための登録処理を行う。このために、プロセッサー110は、例えば、ユーザーIDと当該登録情報に含まれる登録に必要な情報とを関連付けてユーザーDB142に記憶する。なお、ユーザーIDは、ユーザーごとにユニークな識別情報である。また、ユーザーIDとログインIDは共通であっても良い。
【0052】
ステップST46においてプロセッサー110は、登録結果情報を生成する。登録結果情報は、登録処理の結果を通知する情報である。登録結果情報は、例えば、正常にユーザー登録が完了したこと又は登録に失敗したことなどを通知する。また、ユーザー登録が完了している場合、登録結果情報は、ユーザーのユーザーID,年齢及び性別を含む。プロセッサー110は、登録結果情報を生成した後、当該登録結果情報を端末装置200に送信するように通信I/F150に対して指示する。この送信の指示を受けて通信I/F150は、当該登録結果情報を端末装置200に送信する。送信された当該登録結果情報は、端末装置200の通信I/F250によって受信される。プロセッサー110は、ステップST46の処理の後、ステップST41へと戻る。
【0053】
一方、図2のステップST17において端末装置200のプロセッサー210は、通信I/F250によって登録結果情報が受信されるのを待ち受けている。プロセッサー210は、登録結果情報が受信されたならば、ステップST17においてYesと判定してステップST18へと進む。
【0054】
ステップST18においてプロセッサー210は、受信された登録結果情報に基づき、登録処理が完了したこと又は失敗したことを示す画像を表示デバイス270に表示させる。
【0055】
ステップST19においてプロセッサー210は、受信された登録結果情報に基づき、ユーザー登録が完了したか否かを判定する。プロセッサー210は、ユーザー登録に失敗した場合、ステップST19においてNoと判定してステップST14へと戻る。
【0056】
また、プロセッサー210は、ステップST12及びステップST13の待受状態にあるときにログインに必要な情報を送信すると判定するならば、ステップST13においてYesと判定してステップST20へと進む。
ステップST20においてプロセッサー210は、ログイン情報を生成する。ログイン情報は、例えば、ログイン画面において入力されたログインに必要な情報を含む。ログイン情報は、例えば、ログインに必要な情報に基づき、ログインのための処理を行うようにサーバー装置100に要求する情報である。プロセッサー210は、ログイン情報を生成した後、当該ログイン情報をサーバー装置100に送信するように通信I/F250に対して指示する。この送信の指示を受けて通信I/F250は、当該ログイン情報をサーバー装置100に送信する。送信された当該ログイン情報は、サーバー装置100の通信I/F150によって受信される。
【0057】
一方、サーバー装置100のプロセッサー110は、図4のステップST41~ステップST44の待受状態にあるときにログイン情報が受信されたならば、ステップST42においてYesと判定してステップST47へと進む。
ステップST47においてプロセッサー110は、ログインのためのログイン処理を行う。例えば、プロセッサー110は、ユーザーDB142を参照して、ログインに必要な情報からユーザーIDを特定する。また、プロセッサー110は、当該ユーザーIDに関連付けられた情報から当該ユーザーIDで特定されるユーザーの年齢及び性別を特定する。なお、プロセッサー110は、ログイン処理について公知の処理を行っても良い。
【0058】
ステップST48においてプロセッサー110は、ログイン結果情報を生成する。ログイン結果情報は、ログイン処理の結果を示す情報である。ログイン結果情報は、例えば、正常にログイン処理が完了したこと又はログイン処理に失敗したことなどを通知する。また、ログイン処理が完了している場合、ログイン結果情報は、ユーザーのユーザーID,年齢及び性別を含む。プロセッサー110は、ログイン結果情報を生成した後、当該ログイン結果情報を端末装置200に送信するように通信I/F150に対して指示する。この送信の指示を受けて通信I/F150は、当該ログイン結果情報を端末装置200に送信する。送信された当該ログイン結果情報は、端末装置200の通信I/F250によって受信される。プロセッサー110は、ステップST48の処理の後、ステップST41へと戻る。
【0059】
一方、図2のステップST21において端末装置200のプロセッサー210は、通信I/F250によってログイン結果情報が受信されるのを待ち受けている。プロセッサー210は、ログイン結果情報が受信されたならば、ステップST21においてYesと判定してステップST22へと進む。
【0060】
ステップST22においてプロセッサー210は、受信されたログイン結果情報に基づき、ログイン処理が完了したこと又は失敗したことを示す画像を表示デバイス270に表示させる。
【0061】
ステップST23においてプロセッサー210は、受信されたログイン結果情報に基づき、ログインが完了したか否かを判定する。プロセッサー210は、ログインが完了していないならば、ステップST23においてNoと判定してステップST11へと戻る。
【0062】
対して、プロセッサー210は、ログインが完了したならば、ステップST23においてYesと判定してステップST24へと進む。また、プロセッサー210は、ユーザー登録が完了したならば、ステップST19においてYesと判定してステップST24へと進む。なお、ログイン結果情報及び登録結果情報を総称して結果情報というものとする。
【0063】
ステップST24においてプロセッサー210は、図6に示すような入力画面SC1に対応した画像を生成する。そして、プロセッサー210は、生成したこの画像を表示するように表示デバイス270に対して指示する。表示の指示を受けて表示デバイス270は、入力画面SC1を表示する。
【0064】
図6は、入力画面SC1の一例を示す図である。入力画面SC1は、骨格筋量の推定及びサルコペニアの判定などのために用いるデータを入力するための画面である。入力画面SC1は、一例として、領域AR101~領域AR111、入力終了ボタンB11、及び測定値入力ボタンB12を含む。入力画面SC1へのデータの入力は、例えば、入力デバイス260を用いて手入力される。あるいは、当該データは、端末装置200以外の装置から通信I/F250などを介して入力されても良い。
【0065】
領域AR101は、ユーザーIDを表示する領域である。当該ユーザーIDは、例えば、結果情報に含まれるユーザーIDである。
領域AR102は、領域AR105~領域AR111に入力される各測定量の測定日を表示する領域である。測定日は、一例として現在の日付である。あるいは、領域AR102に任意の測定日を入力することができても良い。
領域AR103は、ユーザーの性別を表示する領域である。当該性別は、例えば、結果情報に含まれる性別である。
領域AR104は、ユーザーの年齢を表示する領域である。当該年齢は、例えば、結果情報に含まれる年齢である。
【0066】
領域AR105は、ユーザーのクレアチニン濃度を入力するための入力欄である。
領域AR106は、ユーザーのシスタチンC濃度を入力するための入力欄である。
領域AR107は、ユーザーのeGFR(estimated glomerular filtration rate)を入力するための入力欄である。
領域AR108は、ユーザーのeGFRcys(cystatin C-based estimated glomerular filtration rate)を入力するための入力欄である。
【0067】
領域AR105及び領域AR107には、どちらかに入力すれば良い。領域AR106及び領域AR108には、どちらかのみ入力すればよい。
【0068】
領域AR109は、ユーザーの握力を入力するための入力欄である。
領域AR110は、ユーザーの歩行速度を入力するための入力欄である。
領域AR111は、ユーザーが所定の距離を歩くのにかかる時間を入力するための入力欄である。所定の距離は、一例として6メートルである。
なお、ユーザーの歩行速度及びユーザーが所定の距離を歩くのにかかる時間のそれぞれは、ユーザーの歩く速度を示す情報である。
【0069】
領域AR109~領域AR111には、サルコペニアの判定を行ってほしい場合にのみ入力する。領域AR110及び領域AR111には、どちらかのみ入力すればよい。
【0070】
入力終了ボタンB11は、入力画面SC1の各入力欄への入力を終了した場合に操作するためのボタンである。入力終了ボタンB11は、骨格筋量の推定を行い、必要に応じてサルコペニアの判定を行うように指示するためのボタンである。
測定値入力ボタンB12は、骨格筋量の測定値を入力する場合に操作するためのボタンである。骨格筋量の測定値の入力に関しては後述する。
【0071】
被検者であるユーザーの血清中のクレアチニン濃度の測定は、例えば、酵素法(クレアチニナーゼ-サルコシンオキシダーゼ-POD法)などを用いる。また、ユーザーの血清中のシスタチンC濃度の測定は、例えば、ELISA(enzyme-linked immunosorbent assay)法(サンドイッチ酵素アッセイ法)などを用いる。また、ユーザーの血清は、当該ユーザーから採取された10mL程度の血液を常温で30分間以上静置した後、3000rpm、5分の遠心分離を行うことで採取する。
【0072】
また、ユーザーの血清中のeGFR及びeGFRcysについては、下式(1)~下式(4)を用いて算出する。eGFRを算出する(1)式及び(2)式は、例えば非特許文献8に開示されている。また、eGFRcysを算出する(3)式及び(4)式は、例えば非特許文献9に開示されている。(1)式は、男性のeGFRを算出する式である。(2)式は、女性のeGFRを算出する式である。(3)式は、男性のeGFRcysを算出する式である。(4)式は、女性のeGFRcysを算出する式である。なお、下式中Creは、ユーザーのクレアチニン濃度を示す。Cysは、ユーザーのシスタチンC濃度を示す。ageはユーザーの年齢を示す。いずれも単位は[mL/min/1.73m2]である。
eGFR(男性)= 194 × Cre - 1.094 - 0.154 × age - 0.287 (1)
eGFR(女性)= 194 × Cre - 1.094 - 0.154 × age - 0.287 × 0.739 (2)
eGFRcys(男性)= (104 × Cys-1.019 × 0.996age) - 8 (3)
eGFRcys(女性)= (104 × Cys-1.019 × 0.996age × 0.929) - 8 (4)
【0073】
ステップST25においてプロセッサー210は、骨格筋量の測定値を入力するための処理を開始する操作が行われたか否かを判定する。すなわちプロセッサー210は、測定値入力ボタンB12を操作するなどの予め定められた操作が行われたか否かを判定する。プロセッサー210は、骨格筋量の測定値を入力するための処理を開始する操作が行われないならば、ステップST25においてNoと判定してステップST26へと進む。
【0074】
ステップST26においてプロセッサー210は、入力画面SC1の各入力欄への入力を終了するための操作が行われたか否かを判定する。すなわちプロセッサー210は、入力終了ボタンB11を操作するなどの予め定められた操作が行われたか否かを判定する。プロセッサー210は、入力画面SC1の各入力欄への入力を終了するための操作が行われないならば、ステップST26においてNoと判定してステップST25へと戻る。かくして、プロセッサー210は、骨格筋量の測定値を入力するための処理を開始する操作、又は入力画面SC1の各入力欄への入力を終了するための操作が行われるまでステップST25及びステップST26を繰り返す待受状態となる。
【0075】
プロセッサー210は、ステップST25及びステップST26の待受状態にあるときに入力画面SC1の各入力欄への入力を終了する操作が行われたならば、ステップST26においてYesと判定して図3のステップST27へと進む。
【0076】
ステップST27においてプロセッサー210は、入力情報を生成する。入力情報は、入力画面SC1の領域AR101~領域AR111に含まれる各情報を含む。入力情報は、当該各情報を送信するための情報である。また、入力情報は、骨格筋量の推定を行い、必要に応じてサルコペニアの判定を行うようにサーバー装置100に要求する情報である。プロセッサー210は、入力情報を生成した後、当該入力情報を端末装置200に送信するように通信I/F150に対して指示する。この送信の指示を受けて通信I/F150は、当該入力情報を端末装置200に送信する。送信された当該入力情報は、端末装置200の通信I/F250によって受信される。
【0077】
一方、サーバー装置100のプロセッサー110は、図4のステップST41~ステップST44の待受状態にあるときに入力情報が受信されたならば、ステップST44においてYesと判定して図5のステップST49へと進む。
ステップST49においてプロセッサー110は、eGFRを算出するか否かを判定する。プロセッサー110は、受信された入力情報にeGFRが含まれないならば、eGFRを算出すると判定する。プロセッサー110は、eGFRを算出するならば、ステップST49においてNoと判定してステップST50へと進む。
【0078】
ステップST50においてプロセッサー110は、ユーザーのeGFRを算出する。プロセッサー110は、例えば(1)式又は(2)式を用いてユーザーのeGFRを算出する。あるいは、プロセッサー110は、その他の公知の方法でeGFRを算出しても良い。
【0079】
プロセッサー110は、ステップST50の処理の後、ステップST51へと進む。また、プロセッサー110は、eGFRを算出しないならば、ステップST49においてNoと判定してステップST51へと進む。
ステップST51においてプロセッサー110は、eGFRcysを算出するか否かを判定する。プロセッサー110は、受信された入力情報にユーザーのeGFRcysが含まれないならば、eGFRcysを算出すると判定する。プロセッサー110は、eGFRcysを算出するならば、ステップST51においてYesと判定してステップST52へと進む。
【0080】
ステップST52においてプロセッサー110は、ユーザーのeGFRcysを算出する。プロセッサー110は、例えば(3)式又は(4)式を用いてeGFRcysを算出する。あるいは、プロセッサー110は、その他の公知の方法でeGFRcysを算出しても良い。
【0081】
プロセッサー110は、ステップST52の処理の後、ステップST53へと進む。また、プロセッサー110は、eGFRcysを算出しないならば、ステップST51においてNoと判定してステップST53へと進む。
【0082】
ステップST53においてプロセッサー110は、骨格筋量の推定量を示す推定骨格筋量を算出する。プロセッサー110は、推定骨格筋量を示す指標として、例えば、推定骨格筋指標(eSMI(estimated skeletal muscle mass index))[kg/m]又は推定四肢骨格筋量(eSMM(estimated skeletal muscle mass))[kg]を用いる。eSMIは、SMI[kg/m]の推定値である。eSMMは、推定四肢骨格筋量(SMM(skeletal muscle mass))[kg]の推定値である。プロセッサー110は、eSMI及びeSMMの算出にeGFRに対するeGFRcysの比(以下「eGFR比」という。)を用いる。プロセッサー110は、ユーザーのeGFR及びeGFRcysを用いて、下式(5)によりeGFR比を求める。
eGFR比=eGFRcys/eGFR (5)
【0083】
プロセッサー110は、推定骨格筋量を求めるために推定骨格筋量とeGFR比の関係式を、骨格筋量DB141を参照して作成する。骨格筋量DB141は、複数の被験者の骨格筋量の測定値及びeGFR比を記憶している。骨格筋量DB141は、骨格筋量を示す指標として、例えば、SMI又はSMMを記憶する。骨格筋量は、例えばBIAを用いて測定されたものを用いる。あるいは、骨格筋量は、他の方法によって測定された骨格筋量であっても良い。なお、骨格筋量DB141は、各被験者の骨格筋量について、被験者IDと関連付けて記憶している。骨格筋量DB141は、被験者のプライバシーを確保するため、被験者について匿名かされていることが好ましい。骨格筋量DB141は、匿名化のために、例えば、被験者IDと、個人を特定することができるデータは関連付けられていないことが好ましい。また、骨格筋量DB141は、骨格筋量のデータのうち、外れ値又は異常値のように著しく逸脱したようなデータは、骨格筋量DB141の管理者などによって除外されていても良い。除外されたデータは、関係式の作成に用いられない。
【0084】
図7は、複数の男性の被験者のSMIとeGFR比の値をプロットしたグラフの一例である。曲線L1は、SMIとeGFR比の関係式を示す曲線である。図7に示す曲線L1は、1次曲線(直線)である。しかしながら、曲線L1はどのような曲線であっても良い。プロセッサー110は、最小二乗法などによる曲線あてはめにより曲線L1を求める。プロセッサー110は、ロバスト推定などの、外れ値及び異常値の影響を少なくする方法により曲線L1を求めても良い。曲線L1は、eGFR比の関数f1により、SMI=f1(eGFR比)と表すことができる。したがって、関数f1を用いることでSMIを推定することができる。つまり、プロセッサー110は、一例として、男性のeSMIを下式(6)の関係式によって推定することができる。なお、(6)式は、曲線L1が1次曲線である場合の例である。
eSMI(男性) = f1(eGFR比) = a1 × eGFR比 + b1 (6)
ここで、係数a1及び係数b1は、曲線あてはめによって求める係数である。一例として、50人の男性の被験者の測定値から係数a1及び係数b1を求めると、a1=3.481、b1=3.653であった。なお、この場合のSMIとeGFR比の相関係数の2乗Rは、R= 0.476であった。
【0085】
図8は、複数の女性の被験者のSMIとeGFR比の値をプロットしたグラフの一例である。曲線L2は、SMIとeGFR比の関係式を示す曲線である。図8に示す曲線L2は、1次曲線(直線)である。しかしながら、曲線L2はどのような曲線であっても良い。プロセッサー110は、女性の場合も男性と同様に曲線L2を求める。曲線L2は、eGFR比の関数f2により、SMI=f2(eGFR比)と表すことができる。プロセッサー110は、一例として、女性のeSMIを下式(7)の関係式によって推定することができる。なお、(7)式は、曲線L1が1次曲線である場合の例である。
eSMI(女性) = f2(eGFR比) = a2 × eGFR比 + b2 (7)
ここで、係数a2及び係数b2は、曲線あてはめによって求める係数である。一例として、50人の女性の被験者の測定値から係数a2及び係数b2を求めると、a2=3.323、b2=2.585であった。なお、この場合のSMIとeGFR比の相関係数の2乗Rは、R= 0.442であった。
【0086】
また、プロセッサー110は、SMIに代えてSMMを用いる場合も同様に関係式を求めることができる。(8)式は、男性のeSMMを推定する関係式である。(9)式は、女性のeSMMを推定する関係式である。
eSMM(男性) = f3(eGFR比) = a3 × eGFR比 + b3 (8)
eSMM(女性) = f4(eGFR比) = a4 × eGFR比 + b4 (9)
ここで、係数a3、係数b3、係数a4及び係数b4は、曲線あてはめによって求める係数である。一例として、50人の男性及び50人の女性の被験者のSMMの測定値を用いて係数a3、係数b3、係数a4及び係数b4を求めると、a3=13.245、b3=6.3926、a4=12.673、b4=2.2063.であった。また、この場合の男性のSMMとeGFR比の相関係数の2乗Rは、R=0.5399であった。そして、女性のSMMとeGFR比の相関係数の2乗Rは、R=0.5768であった。
【0087】
それぞれの相関係数の2乗Rによれば、eSMIよりもeSMMを用いた方が、相関係数の2乗Rの数値は大きい。したがって、eSMIよりもeSMMを用いる方が推定骨格筋量を正確に推定することができると考えられる。
【0088】
なお、関数f1~関数f4は、eGFR比の関数である。ここで、eGFR比は、eGFRcys及びeGFRを含む。よって、関数f1~関数f4は、eGFRcys及びeGFRの関数である。したがって、関数f1~関数f4のそれぞれは、eGFRcys及びeGFRと骨格筋量との関係を示す第1の関数の一例である。
【0089】
なお、プロセッサー110は、各関係式を、例えば、新たな測定値が骨格筋量DB141に追加されたことに応じて求める。プロセッサー110は、各関係式を、例えば、所定の期間ごとに定期的に求める。プロセッサー110は、各関係式を求めることで、第1の関数を決定する決定部として機能する。
【0090】
プロセッサー110は、以上のような(6)式~(9)のような関係式を用いて、ユーザーのeGFR比からユーザーの推定骨格筋量を求める。なお、プロセッサー110は、ユーザーが男性である場合には男性用の関係式を用いて推定骨格筋量を求める。プロセッサー110は、ユーザーが女性である場合には女性用の関係式を用いて推定骨格筋量を求める。
【0091】
ステップST54においてプロセッサー110は、ステップST53で求めた推定骨格筋量から、ユーザーの骨格筋量が低下しているか否かを判定する。プロセッサー110は、例えば、ユーザーが男性である場合、eSMIが所定の閾値TH1未満である場合に骨格筋量が低下していると判定する。閾値TH1は、一例として7.0[kg/m]である。プロセッサー110は、例えば、ユーザーが女性である場合、eSMIが所定の閾値TH2未満である場合に骨格筋量が低下していると判定する。閾値TH2は、一例として5.7[kg/m]である。プロセッサー110は、例えば、ユーザーが男性である場合、eSMMが所定の閾値TH3未満である場合に骨格筋量が低下していると判定する。閾値TH3は、一例として20.2[kg]である。プロセッサー110は、例えば、ユーザーが女性である場合、eSMMが所定の閾値TH4未満である場合に骨格筋量が低下していると判定する。閾値TH4は、一例として12.8[kg]である。なお、閾値TH3及び閾値TH4は、第1の閾値の例である。
【0092】
ステップST55においてプロセッサー110は、サルコペニアの判定を行うか否かを判定する。プロセッサー110は、受信された入力情報にユーザーの握力及び歩行速度、又は握力及び所定の距離を歩くのにかかる時間が含まれるならば、サルコペニアの判定を行うと判定する。プロセッサー110は、サルコペニアの判定を行うならば、ステップST55においてYesと判定してステップST56へと進む。
【0093】
ステップST56においてプロセッサー110は、ステップST53で求めたユーザーの推定骨格筋量と、ユーザーの握力と、ユーザーの歩行速度とを用いて、ユーザーがサルコペニアであるか否かの判定を行う。なお、プロセッサー110は、受信された入力情報にユーザーの歩行速度が含まれない場合、所定の距離を歩くのにかかる時間から歩行速度を求める。また、プロセッサー110は、ユーザーがサルコペニアであると判定した場合には、当該サルコペニアの重症度を判定する。
プロセッサー110は、例えば、ステップST54で骨格筋量が減少していると判定し、且つユーザーの握力が閾値TH5以下である場合にユーザーがサルコペニアであると判定する。閾値TH5は、一例として18.0kgである。なお、閾値TH5はユーザーの性別など、ユーザーの条件によって異なっていても良い。また、プロセッサー110は、ユーザーがサルコペニアであると判定し、且つユーザーの歩行速度が閾値TH6以下である場合、ユーザーが重度サルコペニアであると判定する。閾値TH6は、一例として、1.0[m/秒]である。なお、閾値TH6はユーザーの性別など、ユーザーの条件によって異なっていても良い。なお、閾値TH5は、第2の閾値の一例である。閾値TH6は、第3の閾値の一例である。
また、プロセッサー110は、フレイルの判定を行っても良い。プロセッサー110は、例えば、ステップST53で求めたユーザーの推定骨格筋量と、当該ユーザーの過去の推定骨格筋量とを比較し、推定骨格筋量が所定以上に減少している場合に、ユーザーの体重、握力及び歩行速度などを用いてユーザーがフレイルであることを判定する。なお、プロセッサー110は、ユーザーDB142を参照することで、受信された入力情報に含まれるユーザーIDに関連付けられている推定骨格筋量を過去の推定骨格筋量として取得する。
【0094】
プロセッサー110は、ステップST56の処理の後、ステップST57へと進む。また、プロセッサー110は、サルコペニアの判定を行うと判定しないならば、ステップST55においてNoと判定してステップST57へと進む。
ステップST57においてプロセッサー110は、受信された入力情報に含まれるユーザーIDと推定IDとを関連付けてユーザーDB142に記憶する。推定IDは、推定骨格筋量の算出ごとにユニークに付与される識別情報である。プロセッサー110は、当該入力情報に含まれる各情報を当該推定IDと関連付けてユーザーDB142に記憶する。また、プロセッサー110は、ステップST50の処理を行った場合、当該推定IDと関連付けて、ステップST50で求めたeGFRをユーザーDB142に記憶する。また、プロセッサー110は、ステップST52の処理を行った場合、当該推定IDと関連付けて、ステップST52で求めたeGFRcysを推定DB142に記憶する。また、プロセッサー110は、当該推定IDと関連付けてステップST53で求めたeGFR比及び推定骨格筋量をユーザーDB142に記憶する。また、プロセッサー110は、当該推定IDと関連付けてステップST54で求めた判定結果をユーザーDB142に記憶する。また、プロセッサー110は、ステップST56の処理を行った場合、当該推定IDと関連付けてステップST56で求めた判定結果をユーザーDB142に記憶する。
【0095】
ステップST58においてプロセッサー110は、計算結果情報を生成する。計算結果情報は、ステップST53で求められた推定骨格筋量、ステップST54の判定結果を含む。また、ステップST56の処理が行われた場合、計算結果情報は、ステップST56の判定結果を含む。プロセッサー110は、計算結果情報を生成した後、当該計算結果情報を端末装置200に送信するように通信I/F150に対して指示する。この送信の指示を受けて通信I/F150は、当該計算結果情報を端末装置200に送信する。送信された当該計算結果情報は、端末装置200の通信I/F250によって受信される。プロセッサー110は、ステップST58の処理の後、ステップST41へと戻る。
【0096】
一方、図3のステップST28において端末装置200のプロセッサー210は、通信I/F250によって計算結果情報が受信されるのを待ち受けている。プロセッサー210は、計算結果情報が受信されたならば、ステップST28においてYesと判定してステップST29へと進む。
【0097】
ステップST29においてプロセッサー210は、図9に示すような結果画面SC2に対応した画像を生成する。そして、プロセッサー210は、生成したこの画像を表示するように表示デバイス270に対して指示する。表示の指示を受けて表示デバイス270は、結果画面SC2を表示する。
【0098】
図9は、結果画面SC2の一例を示す図である。結果画面SC2は、受信された計算結果情報に含まれる各種情報を端末装置200の操作者などに報知するための画面である。結果画面SC2は、一例として、領域AR101、領域AR102及び領域AR21~領域AR23を含む。
【0099】
領域AR21は、例えば、図5のステップST53で求められた推定骨格筋量及びステップST54の判定結果などを含む。
【0100】
領域AR22は、握力を用いたサルコペニアの判定結果を示す画像を含む。領域AR22は、例えば、閾値TH5及びユーザーの握力を表示する。
領域AR23は、歩行速度を用いたサルコペニアの判定結果を示す画像を含む。領域AR23は、例えば、閾値TH6及びユーザーの歩行速度を表示する。
領域AR24は、サルコペニアの判定結果を示す画像などを含む。
また、領域AR22~領域AR24は、フレイルの判定結果を示す画像を含んでも良い。
【0101】
なお、プロセッサー210は、結果画面SC2と同様の内容の画像を、プリンターなどを制御して印刷することにより報知しても良い。また、プロセッサー210は、結果画面SC2と同様の内容の音声をスピーカーなどから出力することで報知しても良い。また、プロセッサー210は、その他の方法により報知しても良い。
【0102】
ステップST30においてプロセッサー210は、低栄養の判定を行わずに終了するか否かを判定する。例えば、プロセッサー210は、低栄養の判定を行わずに終了するように指示する操作が行われたならば、低栄養の判定を行わずに終了すると判定する。プロセッサー210は、低栄養の判定を行わずに終了すると判定しないならば、ステップST30においてNoと判定してステップST31へと進む。
【0103】
ステップST31においてプロセッサー210は、低栄養の判定を行うか否かを判定する。例えば、プロセッサー210は、低栄養の判定を行うように指示する操作が行われたならば、低栄養の判定を行うと判定する。プロセッサー210は、低栄養の判定を行うと判定しないならば、ステップST31においてNoと判定してステップST30へと戻る。かくして、プロセッサー210は、低栄養の判定を行わずに終了すると判定するか、低栄養の判定を行うと判定するまでステップST30及びステップST31を繰り返す待受状態となる。
【0104】
プロセッサー210は、ステップST30及びステップST31の待受状態にあるときに低栄養の判定を行わずに終了すると判定するならば、ステップST30においてYesと判定して図2のステップST11へと戻る。
【0105】
プロセッサー210は、図3のステップST30及びステップST31の待受状態にあるときに低栄養の判定を行うと判定するならば、ステップST31においてYesと判定してステップST32へと進む。
【0106】
ステップST32においてプロセッサー210は、図10に示すような判定入力画面SC3に対応した画像を生成する。そして、プロセッサー210は、生成したこの画像を表示するように表示デバイス270に対して指示する。表示の指示を受けて表示デバイス270は、判定入力画面SC3を表示する。
【0107】
図10は、判定入力画面SC3の一例を示す図である。判定入力画面SC3は、例えば、領域AR101、領域AR102、領域AR31~領域AR33及び入力終了ボタンB31を含む。
【0108】
領域AR31は、ユーザーの身長及び体重を入力するための入力欄である。なお、領域AR31は、ユーザーのBMI(body mass index)を入力するための入力欄であっても良い。
領域AR32は、ユーザーの推定骨格筋量を表示する。領域AR32は、例えば、ステップST28で受信された計算結果情報に含まれる推定骨格筋量が入力される。なお、領域AR32は、任意に推定骨格筋量を入力することができても良い。
【0109】
領域AR33は、ユーザーの体調などを入力するための入力欄である。領域AR331~領域AR333を含む。
領域AR331は、体重減少に関する入力欄である。領域AR331は、例えば、「6か月以内に5%以上の体重減少」「6か月以上で10%以上の体重減少」のうちあてはまるものを選択入力する入力欄である。
【0110】
領域AR332は、食事摂取に関する入力欄である。領域AR332は、「1週間以上、食事が半分ほどしか食べられない」「食事摂取量の低下が2週間以上続く」「下痢、嘔吐など、消化吸収の異常、慢性的な消化器症状がある」のうちあてはまるものを選択入力する入力欄である。なお、食事が半分ほどしか食べられないとは、エネルギー摂取量が必要量の50%以下であることを示す。
【0111】
領域AR333は、疾患に関する入力欄である。領域AR333は、「大きな病気や怪我をした」「慢性的な病気がある」のうち、あてはまるものを選択入力する入力欄である。また、領域AR333は、「消化吸収障害」「慢性的な消化器症状」「急性疾患/外傷」「慢性疾患」などを選択入力することができても良い。
【0112】
入力終了ボタンB31は、判定入力画面SC3の各入力欄への入力を終了した場合に操作するためのボタンである。入力終了ボタンB31は、低栄養の判定を行うように端末装置200に指示するためのボタンである。
【0113】
端末装置200の操作者は各入力欄に情報を入力した後、入力終了ボタンB31を操作する。
【0114】
ステップST33においてプロセッサー210は、判定入力画面SC3への入力を終了する操作が行われるのを待ち受ける。すなわちプロセッサー210は、入力終了ボタンB31を操作するなどの予め定められた操作が行われるのを待ち受ける。プロセッサー210は、判定入力画面SC3への入力を終了する操作が行われたならば、ステップST33においてYesと判定してステップST34へと進む。
【0115】
ステップST34においてプロセッサー210は、低栄養の判定を行う。サルコペニア及びフレイルの原因のひとつに低栄養が知られている。高齢者では、およそ20~40%が低栄養であるという報告がある。しかし、高齢者本人や家族が、低栄養に気付いていないことも少なくない。低栄養に気付かないうちに、サルコペニアが進行し、やがて、骨折や疾患を発症する事例が多い。こうした問題を改善するため、簡便に栄養状態をアセスメントできるアプリケーションなども公開されているが、特異度が低く、普及していないのが現状である。低栄養を正確に診断するのは比較的困難である。プロセッサー210は、例えば、2018年、国際的な低栄養の診断基準として制定されたGLIM(Global Leadership Initiative on Malnutrition)クライテリア(非特許文献5)を用いて低栄養の判定を行う。この判定を行う場合、骨格筋の減少の有無を判定することが必要となる。
【0116】
プロセッサー210は、領域AR31に入力された身長及び体重からユーザーのBMIを求める。プロセッサー210は、BMIを、例えば、下式(10)により算出する。ただし、プロセッサー210は、領域AR31にBMIが入力されている場合にはBMIを求めるには及ばない。
BMI=体重[kg]1/身長[cm]/身長[cm] × 10000 (10)
【0117】
プロセッサー210は、例えば、「体重減少」「低BMI」「骨格筋減少」のうち1項目以上、「食事摂取」、「疾患」のうち1項目以上に該当した場合、低栄養と判定する。
【0118】
プロセッサー210は、領域AR331の項目のいずれかが選択されている場合に「体重減少」に該当すると判定する。
プロセッサー210は、BMIが、例えば、70歳未満は18.5kg/m未満で、70歳以上は20.0kg/m未満で「低BMI」に該当すると判定する。
プロセッサー210は、例えば、領域AR32に入力された推定骨格筋量を用いて骨格筋減少の判定を行う。プロセッサー210は、例えば、ステップST54と同様の判定方法により骨格筋量が低下していると判定した場合に「骨格筋減少」に該当すると判定する。
プロセッサー210は、領域AR332の項目のいずれかが選択されている場合に「食事摂取」に該当すると判定する。
プロセッサー210は、領域AR333の項目のいずれかが選択されている場合に「疾患」に該当すると判定する。
【0119】
ステップST35においてプロセッサー210は、図11に示すような低栄養結果画面SC4に対応した画像を生成する。そして、プロセッサー210は、生成したこの画像を表示するように表示デバイス270に対して指示する。表示の指示を受けて表示デバイス270は、低栄養結果画面SC4を表示する。
【0120】
図11は、低栄養結果画面SC4の一例を示す図である。低栄養結果画面SC4は、例えば、ユーザーが低栄養であるか否かを報知するための画面である。低栄養結果画面SC4は、一例として領域AR101、領域AR102、及び領域AR41~領域AR43を含む。
領域AR41は、「体重減少」「低BMI」及び「骨格筋減少」のそれぞれについて該当するか否かを表示する。また、領域AR41は、ユーザーのBMIの値及び骨格筋減少量も表示する。
領域AR42は、「食事摂取」及び「疾患」のそれぞれにてういて該当するか否かを表示する。
領域AR43は、低栄養であるか否かを示す画像を含む。また、領域AR43は、ユーザーへのコメントなどを示す画像を含んでも良い。
【0121】
ステップST36においてプロセッサー210は、低栄養結果画面SC4の表示を終了すると判定するのを待ち受ける。プロセッサー210は、低栄養結果画面SC4の表示を終了すると判定したならば、ステップST36においてYesと判定して図2のステップST11へと戻る。
【0122】
端末装置200の操作者は、ユーザーの骨格筋量の測定値を入力することで、骨格筋量DB141にデータを追加することができる。この場合、端末装置200の操作者は、例えば、図6の測定値入力ボタンB12を操作する。
プロセッサー210は、ステップST25及びステップST26の待受状態にあるときに骨格筋量の測定値を入力するための処理を開始する操作が行われたならば、ステップST25においてYesと判定してステップST37へと進む。
【0123】
ステップST37においてプロセッサー210は、測定値入力画面に対応した画像を生成する。そして、プロセッサー210は、生成したこの画像を表示するように表示デバイス270に対して指示する。表示の指示を受けて表示デバイス270は、測定値入力画面を表示する。
【0124】
測定値入力画面は、ユーザーの骨格筋量の測定値を入力するための画面である。当該測定値は、例えばBIAによって測定された値である。
測定値入力画面は、ユーザーの骨格筋量の測定値及び測定日並びにユーザーの体調に関する情報を入力するための入力欄などを含む。
【0125】
ステップST38においてプロセッサー210は、測定値入力画面への入力が終了するのを待ち受ける。プロセッサー210は、測定値入力画面への入力が終了したならば、ステップST38においてYesと判定してステップST39へと進む。
【0126】
ステップST39においてプロセッサー210は、測定値情報を生成する。測定値情報は、ユーザーのユーザーID、測定値入力画面において入力された測定値、測定日及び体調に関する情報を含む。測定値情報は、骨格筋量DB141に、当該測定値情報に基づくデータを新規に追加するように要求する情報である。プロセッサー210は、測定値情報を生成した後、当該測定値情報をサーバー装置100に送信するように通信I/F250に対して指示する。この送信の指示を受けて通信I/F250は、当該測定値情報をサーバー装置100に送信する。送信された当該測定値情報は、サーバー装置100の通信I/F150によって受信される。プロセッサー210は、ステップST39の処理の後、ステップST11へと戻る。
【0127】
一方、サーバー装置100のプロセッサー110は、図4のステップST41~ステップST44の待受状態にあるときに測定値情報が受信されたならば、ステップST43においてYesと判定してステップST59へと進む。
【0128】
ステップST59においてプロセッサー110は、骨格筋量DB141に当該測定値情報に基づくデータを登録するか否かを判定する。プロセッサー110は、ユーザーDB142を参照して、当該測定値情報に含まれるユーザーIDに関連付けられた各推定IDのうち、関連付けられた入力情報に含まれる測定日が、当該測定値情報に含まれる測定日と最も近いものを特定する。ここで特定された推定IDを以下「特定推定ID」という。プロセッサー110は、特定推定IDに関連付けられた測定日と、測定値情報に含まれる測定日とが所定の期間以上である場合、骨格筋量DB141にデータを登録しないと判定する。所定の期間は、一例として2週間である。また、プロセッサー110は、測定値情報に含まれるユーザーの体調に関する情報が、所定の状態にあてはまる場合、骨格筋量DB141にデータを登録しないと判定する。所定の状態とは、例えば、ユーザーが所定以上に体重の変動があった、又はユーザーが疾患に罹患したなどの状態である。プロセッサー110は、骨格筋量DB141にデータを登録しないと判定しないならば、骨格筋量DB141にデータを登録すると判定する。プロセッサー110は、骨格筋量DB141にデータを登録しないと判定するならば、ステップST59においてNoと判定してステップST41へと戻る。対して、プロセッサー110は、骨格筋量DB141にデータを登録すると判定するならば、ステップST59においてYesと判定してステップST60へと進む。
【0129】
ステップST60においてプロセッサー110は、受信された測定値情報に基づくデータを骨格筋量DB141に登録する。すなわち、プロセッサー110は、被験者IDを新規に生成する。そして、プロセッサー110は、当該被験者IDに関連付けて、ユーザーIDに関連付けられた入力情報に含まれる性別、測定値情報に含まれる骨格筋量、及び特定推定IDに関連付けられたeGFR比を骨格筋量DB141に記憶する。プロセッサー110は、ステップST60の処理の後、ステップST41へと戻る。
なお、ステップST60の処理によって登録されたデータでも、骨格筋量DB141の管理者は、端末などを操作することにより、登録すべきでないと判断したデータを骨格筋量DB141から除外することができても良い。
【0130】
実施形態の診断システム1は、比較的一般的な血液データの組合せの中から、従来よりも簡便で、迅速で、安価に骨格筋量を算出することができる。また、実施形態の診断システム1は、特殊な検査を行うことなく、推定骨格筋量を算出することができる。
また、実施形態の診断システム1は、算出した骨格筋量を用いることにより、サルコペニア、重症サルコペニア、低栄養の判定を行うことができる。これにより、骨折又は疾患発症のリスクがある高齢者に対して、早期から適切な支援を行うことができ、医療及び介護に関するコスト及びマンパワーを削減することができると考えられる。また、高齢者の疾患防止、健康増進を図ることができると考えられる。
【0131】
本発明の実施形態は、ともに腎機能の指標として使用されるeGFRとeGFRcysの結果の差異を利用している。eGFRは、骨格筋で産生されるクレアチニンを指標として用いる。クレアチニンは腎の糸球体から濾過された後、尿細管で再吸収されないため、腎の糸球体濾過量を推定するために使用されている。しかし、骨格筋量が減少した高齢者などでは、クレアチニンの産生量が減少し、腎機能が過大評価されることが示唆されていた。これを改善するために使用されるようになったのがeGFRcysである。eGFRcysは、シスタチンCを指標とする。シスタチンCは、体内の細胞から算出されるプロテアーゼ阻害物質の一種で、腎の糸球体から濾過された後、近位尿細管で再吸収されるが、尿細管上皮内で分解され、血液中に還流することはないと考えられている。50人の被検者(男性20人、女性30人,平均年齢76.4±13.9歳)でその差異について調べたところ、多くの事例で、eGFRcysがeGFRを下回ることが観察された(図12及び図13)。
図12は、男性のeGFRとeGFRcysの結果の差異を示すグラフの一例である。図13は、女性のeGFRとeGFRcysの結果の差異を示すグラフの一例である。
【0132】
上記の50人の被検者による検討では、男性ではeGFRとeGFRcysの結果が一致する事例が多かった一方、女性、とくに、骨格筋の減少の目立つ高齢者で、eGFRcysがeGFRを下回っていた。
【0133】
この結果から、eGFRcysに対してeGFRが低値となるおもな原因は、骨格筋の減少であり、eGFRcysとeGFRの比率から、骨格筋の減少を推定することが可能ではないかと考えられた。上記の50人の被検者の骨格筋指数(SMI)、四肢骨格筋量(SMM)をBIAで測定し、eGFRcys/eGFR比と比較した結果、上記の男女別の計算式が得られた。
【0134】
計算式から得られた推定骨格筋量(eSMI)において、受信者動作特性曲線(ROC曲線;Receiver Operating Characteristic Curve)から、骨格筋量低下の男女別の最適カットオフ値を算定し、診断能の評価を行った。縦軸を感度、横軸を特異度とし、カットオフ値ごとにプロットした図が図14及び図15である。
図14は、男性のROC曲線の一例を示すグラフである。図15は、女性のROC曲線の一例を示すグラフである。
【0135】
曲線が左上隅に近づき、曲線下の面積(AUC;area under the curve)が大きいほど、正確な診断を行うことができると判定される。曲線がもっとも左上隅に近づいたカットオフ値が、最適カットオフ値となる。男性では、最適カットオフ値は0.900で、このときの特異度は0.833、感度は0.857だった。AUCは、0.857(95%信頼区間 0.682 - 1)で、中等度以上の精度が得られた。女性では、最適カットオフ値は0.869で、このときの特異度は0.857、感度は0.870だった。AUCは、0.870(95%信頼区間 0.722 - 1)で、やはり中等度以上の精度が得られた。
【0136】
しかしながら、クレアチニン、シスタチンCの代謝については、いまだ詳細に解明されていないことも多い。とくに、シスタチンCが近位尿細管で再吸収された後の挙動に関しては、今後明らかにされるべき内容もあると考えられる。したがって、より精度の高い骨格筋量の算出を行うためには、データの蓄積と、計算式の係数などの更新が必要となると考えられる。
【0137】
今回の発明では、eGFRとeGFRcysという、腎機能を評価する指標を用いている。これらの指標は、体表面積あたりの値で、被検者の身長や肥満の有無などの体格の差に影響されない点も、特徴である。
【0138】
「低栄養の可能性がある」と判定された高齢者が、早期に医師、看護師、管理栄養士に相談することで、低栄養を改善するためのアドバイスを得られる可能性がある。また、高齢者やその家族などが、自ら、タンパク質、アミノ酸やエネルギーなどを配合された経口補助食品を利用することで、低栄養を改善することができる可能性がある。低栄養を改善することで、高齢者の生活の質(QOL)が改善し、医療、介護の費用も削減できる可能性がある。
【0139】
事例:骨格筋量の算定により、重度サルコペニア、低栄養と判定された例
患者は、80歳女性、身長145cm、体重46.8kg、BMI22.3 kg/m、歩行速度1.0m/秒未満、握力3.5kg。骨格筋量の測定ができない状態での判定は、EWGSOP2では、握力低下のため、「サルコペニアの可能性」で、それ以降の判定が困難。AWGS2019では、歩行速度低下、握力低下の2項目で、「サルコペニア」だが、今回の計算式により、eSMIが4.5 kg/mと算出されたことを追加することで、EWGSOP2、AWGS2019とも、「重度サルコペニア」のサルコペニアと判定され、より重点的なケアが必要と考えられた。この事例で、実際にBIA法で骨格筋指数を測定したところ、4.5 kg/mと、計算式で算出した値と一致した。GLIMによる低栄養の判定のため、「6か月以内に5%以上の体重減少」「6か月以上で10%以上の体重減少」「1週間以上、食事が半分ほどしか食べられない」「食事摂取量の低下が2週間以上続く」「下痢、嘔吐など、消化吸収の異常、慢性的な消化器症状がある」「大きな病気や怪我をした」「慢性的な病気がある」のうち、あてはまるものはあるか質問すると、「慢性的な病気がある」のみとの回答が得られた。骨格筋量の測定ができない状態での判定は「低栄養なし」だったが、今回の計算式により、eSMIが4.5 kg/mと算出されたことを追加することで、「低栄養」と判定され、栄養状態改善のためのケア、指導が必要であることが判明した。
【0140】
50例の試験運用において、骨格筋量が測定できない条件では、EWGSOP2、AWGS2019の両アルゴリズムで、11例が「サルコペニアなし」、39例が筋力低下から「サルコペニアの可能性」と判定された。今回の計算式により、eSMIを算出し、再度判定を行ったところ、EWGSOP2では、「サルコペニアの可能性」と判定された39例のうち、8例は骨格筋量の低下がなく「サルコペニアの可能性」、31例は、骨格筋量低下と歩行速度の低下を認め、「重度サルコペニア」と判定された(図16)。図16は、骨格筋量のデータが無い場合のサルコペニアの判定結果の分布の一例を示すグラフである。
AWGS2019のアルゴリズムでは、「サルコペニアの可能性」と判定されていた39例のうち、8例が骨格筋量の低下がなく、サルコペニア以外の原因で筋力が低下していることが判明した。その反面、握力の低下がみられず、「サルコペニアなし」と判定された11例のうち、7例で骨格筋の減少が認められ、歩行速度も低下していたことから、「サルコペニア」と判定された。31例は、骨格筋量低下と歩行速度の低下、筋力の低下の3項目に該当し、「重度サルコペニア」と判定された(図17)。図17は、骨格筋量算出後のサルコペニアの判定結果の分布の一例を示すグラフである。
EWGSOP2のアルゴリズムでは、31例で重度サルコペニアの判定が可能となり、AWGS2019のアルゴリズムでは、見逃されていた7例を新たにサルコペニアと判定することができ、サルコペニア以外の原因で筋力低下が認められた8例を区別することが可能となり、31例で重度サルコペニアの判定が可能となった。
【0141】
50例の試験運用において、今回の計算式により算出されたeSMIを用いたAWGS2019のサルコペニア判定が、BIAの測定値にもとづいた判定の代替となりうるかについて検討するため、正確度の評価をおこなった。サルコペニアの判定では、感度0.917(95%信頼区間0.775-0.982)、特異度0.643(95%信頼区間0.351-0.872)、診断精度0.840(95%信頼区間0.709-0.928)(表1、表2)、重度サルコペニアの判定では、感度0.903(95%信頼区間0.742-0.980)、特異度0.842(95%信頼区間0.604-0.966)、診断精度0.880(95%信頼区間0.757-0.955)(表3、表4)だった。とくに、重度サルコペニアの判定では、高い感度、特異度、精度が得られた。
【0142】
【表1】
【表2】
【0143】
【表3】
【表4】
【0144】
50例の試験運用において、GLIMによる低栄養の判定を行ったところ、骨格筋量が測定できない条件では、低栄養と判定されたのは23例(46%)だったが、今回の計算式により算出されたeSMIを用いて、骨格筋量低下の判定を行うことにより35例(70%)が低栄養と判定された。BIAの測定値にもとづいた判定でも、34例(68%)が低栄養と判定され、骨格筋量の判定を行わないことにより、多くの高齢者の低栄養が見落とされる可能性が示唆された(図18)。図18は、低栄養と判定された人数とその割合を示すグラフの一例である。図18は、グラフG1~グラフG3を示している。グラフG1は、骨格筋量の判定を行わない場合のグラフである。グラフG2は、計算式から骨格筋量を判定した場合のグラフである。グラフG3は、BIAで骨格筋量を判定した場合のグラフである。グラフG1~グラフG3のそれぞれは、低栄養と判定された人数とその割合、及び低栄養と判定されなかった人数とその割合を示している。
今回の計算式により算出されたeSMIを用いたGLIMによる低栄養の判定が、BIAの測定値にもとづいた判定の代替となりうるかについて検討するため、正確度の評価をおこなった。感度0.971(95%信頼区間0.847-0.999)、特異度0.875(95%信頼区間0.617-0.984)、診断精度0.940(95%信頼区間0.835-0.987)で、高い感度、特異度、精度が得られた(表5、表6)。重度低栄養の判定においても、感度0.857(95%信頼区間0.637-0.970)、特異度0.931(95%信頼区間0.772-0.992)、診断精度0.900(95%信頼区間0.782-0.967)と、感度は若干低下するものの、高い特異度、精度が得られた(表7、表8)。
【0145】
【表5】
【表6】
【0146】
【表7】
【表8】
【産業上の利用可能性】
【0147】
これまで普及していなかったサルコペニアの判定を簡便に行うことで、特定の集団や地域におけるサルコペニアの罹患率を推定することができ、適切な対策を立案することにつながる。
【0148】
現在40歳以上の国民に対して行われている特定健診では、クレアチニン、eGFRの測定が行われている。これに、地域自治体などの補助金などにより、シスタチンCの測定を追加することで、地域におけるサルコペニアの罹患率を把握することができ、地域自治体におけるサルコペニア、フレイル防止政策の根拠となるデータを収集することができる。
【0149】
人間ドックなどの健康診断を行う事業者が本発明を利用することにより、骨格筋量の判定という新たなサービスを提供することができ、健康増進などを支援することができる。過去のデータも参照できるため、経時的な変化についても情報を提供することができる。前回測定よりも骨格筋の減少が進行していることと考えられた場合は、本人に対して注意を喚起し、健康管理に役立ててもらうことができる。
【0150】
クレアチニン、シスタチンCとも、保険診療で用いることが認められている検査項目であるため、臨床検査を行う事業者がこれらの測定値から、本発明を使用し、参考値として骨格筋量(eSMI)のデータを提供することにより、病院、診療所の医師、看護師、管理栄養士、検査技士などが、患者指導の参考資料の一部として利用することができる。
【0151】
とくに、僻地や離島など、医療過疎の地域では、骨格筋量を測定するBIAなどの機器の普及も遅れており、測定に必要なマンパワーも限られており、高齢者の受診率も高くない。このような状況でも、血液検査の際に、本発明を利用することで、早期にサルコペニア、低栄養のリスクを把握することができ、医療過疎地における医療、介護の質の向上と、負担削減につながる可能性がある。
【0152】
サルコペニアの改善には、適切な運動が必要である。骨格筋が減少し、サルコペニアの可能性を指摘された高齢者などが、運動の必要性を実感し、高齢者に対して運動指導を行う施設などに通所することにつながる可能性がある。
【0153】
サルコペニアの改善には、低栄養の防止が必要である。高齢者のサルコペニアを防止するためのタンパク質、アミノ酸やエネルギーなどを配合された経口補助食品を製造、販売する事業者が、医師や健康診断を行う事業者などと協力した上で本発明を利用することにより、サルコペニア、かつ、低栄養と判定された高齢者に適した食品などを提供する参考となるデータの一部を提供することができる。また、経口補助食品がサルコペニアを改善するかなどの調査を行う際に、その根拠となるデータの一部を提供することができる。
【0154】
上記の実施形態は、以下のような変形も可能である。
診断システム1は、骨格筋量としてSMI及びSMM以外を用いても良い。
診断システム1は、推定骨格筋量としてeSMI及びeSMM以外を用いても良い。
診断システム1は、BMIに代えて、その他の肥満度を示す指標を用いても良い。
【0155】
上記の実施形態では、診断システム1は、低栄養の診断を骨格筋量の推定の後に行う。しかしながら、診断システム1は、低栄養の診断を骨格筋量の推定とは独立して行うことができても良い。
【0156】
診断システム1は、診断システム1を使用するためのサービスなどを契約した者などの、許可されたものだけが使用できるものであっても良い。この場合、診断システム1は、各種の認証処理などによって、端末装置200の操作者が許可されたものであるか否かの判定を行う。そして、診断システム1は、例えば、許可されたものであると判定した場合に、図2図5に示す処理を開始する。
【0157】
診断システム1は、ユーザーについての、過去にステップST57で記憶された各種情報を見ることができても良い。ユーザーIDと関連付けて過去のデータは、ユーザーDB142に記憶されている。したがって、サーバー装置100は、端末装置200の要求に応じて過去のデータを端末装置200に送信することができる。端末装置200は受信した過去のデータを表示デバイス270に表示するなどして報知する。
【0158】
サーバー装置100のプロセッサー110は、ユーザーの身体の状態が特定の状態である場合に、推定骨格筋量の値を所定の関数などを用いて補正しても良い。例えば、プロセッサー110は、ユーザーが浮腫を有する場合、又はユーザーが肥満状態である場合に補正を行う。
なお、ユーザーの身体の状態によって補正を行う場合、例えば、入力画面SC1は、ユーザーの身体の状態を入力するための入力欄を含む。そして、入力情報は、入力されたユーザーの身体の状態を含む。
【0159】
上記の実施形態では、サーバー装置100のプロセッサー110は、曲線あてはめにより骨格筋量とeGFR比との関係を示す関数を求めた。しかしながら、プロセッサー110は、AI(artificial intelligence)を用いるなどのその他の方法により関数を求めても良い。例えば、プロセッサー110は、機械学習の結果を用いて骨格筋量とeGFR比との関係を示す関数を求めても良い。この際、プロセッサー110は、性別、骨格筋量、及びeGFR比以外の変数も用いて機械学習を行っても良い。当該変数は、例えば、ユーザーの肥満度、BMI又は年齢などである。
【0160】
診断システム1は、eGFR比に代えて、Cysに対するCreの比(以下「Cre/Cys比」という。)を用いても良い。プロセッサー110は、例えば、ユーザーのCre及びCysを用いて、下式(5)によりCre/Cys比を求める。
Cre/Cys比=Cre/Cys (11)
プロセッサー110は、Cre/Cys比を用いる場合、関数f1~関数f4に代えて関数f5~関数f8を用いる。プロセッサー110は、Cre/Cys比を用いる場合、(6)式~(9)式に代えて(12)式~(15)式を用いる。
eSMI(男性) = f5(Cre/Cys比) = a5 × Cre/Cys比 + b5 (12)
eSMI(女性) = f6(Cre/Cys比) = a6 × Cre/Cys比 + b6 (13)
eSMM(男性) = f7(Cre/Cys比) = a7 × Cre/Cys比 + b7 (14)
eSMM(女性) = f8(Cre/Cys比) = a8 × Cre/Cys比 + b8 (15)
ここで、関数f5~関数f8は、Cre/Cys比の関数である。また、係数a5~係数a8、係数b5~係数b8は、曲線あてはめによって求める係数である。一例として、各係数は、a5=4.5790、b5=3.1249、a6=5.3288、b6=2.2426、a7=8.228、b7=4.2941、a8=20.178、b8=0.9827であった。また、(12)式について、男性のSMIとCre/Cys比の相関係数の2乗Rは、0.4235であった。(13)式について、女性のSMIとCre/Cys比の相関係数の2乗Rは、0.4497であった。(14)式について、男性のSMMとCre/Cys比の相関係数の2乗Rは、0.4874であった。(15)式について、女性のSMMとCre/Cys比の相関係数の2乗Rは、0.5771であった。
Cre/Cys比を用いる場合、推定骨格筋量を簡易的に算出することができるというメリットがある。なお、関数f5~関数f8のそれぞれは、クレアチニン濃度及びシスタチンC濃度と骨格筋量との関係を示す第2の関数の一例である。
【0161】
上記の実施形態でサーバー装置100が行う処理の一部又は全部を端末装置200が行っても良い。
上記の実施形態で端末装置200が行う処理の一部又は全部サーバー装置100が行っても良い。
【0162】
上記の実施形態では、診断システム1は、サーバー装置100及び端末装置200を含む。しかしながら、実施形態の診断システムは、1つの装置で動作するものであっても良い。
【0163】
プロセッサー110又はプロセッサー210は、上記実施形態においてプログラムによって実現する処理の一部又は全部を、回路のハードウェア構成によって実現するものであっても良い。
【0164】
実施形態の処理を実現するプログラムは、例えば装置に記憶された状態で譲渡される。しかしながら、当該装置は、当該プログラムが記憶されない状態で譲渡されても良い。そして、当該プログラムが別途に譲渡され、当該装置へと書き込まれても良い。このときのプログラムの譲渡は、例えば、リムーバブルな記憶媒体に記録して、あるいはインターネット又はLANなどのネットワークを介したダウンロードによって実現できる。
【0165】
以上、本発明の実施形態を説明したが、例として示したものであり、本発明の範囲を限定するものではない。本発明の実施形態は、本発明の要旨を逸脱しない範囲において種々の態様で実施可能である。
【符号の説明】
【0166】
1 診断システム
100 サーバー装置
110,210 プロセッサー
120,220 ROM
130,230 RAM
140,240 補助記憶装置
141 骨格筋量DB
142 ユーザーDB
150,250 通信I/F
160,280 バス
200 端末装置
260 入力デバイス
270 表示デバイス
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
【手続補正書】
【提出日】2021-12-06
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0017
【補正方法】変更
【補正の内容】
【0017】
実施形態の骨格筋量推定システムは、処理部を備える。処理部は、対象のeGFRcys及び対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記対象のSMI又はSMMの推定値を求める。
【手続補正3】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
対象のeGFRcys及び前記対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記対象のSMI又はSMMの推定値を求める処理部を備える、骨格筋量推定システム。
【請求項2】
前記処理部は、前記対象の過去の前記推定値と、前記過去の推定値より後に求めた前記対象の前記推定値とを比較し、前記推定値が所定以上に減少している場合に、前記対象がフレイルであると判定する、請求項1に記載の骨格筋量推定システム。
【請求項3】
前記処理部は、前記対象の前記eGFRcys及び前記eGFRと、前記対象のSMI又はSMMの測定値とを関連付けて記憶部に記憶し、前記記憶部に記憶された前記eGFRcys、前記eGFR及び前記測定値を用いて前記第1の関数を決定する、請求項1又は請求項2に記載の骨格筋量推定システム。
【請求項4】
前記処理部は、前記対象の前記eGFRcys及び前記eGFRの測定日から前記測定値の測定日までの期間が所定の期間未満である場合、前記対象の前記eGFRcys及び前記eGFRと前記測定値とを関連付けて前記記憶部に記憶し、前記期間が前記所定の期間以上である場合、前記測定値を前記記憶部に記憶しない、請求項3に記載の骨格筋量推定システム。
【請求項5】
前記処理部は、複数の被験者の骨格筋量測定値、eGFRcys及びeGFRを用いて、曲線あてはめにより前記第1の関数を決定する、請求項1乃至請求項4のいずれか1項に記載の骨格筋量推定システム。
【請求項6】
前記第1の関数は、男女で異なる、請求項1乃至請求項のいずれか1項に記載の骨格筋量推定システム。
【請求項7】
前記処理部は、前記推定値が第1の閾値以下である場合に、前記対象の骨格筋量が低下していると判定する、請求項1乃至請求項のいずれか1項に記載の骨格筋量推定システム。
【請求項8】
前記処理部は、前記対象の骨格筋量が低下しており、前記対象の握力が第2の閾値以下である場合、前記対象がサルコペニアであると判定する、請求項に記載の骨格筋量推定システム。
【請求項9】
前記処理部は、前記対象がサルコペニアであると判定し、前記対象の歩行速度が第3の閾値以下である場合、前記対象が重度のサルコペニアであると判定する、請求項に記載の骨格筋量推定システム。
【請求項10】
前記処理部は、前記推定値を用いて前記対象が低栄養であるか否かを判定する、請求項1乃至請求項のいずれか1項に記載の骨格筋量推定システム。
【請求項11】
対象のeGFRcys及び前記対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記対象のSMI又はSMMの推定値を求める処理部を備える、骨格筋量推定装置。
【請求項12】
骨格筋量推定装置が備えるプロセッサーを、対象のeGFRcys及び前記対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記対象のSMI又はSMMの推定値を求める処理部として機能させるプログラム。
【手続補正書】
【提出日】2022-03-23
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0017
【補正方法】変更
【補正の内容】
【0017】
実施形態の骨格筋量推定システムは、処理部を備える。処理部は、第1の対象のeGFRcys及び前記第1の対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記第1の対象のSMI又はSMMの推定値を求め、前記推定値が第1の閾値以下であり、前記第1の対象の握力が第2の閾値以下である場合、前記第1の対象がサルコペニアであると判定する。
【手続補正2】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
第1の対象のeGFRcys及び前記第1の対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記第1の対象のSMI又はSMMの推定値を求め、前記推定値が第1の閾値以下であり、前記第1の対象の握力が第2の閾値以下である場合、前記第1の対象がサルコペニアであると判定する処理部を備える、骨格筋量推定システム。
【請求項2】
前記処理部は、前記第1の対象がサルコペニアであると判定し、前記第1の対象の歩行速度が第3の閾値以下である場合、前記第1の対象が重度のサルコペニアであると判定する、請求項に記載の骨格筋量推定システム。
【請求項3】
第1の対象のeGFRcys及び前記第1の対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記第1の対象のSMI又はSMMの推定値を求め、前記第1の対象の過去の前記推定値と、前記過去の推定値より後に求めた前記第1の対象の前記推定値とを比較し、前記推定値が所定以上に減少している場合に、前記第1の対象がフレイルであると判定する処理部を備える骨格筋量推定システム。
【請求項4】
第1の対象のeGFRcys及び前記第1の対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記第1の対象のSMI又はSMMの推定値を求め、前記推定値を用いて前記第1の対象が低栄養であるか否かを判定する処理部を備える骨格筋量推定システム。
【請求項5】
前記処理部は、第2の対象のeGFRcys及びeGFRと、前記第2の対象のSMI又はSMMの測定値とを関連付けて記憶部に記憶し、前記記憶部に記憶された前記eGFRcys、前記eGFR及び前記測定値を用いて前記第1の関数を決定する、請求項1乃至請求項4のいずれか1項に記載の骨格筋量推定システム。
【請求項6】
前記処理部は、前記第2の対象の前記eGFRcys及び前記eGFRの測定日から前記測定値の測定日までの期間が所定の期間未満である場合、前記第2の対象の前記eGFRcys及び前記eGFRと前記測定値とを関連付けて前記記憶部に記憶し、前記期間が前記所定の期間以上である場合、前記測定値を前記記憶部に記憶しない、請求項に記載の骨格筋量推定システム。
【請求項7】
前記処理部は、複数の被験者の骨格筋量測定値、eGFRcys及びeGFRを用いて、曲線あてはめにより前記第1の関数を決定する、請求項1乃至請求項のいずれか1項に記載の骨格筋量推定システム。
【請求項8】
骨格筋量推定装置が備えるプロセッサーを、第1の対象のeGFRcys及び前記第1の対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記第1の対象のSMI又はSMMの推定値を求め、前記推定値が第1の閾値以下であり、前記第1の対象の握力が第2の閾値以下である場合、前記第1の対象がサルコペニアであると判定する処理部として機能させるプログラム。
【請求項9】
骨格筋量推定装置が備えるプロセッサーを、第1の対象のeGFRcys及び前記第1の対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記第1の対象のSMI又はSMMの推定値を求め、前記第1の対象の過去の前記推定値と、前記過去の推定値より後に求めた前記第1の対象の前記推定値とを比較し、前記推定値が所定以上に減少している場合に、前記第1の対象がフレイルであると判定する処理部として機能させるプログラム。
【請求項10】
骨格筋量推定装置が備えるプロセッサーを、第1の対象のeGFRcys及び前記第1の対象のeGFRと、eGFRcys及びeGFRとSMI又はSMMとの関係を示す第1の関数とを用いて、前記第1の対象のSMI又はSMMの推定値を求め、前記第1の対象の過去の前記推定値と、前記過去の推定値より後に求めた前記第1の対象の前記推定値とを比較し、前記推定値が所定以上に減少している場合に、前記第1の対象がフレイルであると判定する処理部として機能させるプログラム。