(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023051996
(43)【公開日】2023-04-11
(54)【発明の名称】太陽電池
(51)【国際特許分類】
H10K 30/50 20230101AFI20230404BHJP
H10K 30/40 20230101ALI20230404BHJP
H10K 30/86 20230101ALI20230404BHJP
【FI】
H10K30/50
H10K30/40
H10K30/86
【審査請求】有
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022203557
(22)【出願日】2022-12-20
(62)【分割の表示】P 2019042285の分割
【原出願日】2019-03-08
(31)【優先権主張番号】P 2019029770
(32)【優先日】2019-02-21
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】504180239
【氏名又は名称】国立大学法人信州大学
(71)【出願人】
【識別番号】000004628
【氏名又は名称】株式会社日本触媒
(74)【代理人】
【識別番号】100107641
【弁理士】
【氏名又は名称】鎌田 耕一
(74)【代理人】
【識別番号】100163463
【弁理士】
【氏名又は名称】西尾 光彦
(72)【発明者】
【氏名】伊東 栄次
(72)【発明者】
【氏名】郷田 隼
(72)【発明者】
【氏名】小野 博信
(57)【要約】 (修正有)
【課題】有機ガスセンサに所望の特性を付与できる有機ガスセンサ用感ガス体を提供する。
【解決手段】感ガス体10は、少なくとも1つのポリマー層11と、少なくとも1つの酸化グラフェン層12とを備えている。ポリマー層11は、カチオン性ポリマーを含んでいる。ポリマー層11と酸化グラフェン層12とが隣り合って積層体を構成している。
【選択図】
図1
【特許請求の範囲】
【請求項1】
カチオン性ポリマーを含む少なくとも1つのポリマー層と、
少なくとも1つの酸化グラフェン層と、を備え、
前記ポリマー層と前記酸化グラフェン層とが隣り合って積層体を構成している、
有機ガスセンサ用感ガス体。
【請求項2】
前記カチオン性ポリマーは、アンモニウムイオンを有する、請求項1に記載の有機ガスセンサ用感ガス体。
【請求項3】
前記酸化グラフェン層をなす酸化グラフェンにおける酸素原子の数に対する炭素原子の数の比は、3以上かつ9以下である、請求項1又は2に記載の有機ガスセンサ用感ガス体。
【請求項4】
アセトンガスに対し感応性を有する、請求項1~3のいずれか1項に記載の有機ガスセンサ用感ガス体。
【請求項5】
一対の電極と、
前記一対の電極を接続している、請求項1~4のいずれか1項に記載の有機ガスセンサ用感ガス体と、を備えた、
有機ガスセンサ。
【請求項6】
無機材料によって形成された面を有し、
前記少なくとも1つのポリマー層は、前記面上に形成された下地層を含む、
請求項5に記載の有機ガスセンサ。
【請求項7】
カチオン性ポリマーを含む少なくとも1つのポリマー層と、
少なくとも1つの酸化グラフェン層と、を備え、
前記ポリマー層と前記酸化グラフェン層とが隣り合って積層体を構成している、
太陽電池。
【請求項8】
前記カチオン性ポリマーは、アンモニウムイオンを有する、請求項7に記載の太陽電池。
【請求項9】
前記酸化グラフェン層に含まれる酸化グラフェンにおける酸素原子の数に対する炭素原子の数の比は、3以上かつ19以下である、請求項7又は8記載の太陽電池。
【請求項10】
無機材料によって形成された透明導電膜をさらに備え、
前記少なくとも1つのポリマー層は、前記透明導電膜上に形成された下地層を含む、請求項7~9のいずれか1項に記載の太陽電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機ガスセンサ用感ガス体、有機ガスセンサ、及び太陽電池に関する。
【背景技術】
【0002】
従来、ガスセンサとして、被検知ガスの濃度によって電気的特性(電気抵抗)が変化する材料を感ガス体として利用したガスセンサが知られている。
【0003】
例えば、特許文献1には、複合体粒子の集合体によって形成され、かつ、被検知ガスの吸着によって変化する電気的特性を有する感ガス体と、その感ガス体を備えたガスセンサとが記載されている。複合体粒子は、被担持体が金属酸化物担体に担持されることによって形成されている。被担持体は、所定の金属元素を含む金属、合金、酸化物、及び複合酸化物からなる群から選ばれる少なくとも1種でできている。金属酸化物担体は、Y、Ce、Ti、Zr、Nb、Fe、Zn、Al、及びSiからなる群から選ばれる少なくとも1つの元素の酸化物である。この感ガス体は、アセトン等の有機ガスの吸着によって変化する電気抵抗を有する。
【0004】
また、酸化グラフェン(GO)を用いた湿度センサも知られている。例えば、非特許文献1には、酸化グラフェンと高分子電解質とを積層したナノ複合フィルムを用いた湿度センサが記載されている。この湿度センサにおいて、ポリイミド(PI)の基板に2つのコイル状の電極が形成されており、基板及び電極の上に湿度センシングフィルムが形成されている。湿度センシングフィルムは、2つのpoly(diallyldimethylammonium chloride)(PDDA)/poly(sodium 4-styrenesulfonate)(PSS)の二重膜と、5つのGO/PDDAの二重膜とを備えている。
【0005】
一方、太陽電池における正孔輸送層に酸化グラフェンを用いることが試みられている。例えば、非特許文献2には、(GO)がドープされたpoly(3,4-ethylenedioxythiophene)(PEDOT):(ポリスチレンスルホン酸)PSSが正孔輸送層として用いられたペロブスカイト太陽
電池が記載されている。
【先行技術文献】
【特許文献】
【0006】
【非特許文献】
【0007】
【非特許文献1】Sensors and Actuators B:Chemical, 2014, Vol.203, p.263-270
【非特許文献2】Scientific Reports,2018, Vol.8, Article number:1070
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1に記載の技術において、感ガス体の被担持体は、所定の金属元素を含む金属、合金、酸化物、又は複合酸化物である。特許文献1には、感ガス体が酸化グラフェンを含むことは記載されていない。一方、非特許文献1に記載の技術は、湿度センサに関するものである。そこで、本発明は、酸化グラフェンを含み、有機ガスセンサに所望の特性を付与できる有機ガスセンサ用感ガス体を提供する。また、本発明は、このような感ガス体を備えた有機ガスセンサを提供する。
【0009】
非特許文献2に記載の技術によれば、PEDOT:PSSの使用が必要である。そこで、本発明
は、酸化グラフェンを含む層を備え、PEDOT:PSSを用いなくても所望の特性を発揮するの
に有利な太陽電池を提供する。
【課題を解決するための手段】
【0010】
本発明は、
カチオン性ポリマーを含む少なくとも1つのポリマー層と、
少なくとも1つの酸化グラフェン層と、を備え、
前記ポリマー層と前記酸化グラフェン層とが隣り合って積層体を構成している、
有機ガスセンサ用感ガス体を提供する。
【0011】
また、本発明は、
一対の電極と、
前記一対の電極を接続している、上記の有機ガスセンサ用感ガス体と、を備えた、
有機ガスセンサを提供する。
【0012】
また、本発明は、
カチオン性ポリマーを含む少なくとも1つのポリマー層と、
少なくとも1つの酸化グラフェン層と、を備え、
前記ポリマー層と前記酸化グラフェン層とが隣り合って積層体を構成している、
太陽電池を提供する。
【発明の効果】
【0013】
上記の有機ガスセンサ用感ガス体は、有機ガスセンサに対し所望の特性を付与できる。上記の太陽電池は、PEDOT:PSSを用いなくても、所望の特性を発揮するのに有利である。
【図面の簡単な説明】
【0014】
【
図1】
図1は、本発明に係る有機ガスセンサの一例を示す図である。
【
図2】
図2は、本発明に係る太陽電池の一例を示す図である。
【
図3】
図3は、ガスセンサの性能を評価するための測定装置を概念的に示す図である。
【
図4】
図4は、実施例1に係るガスセンサの性能を示すグラフである。
【
図5】
図5は、比較例1に係るガスセンサの性能を示すグラフである。
【
図6】
図6は、実施例2に係るガスセンサの性能を示すグラフである。
【
図7】
図7は、実施例3に係るガスセンサの性能を示すグラフである。
【
図8】
図8は、実施例1~3に係るガスセンサの性能の比較結果を示すグラフである。
【
図9】
図9は、実施例1~3に係るガスセンサの性能の比較結果を示すグラフである。
【発明を実施するための形態】
【0015】
本発明者らは、アセトンガス等の有機ガスを検知するセンサを開発する過程で、酸化グラフェンを有機ガスセンサの感ガス体に利用できないか検討した。その結果、酸化グラフェンの分散液を塗布して得られた感ガス体を備えた有機ガスセンサが十分な特性を発揮しにくい場合があることが分かった。そこで、本発明者らは、多大な試行錯誤を重ねた結果、酸化グラフェン層と所定のポリマー層とが隣り合って構成された積層体を用いて感ガス体を作製することにより、有機ガスセンサの特性を高めることができることを新たに見出した。この新たな知見に基づき、本発明者らは、本発明に係る感ガス体及び有機ガスセンサを案出した。さらに、本発明者らは、酸化グラフェン層と所定のポリマー層とが隣り合って構成された積層体を太陽電池にも適用すれば太陽電池の性能向上を図れるのではないかと考え、本発明に係る太陽電池を案出した。
【0016】
以下、本発明の実施形態について説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこの実施形態に限定されるものではない。
【0017】
図1に示す通り、有機ガスセンサ100は、感ガス体10と、一対の電極20とを備えている。感ガス体10は、一対の電極20を接続している。感ガス体10は、少なくとも1つのポリマー層11と、少なくとも1つの酸化グラフェン層12とを備えている。ポリマー層11は、カチオン性ポリマーを含んでいる。感ガス体10において、ポリマー層11と酸化グラフェン層12とが隣り合って積層体を構成している。
【0018】
酸化グラフェンは、特に限定されない。酸化グラフェンは、望ましくは、アニオン性であること及びアニオン性基を有することの少なくとも1つを満たし、その表面には負の電荷が存在するものである。感ガス体10では、ポリマー層11と酸化グラフェン層12とが隣り合って積層体を構成している。ポリマー層11に含まれるカチオン性ポリマーと酸化グラフェン層12をなす酸化グラフェンとの静電的な相互作用により、ポリマー層11と酸化グラフェン層12との積層体が所望の構造を有しやすい。例えば、酸化グラフェン層12が緻密な構造を有しやすい。その結果、有機ガスセンサ100が所望の特性を発揮しやすい。例えば、有機ガスセンサ100は、有機ガスの濃度が低い場合でも、安定的に有機ガスを検知できる。また、有機ガスセンサ100は、有機ガスに対して高い感度を発揮できる。また、感ガス体10は、例えば、比較的低温(例えば、100℃以下)でも被検知ガスに対する感度を有する。緻密な構造とは、酸化グラフェン層12をなす酸化グラフェン同士の面内方向の隙間が小さい構造を意味する。酸化グラフェン層12は、望ましくは、単層で緻密な構造を有する。
【0019】
図1に示す通り、有機ガスセンサ100において、感ガス体10は、例えば、一対の電極20及び基板25上に形成されている。ポリマー層11は、例えば、下地膜11aを含んでいる。下地膜11aは、無機材料によって形成された面22上に形成されている。面22をなす無機材料は、例えば、ガラス又は金属酸化物である。なお、本明細書において酸化シリコンは「金属酸化物」に含まれる。酸化グラフェンの分散液の塗膜を面22に直接形成する場合、酸化グラフェンが緻密な構造の膜を形成しにくい。しかし、ポリマー層11が面22上に形成され、ポリマー層11と酸化グラフェン層12とが隣り合って積層体を構成していることにより、酸化グラフェン層12が緻密な構造を有しやすい。
【0020】
感ガス体10において、例えば、少なくとも1つのポリマー層11と、少なくとも1つの酸化グラフェン層12とは交互に並んでいる。これにより、各酸化グラフェン層12の酸化グラフェンが、ポリマー層11に含まれるカチオン性ポリマーと静電的な相互作用をしやすい。
【0021】
感ガス体10に含まれるポリマー層11の数及び酸化グラフェン層12の数は、特定の数に限定されない。感ガス体10の有機ガスに対する感度を高める観点から、感ガス体10は、望ましくは、2つ以上のポリマー層11と、2つ以上の酸化グラフェン層12とを備えている。この場合、2つ以上の酸化グラフェン層12によって感ガス体10の面内方向にくまなく酸化グラフェンを存在させることができる。これにより、感ガス体10において電子移動のための経路が形成されやすい。2つ以上の酸化グラフェン層12のうち面22に対して遠位の酸化グラフェン層12に有機ガスが接触しやすい。このため、酸化グラフェン層12の全体の数に対して、有機ガスの存在により影響を受ける酸化グラフェン層12の数の割合が高く、感ガス体10が有機ガスに対し高い感度を有しやすい。その結果、有機ガスセンサ100がより確実に所望の特性を発揮しやすい。場合によっては、感ガス体10に含まれるポリマー層11の数及び酸化グラフェン層12の数はそれぞれ、1であってもよい。
【0022】
ポリマー層11に含まれるカチオン性ポリマーは、特定のポリマーに限定されない。カチオン性ポリマーは、例えば、アンモニウムイオンを有する。これにより、カチオン性ポリマーと酸化グラフェンとの静電的な相互作用が生じやすい。なお、アンモニウムイオンには酸化グラフェンとイオン交換したアミノ基も含まれる。表面に酸性官能基を有する酸化グラフェンにアミノ基を有するポリマーを作用させれば、酸塩基の中和反応によりアミノ基を有するポリマーは実質的にアンモニウムイオンを有するポリマーとなる。このようなアミノ基を有するポリマーもまた本発明のカチオン性ポリマーとして好適である。カチオン性ポリマーは、例えば、アンモニウムイオンを有する側鎖を含む構成単位を有する。このようなカチオン性ポリマーとして、PDDA、ポリエチレンイミン、アミノ化アクリルポリマー、アミノ化メタクリルポリマー、ポリアリルアミン、ポリジアリルアミン、ポリアルキルアリルアミン、ポリアルキルジアリルアミン、及びこれらの酸塩体を挙げることができる。カチオン性ポリマーが有するアンモニウムイオンは、望ましくは、4級アンモニウムイオンである。
【0023】
酸化グラフェン層12をなす酸化グラフェンにおける酸素原子の数(No)に対する炭素原子の数(Nc)の比(Nc/No)は、例えば3以上である。これにより、有機ガスセンサ100がより確実に所望の特性を発揮しやすい。比Nc/Noは、4以上であってもよく、5以上であってもよい。比Nc/Noは、例えば、19以下である。
【0024】
基板25は、例えば、ガラス基板又は金属酸化物基板でありうる。電極20は、例えばIndium Tin Oxide(ITO)などの所定値(例えば、100Ω/□)以下の電気抵抗を有する材料でできている。一対の電極20間の距離は、例えば5μm~100μmである。
【0025】
無機材料によって形成された面22は、無機材料製の基板25の一部であってもよい。一方、面22は、基板25とは異なる無機材料によって形成された面であることが望ましい。例えば、面22は、ガスとの相互作用が起こりやすくするために、大きな表面積を有するように形成されていることが望ましい。具体的には、基板25と感ガス体10との間に、アスペクト比が2以上の金属酸化物のナノロッド等の金属酸化物のナノメートルサイズの構造体を含む層があることが望ましい。これにより、有機ガスセンサ100の感度がより高まりやすい。さらに、その金属酸化物のナノメートルサイズの構造体を含む層は、後述する感ガス体が浸透する構造を有することが望ましい。感ガス体が一部電極と接触することで、より感度が高まりやすい。
【0026】
上記の金属酸化物のナノメートルサイズの構造体には、金属酸化物とは異なる種類の無機粒子が担持されていてもよい。その無機粒子は、望ましくは、周期表の第7族~第11族に属する元素を含む金属、合金、及び酸化物から選ばれる少なくとも1つの粒子である。これにより、有機ガスセンサ100の感度がより高まりやすい。さらに、その無機粒子は、お互いが連続的に接しているのではなく、非連続的に、例えば島状に存在することが望ましい。これにより触媒効果がより発揮されやすい。
【0027】
図1に示す通り、有機ガスセンサ100が動作するとき、一対の電極20は、例えば電源40に接続され、一対の電極20に所定の電圧が印加される。酸化グラフェン層12の働きにより、有機ガスセンサ100の感ガス体10の電気抵抗は、被検知ガスの吸着によって増加する。これにより、例えば、有機ガスセンサ100は、検査対象のガスにおける被検知ガスの有無を検知でき、場合によっては被検知ガスの濃度をも検知できる。有機ガスセンサ100は、有機ガスの濃度が低い場合でも、安定的に有機ガスを検知できる。このため、有機ガスセンサ100によれば、検査対象のガスにおいて、高湿であり被検知ガスの濃度が低い場合でも、被検知ガスを適切に検知できる。加えて、有機ガスセンサ100によれば、比較的低温での被検知ガスの検知が可能である。
【0028】
感ガス体10は、例えば、アセトンガスに対し感応性を有する。このため、有機ガスセンサ100は、アセトンガスを検知できる。
【0029】
有機ガスセンサ100は、例えば、以下のように作製できる。まず、基板25上に一対の電極20を形成する。基板25上に一対の電極20を形成する方法は特定の方法に限定されない。例えば、基板25がガラス基板であり、電極20がITOでできている場合、ITO膜付ガラス基板に対してフォトリソグラフィ及びエッチングを施すことによって、基板25上に一対の電極20を所定の間隔で形成できる。この場合、フォトリソグラフィ及びエッチングとしては、ITOのパターニングに用いられる公知の方法を利用できる。この他、所定値以上の電気導電率を有する成分を含有するインクを用いてインクジェット法により、基板25上に一対の電極20を所定の間隔で形成してもよい。
【0030】
必要に応じて、金属酸化物のナノメートルサイズの構造体を含む層を基板25上に形成してもよい。この場合、あらかじめ調製した金属酸化物のナノメートルサイズの構造体の分散液の塗膜を基板25上に形成する。塗膜の形成は、その分散液を基板25に塗布することによって行ってもよいし、その分散液に基板25を浸漬することによって行ってもよい。その後、必要に応じて、超純水等の溶媒を用いて分散液の塗膜を洗浄してもよい。この操作により、基板25と、金属酸化物のナノメートルサイズの構造体を含む層とが一体となり、ナノメートルサイズの構造体を含む層が、実質的に基板25の一部として無機材料によって形成された面22をなす。
【0031】
上記の金属酸化物のナノメートルサイズの構造体を含む層の厚みは、特定の厚みに限定されない。金属酸化物のナノメートルサイズの構造体を含む層の厚みは、例えば、感ガス体が浸透したときにその一部が電極に接触できるような厚みであることが望ましい。具体的には、金属酸化物のナノメートルサイズの構造体を含む層の厚みは、1μm以下であることが望ましく、500nm以下であることがより望ましく、200nm以下であることがさらに望ましい。
【0032】
次に、PDDA等のカチオン性ポリマー溶液の塗膜を基板25上に形成する。塗膜の形成は、カチオン性ポリマー溶液を基板に塗布することによって行ってもよいし、カチオン性ポリマー溶液に基板25を浸漬することによって行ってもよい。その後、必要に応じて、超純水を用いて塗膜を洗浄する。これにより、過剰なカチオン性ポリマーを除去できる。
【0033】
次に、酸化グラフェンの分散液の塗膜をカチオン性ポリマー溶液の塗膜の上に形成する。酸化グラフェンの分散液の塗膜の形成は、酸化グラフェンの分散液をカチオン性ポリマー溶液の塗膜に塗布することによって行ってもよいし、酸化グラフェンの分散液に基板を浸漬することによって行ってもよい。その後、必要に応じて、超純水を用いて酸化グラフェンの分散液の塗膜を洗浄する。これにより、カチオン性ポリマーとの静電的な相互作用をしていない酸化グラフェンが除去され、単層の酸化グラフェン層が得られやすい。必要に応じて、カチオン性ポリマー溶液の塗膜の形成と、酸化グラフェンの分散液の塗膜の形成とが交互に繰り返される。
【0034】
次に、基板25の周囲の温度を所定温度で所定時間に保ち、これらの塗膜を硬化させる。これにより、酸化グラフェンが還元され、酸化グラフェン層12をなす酸化グラフェンの比Nc/Noが所望の範囲に調整されやすい。塗膜の硬化のための基板25の周囲の温度は、例えば、100~300℃であり、基板25の周囲の温度をこの温度範囲に保つ時間は、例えば、0.1~5時間である。このようにして、有機ガスセンサ100を作製できる。
【0035】
図2に示す通り、太陽電池200は、少なくとも1つのポリマー層61と、少なくとも1つの酸化グラフェン層62とを備えている。ポリマー層61は、カチオン性ポリマーを含んでいる。ポリマー層61と酸化グラフェン層62とが隣り合って積層体を構成している。
【0036】
太陽電池200は、有機系太陽電池又は有機無機ハイブリッド系太陽電池として構成されている。少なくとも1つのポリマー層61と、少なくとも1つの酸化グラフェン層62との積層体は、太陽電池200において、バッファ層60を構成している。太陽電池200は、例えば、planer inverted型のペロブスカイト太陽電池である。太陽電池200は
、例えば、ペロブスカイト層50を備えている。ペロブスカイト層50をなす材料としては、ペロブスカイト太陽電池におけるペロブスカイト層をなす材料として公知の材料を用いることができる。一つの好ましい形態として、少なくとも1つのポリマー層61と、少なくとも1つの酸化グラフェン層62との積層体は、バッファ層60を構成している。バッファ層60は、例えば、太陽電池200において、正孔輸送の機能を担っている。太陽電池200は、planer inverted型以外の型のペロブスカイト太陽電池であってもよい。
太陽電池200は、ペロブスカイト太陽電池以外の有機系太陽電池又は有機無機ハイブリッド系太陽電池として構成されてもよい。
【0037】
ポリマー層61に含まれるカチオン性ポリマーと酸化グラフェン層62をなす酸化グラフェンとの静電的な相互作用により、少なくとも1つのポリマー層61と、少なくとも1つの酸化グラフェン層62との積層体が所望の構造を有しやすい。例えば、バッファ層60において、酸化グラフェン層62が緻密な構造を有しやすい。これにより、太陽電池200が高い性能を発揮しやすい。このように、少なくとも1つのポリマー層61と、少なくとも1つの酸化グラフェン層62との積層体を、太陽電池用のバッファ層として使用できる。バッファ層は、望ましくは、電子移動層を兼ねてもよい。
【0038】
バッファ層60において、例えば、少なくとも1つのポリマー層61と、少なくとも1つの酸化グラフェン層62とは交互に積層されている。これにより、各酸化グラフェン層62の酸化グラフェンが、ポリマー層61に含まれるカチオン性ポリマーと静電的な相互作用をしやすい。
【0039】
バッファ層60に含まれるポリマー層61の数及び酸化グラフェン層62の数は、特定の数に限定されない。バッファ層60は、望ましくは、3つのポリマー層61と、3つの酸化グラフェン層62とを備えている。この場合、3つの酸化グラフェン層62によってバッファ層60の面内方向にくまなく酸化グラフェンを存在させることができる。これにより、バッファ層60において正孔輸送のための経路が適切に形成されやすい。加えて、バッファ層60の厚みが小さく、正孔輸送に対する抵抗が小さい。場合によっては、バッファ層60に含まれるポリマー層11の数及び酸化グラフェン層12の数はそれぞれ、1~2であってもよいし、4以上であってもよい。
【0040】
ポリマー層61に含まれるカチオン性ポリマーは、特定のポリマーに限定されない。カチオン性ポリマーは、例えば、アンモニウムイオンを有する。これにより、カチオン性ポリマーと酸化グラフェンとの静電的な相互作用が生じやすい。なお、アンモニウムイオンには酸化グラフェンとイオン交換したアミノ基も含まれる。表面に酸性官能基を有する酸化グラフェンにアミノ基を有するポリマーを作用させれば、酸塩基の中和反応によりアミノ基を有するポリマーは実質的にアンモニウムイオンを有するポリマーとなる。このようなアミノ基を有するポリマーもまた本発明のカチオン性ポリマーとして好適である。カチオン性ポリマーは、例えば、アンモニウムイオンを有する側鎖を含む構成単位を有する。このようなカチオン性ポリマーとして、PDDA、ポリエチレンイミン、アミノ化アクリルポリマー、アミノ化メタクリルポリマー、ポリアリルアミン、ポリジアリルアミン、ポリア
ルキルアリルアミン、ポリアルキルジアリルアミン、及びこれらの酸塩体を挙げることができる。カチオン性ポリマーが有するアンモニウムイオンは、望ましくは、4級アンモニウムイオンである。
【0041】
酸化グラフェン層62をなす酸化グラフェンにおける酸素原子の数(No)に対する炭素原子の数(Nc)の比(Nc/No)は、例えば3以上かつ19以下である。これにより、太陽電池200がより確実に高い性能を発揮しやすい。比Nc/Noは、4以上かつ19以下であってもよく、5以上かつ9以下であってもよい。
【0042】
図2に示す通り、太陽電池200は、例えば、透明導電膜71を有する。透明導電膜71は、無機材料によって形成されている。透明導電膜71は、例えば、金属酸化物によって形成されている。少なくとも1つのポリマー層61は、下地膜61aを含む。下地膜61aは、例えば、透明導電膜71上に形成されている。透明導電膜71に酸化グラフェンの分散液の塗膜を直接形成する場合、酸化グラフェンが緻密な構造の膜を形成しにくい。一方、透明導電膜71上にポリマー層61が形成され、ポリマー層61上に酸化グラフェン層62が積層されることにより、酸化グラフェン層12が緻密な構造を有しやすい。
【0043】
透明導電膜71をなす材料として、太陽電池における透明導電膜をなす材料として公知の材料を用いることができる。透明導電膜71をなす材料は、例えば、ITOである。
【0044】
図2に示す通り、太陽電池200は、ペロブスカイト太陽電池の場合、例えば、ガラス基板72、電子輸送層81、ZnO層82、及び電極83をさらに備えている。透明導電膜71は、ガラス基板72上に形成されている。太陽電池200において、ペロブスカイト層50の一方の主面にバッファ層60が接触しており、ペロブスカイト層51の他方の主面に電子輸送層81が接触している。電子輸送層81をなす材料として、ペロブスカイト太陽電池における電子輸送層をなす材料として公知の材料を用いることができる。電子輸送層81は、例えば、フェニルC
61酪酸メチルエステル(PCBM)を含む。ZnO層82は、電子輸送層81上に形成されており、電極83は、ZnO層上に形成されている。電極83は、例えば、銀電極又はアルミニウム電極である。
【0045】
太陽電池200は、例えば、以下のようにして作製できる。まず、ITO膜付ガラス基板を準備し、ITO膜の表面に紫外線(UV)を照射する。その後、ITO膜付ガラス基板のITO膜上に、PDDA等のカチオン性ポリマー溶液の塗膜を形成する。塗膜の形成は、カチオン性ポリマー溶液を基板に塗布することによって行ってもよいし、カチオン性ポリマー溶液にITO膜付ガラス基板を浸漬することによって行ってもよい。その後、必要に応じて、超純水を用いて塗膜を洗浄してもよい。これにより、過剰に付着したカチオン性ポリマーを除去できる。
【0046】
次に、酸化グラフェンの分散液の塗膜をカチオン性ポリマー溶液の塗膜の上に形成する。酸化グラフェンの分散液の塗膜の形成は、酸化グラフェンの分散液をカチオン性ポリマーの分散液の塗膜に塗布することによって行ってもよいし、酸化グラフェンの分散液にITO膜付ガラス基板を浸漬することによって行ってもよい。その後、必要に応じて、超純水を用いて酸化グラフェンの分散液の塗膜を洗浄してもよい。これにより、カチオン性ポリマーと静電的な相互作用をしていない酸化グラフェンが除去され、単層の酸化グラフェン層が得られやすい。その後、必要に応じて、カチオン性ポリマー溶液の塗膜の形成と、酸化グラフェンの分散液の塗膜の形成とを交互に繰り返す。
【0047】
次に、ITO膜付ガラス基板の周囲の温度を所定温度で所定時間に保ち、これらの塗膜を硬化させる。これにより、酸化グラフェンが還元され、酸化グラフェン層をなす酸化グラフェンの比Nc/Noが所望の範囲に調整されやすい。塗膜の硬化のためのITO膜付
ガラス基板の周囲の温度は、例えば、100~300℃であり、ITO膜付ガラス基板の周囲の温度をこの温度範囲に保つ時間は、例えば、0.1~5時間である。このようにして、バッファ層60を形成できる。
【0048】
次に、ペロブスカイト層を形成するためのコーティング液の塗膜をバッファ層60の上に形成する。この塗膜の形成は、例えばスピンコーティング等の塗布法によって行われる。その後、ITO膜付ガラス基板の周囲の温度を所定温度で所定時間に保ち、この塗膜を硬化させる。塗膜の硬化のためのITO膜付ガラス基板の周囲の温度は、例えば、50~150℃であり、ITO膜付ガラス基板の周囲の温度をこの温度範囲に保つ時間は、例えば、0.1~300分間である。これにより、ペロブスカイト層50が形成される。
【0049】
次に、PCBM溶液の塗膜をペロブスカイト層50の上に形成する。この塗膜の形成は、例えばスピンコーティング等の塗布法によって行われる。その後、この塗膜を硬化させて、電子輸送層81が形成される。
【0050】
次に、ZnOの分散液の塗膜を電子輸送層81の上に形成する。この塗膜の形成は、例えばZnO粒子を含むコーティング液をスピンコーティング等の塗布法によって塗布して行われる。その後、この塗膜を硬化させて、ZnO層82が形成される。
【0051】
次に、ZnO層82の上に電極83が形成される。電極83を形成する方法特に限定されないが、例えば、蒸着により電極83を形成できる。
【実施例0052】
以下に、実施例を用いて本発明を詳細に説明する。なお、以下の実施例は本発明の一例であり、本発明は以下の実施例に限定されない。
【0053】
<実施例1>
(酸化グラフェン分散液の調製)
濃硫酸(試薬特級、和光純薬工業製)50質量部と天然黒鉛(鱗片状黒鉛、平均粒径:25μm、製品名:Z-25、伊藤黒鉛工業社製)1.00質量部とを耐食性反応器に加えて混合液を得た。混合液を撹拌しながら過マンガン酸カリウム(試薬特級、和光純薬工業社製)3質量部を混合液の中へ徐々に加えた。過マンガン酸カリウムを加えた後、混合液を35℃まで昇温させ、混合液の温度を35℃に保って2時間熟成を行い、生成物のスラリー(酸化黒鉛含有スラリー)を得た。次に、80質量部のイオン交換水が入った別の容器にイオン交換水を撹拌しながら20質量部のスラリーを加え30%過酸化水素水(試薬特級、和光純薬工業製)1.0質量部をさらに加えた。その容器の内容物を30分間撹拌し、撹拌を停止した。撹拌を停止した後、容器の内容物を一晩静置して沈殿層と上澄みとに分離させた。その後、容器の内容物の上澄みを取り出した。その後、沈殿層を洗浄するために取り出した上澄みと同じ容積のイオン交換水を容器に加え、容器の内容物を30分間撹拌し、容器の内容物の撹拌を停止した後5時間以上静置して、再度上澄みを取り出した。このような、イオン交換水の追加、内容物の撹拌、及び上澄みの取り出しからなる作業を上澄みのpHが2以上になるまで繰り返した。その後、得られた沈殿層にイオン交換水を適量加えた後、ホモジナイザーを用いて沈殿層に含まれる酸化グラフェンを分散させた。次に、イオン交換水をさらに加えて内容物を希釈し、酸化グラフェン分散液を得た。得られた酸化グラフェン分散液における酸化グラフェンの濃度は1質量%であった。
【0054】
(ガスセンサの作製)
ITO膜付ガラス基板(ITO膜の厚み:0.15μm、ガラス基板の厚み:0.7mm)に対してフォトリソグラフィ及びエッチングを行って、電極間の距離が1000μmである、ITOでできた一対の電極をガラス基板上に形成した。電極の幅は2mmであっ
た。次に、一対の電極が形成されたガラス基板の主面と一対の電極に対し、UV照射(波長:172nm)を行った。UV照射領域においてガラス基板を2mm/秒の速度で2往復させた。
【0055】
PDDA水溶液(PDDA濃度:2重量%)にガラス基板を600秒間浸漬した後、1mm/秒の速度でガラス基板をPDDA水溶液から引き上げ、PDDA塗膜を形成した。次に、PDDA塗膜を超純水に10秒間接触させ、PDDA塗膜を洗浄した。次に、上記の酸化グラフェン分散液にガラス基板を600秒間浸漬した後、0.5mm/秒の速度でガラス基板を酸化グラフェン分散液から引き上げ、GO塗膜を形成した。PDDA塗膜の形成及びGO塗膜の形成をこの順番でさらに1回ずつ実施し、2つのPDDA塗膜と2つのGO塗膜とが交互に重ねられた塗膜を得た。次に、ガラス基板の周囲の温度を200℃で1時間保ち、塗膜を硬化させ、感ガス体を形成した。このようにして、実施例1に係るガスセンサを得た。
【0056】
<実施例2及び3>
(金属酸化物ナノロッド層の形成)
特願2018-037275の実施例1を参考に、塩基性の酢酸アルミニウム(シグマアルドリッチ社製)22.6g及び酢酸(和光純薬工業社製)1.2gを水560gに添加して溶液を調製した。この溶液をオートクレーブに入れて、200℃で24時間の水熱処理を行った。その後、オートクレーブを室温まで冷却し、反応溶液をオートクレーブから取り出した。この反応溶液の一部を乾燥させて乾燥物を得た。この乾燥物のSEM観察およびXRD分析から、この乾燥物はベーマイトナノロッドの集合体であることが確認された。また、この乾燥物を550℃で1時間焼成することによって白色の粉体が得られた。この白色の粉体に対し、XRD(X線回折)による測定を行ったところ、γ-アルミナの回折ピークが認められた。また、この白色の粉体を透過型電子顕微鏡によって観察したところ、この白色粉体は、5~30nmの短軸長さ、20~1000nmの長軸長さ、及び2~200のアスペクト比を有するロッド形状のアルミナナノロッドであった。このアルミナナノロッドを10質量%の濃度で水に分散させ実施例2に係るアルミナナノロッド分散液Aを得た。
【0057】
上記の反応溶液の半量にPtPVPコロイド水溶液(田中貴金属工業社製、Pt含有量:4.0wt%)4.68gを投入して混合した。その後、この混合液を、ロータリーエバポレーターによって減圧した100℃の環境に置いて、この混合液から溶媒を除去して固形物を得た。次に、得られた固形物を550℃の温度の空気雰囲気で1時間焼成した後粉砕し、複合体粒子Bを得た。この複合体粒子BにおけるPtの担持率は5質量%であった。複合体粒子BのXRD分析からPtの回折ピーク及びγ-アルミナの回折ピークが認められた。2θ=81.5°付近のPt(311)面の回折ピークからPtの結晶子径を算出したところ、Ptの結晶子径は、4.7nmであった。また、複合体粒子BのBET比表面積は、119m2/gであった。複合体粒子Bを10質量%の濃度で水に分散させ
、実施例3に係るアルミナナノロッド分散液Bを得た。
【0058】
PDDA水溶液の塗膜の形成の前に、アルミナナノロッド分散液A及びアルミナナノロッド分散液Bをそれぞれ同体積の超純水で希釈した希釈分散液を用い、10mmφのガラス棒を基板上に配置して基板とガラス棒との隙間にこの希釈分散液を滴下した後、60℃でメニスカス法を用いて10mm/秒の条件でガラス基板に塗布して、それぞれ、アルミナナノロッド層A及びBを形成した以外は、実施例1と同様にして、実施例2及び3に係るガスセンサを得た。
【0059】
<比較例1>
下記の点以外は、実施例1と同様にして比較例1に係るガスセンサを作製した。2つのPDDA塗膜と2つのGO塗膜とが交互に重ねられた塗膜を形成する代わりに、上記の酸化グラ
フェン分散液を4000rotations per minute (rpm)のスピンコーティングにより、一対の電極を接続するようにガラス基板及び一対の電極に塗布した。ガラス基板の周囲の温度を200℃で1時間保ち、酸化グラフェン分散液の塗膜を硬化させ、感ガス体を形成した。このようにして比較例1に係るガスセンサを得た。
【0060】
<ガスセンサの性能測定>
(測定装置)
図3に示す測定装置300を準備した。測定装置300は、7つのマスフローコントローラ32a、32b、32c、32d、32e、32f、及び32gを備えていた。加えて、測定装置300は、第一高圧ガス容器31a及び第二高圧ガス容器31bを備えていた。第一高圧ガス容器31aにはアセトンが貯蔵され、第二高圧ガス容器31bには乾燥空気が貯蔵されていた。測定装置300は、第一容器33a、第二容器33b、第三容器33c、第四容器33d、第五容器33e、及び測定容器35をさらに備えていた。これらの容器は密閉容器であった。第一容器33aは、乾燥空気によってアセトンガスを希釈するとともに測定容器70に供給されるべきガスを調製して蓄えるための容器である。第二容器33bは、測定容器35に供給されるべき乾燥空気を圧縮して蓄えるための容器である。第三容器33cの内部には水が貯留されており、第三容器33cは、空気を水に対してバブリングさせるための容器である。第四容器33dの内部には、水が貯留されており、第四容器33dは、空気を水に対してバブリングさせるための容器である。第五容器33eは、測定容器35に供給されるべきガスを調製し蓄えるための容器である。
図3に示す通り、測定装置300において、マスフローコントローラ、高圧ガス容器、及び容器が配管によって接続されており、特定の配管に電磁弁、逆止弁、及び開閉弁等の弁が取り付けられていた。
【0061】
(測定方法)
測定装置300の環境を約30℃に保った。実施例1又は比較例1に係るガスセンサを測定容器35に配置した。測定容器35の内部の温度は約30℃に保った。ガスセンサの一対の電極に1.5Vの電圧を印加した。一対の電極間を流れる電流値をピコアンメータによって測定した。測定装置300のマスフローコントローラ及び各弁を操作して、アセトンガスの体積基準の濃度が0.2~4ppm又は1~5ppmである混合ガスと、乾燥空気とを交互に測定容器35に供給した。実施例1に係るガスセンサを用いた測定における一対の電極間の電流値の時間変化を
図4に示す。また、比較例1に係るガスセンサを用いた測定における一対の電極間の電流値の時間変化をそれぞれ
図5に示す。
【0062】
図4に示す通り、実施例1に係るガスセンサは、0.2~4ppmの低濃度のアセトンガスを安定的に検知した。実施例1に係るガスセンサは、アセトンガスに対し高い感度を有していた。
図5に示す通り、比較例1に係るガスセンサは、測定の初期段階において、経時的に電流値が増加しており、低濃度のアセトンガスを安定的に検知することが難しかった。
【0063】
実施例2及び3で得られたガスセンサの評価結果をそれぞれ
図6及び7に示す。実施例1、2、及び3の各アセトン濃度に対する感度(応答及び電流値の変化率[%])を比較したものを
図8に示す。加えて、アセトン濃度が4ppmである時の電流値の変化を比較したものを
図9に示す。これらの結果から、実施例1、2、及び3の順でガスセンサの感度が向上するとともにアセトンに対する応答(反応)時間も実施例1、2、及び3の順で早くなり、アセトンの導入を止めた時の電流の回復時間も実施例1、2、及び3の順で早いことがわかった。具体的な比較結果を表1に示す。これらのことから、酸化グラフェン膜とPDDA膜との交互積層膜を感ガス層として用いると、この交互積層ではない膜を使用した場合と比較して、ガスセンサの感度が向上することが分かった。さらに、アルミナナノロッド層を形成することにより、ガスセンサの感度、応答、及び回復時間が向上し、白金
触媒を担持させることでガスセンサの感度、応答、及び回復時間がより向上することがわかった。
【0064】
【0065】
<実施例4-6>
(太陽電池の作製)
ITO膜付ガラス基板(ITO膜の厚み:0.15μm、ガラス基板の厚み:0.7mm)のITO膜に対し、UV照射(波長:172nm)を行った。UV照射領域においてガラス基板を10mm/秒の速度で4往復させた。
【0066】
PDDA水溶液(PDDA濃度:0.1重量%)にガラス基板を600秒間浸漬した後、1mm/秒の速度でガラス基板をPDDA水溶液から引き上げ、PDDA塗膜を形成した。次に、ガラス基板を超純水に1秒間浸漬し、20mm/秒の速度でガラス基板を超純水から引き上げた。ガラス基板の超純水への浸漬及びガラス基板の超純水からの引き上げを含む操作を合計で10回繰り返した。このようにしてPDDA塗膜を形成した。その後、上記の酸化グラフェンの分散液にガラス基板を600秒間浸漬した後、0.5mm/秒の速度でガラス基板を超純水から引き上げた。次に、ガラス基板を超純水に1秒間浸漬し、20mm/秒の速度でガラス基板を超純水から引き上げた。ガラス基板の超純水への浸漬及びガラス基板の超純水からの引き上げを含む操作を合計で10回繰り返した。このようにしてGO塗膜を形成した。上記の操作の回数を1回、2回、及び3回にそれぞれ調節して、酸化グラフェン層の数が1層、2層、及び3層のサンプルを作製した。
【0067】
次に、ガラス基板の周囲の温度を120℃で30分間保ち、PDDA塗膜及びGO塗膜を硬化させてバッファ層を形成した。
【0068】
ペロブスカイト前駆体溶液(PbI2濃度:1.2M、ヨウ化メチルアンモニウム(MAI)濃度:1.14M、メチルアンモニウムブロミド(MABr)濃度:0.06M、溶媒:ジメチルスルホキシド(DMSO)及びγ‐ブチロラクトン(GBL))を、500rpm及び5秒間の条件でバッファ層の上にスピンコーティングし、さらにその後3000rpm及び50秒
間の条件でバッファ層の上にスピンコーティングした。次に、ガラス基板を5000rpmの回転数で回転させながら、70μlのクロロベンゼンをバッファ層に向かって20秒間滴下した。その後、ガラス基板を窒素雰囲気において100℃及び20分間の条件でアニール処理を行った。これにより、ペロブスカイト層が形成された。
【0069】
PCBM溶液(PCBM濃度:30g/l)を2000rpm及び50秒間の条件でペロブスカイト層の上にスピンコーティングした。これにより、電子輸送層を形成した。次に、ZnO粒子分散液(ZnO粒子の濃度:2.7重量%、ZnO粒子の平均粒子径:10-15nm、分散媒:2-プロパノール)を4000rpm及び50秒間の条件で電子輸送層上
にスピンコーティングした。これにより、ZnO層を形成した。次に、ZnO層上に80nmの厚みでアルミニウムを蒸着させ、電極を形成した。このようにして、実施例4-6に係る太陽電池を得た。実施例4、5、及び6に係る太陽電池のバッファ層における酸化グラフェン層の数はそれぞれ1層、2層、及び3層であった。
【0070】
<比較例2>
下記の点以外は、実施例4と同様にして、比較例2に係る太陽電池を作製した。バッファ層の形成において、PDDA水溶液の浸漬は行わずに、上記の酸化グラフェンの分散液にガラス基板を600秒間浸漬した後、0.5mm/秒の速度でガラス基板を超純水から引き上げた。次に、ガラス基板を超純水に1秒間浸漬し、20mm/秒の速度でガラス基板を超純水から引き上げた。ガラス基板の超純水への浸漬及びガラス基板の超純水からの引き上げを含む操作を合計で10回繰り返した。このようにしてGO塗膜を形成した。次に、ガラス基板の周囲の温度を120℃で30分間保ち、GO塗膜を硬化させてバッファ層を形成した。
【0071】
<IV特性>
IEC 60904-1:2006に従って、実施例4-6に係る太陽電池及び比較例2に係る太陽電池のIV特性を測定した。その測定結果から、実施例4-6に係る太陽電池及び比較例2に係る太陽電池における開放電圧VOC、短絡電流密度JSC[mA/cm2]、曲線因子FF
、及びエネルギー変換効率PCE[%]を決定した。結果を表2に示す。表2に示す通り、実施例4-6に係る太陽電池のPCEは、比較例2に係る太陽電池のPCEより高かった。カチオン性ポリマーを含むポリマー層上に酸化グラフェン層が積層されたバッファ層により、太陽電池の特性が向上することが示唆された。
【0072】