IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 笹田磁気計測研究所株式会社の特許一覧

<>
  • 特開-磁界センサ 図1
  • 特開-磁界センサ 図2
  • 特開-磁界センサ 図3
  • 特開-磁界センサ 図4
  • 特開-磁界センサ 図5
  • 特開-磁界センサ 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023005243
(43)【公開日】2023-01-18
(54)【発明の名称】磁界センサ
(51)【国際特許分類】
   G01R 33/04 20060101AFI20230111BHJP
【FI】
G01R33/04
【審査請求】未請求
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2021107032
(22)【出願日】2021-06-28
(71)【出願人】
【識別番号】517205767
【氏名又は名称】笹田磁気計測研究所株式会社
(74)【代理人】
【識別番号】100099634
【弁理士】
【氏名又は名称】平井 安雄
(72)【発明者】
【氏名】笹田 一郎
【テーマコード(参考)】
2G017
【Fターム(参考)】
2G017AA02
2G017AA15
2G017AB09
2G017AC09
2G017AD42
2G017AD44
2G017AD63
2G017AD65
2G017BA03
2G017BA05
2G017BA10
2G017BA13
2G017CC04
(57)【要約】
【課題】少なくとも従来の基本波型直交フラックスゲートと同様の性能を有し、小型化を可能としつつ、数十kHz帯の高周波磁界を計測可能とする磁界センサを提供する。
【解決手段】磁気コア12に検出コイル13を巻回して形成されるセンサヘッド14と、励磁用の交流電流である励磁交流電流、及びバイアス用の直流電流であるバイアス直流電流を重畳して磁気コア12に供給する電流供給部11と、検出コイル13に接続し、計測対象磁界として磁気コア12に入力される高周波磁界を検出する検出回路15とを備え、検出回路15が、検出コイル13に誘起される誘起電圧v(t)を表す(9)式の第一項及び第三項に基づいて、計測対象磁界を計測するものである。
【選択図】図1
【特許請求の範囲】
【請求項1】
磁気コアに検出コイルを巻回して形成されるセンサヘッドと、
励磁用の交流電流である励磁交流電流、及びバイアス用の直流電流であるバイアス直流電流を重畳して前記磁気コアに供給する電源部と、
前記検出コイルに接続し、計測対象磁界として前記磁気コアに入力される高周波磁界を検出する検出回路とを備え、
前記検出回路が、
前記検出コイルに誘起される以下の誘起電圧v(t)
【数1】
(ただし、計測対象磁界の振幅をh、その角周波数をωs、励磁交流電流の励磁角周波数をω、磁気コアの実行断面積をS、検出コイルの巻き数をn、入力換算オフセット磁界をHoffとし、k0,k1及びk2は磁気コアの透磁率の近似式の係数でH/mの次元を持つ係数とする)における第一項中の第一項及び第三項に基づいて、前記計測対象磁界を計測することを特徴とする磁界センサ。
【請求項2】
請求項1に記載の磁界センサにおいて、
前記検出角周波数ωsと前記励磁角周波数ωcとの差が|ωs-ωc|≦ωc/10に設定される磁界センサ。
【請求項3】
請求項1又は2に記載の磁界センサにおいて、
前記検出回路が、
前記誘起電圧を増幅する増幅器と、
同期スイッチ及びバンドパスフィルタを有し、前記増幅器で増幅された信号を同期検波する同期検波回路とを備え、
前記バンドパスフィルタが少なくとも直流成分を通過阻止領域とする磁界センサ。
【請求項4】
請求項1又は2に記載の磁界センサにおいて、
前記検出回路が、
前記検出コイルの一端側に接続し、前記誘起電圧を増幅する増幅器と、
同期スイッチ及びローパスフィルタを有し、前記増幅器で増幅された信号を同期検波する同期検波回路と、
入力端子の一端が前記同期検波回路の出力に接続し、出力端子が帰還抵抗を介して前記検出コイルの前記一端側に接続する誤差積分器とを備える、負帰還のフィードバック回路を形成し、
sin((ωc-ωs)t+φ)に比例するフィードバック電流で計測対象であるhsinωstを打ち消す磁界センサ。
【請求項5】
請求項1ないし4のいずれかに記載の磁界センサにおいて、
前記励磁交流電流の周波数を変化させる周波数可変手段を備える磁界センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基本波型直交フラックスゲート磁界センサに関し、特に周波数混合を利用したダウンコンバート機能により高周波磁界を計測する磁界センサに関する。
【背景技術】
【0002】
基本波型直交フラックスゲート(Fundamental mode orthogonal fluxgates)に関する技術として、例えば特許文献1、2に示す技術が開示されている。特許文献1に示す技術は、磁性ワイヤと磁性ワイヤに巻回された検出コイルを持ち、磁性ワイヤに交流励磁電流を流し検出コイルに誘起する電圧を検出出力とするセンサにおいて、励磁電流に直流バイアス電流を重畳させ、誘起電圧の中に含まれる励磁周波数成分から出力を取り出す構成とし、磁性ワイヤに変えて筒状磁性体としても良く、磁性ワイヤが無磁わい組成のアモルファス磁性ワイヤでも良く、また、磁性ワイヤが僅か負の磁わいを持っても良いものである。
【0003】
特許文献2に示す技術は、磁気コアに検出コイルを巻回して形成されるセンサヘッドと、磁気コアに励磁用の交流電流及びバイアス用の直流電流を重畳させて供給する電流供給部と、バイアス用の直流電流の極性を切り替える第1スイッチと、検出コイルに接続され、センサヘッドで測定された磁界をフィードバック電流で検出する検出回路とを備え、第1スイッチが直流電流の極性を正極性に切り替えた場合に、正のバイアス電流を通電したときに生じるオフセット値と、負のバイアス電流を通電したときに生じるオフセット値とが等価となる正のバイアス電流及び負のバイアス電流値のうち、正のバイアス電流値が磁気コアに供給され、第1スイッチが直流電流の極性を負極性に切り替えた場合に、負のバイアス電流値が磁気コアに供給されるものである。
【0004】
また、非特許文献1には、2つの(複数の)基本波型直交フラックスゲートを接近して配置した場合に、2つの磁気コア間で干渉が引き起こされることが開示されており、それは2つの基本波型直交フラックスゲート間のビート現象として説明されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2002-277522号公報
【特許文献2】特開2019-211450号公報
【非特許文献】
【0006】
【非特許文献1】Feng Han, Shoumu Harada, and Ichiro Sasada, “ Beat Interferences in Fundamental Mode Orthogonal Fluxgates ”, IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 7, JULY 2014
【発明の概要】
【発明が解決しようとする課題】
【0007】
数十kHz帯にある磁界の検出にはファラデーの電磁誘導の法則に基づくピックアップコイルを用いるのが最も簡単である。しかしながら、pTオーダーの高分解能が必要となる場合はコイルの有効断面積とコイルの巻き回数を小さくできず、小型化することが難しいという問題がある。
【0008】
これに対して、特許文献1に示すような基本波型直交フラックスゲートは、pTオーダーの分解能を持ち小型化が可能であるものの、一般的には直流~1kHz程度の周波数帯の磁界を検出するために作られており、このままでは数十kHz帯にある磁界を検出することができない。検出可能周波数帯を数十kHz帯まで拡張するためには、従来の基本波型直交フラックスゲートの構成では励磁周波数を計測対象磁界の周波数の10倍以上に高くする必要があり、これには検出コイルの自己共振周波数の高周波化や回路の広帯域化が必要になるため、素子の見直しや回路の再設計が不可欠でその実用化は容易ではない。
【0009】
また、非特許文献1に示す技術は、一般的な基本波型直交フラックスゲートを接近させて複数並べるための技術であり、高周波磁界を検出するための技術ではない。
【0010】
本発明は上記課題を解決するためになされたものであり、少なくとも従来の基本波型直交フラックスゲートと同様の性能を有し、小型化を可能としつつ、高周波磁界を計測可能とする磁界センサを提供する。
【課題を解決するための手段】
【0011】
本発明に係る磁界センサは、磁気コアに検出コイルを巻回して形成されるセンサヘッドと、励磁用の交流電流である励磁交流電流、及びバイアス用の直流電流であるバイアス直流電流を重畳して前記磁気コアに供給する電源部と、前記検出コイルに接続し、計測対象磁界として前記磁気コアに入力される高周波磁界を検出する検出回路とを備え、前記検出回路が、前記検出コイルに誘起される以下の誘起電圧v(t)
【0012】
【数1】
(ただし、計測対象磁界の振幅をh、その角周波数をωs、励磁交流電流の励磁角周波数をω、磁気コアの実行断面積をS、検出コイルの巻き数をn、入力換算オフセット磁界をHoffとし、k0,k1及びk2は磁気コアの透磁率の近似式の係数でH/mの次元を持つ係数とする)における第一項中の第一項及び第三項に基づいて、前記計測対象磁界を計測するものである。
【0013】
このように、本発明に係る磁界センサにおいては、上記(9)式の第一項(第一括弧)中の第一項及び第三項の誘起電圧を角周波数ωで同期検波周波することにより低周波側に周波数混合が生じ、これを抽出することによりダウンコンバート機能を有する基本波型直交フラックスゲートを実現し、従来の基本波型直交フラックスゲートでは計測できなかった高周波磁界を計測することができるという効果を奏する。
【0014】
例えば、磁気を用いた非破壊検査の分野では高周波磁界を高精度で検出し、24ビット又はそれ以上の分解能でAD変換したい場合がある。ΔΣ型AD変換器は24ビットでも比較的安価で使い勝手がいいものであるが、変換速度は100kS/秒(1秒間に10万サンプル)程度であり、信号の周波数が低いことが使用の前提となる。本発明に係る磁界センサはダウンコンバート機能を有するため、計測対象となる磁界の信号の振幅及び位相を保存したまま周波数を低周波へ変換して計測でき、上記AD変換に係わる課題を解決することが可能となる。
【図面の簡単な説明】
【0015】
図1】第1の実施形態に係る磁界センサの構成を示すブロック図である。
図2】第1の実施形態に係る磁界センサにおける電源供給部の構成及びクロック波形を示す図である。
図3】第1の実施形態に係る磁界センサにおいてクロックのHレベル、Lレベルに同期して符号が反転する信号を得るスイッチ回路を示す図である。
図4】基本波型直交フラックスゲートにおける回転磁化モデルを示す図である。
図5】基本波型直交フラックスゲートにおける透磁率に関する解析結果を示す図である。
図6】第2の実施形態に係る磁界センサの構成を示すブロック図である。
【発明を実施するための形態】
【0016】
(本発明の第1の実施形態)
本実施形態に係る磁界センサについて概要を説明する。本実施形態に係る磁界センサ1は、基本波型直交フラックスゲートを用いて高周波磁界を狭帯域で高感度に計測する。基本波型直交フラックスゲートの駆動周波数をfdとするとき、fd±Δfの帯域にある磁界を検出する。このために次式で表される周波数混合の関係を用いる。
【0017】
【数2】
【0018】
上記式において、f1=fdとし、f2=fs(fs:計測対象磁界周波数)とすれば、右辺第一項は低周波に変換されるが、|fd-fs|<Δfとなるようにfdを設定することで、検出帯域0~Δfを持つ基本波型直交フラックスゲートで検出できる。この場合、fsからfs-fdへ周波数が変換されるが、位相情報は上記式の関係から変換によって変化しないので、右辺第一項から正しく検出できる。また磁界の振幅はキャリブレーションによって正しくスケーリングすることができる。周波数については、上記式の右辺第一項でf1>f2の場合もf2>f1の場合も同じ結果を与えるため曖昧さが残るが、以下に示す方法で知ることができる。0~Δf帯域でfo[Hz]として検出される時、同期検波操作から計測対象磁界周波数fs=fd±fo[Hz]の2つの可能性があるが、fs=fd+foであるかfs=fd-foであるかは、fdをわずかに増加させfoが小さくなればfs=fd+foであり、逆にfoが増加すればfs=fd-foであると識別することができる。例えば非破壊検査のように印加する磁界周波数が既知の場合はこのような周波数を求める操作は不要であるが、印加する磁界周波数が未知の場合は周波数を正確に算出することができる。
【0019】
なお、上記においては説明の曖昧さを避けるためにセンサの駆動周波数をfdとして説明したが、基本波型直交フラックスゲートの駆動周波数はセンサの励磁周波数そのものであり、fd=fc(ωdc)のことである。
【0020】
上記のように、本実施形態に係る磁界センサ1は、基本波型直交フラックスゲートを用いて高周波磁界を計測する場合に、直流バイアス励磁による磁化の小角回転動作で高められた透磁率を利用して、検出したい磁界の周波数と励磁周波数との間で周波数混合をおこさせ、低周波側に現れる変調波を検出する。このために、励磁周波数と検出したい磁界の周波数との差を数kHz程度又はそれ以下にし、低周波側の変調波が基本波型直交フラックスゲートの検出帯域内に入るようする。計測される信号はダウンコンバートされた低周波信号として出力することができ、この振幅及び位相は元の計測対象磁界の振幅と位相に容易に対応付けることができる。また、高周波磁界の周波数が未知の場合は駆動周波数fdを変化させることでその周波数を知ることができる。
【0021】
本実施形態に係る磁界センサ1の構成について、図1ないし図3を用いて説明する。図1は、本実施形態に係る磁界センサの構成を示すブロック図、図2は、電源供給部11の構成及びクロック波形を示す図、図3は、クロックのHレベル、Lレベルに同期して符号が反転する信号を得るスイッチ回路を示す図である。図1において、磁界センサ1は、励磁電流を供給する電流供給部11と、当該励磁電流を構成する交流励磁電流及びバイアス直流電流を重畳させて通電される磁気コア12及びこの磁気コア12に巻回される検出コイル13からなるセンサヘッド14と、当該検出コイル13の接地側ではない一端側に接続される検出回路15とを備える。
【0022】
電流供給部11は、図2に示すように、可変周波数クロック発生器11aからのクロック周期2π/ωcのclock1に基づいて、励磁電流生成器11bで直流バイアス電流idcと交流励磁電流iacsinωctを生成する。また、可変周波数クロック発生器11aは、検出回路15における同期検波回路(検出回路15の構成については詳細を後述する)のスイッチを切り替えるためのclock2(クロック周期2π/ωcでclock1からΔTの時間遅れがあるクロック)を発生して同期検波回路に入力する。
【0023】
クロック波形の発生には、水晶発振器からの数十MHz(例えば48MHz)のマスタークロックのp周期間を1/2区間としてデューティ比50%の矩形波を発生してこれを用いることができる。整数値pを変えることでωcを可変にすることができる。2相クロックとするには、例えば一方の波形を他方の波形からマスタークロックのp1周期分(p1<2p)シフトすればよい。
【0024】
励磁電流生成器11bが交流励磁電流の振幅より大きなバイアス直流電流を重畳して励磁電流を生成し、磁気コア12に直接通電される。これによって、検出コイル13の出力が交流励磁電流の周波数と同じ基本波周波数で出力が得られる。
【0025】
磁気コア12は、磁性ワイヤ又は細長い磁性薄帯を用いることができ、例えばCo-基無磁歪組成アモルファス磁性ワイヤ又はCo-基無磁歪組成アモルファス磁性薄帯が好適である。磁気コア12にはバイアス直流電流に交流励磁電流が重畳された励磁電流が通電されているため、計測対象となる高周波磁界(以下、計測対象磁界とし、角周波数をωsとする)がセンサヘッド14に入力されると、センサヘッド14の磁気コア12の周囲に巻かれた検出コイル13の誘起電圧として検出信号が検出される。本実施形態においては、計測対象磁界の角周波数ωsに対して、交流励磁電流の角周波数ωcを近い値に設定する。このときωs≠ωcとする。
【0026】
検出コイル13に現れる誘起電圧は検出回路15で検出される。検出回路15は、計測対象磁界によって検出コイル13に誘起される電圧の信号を増幅する増幅器16と、増幅された信号を同期検波する同期検波回路17とを備える。増幅器16は、図1に示すような中心角周波数をωcとする狭帯域増幅器である。同期検波回路17は、増幅された信号を所定の周期で符号を反転する同期スイッチ17aとバンドバスフィルタ17bとからなる。同期スイッチ17aは、clock1(クロック周期2π/ωc)からΔTの時間遅れがあるclock2で切替制御されるスイッチであり、例えば図3に示すような回路を用いて増幅された信号gvをclock2の半サイクルごとに符号反転させる。これによってcosωctを掛け算したことと同じ効果が得られ、その演算結果のうちバンドパスフィルタ17bの通過域に該当する成分のみが出力される。
【0027】
バンドパスフィルタ17bの通過域は、例えばωcを|ωsc|≦ωc/10とした場合は、ω2≦ωc/10より小さい成分が通過するように設定され、低周波側のω1は、例えば商用電源ラインからの雑音磁界や基本波型直交フラックスゲートに内在する1/f雑音を除去するために設定することができる。基本波型直交フラックスゲートの1/f雑音は10Hzあたりで白色雑音より小さくなるので、商用電源からの雑音磁界を除去したい場合は、例えば180×2π<ω1とすることができる。なお、バンドパスフィルタ17bは、第2の実施形態において後述するようにローパスフィルタにしてもよい。バンドパスフィルタ17bの選択は磁界検出の信号対雑音比を高めるためのものであるため、磁界センサ1に入力される地磁気の大きさもモニターする必要がある場合は、ω1=0としてローパスフィルタにしても良い。
【0028】
上記図1ないし図3の構成により、本実施形態に係る磁界センサ1では高周波の計測対象磁界をダウンコンバートされた低周波信号として計測することが可能となる。
【0029】
以下、本実施形態に係る磁界センサ1の理論について詳細に説明する。磁界センサ1のセンサヘッド14の磁気コア12には直流バイアス電流に交流励磁電流が重畳された励磁電流を流すが、これによってセンサヘッド14の磁気コア12の軸方向透磁率が大きく増加し、しかも交流励磁電流の励磁周期で変化する。検出コイル13への誘起電圧は、入力される計測対象磁界Hと軸方向透磁率μzの積である軸方向磁束密度Bzにコイル巻き回数nとセンサヘッド14の磁気コア12の実行断面積Sを掛けて得られる鎖交磁束φz(=nSμzH)を時間微分したものである。計測対象磁界が直流~1kHz程度の従来の基本波型直交フラックスゲートで検出できる磁界の場合は、誘起電圧は軸方向透磁率μzの時間変化によって発生するのが主であるが、計測対象磁界が励磁磁界程度(周波数は例えば30kHz~90kHz程度、但しこれに限るものではない)に高周波であれば、透磁率の定数成分による磁束成分からも大きな誘起電圧が発生する。
【0030】
計測対象磁界が励磁磁界程度に高周波である本実施形態の磁界センサ1の場合は、励磁周波数と計測対象磁界の周波数との間に周波数混合が起き、数kHz以下の低周波域に変調波が出現する。この周波数混合で生じる低周波側の変調波は、従来の基本波型直交フラックスゲートの検出周波数帯より遥かに高い高周波磁界を高感度に検出する手段として利用することができる。計測対象磁界が持つ情報は振幅及び位相であり、周波数も未知であれば、周波数も情報として加わる。基本波型直交フラックスゲートにおいてどのようにして周波数混合が起きるのか、周波数混合を利用する高周波磁界検出系をどのように組み立てれば良いのかを説明する。
【0031】
(1)円周方向(幅方向)励磁の下での長手方向透磁率μz
磁気コア12にはその長さ全体又はそれより短い範囲に検出コイル13が巻回され、検出コイル13には入力される計測対象磁界に対する応答磁束が鎖交する。磁気コア12の表層部における磁化の振る舞いがフラックスゲートの動作を決定づけるが、それに関係する諸量は、磁気コア12の飽和磁化Js,磁気コア12の表層部に存在する磁気異方性K,計測対象磁界H,励磁磁界Hexである。これらの諸量によって記述される図4の回転磁化モデルによってフラックスゲートの動作は説明される。図4において、磁気コア12の長手方向をz軸として、計測対象磁界Hはz軸方向に入力され、磁気コア12に通電される励磁電流が作る磁界Hex(=Hdc+Hac)は磁気コア12の周方向にある。なお、磁気異方性は一軸磁気異方性で表現されている。
【0032】
磁気異方性定数の大きさKと、その磁化容易軸が円周方向からなす角α及び飽和磁化Jsは磁気コア12の磁性体の性質に起因する。Hは未知の量で、励磁磁界Hexは時間の関数でコントロールされる量である。図4の角θは下記の(1)式で表されるエネルギーEを最小化する方向として決定されるので、θによる(1)式の導関数=0として得た方程式(2)からθを解く。
【0033】
【数3】
【0034】
図5(A)は励磁磁界の時間変化を示す波形である。図5(A)に示すように、励磁磁界Hex=Hdc+Hacsinωt(Hac≦Hdc)が時間変化するので、時間の有限サンプル点でHexの時系列を算出し、その各値を(2)式に代入してθの時系列を計算する。検出コイル13に鎖交する磁気コア12の軸方向の磁化成分はJz=Jssinθとなるが、正規化したJz/Jsを例えばH=0とH=0.5A/mに対して計算しプロットしたのが図5(B)である。図5(B)の破線の値と実線の値との差が計測対象磁界の増加0.5A/mに対する正規化した磁化の増加である。
【0035】
一般に磁束密度Bは真空の透磁率μ0を用いてB=J+μ0Hと表されるが、J>>μ0Hが成り立つ場合はB≒Jと見なして良い。Co基無磁歪組成アモルファス磁性体の場合はJs=0.5~0.7Tであり、仮に0.02JsであってもJz≒0.01~0.014Tであり、例えばHが地磁気程度の50A/mである時は、μ0H≒62μTとなるためJz>>μ0Hであり、Bz≒Jzと見なして良い。
【0036】
励磁磁界によって周期的に時間変化している正規化磁化(Jz/Js)が計測対象磁界Hによってどのように変化するのかについて、HをΔHステップで数段階変化させて計算した結果を図5(C)に示す。この数値計算では、物性値としてJs=0.7T,K=7Joule/m3,α=10°とし、Hdcは直径120μmのワイヤに40mAの直流電流を、Hacは振幅が30mAの交流電流を流した時のワイヤ表面での値とし(Hdc≒106A/m,Hac≒80A/m)、そしてΔH=0.1A/mとしている。
【0037】
図5(C)の曲線群間隔から軸方向(増分)透磁率ΔBz/ΔHの振る舞いを知ることができる。図5(C)において、隣接する曲線間隔が大きいのは一周期間で正規化した時間で見ると0.75の付近で、逆に間隔が小さいのは0.25の付近である。これを励磁磁界との関係で見ると、Hex/Hdcが小さい所でΔBz/ΔHが大きく、Hex/Hdcが大きいところでΔBz/ΔHが小さいことが分かる。図5(C)で各時間に対して曲線群の間隔の大きさを読み取り、図5(A)で同様に励磁磁界の大きさを読み取って、媒介変数である時間tを消去すれば、軸方向透磁率対励磁磁界の関係を表す図を求めることができる。その関係を図5(D)に示す。
【0038】
図5(D)の曲線は下に凸で且つ単調である。細線は曲線の両端点をつないだ補助線で曲線の曲がり具合が目視できるようにしている。曲線の変化は単調であるので2次までの項で近似できる。これを実際に計算すると(増分)透磁率の近似式は以下のようになる。
【0039】
【数4】
【0040】
Hex/Hdc=(1+Hac/Hdcsinωt)に元に戻してsinωtの次数ごとに整理し、定数項をk0、sinωtの1次の項の係数をk1、同2次の項の係数をk2とおくと以下の式のように一般化した形にできる。
【0041】
【数5】
【0042】
図3(D)の場合について各係数の大きさを示すと
【0043】
【数6】
【0044】
となる。k0とk2は正でk1は負になるがその絶対値に桁違いの大きさの差は無い。
【0045】
(2)検出コイルへの鎖交磁束φz
計測対象磁界Hが磁界センサ1の作用で検出コイル13へ鎖交する磁束を生成する関係式は、磁気コア12の実行断面積S、コイル巻き回数nとすれば(4)式の透磁率にH・n・Sの積を乗じたものとなる。(4)を更に高調波成分で表現して(6)式を得る。
【0046】
【数7】
【0047】
(6)式のφzの他にも検出コイル13へ鎖交する磁束がある。図5(B)の実線で表されるJzの成分は、計測対象磁界が入力されなくても検出コイル13に鎖交する磁束を生成することを意味しており、検出においてはオフセットの原因となる。図5(B)の実線と図5(C)の隣接曲線の差を取って生成される曲線群はほぼ相似であることから、H=0の場合に現れる鎖交磁束の時間波形は(6)式でHを適当な定数として表せる。この定数値はオフセットの入力換算磁界に相当するもので、これをHoffとする。このオフセットHoffまで考えた鎖交磁束の式は(7)式のようになる。
【0048】
【数8】
【0049】
(3)周波数変調・複調から見た従来の基本波型直交フラックスゲート及び磁界センサ1の動作
入力される計測対象磁界をH=hsinωstとし、励磁角周波数をωcとすると、(7)式から以下の磁束が検出コイル13に鎖交する。
【0050】
【数9】
【0051】
これを時間で微分すると検出コイル13に誘起する電圧が得られる。
【0052】
【数10】
【0053】
従来の特許文献1、2や非特許文献1に示す基本波型直交フラックスゲートの場合、ωs<<ωcの関係にあり(9)式は次のように近似できる。
【0054】
【数11】
【0055】
この式(10)の第一項は、キャリア波cosωctの包絡線がhsinωstで変化するように変調を受けた波形(変調波)である。この変調波を増幅器で高周波増幅しcosωctを掛ければ、以下の計算式で示す様に、低周波成分sinωstを分離できるのでローパスフィルタを用いてこれを取り出すことができる。
【0056】
【数12】
【0057】
この包絡線波形を取り出す復調プロセスが同期検波である。第一項のキャリア波形が位相ψを持つ場合は、これに合わせてcos(ωct+ψ)を乗じる。掛け算の後に配置されるローパスフィルタの遮断角周波数は通常ωcの1/10以下である。(10)式における第一項中の第二項(k2ωcsin2ωctsinωst)の誘起電圧波形は、第一項中の第一項(k1ωccosωctsinωst)と同じ包絡線を持つが、角周波数ωcでの同期検波によって低周波成分は出現しないので除去される。このように、従来の基本波型直交フラックスゲートでは(9)式における第一項(第一括弧)中の第二項(k1scosωst・sinωct+ωccosωct・sinωst))がその出力を決定する。透磁率で言えば、(4)式の第二項が決定的役割を果たす。(10)式における第二項のオフセット項にcosωctを掛けると、定数項、sinωct、cos(2ωct)、sin(3ωct)の成分が得られるが、直流オフセットを表す定数項以外はローパスフィルタで除去される。
【0058】
一方、本実施形態に係る磁界センサ1の場合は、例えば|ωs&#8211;ωc|≦ωc/10となる程度にωsがωcに接近しており、(10)式のような近似はできない。そのため、(9)式の誘起電圧に同期検波操作を行うためにキャリア波であるcosωctを掛ける。これによって(9)式の各項から得られる周波数成分は以下のようになる。
【0059】
【数13】
【0060】
第二項は、上記(10)式の第二項のオフセット項と同じである。上記各項から得られる成分で、第一項中の第一項と第一項中の第三項から取り出せる(ωcs)の周波数成分は後段のフィルタの遮断角周波数をωc/10程度に設定しておけば十分に同期検波によって検出できる周波数である。(9)式の誘起電圧を同期検波して得られる(ωcs)角周波数成分の総和について計算した結果を以下に示す。
【0061】
【数14】
【0062】
実測によって(11)式の出力が得られるので計測対象磁界を計測することができる。実測で得られた出力波形の角周波数がωmであって、それからωsを逆算する場合、ωcsであるかωcsであるかに注意が必要となる。実際にはωm=ωc&#8211;ωs又はωm=ωs&#8211;ωcである。これを識別するために、本実施形態においては、電流供給部11がωcを可変にできるようにしておく。ωcを大きくして出力波形の角周波数が小さくなればωm=ωs&#8211;ωcの場合であり、逆に出力波形の角周波数が大きくなればωm=ωc&#8211;ωsの場合である。これにより、ωsを逆算して求めることができる。
【0063】
このように、本実施形態に係る磁界センサにおいては、上記(9)式における第一項中の第一項及び第一項中の第三項に基づいた周波数混合によりダウンコンバート機能を有する基本波型直交フラックスゲートを実現することができ、従来の基本波型直交フラックスゲートでは計測できなかった高周波磁界を計測することができる。
【0064】
また、計測対象となる磁界の信号の振幅及び位相を保存したまま周波数を低周波へ変換して計測できるため、ディジタル信号処理に際して高速AD変換器を用いる必要がなく、安価な低速高分解AD変換器を用いることができる。
【0065】
(本発明の第2の実施形態)
本実施形態に係る磁界センサについて、図6を用いて説明する。本実施形態に係る磁界センサは、第1の実施形態における磁界センサ1の検出回路15の構成を変形したものであり、フィードバック機能を有することで負帰還回路を構成するものである。なお、本実施形態において前記第1の実施形態と重複する説明は省略する。
【0066】
図6は、本実施形態に係る磁界センサの構成を示すブロック図である。第1の実施形態における図1の構成と異なるのは、バンドパスフィルタ17bの代わりにローパスフィルタ17cを備えると共に、当該ローパスフィルタ17cを通過した成分を0と比較しその差を積算する誤差積分器18を備え、誤差積分器18の出力電圧からACカップリングで直流成分を除去した電圧信号を出力する。また、誤差積分器18の出力は抵抗19を介して検出コイル13にフィードバックされる。フィードバックされるのは、ωcsの角周波数の交流成分と直流成分である。
【0067】
センサヘッド14が直流磁界に曝されて磁気コア12の動作点が変化すると上記(3)式の透磁率が変化し、高周波磁界に対する感度変動が起きる。計測対象磁界の入力振幅が大きい場合も同様のことが起きる。これを無くすために、上記のようなフィードバックを行うことでセンサヘッド14の動作点を常に一定に保つ。直流成分のフィードバックは従来の基本波型直交フラックスゲートの動作と同じである。しかしながら、本実施形態に係る磁界センサ1おいては、フィードバックされる交流成分と計測対象磁界の周波数とが異なっており、従来のような基本波型直交フラックスゲートと同じように考えることができない。
【0068】
本実施形態に係る磁界センサ1において、フィードバック信号の交流分はsin((ωcs)t+φ)に比例した電流となるが、この電流が磁気コア12に与えるフィードバック磁界は入力磁界hsinωstとは異なる。一見すると、入力量と異なる量で打ち消す様に見えるが、ω=ωcとした(4)式の第二項k1sinωctとsin((ωcs)t+φ)に比例するフィードバック磁界との積によってsinωct・sin((ωcs)t+φ)=cos(ωst-φ)+cos(2ωct-ωst+φ)の右辺第一項から磁気コア12の中で角周波数ωsの磁束成分が生成され、ΔTの調整で位相をコントロールすることで計測対象磁界hsinωstを打ち消すことができる。
【0069】
このように、本実施形態に係る磁界センサにおいては、(4)式の第二項の成分を利用することでフィードバックを行うことが可能となり、計測感度を安定して高品質な磁界センサを実現することができる。
【符号の説明】
【0070】
1 磁界センサ
11 電流供給部
11a 可変周波数クロック発生器
11b 励磁電流生成器
12 磁気コア
13 検出コイル
14 センサヘッド
15 検出回路
16 増幅器
17 同期検波回路
17a 同期スイッチ
17b バンドパスフィルタ
17c ローパスフィルタ
18 エラーアンプ
19 抵抗
図1
図2
図3
図4
図5
図6