(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023052513
(43)【公開日】2023-04-11
(54)【発明の名称】キャビティ音響モードによる騒音及び構造の励振を最低限に抑える方法及び構成
(51)【国際特許分類】
F04D 29/66 20060101AFI20230404BHJP
F04D 29/28 20060101ALI20230404BHJP
F01D 25/00 20060101ALI20230404BHJP
F02C 7/045 20060101ALI20230404BHJP
F01D 25/04 20060101ALI20230404BHJP
F01D 5/10 20060101ALI20230404BHJP
【FI】
F04D29/66 M
F04D29/28 P
F04D29/28 R
F01D25/00 S
F02C7/045
F01D25/04
F01D5/10
【審査請求】有
【請求項の数】22
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023006465
(22)【出願日】2023-01-19
(62)【分割の表示】P 2019548031の分割
【原出願日】2018-03-05
(31)【優先権主張番号】62/466,774
(32)【優先日】2017-03-03
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/501,852
(32)【優先日】2017-05-05
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】506322271
【氏名又は名称】エリオット・カンパニー
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100189555
【弁理士】
【氏名又は名称】徳山 英浩
(72)【発明者】
【氏名】フランシス・クシュナー
(57)【要約】 (修正有)
【課題】ターボ機械のインペラに隣接して形成されるキャビティを故意にミスチューンする構成を提供する。
【解決手段】ターボ機械のインペラに隣接して形成されるキャビティを故意にミスチューンする構成であって、ケーシング壁の境界線内で前記インペラに隣接して画定される少なくとも2つのブレード要素を含み、ブレード要素は前記キャビティをミスチューンして前記キャビティ内の音響脈動を最低限にするよう構成される。
【選択図】
図3
【特許請求の範囲】
【請求項1】
インペラハブに隣接して形成されるキャビティ、及び/又は「n」-直径音響モードを有するターボ機械にインペラカバーが提供されるとき形成される別のキャビティを故意にミスチューニングする構成であって、前記構成は、
ケーシング壁の境界線内でインペラのハブ側に隣接して画定される少なくとも2つのブレード要素を含み、
前記ブレード要素は前記キャビティをミスチューンして前記キャビティ内の音響脈動を最低限にするよう構成される、構成。
【請求項2】
前記ブレード要素が、前記ケーシング壁に画定される溝又は隆起線である、請求項1に記載の構成。
【請求項3】
少なくとも10個のブレード要素が前記ケーシング壁に画定される、請求項2に記載の構成。
【請求項4】
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい深さを有する、請求項3に記載の構成。
【請求項5】
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい幅を有する、請求項3に記載の構成。
【請求項6】
前記ブレード要素は互いに等間隔で配置される、請求項2に記載の構成。
【請求項7】
前記ブレード要素は前記インペラのカバー側の前記ケーシング壁に画定される、請求項1に記載の構成。
【請求項8】
前記ブレード要素が前記ケーシング壁で互いに同相及び異相のうちの少なくとも1つ、及び/又は前記インペラハブ及びカバーの横で同相及び異相のうちの少なくとも1つで提供される、請求項1に記載の構成。
【請求項9】
少なくとも8個のブレード要素が特定のハーモニックミスチューニングパターンと共に前記ケーシング壁に画定される、請求項2に記載の構成。
【請求項10】
(2n-1)個のブレード要素が1つまたはそれ以上の前記キャビティに、ミスチューニングパターンを備えて、又は備えずに画定される、請求項1に記載の構成。
【請求項11】
ブレード要素が、回転する要素の構造モードに逆の位相で音響モードをミスチューンするよう1つ又はそれ以上のキャビティに画定される、請求項1に記載の構成。
【請求項12】
「n」-直径音響モードを有するターボ機械であって、前記ターボ機械は、
ケーシングであって、前記ケーシングの長手軸に沿って出口端に対向する入口端を有するケーシングと、
前記ケーシング内に提供されるシャフトアセンブリとを含み、
前記シャフトアセンブリは前記入口端から前記出口端に延び、
前記ターボ機械は、
前記シャフトアセンブリから径方向外向きに延びるカバーを備える、又は備えない複数の回転インペラを有するロータと、
前記ケーシングのハブ側でインペラの1つに隣接して前記ケーシングの境界線内で画定される少なくとも2つのブレード要素とを含み、
前記ブレード要素は前記インペラに隣接する少なくとも1つのキャビティをミスチューンして、前記キャビティ内の音響脈動を最低限にするよう構成される、ターボ機械。
【請求項13】
前記ブレード要素は、ケーシング壁に画定される溝又は隆起線である、請求項12に記載のターボ機械。
【請求項14】
少なくとも4n個のブレード要素が前記ケーシング壁に画定される、請求項13に記載のターボ機械。
【請求項15】
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい深さを有する、請求項14に記載のターボ機械。
【請求項16】
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい幅を有する、請求項14に記載のターボ機械。
【請求項17】
前記ブレード要素は互いに等間隔で配置される、請求項13に記載のターボ機械。
【請求項18】
前記ブレード要素は前記インペラのハブ側のケーシング壁に画定される、請求項12に記載のターボ機械。
【請求項19】
前記ブレード要素は前記インペラのカバー側のケーシング壁に画定される、請求項12に記載のターボ機械。
【請求項20】
前記ブレード要素がケーシング壁で互いに同相及び異相のうちの少なくとも1つ、及び/又はインペラハブ及びカバーの横で同相及び異相のうちの少なくとも1つで提供される、請求項12に記載のターボ機械。
【請求項21】
少なくとも8個のブレード要素が前記ケーシング壁に画定される、請求項13に記載のターボ機械。
【請求項22】
請求項1に記載のミスチューニングによる修正がされた、ガス又は液体処理機構のキャビティ。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本願は、それらの開示内容全てが本願に参照され援用される、2017年3月3日付けで出願された米国特許仮出願第62/466774号公報、および2017年5月5日付けで出願された米国特許仮出願第62/501852号公報に基づき優先権を主張するものである。
【技術分野】
【0002】
本発明の開示は、概してターボ機械及びその他の機構に関し、特に故意のミスチューニングを利用してロータディスク励振を低減させるよう適合されたターボ機械内キャビティのブレード状要素構成に関する。
【背景技術】
【0003】
特に遠心流コンプレッサ、軸流コンプレッサ、及びタービンなどのターボ機械(turbomachine)は、さまざまな産業において利用可能である。特に遠心流コンプレッサ及びタービンは、発電所、ジェットエンジン、ガスタービン、及び自動車において幅広く利用されている。遠心流コンプレッサ、及びタービンは空気分離装置及び石油精製業界で使われる高温ガス膨張器などの大規模産業用にも広く使われている。遠心流コンプレッサは精製所及び化学工場などの大規模産業用にもさらに使われている。
【0004】
図1を参照して、従来型設計による多段階遠心流ターボ機械10が示される。応用によっては単段階も使用され得る。その他の応用においては多段階が使用され得る。そのようなターボ機械10は、概して一対の軸受け40によってハウジング30内に支持されたシャフト20を含む。
図1に示されるターボ機械10は作用流体(working fluid)の流体圧力を徐々に増大させる複数の段階を含む。各段階はターボ機械10の長手軸に沿って連続して配置され、全ての段階が同じ原理で動作する類似した部品を有してもよく、有さなくてもよい。
【0005】
引き続き
図1を参照して、インペラ(翼車、impeller)50は円周方向に配置され、インペラハブ70に取り付けられた複数の回転ブレード60を含み、インペラハブはシャフト20に取り付けられる。選択的にブレード60はカバーディスク65に取り付けられてもよい。複数のインペラ50はシャフト20の軸長に沿って多段階で離間してもよい。回転ブレード60はインペラハブ70に固定的に連結され、回転ブレード60はインペラハブ70と共にシャフト20の回転と共に回転する。回転ブレード60は、静止したチューブ状ケーシングに取り付けられた複数の静止羽根(vanes)又はステータ80の下流で回転する。混合ガスなどの作用流体はターボ機械10にシャフト20の軸方向に流入、そして流出する。作用流体からのエネルギが、回転ブレード60をステータ80に対して相対的に動作させる。遠心流コンプレッサにおいて、インペラ50内の回転ブレード60の間の断面面積は入口端部から出口端部に向かって減少し、インペラ50を横切って通過するとき作用流体は圧縮される。
【0006】
図2を参照して、混合ガスなどの作用流体は、ターボ機械10の入口端部90から出口端部100へ移動する。入口端部90に備えられた一列のステータ80が、ターボ機械10の出口100に備えられた一列の回転ブレード60へ作用流体を運ぶ。ステータ80はケーシングの中で延び、作用流体を回転ブレード60へ運ぶ。ステータ80はケーシングの境界線の周りで個々の支柱(strut)の間が等間隔になるように円周方向に離間して配置される。ディフューザ(拡散器、diffuser)110は、回転ブレード60の出口に備えられ、回転ブレード60から来る流体の流れを均質化させる。ディフューザ110は、ケーシング内で延びる複数のディフューザ羽根120を選択的に有する。ディフューザブレード120はディフューザケーシングの境界線の周りで、通常個々のディフューザブレード120の間が等間隔になるように円周方向に離間される。多段階ターボ機械10において、複数のリターンチャンネル羽根125が流体圧縮段階の出口端部100に備えられ、連続する次の段階の回転ブレード60へ作用流体を運ぶ。そのような実施形態によれば、リターンチャンネル羽根125はターボ機械10の第一の段階のステータ80の機能を提供する。多段階ターボ機械の最後のインペラは通常ディフューザのみを有し、ディフューザにはディフューザ羽根が備えられてもよく、備えられなくてもよい。最後のディフューザは作用流体の流れを排出パイプに接続するための出口フランジを有する排出ケーシング(volute、渦形室)に運ぶ。単段階の実施形態によれば、ターボ機械10は入口端部90でステータ80を、出口端部100でディフューザ110を含む。
【0007】
ターボ機械の設計において重要なことは、ターボ機械の動作レンジ全体にわたって回転ブレード及びハブの振動を制御することである。ターボ機械機構の回転ブレード及びディスクは次の条件、すなわち、
a)上流側のステータ支柱、及び/又は、下流側支柱及び羽根による羽根の下流乱気流(wakes)と潜在的な流れの相互作用、
b)不均一な円周方向圧力分布によって形成される流れ場のその他の非均質性、
c)回転翼通過周波数(blade passing frequency)における音響脈動(acoustic pulsation)、及び/又は、
d)静止羽根からの渦離脱(voltex shedding)、
などの条件下で共振振動に励振し、ケーシング内のガスの同時発生音響共振(coincident acoustic resonance)を起こし得る。例えば、羽根から反射する翼通過周波数における音波がスピンモード(spinning mode)になることにより、タイラー・ソフリン(Tyler/Sofrin)モードが発生し得る。(Tyler, J. M., and Sofrin, T. G., 1962, ”Axial Flow Compressor Noise Studies”, SAE Transactions, Vol.70, pp.309-332、を参照)。スピンモードでの音響脈動は順にインペラ横のキャビティの音響モードのモード形状及び周波数と一致し得て、またインペラ構造のモードとも一致する。これは3重の一致(triple coincidence)と呼ばれる。音響脈動は、インペラからさらに奥に位置するステータ支柱からは異なる反射をし、スピンモードの有効振幅を減少させる。例えば、15個の回転ブレード及び20個のステータ支柱を有するインペラには、ロータ速度の15倍の翼通過周波数を有する5直径スピンモード(5-diameter spinning mode)が存在する。5直径構造モードが回転速度の20倍に等しい場合、波の反射が位相相殺を起こすため、ステータ支柱のうちの半分を音響波長の約半分の距離だけ下流に設置することによりブレード励振を減少させ得る。そのような構成の一例が米国特許第9581034号明細書に開示されている。
【0008】
これらの励振は周期的な応力を起こし、その結果回転ブレード、ハブ、又はカバーのいずれかにおけるインペラにおいて高いサイクル疲労及び故障が起こる。モーダル周波数(modal frequency)が、ブレードがさらされる流れの不均等性のハーモニック次数とシャフトの回転周波数とを掛け合わせたものと一致するとき、インペラは大振幅まで励振され得る。通常、高サイクル疲労を起こすほどに十分大きい振幅を有する共振の数は限られている。疲労からの損傷率は材料の無限耐久強度が突破されたときのみに発生するから、振幅を少し減らすだけで、ブレード及びディスク寿命の制限要素としての高サイクル疲労がしばしば除去される。
【0009】
危険な共振が回避できない場合、その問題を解決するために採用される1つの方法は、共振が発生したとき、速度を迅速に変化させて共振周波数における運転を避け、ブレードが運転中に蓄積する疲労サイクル数を最小にすることである。振動サイクルの数が最小になれば、ブレード損傷は、下流の乱気流、音響脈動、流れの不均等性、又は渦離脱以外のメカニズムによって制御できる。しかし、この方法は望ましくない制約をターボ機械機構の運転に課す。
【0010】
現在使われる別の方法は、障害物の後ろの低速乱気流の中に直接流体を噴射させることで流れ場の中の空間的差異を減らすというものである。(Rao, N. M., Feng, J., Burdisso, R. A, and Ng, W. F., ”Active Flow Control to Reduce Fan Blade Vibration and Noise”, 5.sup.th AIAA/CEAS Aeroacoustic Conference, American Institute of Aeronautics and Astronautics, May 10-12, 1999)。この方法は、コンプレッサからの、又は追加の外部流体源からの流体の比較的大量使用を必要とする。コンプレッサの流体の使用は性能に悪影響を及ぼす。別の流体源の追加は重量を増加させ、追加の電力を必要とする。いずれの方法もターボ機械機構の性能に悪影響を及ぼす。また、乱気流への噴射は下流の流れ障害物からの弾頭波(bow wave)によるモーダル励振の問題に対処しない。
【0011】
近年、ステータ乱気流などの不均一流による励振以外にも、音響圧力脈動も少なくとも高圧遠心流コンプレッサインペラに関しては懸念され得ることが発見された。これは「3重の一致」と呼ばれるようになり、稀な故障や、過去のいくつかの原因不明の故障と、少なくとも部分的に因果関係がある。該当する振動モード、防振手段、及び起こり得る励振のレベルによっては、遠心式インペラについてブレードディスクの相互作用共振は必要に応じて回避可能である。特に、ディフューザの羽根がインペラ先端の近くにある段階においては、回転ブレードの数との組み合わせで、ある数の羽根が、非常に共鳴しやすいモード(highly responsive mode)に励振させる位相と一致し得るため、高サイクル疲労の懸念は大きい。類似しているがより複雑な相互反応は、特定の節直径(nodal diameter)数を有する横音響モード(transverse acoustic modes)である。この場合、インペラ横のキャビティ内の音響ガスモード、一致するタイラー・ソフリンモードと呼ばれるインペラ翼通過周波数における回転音響脈動、及び一致する構造インペラモードが、3重の一致であり、騒音増大に加えて、インペラのより高い共振共鳴(resonant response)を起こす。この一致に関する懸念は、故障が起こらない限り多くの羽根又はブレードを変更するような評価や修正をすることが難しい点である。この一致は、上流乱気流、又は下流ディフューザ羽根相互作用流れ脈動のいずれかによる直接共鳴に追い討ちとなり得る。インペラ横キャビティの形状は軸対照であり、空気力学により設定され、半径寸法の小さい変更により、外及び内の半径が横モードを画定する。しばしば空力性能に小さい犠牲を払って重大な共振を回避するように設計変更がされ、例えば羽根及びブレードの数、一致する直径モード(diameter mode)の共鳴の変更、又は懸念を解消するために共鳴性が低い(less responsive)異なるモードを有することなどである。その上、例えばコンプレッサ及びポンプなどのターボ機械機構以外にも、直径のモード形状(diametrical mode shapes)又は可能性として圧力脈動周波数のその他のパターンを有するキャビティについて、ここで説明された方法は利用可能である。これらの変更は、構造的振動及び/又は環境騒音問題を有するいかなる機構の懸念をも、排除しないまでも緩和できる。
【発明の概要】
【0012】
本願開示の1つの態様によれば、インペラハブに隣接して形成されるキャビティ、及び/又は、「n」直径音響モードを有するターボ機械にインペラカバーがあるときに形成される別のキャビティを故意にミスチューンする構成は、インペラに隣接するケーシング壁の境界線内に画定される少なくとも2つのブレード要素を含む。ブレード要素は、キャビティ内の音響脈動を最低限にするためキャビティをミスチューンするように構成される。
【0013】
別の態様によれば、「n」の2倍のブレード要素がケーシング壁内に画定され得て、ここで「n」はミスチューンの対象を「n-直径キャビティモード」としたときの「n」である。ブレード要素はケーシング壁内に画定される溝又は隆起線でもよい。例えば、「n」が5であるときのn-直径モードは少なくとも20個のブレード要素がケーシング壁内に画定されてもよい。10個のブレード要素が他の10個の隣りあわせのブレード要素よりも大きい深さを有してもよい。10個のブレード要素が他の10個の隣りあわせのブレード要素よりも大きい幅を有してもよい。ブレード要素は、互いに等間隔で配置されてもよい。ブレード要素はインペラのハブ側でケーシング壁内に画定されてもよい。ブレード要素はインペラのカバー側でケーシング壁内に画定されてもよい。
【0014】
別の態様によれば、ターボ機械はケーシングの長手軸に沿って出口端に対向して入口端を有するケーシングと、ケーシング内に備えられるシャフトアセンブリと、を含み、シャフトアセンブリは入口端から出口端に延び、ターボ機械はまた、シャフトアセンブリから半径方向外側に延びる複数の回転インペラを有するロータと、インペラの1つに隣接してケーシングの周囲内に画定される少なくとも2つのブレード要素を含む。ブレード要素は、n-直径モードにおいてキャビティ内の音響脈動を最低限にするため、インペラに隣接する少なくとも1つのキャビティをミスチューンするように構成される。
【0015】
別の態様によれば、ブレード要素はケーシング壁内に画定される溝又は隆起線でもよい。少なくとも10個のブレード要素がケーシング壁内に画定されてもよい。5個のブレード要素が他の5個の隣りあわせのブレード要素よりも大きい深さを有してもよい。5個のブレード要素が他の5個の隣りあわせのブレード要素よりも大きい幅を有してもよい。ブレード要素は、互いに等間隔で配置されてもよい。ブレード要素はインペラのハブ側でケーシング壁内に画定されてもよい。ブレード要素はインペラのカバー側でケーシング壁内に画定されてもよい。少なくとも16個のブレード要素が、特定のハーモニックミスチューンパターンを備えてケーシング壁内に画定されてもよい。
【0016】
別の態様によれば、「n」の4倍から1を引いた数までのブレード要素がケーシング壁内に画定されてもよく、「n」はミスチューンの対象を「n-直径キャビティモード」としたときの「n」である。ブレード要素はインペラのハブ側でケーシング壁内に画定されてもよい。ブレード要素はインペラのカバー側でケーシング壁内に画定されてもよい。キャビティのミスチューンにあたり、キャビティ内の音響脈動を最低限に抑えるため、ブレード要素は円周に沿って最小サイズから最大サイズまで直線パターンで変化してもよい。別の態様によれば、ブレード要素の数は2から2x「n」から1を引いた数までの中から選択できる。例えば、モードが5-直径モードの場合、(2n-1)すなわち9個のブレード要素が選択可能であり、ブレード要素が含まれるエリア内の5-直径モードが軽減または除去される。必要であれば、9個の羽根がミスチューンされて2x「n」ハーモニック又はその他のミスチューンパターンが提供され、騒音及び/又はインペラ振動が軽減される。
【0017】
本願発明は下の段落によっても定義される。
【0018】
段落1:
インペラハブに隣接して形成されるキャビティ、及び/又は「n」-直径音響モードを有するターボ機械にインペラカバーが提供されるとき形成される別のキャビティを故意にミスチューニングする構成であって、前記構成は、
ケーシング壁の境界線内で前記インペラのハブ側に隣接して画定される少なくとも2つのブレード要素を含み、
前記ブレード要素は前記キャビティをミスチューンして前記キャビティ内の音響脈動を最低限にするよう構成される、構成。
【0019】
段落2:
前記ブレード要素が、前記ケーシング壁に画定される溝又は隆起線である、段落1に記載の構成。
【0020】
段落3:
少なくとも10個のブレード要素が前記ケーシング壁に画定される、段落2に記載の構成。
【0021】
段落4:
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい深さを有する、段落3に記載の構成。
【0022】
段落5:
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい幅を有する、段落3又は4に記載の構成。
【0023】
段落6:
前記ブレード要素は互いに等間隔で配置される、段落2-5のいずれかに記載の構成。
【0024】
段落7:
前記ブレード要素は前記インペラのカバー側の前記ケーシング壁に画定される、段落1-6のいずれかに記載の構成。
【0025】
段落8:
前記ブレード要素が前記ケーシング壁で互いに同相及び異相のうちの少なくとも1つ、及び/又は前記インペラハブ及びカバーの横で同相及び異相のうちの少なくとも1つで提供される、段落1-7のいずれかに記載の構成。
【0026】
段落9:
少なくとも8個のブレード要素が特定のハーモニックミスチューニングパターンと共に前記ケーシング壁に画定される、段落2-8のいずれかに記載の構成。
【0027】
段落10:
(2n-1)個のブレード要素が1つまたはそれ以上の前記キャビティに、ミスチューニングパターンを備えて、又は備えずに画定される、段落1-9のいずれかに記載の構成。
【0028】
段落11:
ブレード要素が、前記回転する要素の前記構造モードに逆の位相で音響モードをミスチューンするよう1つ又はそれ以上のキャビティに画定される、段落1-10のいずれかに記載の構成。
【0029】
段落12:
「n」-直径音響モードを有するターボ機械であって、前記ターボ機械は、
ケーシングであって、前記ケーシングの長手軸に沿って出口端に対向する入口端を有するケーシングと、
前記ケーシング内に提供されるシャフトアセンブリとを含み、
前記シャフトアセンブリは前記入口端から前記出口端に延び、
前記ターボ機械は、
前記シャフトアセンブリから径方向外向きに延びるカバーを備える、又は備えない複数の回転インペラを有するロータと、
前記ケーシングのハブ側で前記インペラの1つに隣接して前記ケーシングの境界線内で画定される少なくとも2つのブレード要素とを含み、
前記ブレード要素は前記インペラに隣接する少なくとも1つのキャビティをミスチューンして、前記キャビティ内の音響脈動を最低限にするよう構成される、ターボ機械。
【0030】
段落13:
前記ブレード要素は、前記ケーシング壁に画定される溝又は隆起線である、段落12に記載のターボ機械。
【0031】
段落14:
少なくとも4n個のブレード要素が前記ケーシング壁に画定される、段落13に記載のターボ機械。
【0032】
段落15:
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい深さを有する、段落14に記載のターボ機械。
【0033】
段落16:
2n個のブレード要素が、残りの2n個のブレード要素よりも大きい幅を有する、段落14又は15に記載のターボ機械。
【0034】
段落17:
前記ブレード要素は互いに等間隔で配置される、段落13-16のいずれかに記載のターボ機械。
【0035】
段落18:
前記ブレード要素は前記インペラのハブ側の前記ケーシング壁に画定される、段落12-17のいずれかに記載のターボ機械。
【0036】
段落19:
前記ブレード要素は前記インペラのカバー側の前記ケーシング壁に画定される、段落12-18のいずれかに記載のターボ機械。
【0037】
段落20:
前記ブレード要素が前記ケーシング壁で互いに同相及び異相のうちの少なくとも1つ、及び/又は前記インペラハブ及びカバーの横で同相及び異相のうちの少なくとも1つで提供される、段落12-19のいずれかに記載のターボ機械。
【0038】
段落21:
少なくとも8個のブレード要素が前記ケーシング壁に画定される、段落13-20のいずれかに記載のターボ機械。
【0039】
段落22:
段落1-11のいずれかに記載のミスチューニングによる修正がされた、ガス又は液体処理機構のキャビティ。
【0040】
ターボ機械のこれらの、及びその他の形態及び特徴、さらに作動方法、及び関連した構造要素の機能、部品及び製造の経済性の組み合わせは、全てがこの明細書の一部である添え付けの図面参照の下、下記の説明及び付記の特許請求の範囲を考慮するとより明らかとなり、様々な図面中の対応する部品同士には似た符号が使われる。しかし、図面が例示と説明のみの目的であり、発明の限界の定義を意図していないことは明確に理解されるべきである。明細書及び特許請求の範囲で使われるにあたり、単数の冠詞付きの用語は文脈から明らかに単数のみの意味ではない限り、複数の意味も含む。
【図面の簡単な説明】
【0041】
【
図1】
図1は、先行技術に係る多段階、遠心流ターボ機械の一部破断斜視図である。
【
図2】
図2は、
図1に示すターボ機械の1つの段階における模式的断面図である。
【
図3】
図3は、本願開示に係るターボ機械の1つの段階における模式的断面図である。
【
図4】
図4は、本願開示に係るインペラ及びカバーディスクの前方斜視図である。
【
図5】
図5は、
図4のインペラ及びカバーディスクの後方斜視図である。
【
図6】
図6は、
図3のケーシング壁の断面図であり、本願開示の一態様に係るブレード状要素の構成を示す。
【
図7】
図7は、
図3のケーシング壁の正面図であり、本願開示の一態様に係るブレード状要素の別の構成を示す。
【
図8】
図8は、ケーシング壁の正面図であり、10個のスロット配置を含む。
【
図9】
図9は、ケーシング壁の正面図であり、20個のスロット配置を含む。
【発明を実施するための形態】
【0042】
以下の説明の目的において、「上」、「下」、「右」、「左」、「垂直」、「水平」、「頂」、「底」、「横方向」、「長手方向」、などの用語及びそれらの派生語は、図面中における方向に基づいて本願発明と関連するものである。しかし、明確に否定されていない限り、本願発明が別の変化案や工程順序の形態を採り得ることは明らかである。また、添付図面に示される特定の装置やプロセス、および下記の詳細な説明の記載内容は本願発明の例示に過ぎないことも明らかである。したがって、ここで開示される実施形態の特定の寸法その他の物理的特徴は発明を限定するものと解釈されるべきではない。
【0043】
上述のとおり、従来のターボ機械10の回転ブレード又はインペラ60は、a)上流側のステータ支柱、及び/又は、下流側支柱及び羽根による、羽根の下流乱気流及び潜在的な流れの相互作用、b)不均一な円周方向圧力分布によって形成される流れ場のその他の非均質性、
c)回転翼通過周波数、翼通過周波数の倍数、及び/又は支柱もしくは羽根からの渦離脱、のいずれかにおける音響脈動、などの条件下で共振振動に励振し、次にケーシング内のガスの同時発生音響共振を起こす。ブレードのモーダル周波数が、回転ブレード又はインペラ60がさらされる流れの不均等性のハーモニック次数とシャフトの回転周波数とを掛け合わせたものと一致するとき、回転ブレード又はインペラ60は大振幅まで励振され得る。
【0044】
本願開示はキャビティ騒音、音響圧力脈動からの隣のブレードディスク又はインペラの励振を減らす方法に主眼がある。この方法では、インペラに隣接するキャビティをキャビティの横及び端部に境界条件を有する等価のガスが充填したディスクであるとみなす。キャビティ内の音響モードはキャビティ内のガスの渦巻き流によって、ターボ機械のカバー側とハブ側とで異なるように起こる。キャビティの基本的な滑らかな境界に替えてブレード状要素を加えることにより、ブレードを備えた有効ディスクは故意のタイミングずらしによってキャビティ内ガスの振動モードの共鳴を大きく減らすように変更可能である。
【0045】
図3を参照して、インペラ100は、
図1及び
図2に示されるターボ機械10などのターボ機械内のケーシング102内に収容される。
図3は、ターボ機械の単一の段階を示すが、当業者は
図3で示される特定の部品は、多段階遠心流コンプレッサなどの多段階ターボ機械にも容易に適用できることを理解する。複数のインペラ100はシャフトの軸長に沿って複数の段階で離間してもよい。ターボ機械の作動中、インペラ100はシャフトを中心に回転するように構成される。一態様によれば、インペラ100がシャフトの回転と共に回転するようにインペラ100はシャフトに固定的に結合される。ケーシング102は、インペラ100のカバー側104及びインペラ100のハブ側106の周りに延びてもよい。また、ターボ機械にカバーが備えられなくてもよく、それにより「オープンな」インペラ構成が提供されることも考えられる。第一のキャビティ108はインペラ100のカバー側104に画定され、第二のキャビティ110はインペラ100のハブ側106に画定される。一態様によれば、キャビティ108、110は、インペラ100の横に提供されるガスが充填したディスクと等価であるとみなされる。一態様によれば、少なくとも1つのキャビティ108、110は、キャビティ108、110内に含まれるガスの表面境界がブレード状要素112、114を有するように修正される。別の態様によれば、キャビティ108、110の両方は、キャビティ108、110内に含まれるガスの表面境界がブレード状要素112、114(「ブレード要素」とも呼ばれる)を有するように修正される。一態様によれば、ブレード状要素112、114は軸対照ではないブレード状要素である。
【0046】
図3を参照して、一態様によれば、ブレード状要素112、114は、キャビティ108、110の円周周りに離間する溝及び/又は隆起線である。別の態様によれば、ブレード状要素112、114は、キャビティ内へ延びるリブ(rib)でもよい。別の態様によれば、キャビティ108、110内に望ましい数の有効ミスチューン要素を提供してキャビティ108、110内ガスの振動モードの共鳴を大きく減らすために、波のような形の長い形体(wave-like length)を機械加工により作成する(貝柱形状とも呼ばれる)。ブレード状要素112、114の数は、特定の直径モードの共鳴を減らすために望ましい変化を適用するために選択できる。直径モードとは、高い音響圧力脈動が、低い音響圧力脈動を有するエリアによって分けられる構成を意味することは明らかである。例えば、5-直径音響モードは、高い音響圧力脈動を有する5個のエリアと低い音響圧力脈動を有する5個のエリアとを交互に含む。したがって、
図8を参照して、ブレード状要素112のうちの5個は高い音響圧力脈動を有してもよく、隣のブレード状要素112は低い音響圧力脈動を有してもよい。例えば、キャビティ108、110内ガスの5-直径音響モードは、インペラが翼通過周波数で回転する作動速度の15倍と共振してもよい。翼通過周波数のスピンモードは、15個のインペラが20個の入口羽根80、又は20個のディフューザ羽根120と相互反応するため、5個の突起(lobe)を有してもよい。スピン音響モードが「n」パターンの周波数GOであるとき、円周方向に圧力差があってもよく、それは連続的であり、円柱極座標で定義されるところの2πラジアンごとに繰り返す。この圧力分布は(GO/n)で回転し、全ての静止点において周波数GOにおいて圧力変動を発生させる。パターンは速度(r掛けるGO割るn、rx GO/n)でキャビティ環(annulus)の壁全体に広がり(sweep)、ここでrはキャビティの半径である。カバー側104及びハブ側106上のキャビティ108、110の1つ又は両方は、10個の等間隔のブレード状要素112、114を含み得て、それらはケーシング102の垂直壁に機械加工された溝及び/又は隆起線などである。また、ブレード状要素112、114間で別の間隔角度を採用し得ることも考えられる。次に、例えばキャビティ108、110内ガスの振動モードの共鳴を大きく減らすための10-直径ミスマッチパターンを提供するように故意のミスチューニングを選択してもよい。一態様によれば、故意のミスチューニングを提供するために、溝及び/又は隆起線などの20個のブレード状要素112、114を備えたパターンが10-直径パターンを提供してもよく、又は代わりに
図6及び7に示すとおり、パターン中の1つおきの溝を隣の溝よりも2倍の深さ及び/又は幅を有してもよい。
図6及び7に示されるブレード状要素112の構成はインペラ100のハブ側106上のブレード状要素114にも使えることは明らかである。別の態様によれば、インペラ100のカバー側104のブレード状要素112の構成は、インペラ100のハブ側106のブレード状要素114の構成と異なっていてもよい。別の態様によれば、パターンは溝、隆起線及び/又は貝柱形状などの、20個のブレード状要素112、114を有してもよい。ブレード状要素112、114のこれらのパターンを使うことにより、音響脈動は軽減され、20倍速におけるインペラ共鳴は最低限にされる。
【0047】
必要であれば、ミスチューンするブレード状要素112、114の数は、静止羽根のハーモニックが回転ブレードのハーモニックよりも大きいか小さいかに依存して選択されてもよい。羽根のハーモニックが通過ブレードのハーモニックより大きい、2x「n」個のブレード状要素112、114の一例では、回転翼通過周波数との相互作用によるスピンモードは静止羽根からのものと反対方向に回転し、脈動の一部を相殺する。例えば、5-直径モードが20個の静止羽根と15個の回転ブレードの差によるものである場合、スピンモードが20個の静止羽根からのものと逆であるように10個のブレード状要素112、114が使用される。ブレード状要素112、114による音響脈動は、羽根による音響脈動に対抗する。静止羽根の数が回転ブレードの数よりも小さい一例によれば、「n」の4倍の数のブレード状要素112、114が使用される。例えば、5-直径モードが10個の静止羽根と15個の回転ブレードの差によるものである場合、スピンモードが10個の静止羽根からのものと逆であるように20個のブレード状要素112、114が使用される。ブレード状要素112、114による音響脈動は、羽根による音響脈動に対抗する。本願開示の一例として、
図8に示されるとおり、ブレード状要素112はダイヤフラムとインペラの間のキャビティ面上で上流及び下流ダイヤフラム上にエンドミル加工される。この例において、10個のブレード状要素112が円周周りに等間隔で置かれる。この例において、より大きい5個のブレード状要素112が互いに72度離れて置かれる。より小さいブレード状要素112はそれぞれのより大きいブレード状要素112の間に等間隔で置かれる。各ブレード状要素112は、半径4.875インチの内径に位置し、長さ1.25インチでもよい。より小さいブレード状要素112は幅0.25インチ、深さ0.125インチでもよい。
図9は、ブレード状要素112の類似した構成である。しかし、この構成は20個のブレード状要素112を含み、そこには10個のより大きいブレード状要素112、及び10個のより小さいブレード状要素112が含まれる。上述と似た構成でブレード状要素114が配置されてよいことも明らかである。
【0048】
別の態様によれば、キャビティ108、110のうちの1つの中にブレード状要素112、114を含ませることにより、隣接するディスクの回転ブレードと異なる数のブレード状要素112、114を有するから、円モード(circular mode)の懸念は排除される。構造的にはあまり問題ではない1-直径モードでさえも、音響脈動を軽減するためにブレード状要素112、114を有してもよい。別の態様によれば、ディスクの横の翼通過周波数脈動は、ディスクの外径近くの大きい動きにより、板モード(plate mode)を励振させる。この態様において、キャビティ108、110内のブレード状要素112、114は、板モードに対する音響脈動の相対的位相角度に依存して離間し修正される。
【0049】
キャビティ108、110の1つ又は両方への変更は1つ又はそれ以上のガスモードへのディスクの共鳴を独立して減らすことができるが、変更は、より大きな信頼性のために従来技術で使用されたように構造的なブレードディスクのミスチューンに追加して行われてもよい。特に、共鳴をさらに軽減するため、ケーシング102に提供されるブレード状要素112、114と共に、溝、隆起線、及び/又は貝柱形状の突出などの類似したブレード状要素がキャビティ108、110に面したインペラ100のディスク又はカバー65に提供されてもよい。代わりに、これらは、隣接する流体が充填されたキャビティをミスチューンするブレード状要素として機能する。この明細書で使用される用語「流体」は気体、液体、及び気体/液体の混合物を含むことは明らかである。したがって、音響モードはキャビティ内のガスの渦巻き流によって、ターボ機械のカバー側とハブ側とで異なって起こる。キャビティの変更は直接機械加工及び/又は溶接を使ってケーシング102上にブレード状要素112、114を形成してもよく、又は必要であれば、キャビティ108、110内で設置及び取換可能なインサートを使用してもよい。ブレード状要素112、114は、ターボ機械の使用中に摩耗し得て、刷新又は再生が必要かもしれない。また、キャビティ108、110内で、渦巻き流のターボ機械の密封内への流れを減らす、スラスト負荷を減らす、又はコンプレッサ又はターボ機械の停止がインペラの先端又はディフューザ入口で始まったときにフローポイントを減らす、などの別の機能を有するために、ブレード状要素をキャビティ108、110にさらに追加する可能性も考えられる。
【0050】
別の態様によれば、コンプレッサのインペラ以外にもブレード状要素構成は様々な原因で励振する直径のモード形状又はその他のパターンの圧力脈動周波数を有するキャビティ又は環をミスチューンして、回転及び静止部品、及び/又は環境騒音問題を含む構造問題を緩和するために使用可能である。類似の液体用ポンプ、軸コンプレッサ、送風機、及びスチーム又はガスタービンも、開示の方法を利用し得るターボ機械である。音響モードの共鳴を軽減するミスチューンされたブレード状要素構成のその他の潜在的応用としては、エンジン、機械、燃料電池、配管、排気管、ディフューザ、ノズル、バルブ、消音器、マフラー、シール、熱交換器、機体、タイヤ及び車輪、ロケット、燃焼室、車両、スピーカ、及び二重ガラス窓、などの空気機構を含む流体処理も含まれる。
【0051】
図4及び5を参照して、ブレード状要素112は、ターボ機械のインペラ100のカバー側上にあるカバーディスク120に隣接するダイヤフラム壁118に画定される。一態様によれば、2つのダイヤフラム122a、122bがインペラ100を受けるキャビティを画定する。ブレード状要素112は、ダイヤフラム122a、122bの1つ又は両方のダイヤフラム壁118に画定されてもよい。1つ又はそれ以上のブレード状要素116は、円周方向にダイヤフラム壁118の周りに配置される。別の態様によれば、20個のブレード状要素112がダイヤフラム122a、122bそれぞれにインペラ100の横で画定される。一態様によれば、ブレード状要素112は、お互いから18度離れている。いくつかの音響モードは互いに連結するから、両方のキャビティ及び/又はインペラ側は付加的なミスチューニングを提供するため互いに位相不一致で配置されたブレード状要素を有し得る。
【0052】
ターボ機械及びブレード状要素の多くの態様が添え付けの図面で示され、上記に詳細に説明されたが、当業者にはその他の態様も本開示の範囲及び構想から離れることなく明らかであり、実現可能である。したがって、上記の説明は限定的ではなく、例示を意図している。ここで説明される発明は付記の特許請求の範囲で定義され、特許請求の範囲の意味及び均等物の範囲内に入る本願発明の全ての変更は、特許請求の範囲内に含まれる。
【外国語明細書】