IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ ジョンズ ホプキンス ユニバーシティーの特許一覧

特開2023-53140チェックポイント遮断およびマイクロサテライト不安定性
<>
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図1
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図2
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図3
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図4
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図5
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図6
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図7
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図8
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図9
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図10
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図11
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図12
  • 特開-チェックポイント遮断およびマイクロサテライト不安定性 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023053140
(43)【公開日】2023-04-12
(54)【発明の名称】チェックポイント遮断およびマイクロサテライト不安定性
(51)【国際特許分類】
   A61K 39/395 20060101AFI20230404BHJP
   A61P 35/00 20060101ALI20230404BHJP
【FI】
A61K39/395 T
A61K39/395 U
A61P35/00
【審査請求】有
【請求項の数】28
【出願形態】OL
(21)【出願番号】P 2023018875
(22)【出願日】2023-02-10
(62)【分割の表示】P 2021032226の分割
【原出願日】2015-11-12
(31)【優先権主張番号】62/079,357
(32)【優先日】2014-11-13
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/190,977
(32)【優先日】2015-07-10
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】506321481
【氏名又は名称】ザ ジョンズ ホプキンス ユニバーシティー
(74)【代理人】
【識別番号】100102978
【弁理士】
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100102118
【弁理士】
【氏名又は名称】春名 雅夫
(74)【代理人】
【識別番号】100160923
【弁理士】
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【弁理士】
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【弁理士】
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【弁理士】
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100128048
【弁理士】
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【弁理士】
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100205707
【弁理士】
【氏名又は名称】小寺 秀紀
(74)【代理人】
【識別番号】100114340
【弁理士】
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100121072
【弁理士】
【氏名又は名称】川本 和弥
(72)【発明者】
【氏名】ディアス ルイス
(72)【発明者】
【氏名】ボーゲルステイン バート
(72)【発明者】
【氏名】キンズラー ケネス ダブリュ.
(72)【発明者】
【氏名】パパドプーロス ニコラス
(72)【発明者】
【氏名】リ ダン
(72)【発明者】
【氏名】パードル ドリュー エム.
(72)【発明者】
【氏名】トパリアン スザンヌ エル.
(57)【要約】
【課題】癌患者の治療方法の提供。
【解決手段】細胞傷害性T-リンパ球抗原-4(CTLA-4)およびプログラム死-1(PD-1)等の免疫チェックポイントを遮断する免疫チェックポイント阻害抗体を含む、癌患者を治療するための癌患者への投与用の薬学的組成物であって、前記癌が結腸癌、胃癌、子宮内膜癌、胆管癌、膵臓癌、および前立腺癌からなる群から選択され、前期癌患者はマイクロサテライト不安定性癌(MSI)を有する、前記薬学的組成物。
【選択図】なし
【特許請求の範囲】
【請求項1】
免疫チェックポイント阻害抗体を含む、癌患者を治療するための癌患者への投与用の薬学的組成物であって、前記癌患者がマイクロサテライト不安定性癌(MSI)を有する、前記薬学的組成物。
【請求項2】
前記癌が、結腸癌、胃癌、子宮内膜癌、胆管癌、膵臓癌、および前立腺癌からなる群から選択される、請求項1に記載の薬学的組成物。
【請求項3】
前記抗体が抗PD-1抗体である、請求項1に記載の薬学的組成物。
【請求項4】
前記抗体が抗IDO抗体である、請求項1に記載の薬学的組成物。
【請求項5】
前記抗体が抗CTLA-4抗体である、請求項1に記載の薬学的組成物。
【請求項6】
前記抗体が抗PD-L1抗体である、請求項1に記載の薬学的組成物。
【請求項7】
前記抗体が抗LAG-3抗体である、請求項1に記載の薬学的組成物。
【請求項8】
前記投与の前に、前記MSI癌患者からのサンプルが、1つまたはそれ以上のマイクロサテライトマーカーの安定性を評価するために試験されている、請求項1に記載の薬学的組成物。
【請求項9】
前記抗体がヒト化モノクローナル抗体である、請求項1に記載の薬学的組成物。
【請求項10】
前記抗体がMK-3475である、請求項1に記載の薬学的組成物。
【請求項11】
前記抗体がIgG4抗体である、請求項1に記載の薬学的組成物。
【請求項12】
前記マイクロサテライトマーカーが複数のマイクロサテライトマーカーである、請求項8に記載の薬学的組成物。
【請求項13】
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、請求項8に記載の薬学的組成物。
【請求項14】
前記複数のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dを含む、請求項12に記載の薬学的組成物。
【請求項15】
抗PD-1抗体を含む、癌患者を治療するための癌患者への投与用の薬学的組成物であって、前記癌患者からのサンプルが試験され、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される1つまたはそれ以上のマイクロサテライトマーカーの不安定性が判定されており、前記癌が、結腸癌、胃癌、子宮内膜癌、胆管癌、膵臓癌、および前立腺癌からなる群から選択される、前記薬学的組成物。
【請求項16】
ヒトの腫瘍の分類方法であって、
1つまたはそれ以上のマイクロサテライトマーカーの安定性を評価するために、前記ヒトからのサンプルを試験する工程と、
前記サンプルにおけるマイクロサテライト不安定性を判定する工程と、
免疫チェックポイント阻害抗体による治療のための良好な候補として前記腫瘍を特定する工程と、を含む、前記方法。
【請求項17】
前記ヒトに免疫チェックポイント阻害抗体を処方する判断を補助する、請求項16に記載の方法。
【請求項18】
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、請求項16に記載の方法。
【請求項19】
ヒトの腫瘍の分類方法であって、
1つまたはそれ以上のマイクロサテライトマーカーの安定性を評価するために、前記ヒトからのサンプルを試験する工程と、
前記サンプルにおけるマイクロサテライト安定性を判定する工程と、
免疫チェックポイント阻害抗体による治療のための不良な候補として前記腫瘍を特定する工程と、を含む、前記方法。
【請求項20】
前記ヒトが免疫チェックポイント阻害抗体により治療されている場合に、免疫チェックポイント阻害抗体による治療を停止する判断を補助する、請求項19に記載の方法。
【請求項21】
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、請求項19に記載の方法。
【請求項22】
免疫チェックポイント阻害抗体を含む、癌患者を治療するための癌患者への投与用の薬学的組成物であって、前記癌患者が1腫瘍につき少なくとも100個の体細胞突然変異の突然変異負荷を有する、前記薬学的組成物。
【請求項23】
前記抗体が抗PD-1抗体である、請求項22に記載の薬学的組成物。
【請求項24】
前記抗体が抗IDO抗体である、請求項22に記載の薬学的組成物。
【請求項25】
前記抗体が抗CTLA-4抗体である、請求項22に記載の薬学的組成物。
【請求項26】
前記抗体が抗PD-L1抗体である、請求項22に記載の薬学的組成物。
【請求項27】
前記抗体が抗LAG-3抗体である、請求項22に記載の薬学的組成物。
【請求項28】
前記投与の前に、前記腫瘍における高い突然変異負荷が判定されている、請求項22に記載の薬学的組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、国立衛生研究所によって授与されたCA43460およびCA62924の下で、政府支援によりなされたものである。政府は、本発明においてある特定の権利を有する。
【0002】
発明の技術分野
本発明は、癌の領域に関する。具体的には、癌療法に関する。
【背景技術】
【0003】
発明の背景
マイクロサテライト不安定性(MSI)は、マイクロサテライトにおける配列の誤りの蓄積である。これは、DNAミスマッチ修復に欠陥のある腫瘍で生じる。MSIは、患者を、結腸癌、子宮内膜癌、胃癌、卵巣癌、小腸癌、肝臓癌、肝胆道癌、上部尿路癌、脳癌、および前立腺癌に罹りやすくする遺伝性癌症候群であるリンチ症候群に存在する。MSIはまた、散発性結腸直腸癌、胃癌、前立腺癌、肺癌、膨大部癌、および子宮内膜癌の10~20%に存在する。膵臓癌の0.3%~13%もまた、MSIであることが報告されている。
【0004】
悪性形質転換の副産物の制御における無傷免疫学的監視の重要性は、数十年間知られている。累積証拠は、癌組織における腫瘍浸潤リンパ球(TIL)の間の相関関係および様々な悪性腫瘍における良好な予後を示す。具体的には、CD8+T細胞の出現およびCD8+エフェクターT細胞/FoxP3+制御性T細胞の比率は、卵巣、結腸直腸、および膵臓癌、肝細胞癌腫、悪性MELおよびRCC等の固体悪性腫瘍における改善された予後および長期生存と相関すると思われる。TILは、エクスビボで拡張し、再注入されて、黒色腫等の癌における永続的な客観的腫瘍応答を誘発することができる。
【0005】
PD-1受容体-リガンドの相互作用は、免疫による制御を抑制するための腫瘍によって乗っ取られた主要経路である。健常条件下で、活性化したT細胞の細胞表面に発現した、PD-1の正常な機能は、自己免疫反応を含む望ましくないまたは過剰な免疫応答を下方調節するものである。PD-1(PD-L1およびPD-L2)のリガンドは、構成的に発現されるか、または様々な腫瘍に誘発され得る。PD-1へのいずれかのPD-1リガンドの結合は、T細胞受容体を通して引き起こされるT細胞の活性化を阻害する。PD-L1は、様々な非造血組織、最も顕著には、血管内皮に低レベルで発現されるが、一方、PD-L2タンパク質は、リンパ系組織または慢性炎症性環境において見出される抗原提示細胞にのみ検出可能に発現される。PD-L2は、リンパ系器官における免疫T細胞の活性化を制御すると考えられるが、一方、PD-L1は、末梢組織における望ましくないT細胞機能を抑制する役割を果たす。健常な器官は、ほとんど(もしあれば)PD-L1を発現しないが、様々な癌は、このT細胞阻害剤の十分なレベルを発現することが実証された。腫瘍細胞におけるPD-L1の高い発現(およびPD-L2のより少ない範囲まで)は、腎細胞癌(RCC)、膵臓癌、肝細胞癌、卵巣癌、および非小細胞肺癌(NSCLC)を含む、様々な癌タイプにおいて不良な予後および生存と相関することが見出されている。さらに、PD-1は、悪性MELを患っている患者における腫瘍特異的なT細胞の増殖を調節することが示唆されている。複数の癌におけるPD-L1の発現と臨床予後の観察された相関関係は、PD-1/PD-L1経路が腫瘍免疫回避に重要な役割を果たし、治療的介入の格好の標的として考慮されるべきであることを示唆している。
【0006】
細胞傷害性T-リンパ球抗原-4(CTLA-4)およびプログラム死-1(PD-1)等の免疫チェックポイントの遮断が、癌を患っている患者において有望である。CTLA-4およびPD-1は、活性化T細胞において上方調節され、活性化を受けるT細胞に阻害シグナルを提供する。これらの受容体を対象とする阻害抗体は、免疫寛容を破壊し、抗腫瘍免疫を促進することが示されている。MK-3475は、PD-1に対するヒト化モノクローナルIgG4抗体であり、黒色腫および非小細胞肺癌(NSCLC)を含む複数の腫瘍タイプにおいて活性を示す。これまでは、異なるPD-1遮断抗体、BMS-936558、完全ヒト化モノクローナルIgG4抗体の活性はまた、結腸直腸癌を患っている1人の患者において、黒色腫、NSCLCの活性、および完全寛解も示した。
【0007】
MK-3475(以前は、SCH 900475として知られている)は、PD-1とそのリガンドPD-L1およびPD-L2との間の相互作用を直接遮断するように設計されたIgG4/カッパイソタイプの強力かつ高度選択的なヒト化mAbである。MK-3475は、突然変異を安定化するS228Pを含有し、抗体依存性細胞媒介性細胞傷害(ADCC)または補体依存性細胞傷害(CDC)の活性を有さない。MK-3475は、健常なヒトドナー、癌患者、および霊長類から培養された血液細胞中のTリンパ球免疫応答を強く増強する。ヒトドナー血細胞を用いたT細胞活性化アッセイにおいて、EC50は、0.1~0.3nMの範囲内であった。MK-3475はまた、インターロイキン-2(IL-2)、腫瘍壊死因子アルファ(TNFα)、インターフェロンガンマ(IFNγ)、およびその他のサイトカインのレベルも調節する。抗体は、抗原の存在下のみ既存の免疫応答を増強し、T細胞を非特異的に活性化しない。
【0008】
プログラム死1(PD-1)経路は、調節されない場合、宿主を損傷し得るTh1細胞傷害性免疫応答を表す負のフィードバックシステムである1~3。それは、多くの腫瘍およびそれらの周辺の微環境において上方調節される。PD-1またはそのリガンドに対して抗体によるこの経路の遮断は、黒色腫、非小細胞肺癌、腎細胞癌、膀胱癌、およびホジキンリンパ腫を含む、多くの異なる癌タイプを有する患者の中には、著明な応答を示した4~10。腫瘍細胞または免疫細胞の表面上のPD-1(PD-L1またはPD-L2)に対するリガンドの発現は重要であるが、PD-1遮断に対する応答の決定的な予測バイオマーカーではない4、6~8、11
【0009】
我々は、ヒト腫瘍におけるPD-1遮断の効果の報告において、かなりの割合の黒色腫、腎細胞癌、および肺腫瘍を患っている患者とは対照的に、33人の結腸直腸癌(CRC)患者のうちの1人の患者のみが、この治療に応答したことに興味を持った10、12。この単一の患者との違いは何であろうか。我々は、MMR欠損が進行CRCのごく一部でしか見られず13、14、腫瘍において見られた体細胞突然変異は、患者自身の免疫系によって認識することができ15、MMR欠損癌が、MMR能のある(MMR-proficient)CRCよりも10倍~100倍の体細胞突然変異を有している16~18ため、この患者がMMR欠損を有していたと仮定した。さらに、MMR欠損癌は、顕著なリンパ球浸潤を含み、免疫応答と一致する19~22。Topalianらによる研究10におけるPD-1遮断に対して最も応答する腫瘍タイプのうちの2つが、タバコの喫煙(肺癌)または紫外線放射(黒色腫)への曝露の結果として体細胞突然変異の増加を有した23、24。PD-1遮断に応答した単一CRC患者の腫瘍がMMR欠損であったという、我々の仮説は、正しかった25。したがって、我々は、MMR欠損腫瘍がMMR能のある腫瘍よりもPD-1遮断に対してより応答が良いと仮定した。
【0010】
この仮説を試験するために、腫瘍がMMR欠損を有したまたは有さなかった患者における免疫チェックポイント遮断を評価するために第2相臨床試験を開始した。腫瘍におけるMMR欠損が2つの経路を通して生じるため26~28、我々は、遺伝性非ポリープ症結腸直腸癌(HNPCC、リンチ症候群としても知られている)を患っている患者を動員し、これらは、4つのMMR遺伝子のうちの1つにおける先天性生殖系列欠失により生じ、続いて、第2に、残りの野生型対立遺伝子の体細胞変化を不活性化した。また、MMR遺伝子の両方の対立遺伝子が体細胞突然変異によって、またはエピジェネティックなサイレンシングによって不活性化される場合に、散発性MMR欠損腫瘍を患っている患者も動員した29。いずれにしても、生じる新生物は、何百または何千の突然変異を宿す16、18
【0011】
患者の生命が短縮されないように、また、生活の質が低下しないように、癌治療を改善する必要性が、当該技術分野において継続的に存在する。
【発明の概要】
【0012】
本発明の一実施形態によれば、癌患者の治療方法が提供される。癌患者は、マイクロサテライト不安定性癌(MSI)に見られるような、高い突然変異負荷を有する。免疫チェックポイント阻害抗体は、癌患者に投与される。
【0013】
本発明の別の実施形態によれば、癌患者の治療方法が提供される。癌患者からのサンプルを、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される1つ以上のマイクロサテライトマーカーについて試験して、マイクロサテライト不安定性を有することを判定する。癌は、結腸癌、胃癌、子宮内膜癌、胆管癌、膵臓癌、および前立腺癌からなる群から選択される。抗PD-1抗体は、癌患者に投与される。
【0014】
本発明の別の実施形態によれば、方法が、ヒトの腫瘍を分類するために提供される。ヒトからのサンプルを、1つ以上のマイクロサテライトマーカーの安定性を評価するために試験する。マイクロサテライト不安定性は、サンプルにおいて判定される。腫瘍は、免疫チェックポイント阻害抗体による治療のための良好な候補として特定される。
【0015】
本発明のさらに別の実施形態によれば、方法が、ヒトの腫瘍を分類するために提供される。ヒトからのサンプルを、1つ以上のマイクロサテライトマーカーの安定性を評価するために試験する。サンプルにおけるマイクロサテライト安定性が判定される。腫瘍は、免疫チェックポイント阻害抗体による治療のための不良な候補として特定される。
【0016】
本明細書を読むことにより、当業者には明らかになるであろうこれらおよび他の実施形態は、マイクロサテライト不安定性癌を治療するための方法を用いて当該技術を提供する。
[本発明1001]
マイクロサテライト不安定性癌(MSI)を有する癌患者に、免疫チェックポイント阻害抗体を投与する工程を含む、癌患者の治療方法。
[本発明1002]
前記癌が、結腸癌、胃癌、子宮内膜癌、胆管癌、膵臓癌、および前立腺癌からなる群から選択される、本発明1001の方法。
[本発明1003]
前記抗体が抗PD-1抗体である、本発明1001の方法。
[本発明1004]
前記抗体が抗IDO抗体である、本発明1001の方法。
[本発明1005]
前記抗体が抗CTLA-4抗体である、本発明1001の方法。
[本発明1006]
前記抗体が抗PD-L1抗体である、本発明1001の方法。
[本発明1007]
前記抗体が抗LAG-3抗体である、本発明1001の方法。
[本発明1008]
前記投与工程の前に、前記MSI癌患者からのサンプルが、1つまたはそれ以上のマイクロサテライトマーカーの安定性を評価するために試験される、本発明1001の方法。
[本発明1009]
前記抗体がヒト化モノクローナル抗体である、本発明1001の方法。
[本発明1010]
前記抗体がMK-3475である、本発明1001の方法。
[本発明1011]
前記抗体がIgG4抗体である、本発明1001の方法。
[本発明1012]
複数のマイクロサテライトマーカーが試験される、本発明1008の方法。
[本発明1013]
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、本発明1008の方法。
[本発明1014]
前記複数のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dを含む、本発明1012の方法。
[本発明1015]
癌患者からのサンプルを試験して、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される1つまたはそれ以上のマイクロサテライトマーカーの不安定性を判定する工程と、
前記癌患者に抗PD-1抗体を投与する工程と、
を含む、癌患者の治療方法であって、
前記癌が、結腸癌、胃癌、子宮内膜癌、胆管癌、膵臓癌、および前立腺癌からなる群から選択される、前記方法。
[本発明1016]
ヒトの腫瘍の分類方法であって、
1つまたはそれ以上のマイクロサテライトマーカーの安定性を評価するために、前記ヒトからのサンプルを試験する工程と、
前記サンプルにおけるマイクロサテライト不安定性を判定する工程と、
免疫チェックポイント阻害抗体による治療のための良好な候補として前記腫瘍を特定する工程と、を含む、前記方法。
[本発明1017]
前記ヒトに免疫チェックポイント阻害抗体を処方する工程をさらに含む、本発明1016の方法。
[本発明1018]
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、本発明1016の方法。
[本発明1019]
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、本発明1016の方法。
[本発明1020]
ヒトの腫瘍の分類方法であって、
1つまたはそれ以上のマイクロサテライトマーカーの安定性を評価するために、前記ヒトからのサンプルを試験する工程と、
前記サンプルにおけるマイクロサテライト安定性を判定する工程と、
免疫チェックポイント阻害抗体による治療のための不良な候補として前記腫瘍を特定する工程と、を含む、前記方法。
[本発明1021]
前記ヒトが免疫チェックポイント阻害抗体により治療されており、免疫チェックポイント阻害抗体による治療を停止する工程をさらに含む、本発明1020の方法。
[本発明1022]
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、本発明1020の方法。
[本発明1023]
前記1つまたはそれ以上のマイクロサテライトマーカーが、BAT-25、BAT-26、MON0-27、NR-21、NR-24、Penta C、およびPenta Dからなる群から選択される、本発明1020の方法。
[本発明1024]
1腫瘍につき少なくとも100個の体細胞突然変異の突然変異負荷を有する癌患者に、免疫チェックポイント阻害抗体を投与する工程を含む、癌患者の治療方法。
[本発明1025]
前記抗体が抗PD-1抗体である、本発明1024の方法。
[本発明1026]
前記抗体が抗IDO抗体である、本発明1024の方法。
[本発明1027]
前記抗体が抗CTLA-4抗体である、本発明1024の方法。
[本発明1028]
前記抗体が抗PD-L1抗体である、本発明1024の方法。
[本発明1029]
前記抗体が抗LAG-3抗体である、本発明1024の方法。
[本発明1030]
前記投与工程の前に、前記腫瘍における高い突然変異負荷を判定する工程をさらに含む、本発明1024の方法。
【図面の簡単な説明】
【0017】
図1】ペンブロリズマブに対する臨床応答。(図1A)生化学的応答。血清タンパク質バイオマーカーレベルは、各サイクルで測定され、これらの値は、ベースラインからの変化パーセントを表す。ベースラインの腫瘍マーカー値が正常の上限値よりも大きかった場合、患者が含まれた。CA-125は、子宮内膜癌を患っている患者のために使用され、CA19-9は、ある胆管癌およびある膨大部癌のために使用され、CEAが、すべての他の患者のために使用された。緑色、赤色、および黒色線は、それぞれ、MMR欠損CRC、MMR能のあるCRC、およびMMR欠損非CRCを表す。(図1B)放射線学的応答。腫瘍応答を一定間隔で測定し、値は、各測定可能な腫瘍のベースライン測定から最長径の和(SLD)の最良の分数の変化を示す。
図2】MMR状態によるペンブロリズマブへの臨床的利点。カプランマイヤー曲線を、(図2A)結腸直腸癌コホートにおける無増悪生存率、(図2B)結腸直腸癌コホートにおける全生存、(図2C)結腸直腸以外のMMR欠損癌を患っている患者の無増悪生存率(PFS中央値=5.4カ月、95%信頼区間、3%~評価不可能)、および(図2D)結腸直腸以外のMMR欠損癌を患っている患者の全生存に対して示す。MMR欠損腫瘍(CRCおよび非CRC)を有する両方のコホートでは、全生存中央値に達しなかった。MMR能のある癌を患っているコホートにおける患者は、2.2カ月のPFS中央値(95%信頼区間 1.4~2.8%)および5.0カ月のOS中央値(95%信頼区間 3.0~評価不可能)を有した。
図3】(図S2.)放射線学的応答のスパイダープロット。腫瘍応答を一定間隔で測定し、値は、各測定可能な腫瘍のベースライン測定から最長径の和(SLD)の変化パーセントを示す。患者はベースラインおよび研究時治療走査が利用可能であった場合のみ含まれた。緑色および赤色は、それぞれ、MMR欠損CRCおよびMMR能のあるCRCを患っている患者を表す。青色は、CRC以外のMMR欠損癌を患っている患者を表す。
図4】(図S3)MMR能のあるCRCおよびMMR欠損CRCは、同等の研究登録前の治療時間および転移性疾患の期間を有する。このペンブロリズマブ研究における、(図4A)研究登録直前の療法における時間(HR 0.81、95%信頼区間 0.38~1.752、p=0.60)および(図4B)登録前の転移性疾患の期間(HR 1.13、95%信頼区間 0.49~2.62、p=0.78)のカプランマイヤー推定は、MMR欠損CRCコホートとMMR能のあるCRCコホートとの間で同等であった。治療難治性CRC集団には先行の療法における短期間が予想される。
図5】(図S4.)生化学的応答の滝プロット。血清タンパク質バイオマーカーレベルは、各サイクルで測定され、これらの値は、ベースラインからの最良の変化パーセントを表す。ベースラインの腫瘍マーカー値が正常の上限値よりも大きかった場合、患者が含まれた。CA-125は、子宮内膜癌を患っている患者のために使用され、CA19-9は、ある胆管癌およびある膨大部癌のために使用され、CEAは、すべての他の患者のために使用された。緑色および赤色は、それぞれ、MMR欠損CRCおよびMMR能のあるCRCを患っている患者を表す。青色は、CRC以外のMMR欠損癌を患っている患者を表す。
図6】(図S5.)MMR欠損腫瘍およびMMR能のある腫瘍における体細胞突然変異。腫瘍および適合した正常DNAのエクソームシークエンシング(図6A)および客観的応答との相関関係(図6B)によって特定された1腫瘍当たりの体細胞突然変異の合計(非パラメトリックWilcoxon検定、p=0.007、およびJonckheere-Terpstra傾向検定、p=0.02)。
図7】(図S6)CD8およびPD-L1の発現の免疫組織化学。MMR欠損CRC(対象#16、上)およびMMR能のあるCRC(対象#3、下)からの侵襲最深部(黄色の破線)。黄色の破線が腫瘍(T)と正常な(N)組織を分ける。MMR欠損腫瘍のある患者(上パネル)においてPD-L1(青色矢印)およびCD8(茶色の点)の顕著な発現があるが、一方、MMR能のある腫瘍(下パネル)においては、いずれのマーカーの発現もほんのわずかであった。CD8に対して抗体で免疫標識した(茶色の点)別のMMR欠損CRC(対象#19、上)およびMMR能のあるCRC(対象#3、下)における腫瘍浸潤リンパ球(TIL)の代表的な画像。MMR欠損腫瘍におけるCD8細胞の浸潤に留意されたい。侵襲最深部の元の倍率 10倍およびTIL 20倍。
図8】(図S7.)MMR欠損およびMMR能のある腫瘍の微環境におけるCD8およびPD-L1発現。T細胞密度単位は、細胞/mm2(腫瘍)である。侵襲最深部とは、腫瘍と正常組織との接合部の免疫細胞(TILおよびマクロファージ)を指す。P値は、不対t検定を用いて得た。
図9】(図S8.)CD8発現およびペンブロリズマブへの臨床的利点。腫瘍内CD8T細胞密度(細胞/mm2)と客観的応答との間の相関関係(Jonckheere-Terpstra検定、p=0.02)
図10】(表S1.)免疫関連およびRECIST応答基準の比較(出典Wolchok et al.Clin Can Res 2009;15:7412-20.)
図11】(表S2.)治療に対する免疫関連応答
図12】(表S4.)全体細胞突然変異および突然変異関連の新抗原(MANA)と臨床転帰の相関関係
図13】(表S5.)免疫マーカーと臨床転帰の相関関係
【発明を実施するための形態】
【0018】
発明の詳細な説明
本発明者らは、免疫チェックポイント阻害剤が、高い突然変異負荷を有する腫瘍において最も良く働くことを見出した。さらに、ミスマッチ修復に欠損のある腫瘍は、この表現型が高頻度で突然変異の継続的蓄積をもたらすため、免疫療法の特定の形態に特に影響を受けやすい。本発明者らは、マイクロサテライト不安定性の表現型または他の高い突然変異負荷を示す癌患者のための治療を開発した。本治療は、免疫チェックポイントのための阻害抗体を含む。そのようなチェックポイントは、PD-1、IDO、CTLA-4、PD-L1、およびLAG-3を含む。その他の免疫チェックポイントも使用することができる。抗体は、静脈内注射、経口投与、皮下投与、舌下投与、眼内投与、経鼻投与等が挙げられるが、これらに限定されない、便利な任意の手段によって投与することができる。
【0019】
マイクロサテライト不安定性(MSI)腫瘍はDNAミスマッチ修復に欠損があり、これが高い自然突然変異率および新抗原の発現の可能性をもたらす。さらに、黒色腫と同様に、MSI陽性結腸癌において、しばしば、顕著なリンパ球浸潤がある。MSIまたはそうでなければ高い突然変異負荷がある任意の腫瘍が、本発明により治療され得る。それらは、下の実施例1に記載されるものが挙げられるが、これらに限定されない、当該技術分野で周知の任意の方法によりMSIの属性について試験され得る。1つ以上のMSIマーカーのうちのいずれかを、MSI表現型を判定するために試験することができる。サンプルは、1腫瘍ゲノム当たり少なくとも100、少なくとも200、少なくとも300、少なくとも400、少なくとも500、少なくとも600、少なくとも700、少なくとも800、少なくとも900、少なくとも1000、少なくとも1100、少なくとも1200、少なくとも1300、少なくとも1400、少なくとも1500、または少なくとも1600個の突然変異を有する腫瘍を特定することによって高い突然変異負荷について試験され得る。高い突然変異負荷は、個体の正常な組織と比較して、腫瘍における多数の体細胞突然変異を意味する。非MSI腫瘍における体細胞突然変異の平均数は、約70個の体細胞突然変異である。
【0020】
MSI表現型または高い突然変異負荷を示す任意のタイプの腫瘍は、本発明により試験および/または治療され得る。これらには、結腸、胃、子宮内膜、胆管、膵臓の癌、および前立腺癌が含まれるが、これらに限定されない。神経膠腫、胸部、肺、皮膚、食道、肝臓、腎臓、卵巣、肉腫、子宮、頸部、膀胱、睾丸、口腔、舌、ならびに小および大腸を含む、膨大部、胆管、脳の腫瘍はまた、試験および/または治療され得る。
【0021】
MSIの試験は、当該技術分野で周知の任意の手段によって達成され得る。5つのほぼ単形性のモノヌクレオチド反復マーカー(BAT-25、BAT-26、MON0-27、NR-21、およびNR-24)ならびに2つの高度に多様性のあるペンタヌクレオチド反復マーカー(Penta CおよびPenta D)のマーカーのうちの1つ以上が、試験され得る。使用することができるある商業用システムにおいて、蛍光標識されたプライマー(マーカーパネル)が、上記の指名されたマーカーのうちの7つすべての共増幅のために使用される。断片は、遺伝子型/表現型の割り当ての増幅後に検出される。
【0022】
MSIについて試験することができるサンプルは、腫瘍組織、およびある特定の核酸が腫瘍から排せつされる体液を含む。そのような組織および体液中の腫瘍DNAについての試験は、周知である。
【0023】
使用することができる抗体のタイプには、免疫チェックポイント阻害剤に対して開発されている任意のものが含まれる。これらは、モノクローナルまたはポリクローナルであり得る。それらは、酵素的切断または組換えDNA技術によって作製されたものを含む、一本鎖断片または完全抗体の他の断片であってもよい。それらは、IgG、IgM、IgEが挙げられるが、これらに限定されない、任意のイソタイプのものであってもよい。抗体は、ヒト、ヤギ、ウサギ、マウス、ウシ、チンパンジーを含む、任意の種源のものであってもよい。抗体は、ヒト化であっても、キメラであってもよい。抗体は、治療用分子であろうとトレーサー分子であろうと、別の部分に結合されるように共役または操作され得る。治療用分子は、例えば、毒素であってもよい。
【0024】
MMRの欠損があるおよび欠損のない腫瘍を治療するためのペンブロリズマブの小規模な第2相試験からのデータは、MMR欠損腫瘍がMMR能のある腫瘍よりもPD-1遮断に対してより応答が良いという仮説を支持する。MMR欠損は、結腸直腸、子宮、胃、胆道、膵臓、卵巣、前立腺、および小腸の癌を含む、多くの癌において生じる18、34~42。これらのタイプのMMR欠損腫瘍を患っている患者はまた、POLD、POLE、またはMYHにおける突然変異を有するもののように、患者の腫瘍が他のDNA修復欠損を含み得るように、抗PD-1療法からの恩恵を受ける18、43、44
【0025】
MMR欠損腫瘍が免疫系を刺激する仮説は、新たな見解ではなく45、MMR欠損腫瘍において観察された濃厚な免疫浸潤およびTh1関連のサイトカインリッチな環境によって支持されている19~22、46。最近の研究は、MMR欠損腫瘍微環境が、PD-1、PD-L1、CTLA-4、LAG-3、およびIDOを含むいくつかの免疫チェックポイントリガンドを強力に発現することを示すことによってこれらの古典的な観察を精緻化し、このことはそれらの活性免疫微環境が腫瘍消失に抵抗する免疫阻害シグナルによって平衡されることを示した47。MMR欠損癌腫と関連した免疫浸潤が新抗原に対して行われたことは、古いおよび新しい見解の両方に対して最も適切な説明であった。黒色腫における抗CTLA-441および肺癌における抗PD-148に対するより高度な突然変異負荷およびより高度な奏功率の相関関係は、MANA認識が内因性抗腫瘍免疫応答の重要な要素であるという考えに対するさらなる支持を提供する。
【0026】
現在およびこれまでの研究の結果に基づいて、我々は、MMR欠損から生じる大いに(20倍超)増加した数の突然変異関連の新抗原(図12(表S4)、また、New England Journal of Medicineのオンラインでも入手可能であり、参照により本明細書に組み込まれる)が、この遺伝的に定義された癌の一部の増強された抗PD-1応答性への基盤であることを示唆している。結合親和性のコンピュータ内の予測のみに基づいた腫瘍における突然変異関連の新抗原の数の我々の推量を通して、この示唆は、MMR能のある腫瘍がMMR欠損腫瘍よりもリンパ球の浸潤がはるかに少なかったという観察と一致する(図7(S6)、図8(S7)、および図13(表S5)、New England Journal of Medicineのオンラインで入手可能であり、参照により本明細書に組み込まれる)。最近の研究49、50は、わずかな割合の予測したネオエピトープのみが、MHCを有する細胞表面上に実際に提示され、内因性T細胞応答の標的であることを示す。予測された突然変異関連の新抗原の数が実際の突然変異関連の新抗原の数に比例しているが、実際の突然変異関連の新抗原の増加を有する腫瘍が、腫瘍に対して反応するように免疫系を刺激する可能性が高いように思われる。MMR欠損腫瘍とMMR能のある腫瘍との間の抗PD-1応答性の差の根底にある代替の機序もまた、考慮されるべきである。例えば、MMR欠損腫瘍およびMMR能のある腫瘍において活性化される異なるシグナル伝達経路は、腫瘍微環境内のPD-1経路の活性化差異に生じ得る可溶性因子の分泌における差をもたらし得る26~28。遺伝的な差は、腫瘍関連の自己抗原の発現を変化させ、同様に、腫瘍の抗原性を変化させ得る後成的な差に影響を及ぼし得る。抗原特異的な免疫応答の実験解析および免疫微環境の変化は、PD-1抗体に対するMMR欠損腫瘍の著しい応答性に対するこれらの因子の相対的寄与率を定義するのに役立てなければならない。
【0027】
いくつかの注目に値すべき観察が、この研究の過程においてなされた。第1に、CEAのような血清タンパク質バイオマーカーの変化は、治療薬の単回投与後の臨床的利点と一致した。CEAレベルの減少は、数カ月で客観的な放射線学的証拠に先行し、恐らく、循環腫瘍DNA(ctDNA)等の他のバイオマーカーはまた、初期応答の代理マーカーとして有益であり得る51、52。第2に、我々の結果は、腫瘍ゲノムの評価が免疫療法を決めるのに役立ち得ることを示唆している。それらは、代替物の数およびタイプが、MMR能のある癌においてでさえ、免疫チェックポイント阻害剤の潜在的有用性を判断するのに有用であるのが分かり得るという見解を支持する41、48、53。最も重要なことだが、我々の結果は、すなわち、根底にある腫瘍タイプを問わず、遺伝的状態だけに基づいて特定の種類の腫瘍の治療に対して新規のアプローチを実証する。
【0028】
上述の開示は、概して、本発明を説明する。本明細書を開示するすべての参照は、参照により明確に組み込まれる。以下の特定の実施例を参照することにより、より完全な理解が得ることができるが、これらの実施例は例示の目的でのみ本明細書に提供され、本発明の範囲を限定することを意図するものではない。
【実施例0029】
実施例1
MSI試験
MSI試験は、アッセイの開発を必要とせずに、すでに標準化され、CLIAで認定された実験室において行われる。アーカイブした腫瘍サンプルまたは新たに得られた生検は、MSIを決定するために使用されよう。MSI状態は、CLIAで認定された免疫組織化学(IHC)または適格性のためのPCR系試験によって局所的に行われるであろう。評価可能患者は、Johns HopkinsのPromegaからのMSI Analysis Systemを用いて確認されるであろう。この試験は、5つのほぼ単形性のモノヌクレオチド反復マーカー(BAT-25、BAT-26、MON0-27、NR-21、およびNR-24)における反復単位の挿入または欠失を通してMSI状態を決定するであろう。少なくとも2つのMSI遺伝子座は、コホートAおよびCにおいて評価が可能であることが必要とされる。患者は、新しいコホートに割り当てられ、および/またはPromega試験の結果に基づいて置き換えられ得る。
【0030】
実施例2
方法
患者
この第2相研究のための治療難治性の進行性転移性癌患者は、3つの参加施設から動員された(表1)。コホートAは、MMR欠損の結腸直腸腺癌を患っている患者からなり、コホートBは、MMR能のある結腸直腸腺癌を患っている患者からなり、コホートCは、結腸直腸以外のタイプのMMR欠損癌からなる、3つのコホートが、評価された。
【0031】
研究の監視
NEJM.orgで見出され得るプロトコルは、各施設での施設内治験審査委員会で承認され、研究は、ヘルシンキ宣言およびthe International Conference on Harmonization Guidelines for Good Clinical Practiceに従って行われた。すべての患者より、研究登録前に、書面によるインフォームド・コンセントを得た。治験責任医師(D.L.)および研究スポンサー(L.A.D.)は、研究の監視に関与した。Merckは、研究薬物を提供し、プロトコルおよびこの原稿の最終草案を再検討した。臨床研究は、主に、慈善的支持を通して資金供給された。
【0032】
研究設計
この第2相試験は、Green-Dahlbergの二段階設計を用いて行われ、上記の3つの並行コホートからなった。研究薬剤のペンブロリズマブ(Merck)を、14日毎に、10mg/kgで静脈内投与した。ペンブロリズマブは、PD-1とそのリガンドPD-L1およびPD-L2との間の相互作用を遮断するIgG4/カッパイソタイプのヒト化モノクローナル抗PD-1抗体である。
【0033】
安全性評価は、各治療前に行われた。全腫瘍量の評価は、各サイクルの開始時に血清バイオマーカーの測定を介して行われた。放射線学的評価は、12週間で、その後、8週間毎に行われた。臨床的プロトコルに関するさらなる詳細は、実施例3において提供される。
【0034】
ミスマッチ修復状態の解析
MMR経路における遺伝的異常を有する腫瘍は、特に、マイクロサテライトとして知られている反復DNAの領域で、何千もの体細胞突然変異を宿すことが知られている。ゲノムのこれらの領域における突然変異の蓄積は、マイクロサテライト不安定性(MSI)と称される26~28。MMR状態は、MMRに障害が起きた場合に、エラーをコピーする傾向がある選択されたマイクロサテライト配列の評価を通じて、PromegaからのMSI Analysis Systemを用いて、腫瘍において評価された26~28。さらなる詳細については、追加の別表を参照のこと。
【0035】
ゲノムおよびバイオインフォマティクス解析
主要な腫瘍サンプルおよび一致した正常な末梢血標本を、MMR欠損を患っている対象およびMMR能のある癌腫を患っている対象の一部から得、十分な腫瘍組織は、エクソンシークエンシング30およびHLAハプロタイピングに対して利用可能であった。突然変異体ペプチド結合の可能性を評価するために、個々の患者のMHCクラスI HLAハプロタイプと併せた体細胞エクソンデータを、エピトープ予測アルゴリズムに適用した31、32。このアルゴリズムは、各腫瘍における突然変異関連の新抗原の総数の推定値を提供した。さらなる詳細は、追加の別表(New England Journal of Medicineのオンラインで入手可能であり、参照により本明細書に組み込まれる)において提供される。
【0036】
統計解析
主要評価項目は、コホートAおよびBでは、免疫関連応答基準(irRC)を用いて評価した20週での免疫関連客観的奏功率(irORR)および免疫関連無増悪生存(irPFS)率であった33。主要評価項目は、コホートCでは、20週でのirPFS率であった。免疫関連基準(すなわち、免疫系療法を評価するために使用される基準)は、放射線学的応答に基づいており、RECIST基準とは異なり、疾患進行後に疾患の範囲を捕捉し、これらの基準は、図10(表S1)中に定義され、RECIST v1.1と比較される。20週間での奏功率およびPFS率は、RECIST v1.1およびirRC(図10(表S1))を用いて、この研究において評価され、報告された。PFSおよび全生存は、カプランマイヤー法によって要約された。仮説の詳細、ヌル仮説を拒絶する決定規則ならびに有効性および無益性に関する早期中止規則、ならびに統計的方法は、追加の別表に提供される。
【0037】
実施例3
補充方法
患者
この研究に参加するための対象者であるために、患者は、少なくとも18歳であり、以前に治療された進行癌の証拠を組織学的に確認されていなくてはならない。すべての患者は、登録前に、MMRの状態の試験を受けた。すべての患者は、固形腫瘍における応答評価基準(RECIST)、バージョン1.1、米国東海岸癌臨床試験グループ(ECOG)のパフォーマンススコアが0または1、ならびに十分な血液、肝臓、および腎機能によって定義されるように、少なくとも1つの測定可能な病変を有した。CRCを有する適格患者は、少なくとも2つの事前の癌療法を受けていなければならず、他の癌タイプを有する患者は、少なくとも1つの事前の癌療法を受けていなければならない。未治療の脳転移、HIV、B型肝炎、C型肝炎、臨床的に重要な腹水症/浸出、または自己免疫疾患の病歴を有する患者は、除外された。
【0038】
研究の監視
原稿の初期草案は、最終原稿に寄与する著者の一部およびすべての著者によって準備された。すべての著者は、刊行物の原稿を提出することを決定した。治験責任医師および研究スポンサーは、報告されたデータの正確性および完全性、ならびにプロトコルの順守を保証する。
【0039】
HLAタイピング
HLA-A、HLA-B、およびHLA-C配列ベースタイピングは、下記のように、3つの異なるステップに分類することができる。Aジェネリック、A*02特異的、Bジェネリック、B群特異的、CジェネリックおよびC*07特異的PCR、ならびにシークエンシング混合を、JHUコア施設においてなされた。Celeraの対立遺伝子SEQR HLA-B配列ベースのタイピングキットを、BジェネリックSBTのために使用した。HLA-Aタイピングスキームは、2つのPCR反応物、AジェネリックおよびA*02特異的からなる。Aジェネリック単位複製配列は、部分エクソン1~部分エクソン5を包含する。A*02単位複製配列は、部分エクソン1~部分エクソン5を包含する。HLA-Bタイピングスキームは、2つのPCR反応物、BジェネリックおよびB群特異的からなる。BジェネリックPCRは、エクソン2-エクソン3およびエクソン4-エクソン7を包含する2つのPCR単位複製配列を含む多重反応物である。B群特異的単位複製配列は、部分エクソン1~部分エクソン5を包含する。HLA-Cタイピングスキームは、2つのPCR反応物、CジェネリックおよびC*07特異的からなる。CジェネリックおよびC*07特異的単位複製配列は、エクソン1~7を包含する。
【0040】
HLA-AおよびB PCRの特異性は、AmpliTaq Gold DNAポリメラーゼを用いた。GeneAmp High Fidelity酵素は、HLA-CおよびC*07 PCRの混合のために使用される。この酵素は、2つのポリメラーゼ:AmpliTaq DNAポリメラーゼ(非プルーフリーディングポリメラーゼ)およびプルーフリーディングポリメラーゼの混合である。この酵素混合は、より大きな完全長HLA-C単位複製配列の十分かつロバストな増幅を生成するために必要である。
【0041】
PCR生成物の精製は、エクソヌクレアーゼIおよびエビアルカリホスファターゼを用いて行われた。AジェネリックおよびBジェネリックおよび単位複製配列は、エクソン2、3、4に対して双方向で配列決定された。Cジェネリック単位複製配列は、エクソン2、3に対して双方向で配列決定され、エクソン1、4、5、6、7に対して単一方向で配列決定された。A*02特異的、B群特異的、およびC*07特異的単位複製配列は、エクソン2、3に対して単一方向で配列決定された。すべてのシークエンシング反応は、Applied BiosystemsからのBig Dye Terminator V1.1で行われ、ABI Prism 3500XL Genetic Analyzerで配列決定された。Conexio Genomicの「Assign SBT」対立遺伝子割り当てソフトウェアを用いて、データファイルを処理した。
【0042】
ミスマッチ修復状態試験1、2
6片の腫瘍および正常(非病変部のリンパ節または縁部の切除)を切断し(各5ミクロン)、脱パラフィン化し(キシレン)、1つはヘマトキシリンおよびエオシン(H+E)で染色した。有資格の解剖学的病理学者によって表された少なくとも20%の腫瘍細胞を含む腫瘍領域は、Pinpoint DNA単離システム(Zymo Research,Irvine,CA)を用いてマクロ解剖し、プロテナーゼKで8時間消化し、DNAをQIAamp DNA Miniキット(Qiagen,Valencia,CA)を用いて単離した。MSIは、MSIおよび2-ペンタヌクレオチド反復遺伝子座(PentaCおよびPentaD)を検出するために、5つの偽単形性モノヌクレオチド反復(BAT-25、BAT-26、NR-21、NR-24、およびMONO-27)からなる、MSI Analysis System(Promega,Madison,WI)を用いて評価して、製造業者の説明書によって、正常サンプルと腫瘍サンプルとの間の同一性を確認した。50~100ngのDNAの増幅後、蛍光PCR生成物は、Applied Biosystems 3130xlキャピラリー電気泳動装置(Invitrogen,Calsbad,CA)において大きさ順に並べた。ペンタヌクレオチド遺伝子座は、すべての場合において同一性を確認した。対照は、陰性対照として水を含み、陽性対照として80%の生殖細胞DNAと20%のMSI癌DNAの混合物を含んだ。基準の大きさは、各マイクロサテライト遺伝子座に対して決定され、腫瘍は、2つ以上のモノヌクレオチド遺伝子座が生殖細胞DNAと比較して長さが異なる場合、MSIとして指定された。
【0043】
シークエンシング解析
サンプル
FFPE遮断または凍結組織として提供されるサンプルは、腫瘍の細胞質を決定するために病理学的再調査を行った。腫瘍をマクロ解剖して、混濁している正常な組織を除去し、20%超の腫瘍細胞を含むサンプルをもたらした。一致した正常サンプルを、血液、唾液、または外科的手術から得られた正常組織として提供した。
【0044】
サンプル調製および次世代のシークエンシング
サンプル調製、ライブラリー構築、エクソーム捕捉、次世代のシークエンシング、ならびに腫瘍および正常サンプルのバイオインフォマティクス解析は、Personal Genome Diagnostics,Inc.(Baltimore,Maryland)で行われた。簡潔に言えば、DNAは、Qiagen DNA FFPE組織キットまたはQiagen DNA血液ミニキット(Qiagen,CA)を用いて一致した血液または唾液サンプルと共に、凍結またはホルマリンで固定したパラフィン包埋(FFPE)組織から抽出した。腫瘍および正常サンプルからのゲノムDNAを、製造業者の説明書に従って、または4で前述に記載されるように、断片化し、Illumina TruSeqライブラリー構築(Illumina,San Diego,CA)のために使用した。簡潔に言えば、100マイクロリットル(μl)のTE中の50ナノグラム(ng)~3マイクログラム(μg)のゲノムDNAを、Covaris超音波処理器(Covaris,Woburn,MA)で150~450bpの大きさに断片化した。150bpよりも短い断片を除去するために、DNAを、Agencourt AMPure XPビーズ(Beckman Coulter,IN)を用いて、PCR生成物対ビーズを1.0対0.9の比率で2回精製し、製造業者の説明書に従って70%のエタノールを用いて洗浄した。精製し、断片化したDNAを、36μlのH2O、10μlのEnd Repair反応緩衝液、5μlのEnd Repair酵素ミックス(カタログ番号#E6050,NEB,Ipswich,MA)と混合した。100μlのend-repair混合物を、20℃で30分間インキュベートし、Agencourt AMPure XPビーズ(Beckman Coulter,IN)を用いて、PCR生成物対ビーズを1.0対1.25の比率で精製し、製造業者の説明書に従って70%のエタノールを用いて洗浄した。Aテールの42μlのend-repaired DNAに、5μlの10X dA Tailing反応緩衝液および3μlのKlenow(エキソ-)(カタログ番号#E6053,NEB,Ipswich,MA)と混合した。50μlの混合物を、37℃で30分間インキュベートし、Agencourt AMPure XPビーズ(Beckman Coulter,IN)を用いて、PCR生成物対ビーズを1.0対1.0の比率で精製し、製造業者の説明書に従って70%のエタノールを用いて洗浄した。アダプターのライゲーションのため、25μlのAテール処理したDNAを、6.7μlのH2O、3.3μlのPE-アダプター(Illumina)、10μlの5Xライゲーション緩衝液、および5μlのQuick T4 DNAリガーゼ(カタログ番号#E6056,NEB,Ipswich,MA)と混合した。ライゲーションの混合物を、20℃で15分間インキュベートし、Agencourt AMPure XPビーズ(Beckman Coulter,IN)を用いて、PCR生成物対ビーズを1.0対0.95および1.0の比率で2回精製し、製造業者の説明書に従って70%のエタノールを用いて洗浄した。増幅ライブラリーを得るために、各25μlのPCRを12個用意し、各々は、15.5μlのH2O、5μlの5×Phusion HF緩衝液、10mMの各dNTPを含有する0.5μlのdNTPミックス、1.25μlのDMSO、0.25μlのIllumina PEプライマー#1、0.25μlのIllumina PEプライマー#2、0.25μlのHotstart Phusionポリメラーゼ、および2μlのDNAを含んだ。使用したPCRプログラムは、98℃で2分間、98℃で15秒間、65℃で30秒間、72℃で30秒間を12サイクル、および72℃で5分間であった。DNAを、Agencourt AMPure XPビーズ(Beckman Coulter,IN)を用いて、PCR生成物対ビーズを1.0対1.0の比率で精製し、製造業者の説明書に従って70%のエタノールを用いて洗浄した。エクソームまたは標的領域を、製造業者の説明書に従ってAgilent SureSelect v.4キット(Agilent,Santa Clara,CA)を用いて溶液中に捕捉した。次いで、捕捉したライブラリーを、Qiagen MinEluteカラム精製キットで精製し、17μlの70℃のEB中に溶出して、15μlの補足したDNAライブラリーを得た。(5)捕捉したDNAライブラリーを、以下の方法で増幅した:各々が、19μlのH2O、6μlの5×Phusion HF緩衝液、0.6μlの10mM dNTP、1.5μlのDMSO、0.30μlのIllumina PEプライマー#1、0.30μlのIllumina PEプライマー#2、0.30μlのHotstart Phusionポリメラーゼを含む、30uLのPCR反応物を8個、および2μlの補足したエクソームライブラリーを用意した。使用したPCRプログラムは、98℃で30秒間;98℃で10秒間、65℃で30秒間、72℃で30秒間を14サイクル(エクソーム)または16サイクル(標的);および72℃で5分間であった。PCR生成物を精製するために、NucleoSpin Extract II精製キット(Macherey-Nagel,PA)を、製造業者の説明書に従って使用した。エクソームライブラリーについては断片の各エンドから100塩基、標的ライブラリーについては断片の各エンドから150塩基を得る、ペアエンドシークエンシングは、Illumina HiSeq 2000/2500およびIllumina MiSeq装置(Illumina,San Diego,CA)を用いて行った。
【0045】
次世代のシークエンシングデータの一次処理および推定上の体細胞突然変異3の特定
体細胞突然変異を、適合腫瘍および正常サンプル中の突然変異を特定するために、VariantDxカスタムソフトウェア(Personal Genome Diagnostics,Baltimore,Maryland)を用いて特定した。突然変異のコーリング前に、腫瘍および正常サンプルの両方に対するシークエンスデータの一次処理は、Illumina CASAVAソフトウェア(v1.8)を用いて行い、これには、アダプター配列のマスキングが含まれる。シークエンスの読み込みは、ELANDを用いてヒト参照ゲノム(バージョンhg18)に対して整列し、Needleman-Wunsch方法5を用いて選択領域のさらなる再整列を行った。次いで、点突然変異、挿入、および欠失からなる候補の細胞変異を、VariantDxを用いて、対象となる全エクソームまたは領域にわたって特定した。VariantDxは、適合した正常サンプルに対して腫瘍サンプルの配列アライメントを試験するが、フィルターを適用して、アライメントおよびシークエンシングアーチファクトを除外する。簡潔に言えば、アライメントフィルターを適用して、腫瘍におけるクオリティの悪い読み込み、不対の読み込み、および不良にマッピングされた読み出しを除外した。塩基クオリティフィルターを適用して、腫瘍については30超、正常のものについては20超の報告されたphredクオリティスコアを有する塩基の含有を制限した。腫瘍における突然変異は、(i)異なる対の読み込みが腫瘍の突然変異を含んだ、(ii)腫瘍における特定の突然変異を含む異なる対の読み込みの数が、読み込み対のうちの少なくとも10%であった、(iii)ミスマッチ塩基が適合した正常サンプルにおいて1%超の読み込み中に存在せず、dbSNP由来の一般の生殖細胞変異体のカスタムデータベース中に存在しなかった、ならびに(iv)位置が150倍超で腫瘍および正常の両方で覆われた場合のみに、候補体細胞突然変異として特定された。パラロガス配列を含む、間違った位置のゲノムアライメントから生じる突然変異は、参照ゲノムを探索することによって特定され、除外された。
【0046】
候補の体細胞突然変異を、遺伝子アノテーションに基づいてさらにフィルターをかけて、タンパク質をコードする領域に生じるものを特定した。機能的結果を、snpEff、ならびにUCSCからのhg18において最新の転写バージョン(https://genome.ucsc.edu/)を用いたCCDS、RefSeq、およびEnsemblアノテーションのカスタムデータベースを用いて予測した。この予測は、正準開始および終止コドンを有する好ましい転写、および利用可能である場合に、Ensemblにわたって、CCDSまたはRefseq転写を指示した。最後に、突然変異を濾過して、イントロンおよびサイレント変化を除外したが、残りの突然変異は、ミスセンス突然変異、ナンセンス突然変異、フレームシフト、またはスプライス部位の変異を生じた。手動の目視検査ステップを用いて、人為的変化をさらに排除した。
【0047】
突然変異体ペプチドMHC結合予測
アミノ酸変化をもたらすと予測された体細胞のフレームシフト、挿入、欠失、およびミスセンス突然変異は、個々の患者のHLAハプロタイプに基づいて、MHCクラスI結合の可能性について分析した。我々の初期解析は、HLA-AおよびHLA-Bに焦点を当てた。アミノ酸の突然変異は、それらの対応するCCDS受入番号に連結させ、これが入手できない場合には、Refseqまたはアンサンブル転写物を使用して、タンパク質配列を抽出した。8量体、9量体、および10量体エピトープを特定するために、各突然変異を取り囲むアミノ酸断片を特定した。これらの15、17、および19個の突然変異体のアミノ酸断片は、エピトープ予測プログラムNetMHC 3.4.6によって分析された。50nm未満の予測された親和性を有するエピトープは、強い潜在性がある結合剤であると考えられ、500nm未満の予測された親和性を有するエピトープは、NetMHCグループ6によって示唆されるように、弱い潜在性がある結合剤であると考えられた。
【0048】
全新抗原負荷をさらに精緻化するために、我々は、各突然変異体ペプチドに対して相補的野生型ペプチドと同じプロセスを繰り返した。次いで、相補的野生型ペプチドが弱い潜在性がある結合剤であると予測された場合に、強い潜在性がある結合剤であった突然変異体ペプチドについてフィルターをかけた。これらの突然変異体ペプチドは、突然変異関連の新抗原(MANA)と称される。患者が、NetMHC 3.4によって支持されない(例えば、症例1、17、および21)の単一のMHCハロタイプを有する場合に、個々のハロタイプは、我々の分析には含まれなかった。
【0049】
統計方法
試験の設計
この試験は、抗PD-1療法のための治療選択マーカーとしてのMK-3475およびMSIの有効性を同時に評価するために、並行の二段階設計を用いて行われた。それは、次に記載される3つのコホートの患者における並行の二段階第2相研究からなった。研究薬剤のMK-3475を、14日毎に、10mg/kgで静脈内投与した。
【0050】
コホートAおよびBの各々において、共一次エンドポイントは、20週で無増悪生存率(irPFS)であり、客観的応答(irOR)は、免疫関連基準を用いて評価した。ステップダウンのゲートキーピングの手順を使用して、全タイプIのエラーを保存した。二段階のGreen-Dahlberg設計を使用して、中間および最終分析はそれぞれ、15人および25人の患者でirPFSを評価した。段階1で、20週間で15の無増悪のうちの1つ以上が、第2段階に進むことが必要とされ、20週間で25の無増悪のうちの4つ以上が、irORのための試験に進むことが必要とされ、25の応答者(irCRまたはirPR)のうちの4つ以上が、そのコホートにおける有望な有効性を示した。各コホートは、20週で4つ以上の無増悪および4つ以上の応答が確認されるとすぐに、有効性のために終了され得たか、または段階1において15のうちの0が20週で無増悪であるか、または22人以上の対象が20週で疾患の増悪を有するとすぐに、無益であるため終了され得る。この設計は、20週間で25%のirPFS率を検出するために90%の検出力および21%のirOR率(irORR)を検出するために80%の検出力を達成し、20週間で5%のirPFS率および5%irORRの帰無仮説で0.05の全タイプIエラーを有する。
【0051】
コホートCについては、主要評価項目は、20週でirPFSであった。2段階のGreen-Dahlbergの2段階設計が、中間および最終分析後に14および21人の患者に使用され、段階1で、20週間で14の無増悪のうちの1つ以上が、第2段階に進むことが必要とされ、最後には、20週間で21の無増悪のうちの4つ以上が、コホートCにおいて十分な有効性を示した。コホートは、20週間で4つ以上の無増悪が確認されるとすぐに、終了され得る。この設計は、20週間で25%のirPFS率を検出するために81%の検出力を有し、20週間で5%のirPFS率の帰無仮説で5%のタイプIエラーを有する。
【0052】
統計分析
応答および進行は、RECIST v1.1、および二次元の腫瘍測定の積の合計を使用し、新しい病変をこの合計に取り込む、Wolchokら8から採用された免疫関連応答基準(irRC)を用いて評価された。20週での無増悪生存(PFS)率およびirPFS率は、ペンブロリズマブの開始から20週後に無疾患増悪であり、かつ生存していた患者の割合として推定された。20週前に疾患の進行を有した、または研究データが照合された時点で20週を超えて登録された患者は、20週のPFS(irPFS)率を推定するためにこの解析に含まれた。毒性または疾患の悪化により早期に脱落し、それ故に、20週での腫瘍評価を有さなかった患者は、進行性疾患を有すると見なされた。ORR(irORR)は、CRまたはPR(irCRまたはirPR)の最良の全体応答を達成した患者の割合であった。腫瘍の応答評価を有するのに十分長い研究に携わった患者は、奏功率を推定するための解析に含まれた。応答した者(CRまたはPR)のうち、応答の持続時間は、初めのRECIST応答から疾患の進行の時間であり、進行しなかった応答者における最後の評価可能な腫瘍評価で打ち切られた。
【0053】
PFSおよびirPFSは、初期投与した日から疾患が進行した日または何らかの病因により死亡した日のどちらかが初めに生じたまでの期間として定義された。PFSおよびirPFSは、生存し、かつ無増悪であった患者に対して進行性疾患の不在を文書化する最後の評価可能な腫瘍を評価した日で打ち切られた。全生存(OS)は、初期投与した日から何らかの病因により死亡した日までの期間として定義された。解析の期間に依然として生存していた患者については、OS期間は、患者が生存していることが知られていた最終日で打ち切られた。生存期間は、カプランマイヤー法によって要約された。事後解析として、ログランク検定は、コホートAおよびBを比較するために使用され、ハザード比は、Coxモデルに基づいて推定された。
【0054】
1サイクル後のCEA割合の低下と、PFSまたはOSとの関係は、Cox回帰モデルに基づいた画期的な解析を用いて評価された。相関研究のために、非パラメトリックWilcoxon検定は、MMR欠損患者とMMR能のある患者との間の突然変異負荷を比較するために使用された。応答および生存期間におけるベースラインの突然変異負荷および免疫マーカーの効果は、それぞれ、ロジスティック回帰およびCox回帰を用いて試験された。
【0055】
免疫組織化学および画像解析
B7-H1の発現の膜パターンおよび侵襲最深部での割合を示す悪性細胞の画分は、これまでに報告されたように、3人の病理学者(R.A.A.、F.B.、およびJ.M.T.)によって定量化された9,10。画像解析は、CD8のジアミノベンジジン(DAB)で染色した細胞の数を決定するために使用された。各症例については、H&Eで染色したスライドを使用して、以下の領域を特定した:i)腫瘍、ii)侵襲最深部(悪性組織と非悪性組織との間の境界)、およびiii)正常な組織。CD8で染色したスライドを、Aperio ScanScope AT上で20倍の同等倍率(1ピクセル当たり0.49マイクロメートル)で走査した。腫瘍、侵襲最深部、および正常な組織(上の、H&Eより)に対応する領域は、Aperio ImageScope v12.1.0.5029を用いて別々の層上に注釈を付けた。
【0056】
CD8陽性リンパ球密度は、PIP11において実施されたカスタムアルゴリズムを用いて上の領域のそれぞれにおいて算出された。結果は、VIPSライブラリー12を用いてDeepzoom画像に変換し、OpenSeadragonビューアー(http://openseadragon.github.io)を用いて可視化した。
【0057】
実施例3のみの参照文献
【0058】
実施例4
患者
41人の継続的な患者を、2013年9月から2015年1月まで登録し、治療した(表1)。動員は、治験選択肢を追求して、ミスマッチ修復を有する腫瘍を患っていることが分かっている患者、または不明の状態の腫瘍を患っており、試験した患者を含んだ。MMR欠損CRCコホートにおける1人の患者を、グレード3のビリルビンレベルを可能にするIRBの適格の権利放棄下で登録した。合計32人のCRC患者を、コホートAおよびBに登録した。1回の化学療法および1回(非PD1系)免疫療法のレジメンを受けたことがある1人のMMR能のある患者を除いて、すべてのCRC患者は、2回以上の事前化学療法レジメン(中央値=4)を受けた。
【0059】
CRC以外のMMR欠損の固形腫瘍があると診断された9人の対象を、コホートCに登録した。コホートCの患者は、1回以上の事前化学療法レジメン(中央値=2)を受けた。
【0060】
実施例5
主要評価項目の評価
コホートAにおいては、20週でのirORRおよびirPFS(図11(表S2))は、40%(10人の患者のうち4人、95%信頼区間、12~74%)および78%(9人の患者のうち7人、95%信頼区間、40~97%)であり、コホートCにおいては、71%(7人の患者のうち5人、95%信頼区間、29~96%)および67%(6人の患者のうち4人、95%信頼区間、22~96%)であった。MMR能のあるCRCからなるコホートBにおいて、irORRおよび20週間でのirPFSは、0%(95%CI、0~20%)および11%(18人の患者のうち2人、95%信頼区間、1~35%)であった。MMR欠損のコホートAおよびCの両方は、4人の対象が20週で無疾患進行であり、4つの客観的応答が免疫関連応答基準(図11(表S2)、New England Journal of Medicineのオンラインで入手可能であり、参照により本明細書に組み込まれ、上の補充方法)に基づいて観察された場合に、有効性においてそれらの所定の早期中止規則に達した。
【0061】
患者に対する追跡期間の中央値は、MMR欠損CRCを患っている患者(コホートA)については、32週間(範囲、5~51週間)であり、MMR能のあるCRCを患っている患者(コホートB)については、12週間(範囲、2~56週間)であり、MMR欠損の非CRC腫瘍を患っている患者(コホートC)については、12週間(範囲、4~42週間)であった。20週間でのirPFSに対して評価可能なすべての患者は、少なくとも20週間追跡調査された。
【0062】
実施例6
放射線学的評価
コホートAにおいて10人の評価可能なMMR欠損CRC患者のうち、4人(40%;95%信頼区間、12~74%)は、RECIST基準によって客観的応答を達成した(表2、図1および図3(S2))。患者は、12週間の走査が行われなかった場合、評価が不可能であったと見なされた。疾患制御率は、客観的応答を達成し、疾患が安定していた患者の割合として定義され、コホートAにおいて90%であった(10人の患者のうち9人、95%信頼区間、55~100%)。
【0063】
コホートCにおいて登録されたCRC以外のMMR欠損の癌タイプを有する7人の評価可能な患者のうち、5人(71%、95%信頼区間、29~96%)が、RECIST基準を用いて客観的応答(表2、図3(S2)および図1)を達成し、疾患制御率は、71%(7人の患者のうち5人、95%信頼区間、29~96%)であった。
【0064】
コホートCの患者は、コホートAの患者よりも速く応答した(12対28週間のRECISTによる応答までの期間中央値、p=0.03)。さらに、リンチ症候群と関連しなかった6つすべてのMMR欠損腫瘍(100%)は、客観的応答を達成したが、リンチ症候群と関連した11個の腫瘍のうち3個のみ(27%)が応答した(表S3、p=0.009、New England Journal of Medicineのオンラインでも入手可能であり、参照により本明細書に組み込まれる)。その他のベースラインの特徴付けは、客観的応答との統計学的に有意な関連を示さなかった。
【0065】
コホートBにおいてMMR能のあるCRCを患っている18人の患者のうち、RECIST基準を用いた客観的応答は観察されず(表2、図3(S2)および図1)、疾患制御率は11%(18人の患者のうち2人、95%信頼区間、1~35%)であった。
【0066】
RECIST基準によって応答を達成したすべての患者(図11(表2))はまた、免疫関連応答基準によっても応答を達成した(図11(表S2))。
【0067】
実施例7
生存
コホートAにおいて、MMR欠損CRCを患っている患者は、無増悪生存率(PFS)中央値および全生存(OS)中央値に達しなかった(図2)。対照的に、コホートBにおけるMMR能のある癌を患っている患者は、わずか2.2カ月のPFS(95%信頼区間、1.4~2.8)、および5.0カ月のOS中央値(95%信頼区間、3.0~評価不能)を達成した。コホートC(MMR欠損の非CRC)において、PFS中央値は、5.4カ月(95%信頼区間、3~評価不能)であり、OS中央値に達しなかった。
【0068】
MMR欠損およびMMR能のあるCRCのコホートの事後(図2)比較は、疾患の進行に対してハザード比(HR)(HR=0.10、95%信頼区間、0.03~0.37、p<0.001)および全生存(HR=0.22、95%信頼区間、0.05~1.00、p=0.05)、MMR欠損CRCを患っている候補患者を示した。
【0069】
生存の差が予後の差によるものであり得るかどうかを評価するために、患者が転移性疾患があると診断されている期間の持続時間、および登録前に、患者のこれまでのレジメンにおける患者の臨床成績を測定した。患者のこれまでのレジメンにおける、転移性疾患の持続時間(p=0.77、ログランク検定)またはPFS中央値(p=0.60、ログランク検定)に関して、MMR欠損CRC患者対MMR能のあるCRC患者間で有意な差がないことを見出した(図4(S3))。また、初期診断以来の経過時間を調節する、MMR欠損CRCとMMR能のある腫瘍との間の結果の差を試験するために、PFSおよびOSのさらなる多変量分析を行った。MMR欠損腫瘍とMMR能のある腫瘍との間のペンブロリズマブの異なる効果を表す、PFS(HR0.04、95%信頼区間 0.01~0.21、P<0.001)およびOSに対するハザード比の大きさ(HR0.18、95%信頼区間 0.03~1.01、P=0.05)は、この潜在的差異に対して調節した後に、維持された。
【0070】
実施例8
安全性評価
5%超の患者に生じる有害事象を表3に列記する。選択有害事象は、発疹/掻痒症(24%)、甲状腺炎/甲状腺機能低下症/下垂体炎(10%)、および無症候性膵炎(15%)を含んだ。数は少なかったが、甲状腺機能の異常は、MMR欠損のコホートに制限された(表3)。
【0071】
実施例9
腫瘍マーカー
2つのCRCコホートにおいて、ベースラインのCEAレベルが評価可能であり、登録前の32人の患者のうちの29人において、正常(3mg/dl)の上限を上回った。主なCEAの低下は、MMR欠損CRCを患っている10人の患者のうちの7人に生じ、MMR能のあるCRCを患っている19人の患者のいずれにも生じず、CEAが評価可能であった(図1および図5(S4))。非CRCのMMR欠損患者において、腫瘍マーカーレベル(CEA、CA19-9またはCA-125)は、4人の患者において正常の上限を上回って上昇した。70%超のCA19-9またはCA-125の低下は、これらの4人の患者のうちの3人において生じた。すべて3つのコホートの腫瘍マーカー動力学を図1に示す。ペンブロリズマブの1回の投与後(14日目~28日目)のCEAのレベルの低下は、無増悪(p=0.01)および全生存転帰(p=0.02)の両方を予測した。CEA応答は、疾患制御の放射線学的確認より前に十分に生じた(範囲、10~35週間)。対照的に、進行した患者は、治療薬を介しする30日以内に、急速なバイオマーカーの上昇を示した。それ故に、CEAレベルの変化は、有意に先行し、最終的な放射線学的変化と相関していた。
【0072】
実施例10
ゲノム解析
全エクソーム配列の解析は、MMR能のある患者(n=6)における1腫瘍当たり73個の突然変異と比較して、MMR欠損患者(n=9)における1腫瘍当たり1,782個の体細胞突然変異の平均を示した(非パラメトリックWilcoxon検定、p=0.007)(図6A~6B(S5)、New England Journal of Medicineのオンラインで入手可能である表S3も参照のこと、参照により本明細書に組み込まれる)。これらの突然変異の大部分(63%)は、アミノ酸を改変することが予想される。
【0073】
次いで、これらの突然変異は、各患者の個々のMHCハロタイプの文脈においてそれらの免疫原性の潜在性について評価された。それによって、MMR欠損患者およびMMR能のある患者の腫瘍から、それぞれ、578個および21個の潜在的な突然変異関連の新抗原の平均を特定した(表S3、これはNew England Journal of Medicineのオンラインで入手可能であり、参照により本明細書に組み込まれる)。すべての体細胞突然変異のうちで、潜在的な突然変異関連の新抗原の割合は、両コホートにおいて同様であった(MMR欠損患者およびMMR能のある患者において、それぞれ、32%および29%の平均化)。体細胞突然変異および突然変異関連の新抗原の増加は、改善された無増悪生存率および客観的応答を支持する傾向と関連した(図13(S5)および図12(表S4)、New England Journal of Medicineのオンラインでも入手可能であり、参照により本明細書に組み込まれる)。
【0074】
実施例11
免疫組織化学
CD8およびPD-L1の発現は、腫瘍内で、および腫瘍組織が入手可能である(図7(S6)、New England Journal of Medicineのオンラインでも入手可能であり、参照により本明細書に組み込まれる)30症例における腫瘍の侵襲最深部で免疫組織化学によって評価された。コホートAおよびCにおいて患者からの腫瘍は、コホートBの患者からの腫瘍に含まれるよりもより密度の高いCD8陽性リンパ細胞を含み(図8(S7);p=0.10)、CD8の標識化は、傾向が好ましい客観的応答および安定疾患と関連した(図9(S8)および図13(表S5)、New England Journal of Medicineのオンラインでも入手可能であり、参照により本明細書に組み込まれる)。このCD8陽性リンパ細胞浸潤は、特に、腫瘍の侵襲最深部で顕著であった(図8(S7)、p=0.04)。有意な膜PD-L1発現は、MMR欠損患者のみに生じ、腫瘍浸潤リンパ球(TIL)において顕著であり、腫瘍関連マクロファージは、腫瘍の侵襲最深部に位置した(図8(S7)、p=0.04)。CD8およびPD-L1の発現は、PFSまたはOSで統計的に関連しなかった(図13(表S5))。
【0075】
(表1)患者の人口統計学的およびベースラインの特徴
MMR、ミスマッチ修復;CRC、結腸直腸癌
MMR欠損CRC対MMR能のあるCRC
ECOG、米国東海岸癌臨床試験グループ
【0076】
(表2)客観的RECIST応答
元は12週でPR、20週でCRに変換
12週間での1つのPR
患者は、臨床的進行による12週間の走査が行われなかった場合、評価が不可能であると見なされた。
疾患制御率は、完全寛解、部分応答、または安定疾患を12週間以上有した患者の割合として定義された。
MMR能のあるCRC患者に対して記録された応答なし
【0077】
(表3)薬物関連の有害事象
5%超の患者に生じる有害事象
膵炎のすべての症例は、無症候性であった。
肺炎1事象発生(2%)
【0078】
参照文献
言及された各参照文献の開示は、本明細書に明示的に組み込まれる。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13