(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023000548
(43)【公開日】2023-01-04
(54)【発明の名称】制御装置
(51)【国際特許分類】
G05D 1/02 20200101AFI20221222BHJP
【FI】
G05D1/02 H
【審査請求】有
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2021101440
(22)【出願日】2021-06-18
(71)【出願人】
【識別番号】302050961
【氏名又は名称】キャリオ技研株式会社
(74)【代理人】
【識別番号】110000992
【氏名又は名称】弁理士法人ネクスト
(72)【発明者】
【氏名】水野 修二郎
【テーマコード(参考)】
5H301
【Fターム(参考)】
5H301CC03
5H301CC06
5H301CC10
5H301FF11
5H301HH01
(57)【要約】
【課題】移動体が移動する際にウエイポイントを結ぶ直線からのはずれ量を少なくすることを課題とする。
【解決手段】入力ウエイポイントA0と入力ウエイポイントA1との間の距離が設定距離を超えている場合に、それら2点の入力ウエイポイントを結ぶ直線上に位置する新ウエイポイントANが、2点の入力ウエイポイントと新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が設定距離以下となるように演算される。そして、演算された新ウエイポイントを通過して、2点の入力ウエイポイントの一方から他方に向って移動体が移動するように移動体の作動が制御される。これにより、隣り合う2点のウエイポイントの間の距離が設定距離以下となり、移動体が移動する際にウエイポイントを結ぶ直線からのはずれ量を少なくすることが可能となる。
【選択図】
図7
【特許請求の範囲】
【請求項1】
予め入力されている2点のウエイポイントである入力ウエイポイントの一方から他方に向って移動体を移動させるように当該移動体の作動を制御する制御装置であって、
前記2点の入力ウエイポイントの間の距離が設定距離を超えている場合に、前記2点の入力ウエイポイントを結ぶ直線上に位置する新たなウエイポイントである新ウエイポイントを、前記2点の入力ウエイポイントと前記新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が前記設定距離以下となるように演算するウエイポイント演算部と、
前記ウエイポイント演算部により演算された前記新ウエイポイントを通過して、前記2点の入力ウエイポイントの一方から他方に向って前記移動体を移動させるように当該移動体の作動を制御する制御部と
を備える制御装置。
【請求項2】
前記移動体が前記2点の入力ウエイポイントの一方から他方に向って移動する際の前記2点の入力ウエイポイントを結ぶ直線からの前記移動体の最大許容はずれ量と、前記移動体が所定の方位に向って移動する際の当該移動体の移動方位と前記所定の方位との誤差を示す誤差情報とに基づいて、前記設定距離を演算する設定距離演算部を備える請求項1に記載の制御装置。
【請求項3】
前記ウエイポイント演算部は、
前記2点の入力ウエイポイントと前記新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が全て同じとなるように、前記新ウエイポイントを演算する請求項1または請求項2に記載の制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、移動体の作動を制御する制御装置に関するものである。
【背景技術】
【0002】
移動体の作動を制御する制御装置には、下記特許文献に記載されているように、ウエイポイント航法に従って移動体の作動を制御するものがある。ウエイポイント航法は、座標等で示されたいくつかの地点(ウエイポイント)を順に結んで航行する航法である。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
移動体の使用者はウエイポイントを設定するときに、移動体はウエイポイントを結ぶ直線上を移動するという想定で設定するが、移動体は次のウエイポイントを目指す際に方位センサーの誤差などにより僅かに違う方位に向けて移動する。移動体は方位のほかに自身の現在の座標もチェックしながら移動するため最終的には目的とするウエイポイントに到着するが途中で本来の直線、つまり、ウエイポイントを結ぶ直線からはずれる場合がある。この際、ウエイポイントを結ぶ直線からのはずれ量が許容限度を超える場合がある。なお、一般的には、はずれ量の最大値は方位に関する誤差が一定ならウエイポイントを結ぶ直線の長さに比例する。そこで、本明細書では、移動体が移動する際にウエイポイントを結ぶ直線からのはずれ量を少なくすることを課題とする。
【課題を解決するための手段】
【0005】
上記課題を解決するために、本願の請求項1に記載の制御装置は、予め入力されている2点のウエイポイントである入力ウエイポイントの一方から他方に向って移動体を移動させるように当該移動体の作動を制御する制御装置であって、前記2点の入力ウエイポイントの間の距離が設定距離を超えている場合に、前記2点の入力ウエイポイントを結ぶ直線上に位置する新たなウエイポイントである新ウエイポイントを、前記2点の入力ウエイポイントと前記新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が前記設定距離以下となるように演算するウエイポイント演算部と、前記ウエイポイント演算部により演算された前記新ウエイポイントを通過して、前記2点の入力ウエイポイントの一方から他方に向って前記移動体を移動させるように当該移動体の作動を制御する制御部とを備える。
【0006】
また、請求項2に記載の制御装置は、請求項1に記載の制御装置において、前記移動体が前記2点の入力ウエイポイントの一方から他方に向って移動する際の前記2点の入力ウエイポイントを結ぶ直線からの前記移動体の最大許容はずれ量と、前記移動体が所定の方位に向って移動する際の当該移動体の移動方位と前記所定の方位との誤差を示す誤差情報とに基づいて、前記設定距離を演算する設定距離演算部を備える。
【0007】
また、請求項3に記載の制御装置では、請求項1または請求項2に記載の制御装置において、前記ウエイポイント演算部は、前記2点の入力ウエイポイントと前記新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が全て同じとなるように、前記新ウエイポイントを演算する。
【発明の効果】
【0008】
請求項1に記載の制御装置では、2点の入力ウエイポイントの間の距離が設定距離を超えている場合に、それら2点の入力ウエイポイントを結ぶ直線上に位置する新ウエイポイントが、2点の入力ウエイポイントと新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が設定距離以下となるように演算される。そして、演算された新ウエイポイントを通過して、2点の入力ウエイポイントの一方から他方に向って移動体が移動するように当該移動体の作動が制御される。これにより、隣り合う2点のウエイポイントの間の距離が設定距離以下となり、移動体が移動する際にウエイポイントを結ぶ直線からのはずれ量を少なくすることが可能となる。
【0009】
また、請求項2に記載の制御装置では、移動体が2点の入力ウエイポイントの一方から他方に向って移動する際の2点の入力ウエイポイントを結ぶ直線からの移動体の最大許容はずれ量と、移動体が所定の方位に向って移動する際の当該移動体の移動方位と所定の方位との誤差を示す誤差情報とに基づいて、設定距離が演算される。これにより、移動体の使用者が望む最大許容はずれ量以内のはずれ量で移動体を移動させることが可能となる。
【0010】
また、請求項3に記載の制御装置では、2点の入力ウエイポイントと新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が全て同じとなるように、新ウエイポイントが演算される。これにより、移動体が移動する際の最大のはずれ量を少なくすることが可能となる。
【図面の簡単な説明】
【0011】
【
図2】ウエイポイント航法を概略的に示す図である。
【
図3】ウエイポイントA0からウエイポイントA1へ作業車両が移動する際の理想的な軌跡を示す図である。
【
図4】ウエイポイントA0からウエイポイントA1へ作業車両が移動する際の実際の軌跡を示す図である。
【
図5】作業車両がゴルフ場を移動する際の理想的な軌跡を示す図である。
【
図6】作業車両がゴルフ場を移動する際の実際の軌跡を示す図である。
【
図7】制御装置により演算された新ウエイポイントANを通過して、ウエイポイントA0からウエイポイントA1へ作業車両が移動する際の実際の軌跡を示す図である。
【
図8】制御装置により演算された新ウエイポイントAN1,AN2を示す図である。
【
図9】制御装置により演算された新ウエイポイントAN1,AN2を示す図である。
【発明を実施するための形態】
【0012】
以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。
【0013】
図1に、作業車両10のブロック図を示す。作業車両10は、ウエイポイント航法により無人で移動するものであり、車輪駆動装置20と方向転換装置22とGPS信号受信機24と磁気コンパス26と制御装置28とを備えている。車輪駆動装置20は、作業車両10の車輪(図示省略)を駆動させるものであり、車輪駆動装置20の作動により作業車両10は移動する。方向転換装置22は、作業車両10の前輪を転舵するものであり、方向転換装置22の作動により作業車両10の移動方向が変化する。GPS信号受信機24は、GPS衛星30からの信号を受信する。磁気コンパス26は、作業車両10の進行方向の方位を検出する。
【0014】
制御装置28は、コントローラ32と、駆動回路34,36とを備えている。駆動回路34,36は、車輪駆動装置20,方向転換装置22に接続されている。コントローラ32は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、駆動回路34,36に接続されている。これにより、車輪駆動装置20及び方向転換装置22の作動が、コントローラ32によって制御される。また、コントローラ32は、GPS信号受信機24にも接続されている。これにより、コントローラ32は、GPS信号受信機24が受信した信号に基づいて作業車両10の位置を演算する。さらに、コントローラ32は、磁気コンパス26にも接続されている。これにより、コントローラ32は、作業車両10の進行方向の方位を取得する。
【0015】
このような構造の作業車両10はウエイポイント航法により無人で移動する。具体的には、例えば、作業車両10の使用者が、
図2に示すように、5個のウエイポイントA0,A1,A2,A3,A4を作業車両10の制御装置28に入力する。なお、ウエイポイントはXY座標で入力され、そのXY座標は緯度及び経度を示す座標である。また、使用者により入力されたウエイポイントを、以下の説明において、入力ウエイポイントと記載する。このように、5個の入力ウエイポイントA0,A1,A2,A3,A4が制御装置28に入力されると、制御装置28は、入力ウエイポイントA0を始点として、入力ウエイポイントA1,A2,A3の順に入力ウエイポイントA1,A2,A3を経由して、入力ウエイポイントA4まで作業車両10が移動するように、車輪駆動装置20及び方向転換装置22の作動を制御する。
【0016】
例えば、作業車両10を入力ウエイポイントA0から入力ウエイポイントA1まで移動させる際には、まず、制御装置28において、入力ウエイポイントA0,A1に基づいて入力ウエイポイントA0から入力ウエイポイントA1に向う方位(
図3での矢印50の向く方位)が演算される。また、作業車両10は、入力ウエイポイントA0に止められている。そして、入力ウエイポイントA0に止められている作業車両10が、演算された方位を向くように、方向転換装置22の作動が制御される。この際、方向転換装置22の作動が完了すると、つまり、作業車両10が演算された方位を向くと、制御装置28は、車輪駆動装置20を作動させて、作業車両10を移動させる。これにより、作業車両10が入力ウエイポイントA0から入力ウエイポイントA1に向って移動する。
【0017】
ただし、磁気コンパス26の精度には、当然、誤差があるため、作業車両10が演算された方位を向くように、方向転換装置22の作動が制御された後に、作業車両10が移動しても、
図3に示すように、演算された方位(矢印50の向く方位)と異なる方位(矢印52の向く方位)に向って作業車両10が走り出す虞がある。また、磁気コンパス26の精度の誤差だけでなく、作業車両10の直進性能,作業車両10の走行する路面の傾斜等の種々の要因により、作業車両10が、演算された方位(矢印50の向く方位)と異なる方位(矢印52の向く方位)に向って走り出す虞がある。このように、作業車両10が、演算された方位(矢印50の向く方位)と異なる方位(矢印52の向く方位)に向って走り出した場合には、作業車両10は入力ウエイポイントA1に辿りつかないため、制御装置28は、作業車両10の進行方向を所定時間毎に調整している。
【0018】
つまり、制御装置28は、作業車両10の移動中に、所定の時間毎、例えば、1秒毎に、GPS信号受信機24が受信した信号に基づいて作業車両10の位置を演算する。そして、制御装置28は、演算された作業車両10の位置から入力ウエイポイントA1に向う方位を演算し、演算された方位に作業車両10が向くように、方向転換装置22の作動を制御する。これにより、作業車両10の進行方向が所定時間毎に調整されて、作業車両10は、
図4の点線に示すように、入力ウエイポイントA0と入力ウエイポイントA1とを結ぶ直線に沿って移動しないが、最終的には入力ウエイポイントA1に到達する。
【0019】
なお、作業車両10が
図4の点線に沿って移動する際に、入力ウエイポイントA0と入力ウエイポイントA1とを結ぶ直線からズレた位置を移動するが、その際の最大のはずれ量(矢印56の長さ寸法に相当する距離)は、入力ウエイポイントA0と入力ウエイポイントA1との間の距離(以下、「ウエイポイント間距離」と記載する)が長くなるほど大きくなる。具体的には、例えば、磁気コンパス26の精度誤差が8度である場合に、作業車両10が所定の方位に向って移動すると、作業車両10は、その所定の方位から8度ズレた方位に向って移動する。このため、磁気コンパス26の精度誤差が8度である場合に、ウエイポイント間距離が100メートルであれば、はずれ量の最大値は約7メートルとなり、ウエイポイント間距離が150メートルであれば、はずれ量の最大値は約10メートルとなる。なお、はずれ量の最大値は、磁気コンパス26の精度誤差と、ウエイポイント間距離とに基づいて幾何学的な手法により演算することができる。
【0020】
このように、作業車両10が移動する際の2点の入力ウエイポイントを結ぶ直線からのはずれ量が、ウエイポイント間距離が長くなるほど大きくなると、入力ウエイポイントの入力方法によって、作業車両10が障害物により走行できなくなる虞がある。具体的には、例えば、作業車両10をゴルフ場での夜間の巡回作業に用いる場合に、作業車両10の使用者は、
図5に示すように、作業車両10がバンカー60,62,64,樹木66等の障害物に干渉しないように、入力ウエイポイントを制御装置28に入力する。なお、使用者は、入力ウエイポイントの入力作業を少なくするために、必要最小限の入力ウエイポイントしか入力しない場合があり、図に示す例では、4個の入力ウエイポイントA0,A1,A2,A3を入力している。このように、4個の入力ウエイポイントA0,A1,A2,A3が入力された場合に、作業車両10は、
図6に示すように、2点の入力ウエイポイントを結ぶ直線からズレて走行する。この際に、作業車両10は、入力ウエイポイントA1から入力ウエイポイントA2に向って走行する場合、及び、入力ウエイポイントA2から入力ウエイポイントA3に向って走行する場合には、障害物に干渉しないが、入力ウエイポイントA0から入力ウエイポイントA1に向って走行する場合にバンカー60に干渉する。つまり、作業車両10は、入力ウエイポイントA0から入力ウエイポイントA1に向って走行する場合にバンカー60に入り込んで走行不能となる虞がある。これは、入力ウエイポイントA0と入力ウエイポイントA1との間の距離が、入力ウエイポイントA1と入力ウエイポイントA2との間の距離、入力ウエイポイントA2と入力ウエイポイントA3との間の距離と比較して長いため、入力ウエイポイントA0から入力ウエイポイントA1に向って走行する場合のはずれ量が大きくなるからと考えられる。
【0021】
このようなことに鑑みて、作業車両10では、2点の入力ウエイポイントの間の距離、つまり、ウエイポイント間距離が長い場合には、制御装置28において2点の入力ウエイポイントを結ぶ直線上に位置する新たなウエイポイント(以下、「新ウエイポイント」と記載する)が演算される。そして、作業車両10が、新ウエイポイントを通過して、2点の入力ウエイポイントの一方から他方に移動するように、車輪駆動装置20及び方向転換装置22の作動が制御される。
【0022】
具体的には、作業車両10の使用者は、制御装置28に入力ウエイポイントとともに、作業車両10の進行方位の誤差を示す誤差情報と、作業車両10の最大許容はずれ量とを入力する。ここで、作業車両10の進行方位の誤差情報は、作業車両10が所定の方位に向って移動する際の作業車両10の実際の移動方位と、その所定の方位との誤差を示す情報であり、磁気コンパス26の精度誤差が用いられる。このため、作業車両10の使用者は、誤差情報として、磁気コンパス26の精度誤差(例えば、8度)を制御装置28に入力する。また、作業車両10の最大許容はずれ量は、作業車両10が実際に2点の入力ウエイポイントの間を走行する際に、使用者が許容できる最大のはずれ量であり、ゴルフ場でのバンカー60等の位置を考慮して使用者は任意の値を制御装置28に入力する。ここでは、例えば、使用者は、最大許容はずれ量として3メートルを制御装置28に入力する。
【0023】
そして、制御装置28は、入力された誤差情報及び最大許容はずれ量に基づいて設定距離を演算する。設定距離は、誤差情報、つまり、磁気コンパス26の精度誤差(8度)で作業車両10が走行した際に、2点の入力ウエイポイントを結ぶ直線からのはずれ量が最大許容はずれ量(3メートル)となる場合の距離である。この設定距離も、磁気コンパス26の精度誤差(8度)と最大許容はずれ量(3メートル)と基づいて幾何学的な手法により演算することができる。具体的には、磁気コンパス26の精度誤差(8度)で作業車両10が走行した際に、2点の入力ウエイポイントを結ぶ直線からのはずれ量が最大許容はずれ量(3メートル)となる場合の設定距離が、40メートルと演算される。つまり、2点の入力ウエイポイントの間の距離が40メートル以下であれば、作業車両10のはずれ量は3メートル以下であり、2点の入力ウエイポイントの間の距離が40メートルを超えれば、作業車両10のはずれ量は3メートルを超えてしまう。
【0024】
このため、制御装置28は、入力された入力ウエイポイントのうちの隣り合う2点のウエイポイントの間の距離を演算する。例えば、
図5に示すように、4個の入力ウエイポイントA0,A1,A2,A3が入力されている場合に、制御装置28は、入力ウエイポイントA0と入力ウエイポイントA1との間のウエイポイント間距離A0A1、入力ウエイポイントA1と入力ウエイポイントA2との間のウエイポイント間距離A1A2、入力ウエイポイントA2と入力ウエイポイントA3との間のウエイポイント間距離A2A3を演算する。そして、制御装置28は、演算された2点のウエイポイントの間の距離が設定距離を超えているか否かを判断する。
【0025】
この際、例えば、ウエイポイント間距離A1A2が30メートルであり、ウエイポイント間距離A2A3が20メートルである場合には、ウエイポイント間距離A1A2及びウエイポイント間距離A2A3は、設定距離を超えていないと判断される。このように、ウエイポイント間距離が設定距離を超えていない場合には、2点の入力ウエイポイントの間を作業車両10が走行しても、作業車両10のはずれ量は3メートル以下となる。一方、ウエイポイント間距離A0A1が70メートルである場合には、ウエイポイント間距離A0A1は、設定距離を超えていると判断される。このように、ウエイポイント間距離が設定距離を超えている場合には、2点の入力ウエイポイントの間を作業車両10が走行すると、作業車両10のはずれ量は3メートルを超える。
【0026】
そこで、ウエイポイント間距離が設定距離を超えていると判断された場合には、制御装置28は、2点の入力ウエイポイントを結ぶ直線上に位置する新ウエイポイントを演算する。この際、制御装置28は、2点の入力ウエイポイントと新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が設定距離以下となるように新ウエイポイントを演算する。また、制御装置28は、2点の入力ウエイポイントと新ウエイポイントとのうちの隣り合う2点のウエイポイントの間の距離が全て同じとなるように、新ウエイポイントを演算する。
【0027】
具体的には、ウエイポイント間距離A0A1が70メートルである場合に、制御装置28は、
図7に示すように、入力ウエイポイントA0と入力ウエイポイントA1とを結ぶ直線の中点を、新ウエイポイントANとして演算する。このように、制御装置28が新ウエイポイントANを演算することで、入力ウエイポイントA0と新ウエイポイントANとの間の距離は35メートルとなり、入力ウエイポイントA1と新ウエイポイントANとの間の距離も35メートルとなる。これにより、隣り合う2点のウエイポイントの間の距離は設定距離以下となり、作業車両10が入力ウエイポイントA0から新ウエイポイントANに移動する際のはずれ量、及び、作業車両10が新ウエイポイントANから入力ウエイポイントA1に移動する際のはずれ量は、3メートル以下となる。
【0028】
このように、制御装置28は、新ウエイポイントANを演算すると、作業車両10が、入力ウエイポイントA0から新ウエイポイントANに移動した後に、新ウエイポイントANから入力ウエイポイントA1に移動するように、車輪駆動装置20及び方向転換装置22の作動を制御する。つまり、作業車両10が、新ウエイポイントANを経由して、入力ウエイポイントA0から入力ウエイポイントA1に移動するように、車輪駆動装置20及び方向転換装置22の作動を制御する。これにより、作業車両10が入力ウエイポイントA0から入力ウエイポイントA1まで移動する際のはずれ量を最大許容はずれ量(3メートル)以下にすることが可能となり、作業車両10のバンカー60等への干渉を回避し、作業車両10をゴルフ場において適切に巡回させることができる。
【0029】
また、上記説明では、2点の入力ウエイポイントの間に1点の新ウエイポイントが演算されているが、2点の入力ウエイポイントの間に複数点の新ウエイポイントが演算される場合もある。具体的には、例えば、
図8に示すように、ウエイポイント間距離A0A1が100メートルである場合に、制御装置28は、隣り合う2点のウエイポイントの間の距離が設定距離(40m)以下となるように、2点の新ウエイポイントAN1,AN2を演算する。この際、制御装置28は、2点の入力ウエイポイントA0,A1と2点の新ウエイポイントAN1,AN2のうちの隣り合う2点のウエイポイントの間の距離が全て同じとなるように、2点の新ウエイポイントAN1,AN2を演算する。このように、制御装置28が新ウエイポイントAN1,AN2を演算することで、入力ウエイポイントA0と新ウエイポイントAN1との間の距離、新ウエイポイントAN1と新ウエイポイントAN2との間の距離、新ウエイポイントAN2と入力ウエイポイントA1との間の距離の全てが、約33.3メートルとなる。これにより、隣り合う2点のウエイポイントの間の距離は設定距離以下となる。
【0030】
そして、制御装置28は、新ウエイポイントAN1,AN2を演算すると、作業車両10が、新ウエイポイントAN1,AN2を経由して、入力ウエイポイントA0から入力ウエイポイントA1に移動するように、車輪駆動装置20及び方向転換装置22の作動を制御する。このように、2点の入力ウエイポイントの間に複数点の新ウエイポイントを演算し、それら複数の新ウエイポイントを経由して、作業車両10が入力ウエイポイントA0から入力ウエイポイントA1まで移動することでも、作業車両10のはずれ量を最大許容はずれ量以下とすることが可能となる。
【0031】
また、
図1に示すように、制御装置28のコントローラ32は、設定距離演算部70とウエイポイント演算部72と制御部74とを有している。設定距離演算部70は、誤差情報と最大許容はずれ量とに基づいて設定距離を演算するための機能部である。また、ウエイポイント演算部72は、隣り合う2点のウエイポイントの間の距離が設定距離以下となるように、新ウエイポイントを演算するための機能部である。また、制御部74は、作業車両10が新ウエイポイントを通過して2点の入力ウエイポイントの一方から他方に向って移動するように、車輪駆動装置20及び方向転換装置22の作動を制御するための機能部である。
【0032】
なお、上記実施例において、作業車両10は、移動体の一例である。制御装置28は、制御装置の一例である。設定距離演算部70は、設定距離演算部の一例である。ウエイポイント演算部72は、ウエイポイント演算部の一例である。制御部74は、制御部の一例である。入力ウエイポイントA0,A1,A2,A3,A4は、入力ウエイポイントの一例である。新ウエイポイントAN,AN1,AN2は、新ウエイポイントの一例である。
【0033】
また、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、隣り合う2点のウエイポイントの間の距離が同じになるように、新ウエイポイントが演算されているが、隣り合う2点のウエイポイントの間の距離が異なるように、新ウエイポイントが演算されてもよい。具体的には、例えば、
図9に示すように、ウエイポイント間距離A0A1が100メートルである場合に、制御装置28は、入力ウエイポイントA0と新ウエイポイントAN1との間の距離が40メートルとなり、新ウエイポイントAN1と新ウエイポイントAN2との間の距離が40メートルとなり、新ウエイポイントAN2と入力ウエイポイントA1との間の距離が20メートルとなるように、2点の新ウエイポイントAN1,AN2を演算してもよい。ただし、このように、隣り合う2点のウエイポイントの間の距離が異なるように、新ウエイポイントが演算される場合には、隣り合う2点のウエイポイントの間の距離が同じになるように、新ウエイポイントが演算される場合と比較して、はずれ量が大きくなるため、隣り合う2点のウエイポイントの間の距離が同じになるように、新ウエイポイントが演算されることが好ましい。
【0034】
また、上記実施例では、作業車両10の制御装置28に誤差情報及び最大許容はずれ量が入力されて、設定距離が作業車両10の制御装置28により演算されているが、作業車両10の制御装置28と異なる装置、例えば、情報処理装置により設定距離が演算されてもよい。つまり、PC等の情報処理装置に誤差情報及び最大許容はずれ量が入力されて、情報処理装置が設定距離を演算する。そして、情報処理装置により演算された設定距離を作業車両10の制御装置28に入力してもよい。このように、作業車両10の制御装置28と異なる装置において設定距離を演算することでも、本発明の効果を得ることができる。
【0035】
また、上記実施例では、誤差情報として、磁気コンパス26の精度誤差が採用されているが、作業車両10の直進性能,走行路面の傾斜角度等を示す情報を誤差情報として採用してもよい。
【0036】
また、上記実施例では、作業車両10の進行方向の方位を検出するものとして磁気コンパス26が採用されているが、方位を検出可能なものであれば種々のものを採用することが可能である。例えば、GPS信号を利用して方位を検出するセンサー等を採用することが可能である。また、上記実施例では、作業車両10の位置を検出するものとしてGPS信号が採用されているが、位置を検出可能なものであれば種々のものを採用することが可能である。例えば、基地局から発信される電波を利用して位置を検出するセンサー等を採用することが可能である。
【0037】
また、本発明は作業車両10に適用されているが、他の種類の移動体、例えば、船舶,航空機,ロケットなどに本発明が適用されてもよい。
【符号の説明】
【0038】
10:作業車両(移動体) 28:制御装置 70:設定距離演算部 72:ウエイポイント演算部 74:制御部